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We present experimental results of the generation of internal gravity waves by a
turbulent buoyant plume impinging upon the interface between a uniform density
layer of fluid and a linearly stratified layer. The wave field is observed and its
properties are measured non-intrusively using axisymmetric Schlieren. In particular,
we determine the fraction of the energy flux associated with the plume at the neutral
buoyancy level that is extracted by the waves. On average, this was found to be
approximately 4 %. Within the limits of the experimental parameters, the maximum
vertical displacement amplitude of waves were found to depend linearly upon the
maximum penetration height of the plume beyond the neutral level. The frequency of
the waves was found to lie in a narrow range relative to the buoyancy frequency. The
results are used to interpret the generation of waves in the atmosphere by convective
storms impinging upon the tropopause via the mechanical oscillator effect.

1. Introduction
Internal gravity waves have been studied over the years in part because of their

affect upon the circulation patterns in the ocean and atmosphere. For example,
the momentum transported by convectively generated gravity waves in the tropics
have been suggested to drive the quasi-biennial oscillation (Dunkerton 1997). The
contribution of gravity waves in general to the dynamics of the quasi-biennial
oscillation has been suggested in earlier studies (Lindzen & Holton 1968; Holton
& Lindzen 1972). The waves are also known to affect the global momentum budget
in the middle and upper atmosphere as well as in the troposphere through wave
drag. Their inclusion in general circulation models (GCMs) is necessary for a
greater understanding of circulations in the atmosphere and for that matter accurate
predictions of global weather patterns (McLandress 1998). By necessity, GCMs use
coarse grids with long time steps and so to include the effects of relatively small
and fast internal gravity waves in their models, researchers attempt to parameterize
their effects. Besides their influence on the large-scale flows, gravity waves above
convection have also been suggested to cause mixing and cirrus cloud initiation when
they break (Moustaoui, Joseph & Teitelbaum 2004; Wang 2004; Lane & Sharman
2006).

† Email address for correspondence: bruce.sutherland@ualberta.ca
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Various sources of gravity wave generation have long been identified. These include
flow over topography, geostrophic adjustment and deep convection (Fovell, Durran &
Holton 1992). It is now appreciated that the last of these is also significant, particularly
in the tropics, but the detailed mechanism for wave generation by convection is not
well understood.

Three main ways of generating internal gravity waves by deep convection have been
identified in the literature. They include the mechanical oscillator effect (Pierce &
Coroniti 1966; Clark, Hauf & Kuettner 1986; Fovell et al. 1992), the obstacle
effect (Clark et al. 1986) and the deep heating effect (Pandya & Alexander 1999;
Alexander & Barnet 2007). In the mechanical oscillator effect, the vertical oscillations
of updrafts and downdrafts are believed to excite internal gravity waves in the stable
layer above the troposphere similar to the way in which the waves may be generated
by an oscillating rigid body. In the obstacle effect, updrafts act as an obstacle to
a mean horizontal flow at the cloud tops and this excites gravity waves in the
stable layer above. To avoid any confusion with internal gravity wave generation by
flow over topography, this mechanism has also been called ‘quasi-stationary forcing’
(Fovell et al. 1992). In the deep heating effect, thermal forcing by latent heat release
within a convective system acts as gravity wave source (Pandya & Alexander 1999;
Alexander & Barnet 2007). The initial studies of Clark et al. (1986) concluded that
the obstacle effect was the most important wave generation mechanism. However, the
studies by Fovell et al. (1992) and later Kumar (2007) show that parcel oscillations
within convective updrafts and downdrafts are also responsible for generating the
gravity waves. An extensive review by Fritts & Alexander (2003) concluded that
all three mechanisms may be important with one mechanism or another serving to
explain a set of observations depending upon the environmental conditions.

In a recent study by Kumar (2007), it was pointed out that among convective
generation processes, the least understood is the mechanical oscillator effect. Using
VHF radar measurements and wavelet analyses, Kumar (2007) carried out a study
that showed the observational evidence of the role of the mechanical oscillator effect.
The study also mentioned the lack of adequate information to parameterize the full
spectrum of convective gravity waves from the various numerical modelling and
observational studies and suggested a collaboration among theories, models and
observations.

In this paper, we report upon laboratory experiments designed to isolate the dynam-
ics of the mechanical oscillator effect acting within a convective storm. Specifically, we
examine properties of axisymmetric waves emanating from a plume impinging upon
a stratified fluid. The waves are visualized and their characteristics and amplitudes
are measured using an axisymmetric synthetic Schlieren method that measures the
amplitudes of axisymmetric disturbances (Onu, Flynn & Sutherland 2003).

Although the experiments presented in this study are performed with application
to the atmosphere as the focus, the results may also be applied to oceanic
deep convection. A combination of thermodynamic effects such as rapid cooling,
evaporation and freezing may cause surface waters to become denser than deep
waters, thereby causing parcels of water to sink with entrainment of ambient fluid.
These convective plumes have been observed to mix vigorously with their surroundings
as they sink with velocities of 2–10 cm s−1, with vertical scales of 1–2 km, and with
horizontal scales of the order of 1 km and occur on time scales of several hours to
days (Paluszkiewcz & Garwood 1994). A study in the Mediterranean region shows
that convection seems to occur in the same place roughly the same time every year
(Send & Marshall 1995). In addition, most of the observations of these convective
plumes appear to occur in the Greenland Sea and the Mediterranean region (MEDOC
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Group 1970; Schott, Visbeck & Fischer 1993). Upon impacting the stable layer below
the mixed layer, deep convective plumes could cause the generation of internal
gravity waves that transport momentum from the mixed layer to the deep ocean
thereby locally affecting mixing in the deep ocean. Because of the infrequent nature
of occurrence of these oceanic plumes, their contribution to the global energy budget
associated with internal gravity waves in the ocean is unlikely to be important but
the phenomenon is nonetheless interesting to examine.

In the numerical simulations of stratospheric gravity waves using a cloud model
and an idealized model of a mechanical oscillator, Fovell et al. (1992) observed a
fan-like distribution of gravity waves in the stable layer. They explained that the
fan-like appearance of waves in their simulations is due to simultaneous forcing by
convective plumes at several frequencies. These investigators also pointed out that
this aspect of the cloud models is what the single-frequency mechanical oscillator
models are not able to mimic.

The study by Pfister et al. (1993a) traced a transient mesoscale stratospheric
gravity wave to a tropical cyclone. The wave generated was studied by using aircraft
overflight measurements and satellite imagery, as well as supplementary data of a
pilots commentary for the visual description of the overshooting convective turrets.
A mechanistic modelling of the gravity wave using a large-scale mechanical oscillator
model succeeded, to a large degree, in reproducing the observed wave. They stated
that the mechanical oscillator model in their case is the growth and decay of an
ensemble of updrafts over a few hours that raises and lowers isentropic surfaces on
about a 100 km horizontal scale. An alternative approach using the obstacle effect
overpredicted the vertical wavelength of the gravity waves. The poor prediction of
the vertical wavelength was attributed to three factors: low mean zonal wind speeds
at the measurement height (18.3 km) as compared to the tropopause (16.75 km); the
clockwise turning of the mean wind vector with altitude; and the inaccurate placement
of the convective forcing relative to the aircraft observations.

Other studies investigating gravity wave generation by deep convection via
the mechanical oscillator effect include Lane, Reeder & Clark (2001) and Song,
Chun & Lane (2003). They have employed both two and three-dimensional numerical
simulations to study waves generated via deep convection and their propagation into
the stratosphere. Unlike previous numerical studies that involved two-dimensional
quasi-steady long-lived sources, Lane et al. (2001) have considered the case of three-
dimensional transient sources in their simulations.

One of the first experimental studies designed to investigate the nature of internal
gravity waves generated by a thermal (an instantaneous release of a buoyant volume
of fluid) was by McLaren et al. (1973). The wave field was analysed by studying
the trajectories of buoyant marker particles placed in the linearly stratified ambient.
It was observed that the waves generated by buoyantly rising fluid at its neutral
buoyancy level were transient in nature and had a band of frequencies unlike the
waves generated in their experiments using an oscillating solid sphere that had a
single frequency. The study did not, however, investigate the energy extracted by the
waves from the buoyant element at its stabilizing level.

An experimental study of the energy lost to waves from a thermal was undertaken
by Cerasoli (1978). The energy of the internal gravity waves propagating away from
the collapse region was estimated by comparing the difference between the initial and
final potential energy of the mean state. The energy estimated in this way was found
to be 20 %–25 % of the change in potential energy of the whole system.

A recent numerical study has also investigated the generation of gravity waves by
thermals via the mechanical oscillator mechanism (Lane 2008). The study concluded
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that in a stable ambient fluid, the deceleration and subsequent collapse of a thermal
after reaching its neutral buoyancy level are due to a vortical response of the ambient
to the overshooting thermal that induces an opposing circulation that inhibits further
ascent of the thermal. The response of the vorticity surrounding the thermal was
proposed as being responsible for the thermal acting like a damped mechanical
oscillator thereby resulting in the generation of the gravity waves.

A theoretical investigation to understand the significance of the energy extracted
from a convective element by gravity waves was undertaken by Stull (1976). He
modelled penetrative convection as an idealized Gaussian disturbance at the base
of a temperature inversion and found that penetrative convection overshooting into
a stable temperature inversion from a turbulent mixed layer can excite vertically
propagating internal gravity waves in the stable air above the inversion base. He
concluded that the amount of energy lost in this way was small if the inversion was
strong. However, if the inversion was weak and the convective mixing vigorous, a
significant fraction of the energy of the overshooting elements was lost. The inclusion
of the inversion layer in the model permitted the propagation of interfacial waves.
In the absence of a temperature jump, the theory estimates the maximum amount of
energy lost to waves to be about 68 %.

Other studies have examined the internal waves generated due to the motions
in a convective layer underlying a stable layer of fluid (Townsend 1964, 1965, 1966;
Michaelian, Maxworthy & Redekopp 2002). In particular, Townsend (1964) performed
experiments in which fresh water in a tank was cooled to freezing point from below
and gently heated from above. The nonlinear relationship between the density of water
and temperature resulted in convective motions in the lower layer and the excitation
of transient internal gravity waves in the stratified layer above. The rising convective
motions were observed to be plume-like rather than spherical thermals and the
internal waves were generated due to the penetration of these columnar motions into
the stable layer. Michaelian et al. (2002) studied the coupling between internal waves
and the convective motions in a mixed layer. The convective plumes were initially
observed to be vertical and resulted in the generation of high frequency waves, but
as the mixed layer grew low frequency waves were generated giving rise to a weak
mean flow that in turn modified the plumes from being vertical to being horizontal.

In § 2, we discuss the theory for buoyant plumes and axisymmetric internal gravity
waves. We also discuss the theory for the radial intrusion of currents into a linearly
stratified environment from a source of constant flow rate. In § 3, we discuss the
experimental procedure and provide qualitative results. Quantitative results are
presented in § 4. In § 5, we discuss how the results may be extended to geophysical
circumstances and summarize our results in § 6.

2. Theory
In the following, we review the theory for forced plumes in a uniform density and

linearly stratified ambient fluid. The theory is developed for plumes in which buoyant
fluid rises in a denser environment. However, in a Boussinesq fluid, for which the
density variations are small compared with the characteristic density, the results are
equivalent for a descending dense plume.

2.1. Equations of motion for a plume

Forced plumes arise when there is a continuous release of both buoyancy and
momentum from a localized source. The flow initially behaves like a jet and gradually
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transitions to a pure plume far from the source. Standard reviews on forced plumes
may be found in Fischer et al. (1979), Chen & Rodi (1980), List (1982) and Lee &
Chu (2003). Defining M0 and F0 to be the specific momentum and buoyancy fluxes,
respectively, at the source, the length scale separating jet-like and plume-like behaviour
is given by (Morton 1959; Fischer et al. 1979)

Lm = M
3/4
0 /F

1/2
0 . (2.1)

The experiments of Papanicolaou & List (1988) show that the flow is jet-like for
z/Lm < 1 and plume-like for z/Lm > 5, where z is the distance above the virtual origin.

A well-known approach for solving problems of forced plumes is to use the
conservation equations of turbulent flow of an incompressible fluid and to employ the
Boussinesq and boundary-layer approximations. The resulting equations are typically
solved by using the Eulerian integral method (Turner 1973). In this method, a
Gaussian or top-hat profile is first assumed for the velocity and concentration
profiles of the plume. The equations are then integrated over the plume cross-
section and the profiles are substituted into the integral equations. The result is
three ordinary differential equations (ODEs) that may be solved numerically or, in
special circumstances, analytically. However, an assumption has to be made to close
the system of ODEs. This could either be the entrainment hypothesis in which the
horizontal flow in the ambient is assumed to be proportional to the axial velocity at
that region (Morton, Taylor & Turner 1956) or the spreading hypothesis in which the
plume is assumed to widen at a prescribed rate (Abraham 1963; Lee & Chu 2003).

Another approach to modelling plumes is presented by Priestley & Ball (1955). They
employed a closure assumption in which the covariance of the velocity fluctuations
depended on the square of the mean vertical velocity. A detailed theoretical analyses
of the similarities and differences between the models of Priestley & Ball (1955) and
Morton et al. (1956) have been presented by Morton (1971).

Following the Eulerian approach of Morton (1959), the equations governing the
motion of a forced top-hat plume in a linearly stratified environment are given by:

dQ

dz
= 2απ1/2

√
M, (2.2)

dM

dz
=

FQ

M
, (2.3)

dF

dz
= −QN2, (2.4)

where M, Q and F are the momentum, mass and buoyancy fluxes, respectively, and
N is the buoyancy frequency defined by

N2 = − g

ρ00

dρ

dz
, (2.5)

where ρ(z) is the background density profile, ρ00 is a reference density and g is the
gravitational acceleration. These equations assume that the horizontal entrainment
velocity is proportional to the axial velocity at each height in which α = 0.12 (Kaye
2008) is the proportionality constant.

Given the fluxes of the plume at the source where z =0, (2.2)–(2.4) are used to
obtain the fluxes at any distance z above the source. In particular, we first evaluate
fluxes at the base of the stratified region after the plume rises a distance H through
the uniform-density ambient, where N = 0. These interfacial fluxes are then used as
the initial conditions to solve (2.2)–(2.4) numerically for rise through a uniformly

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

31
93

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009993193


410 J. K. Ansong and B. R. Sutherland

stratified fluid. The level of neutral buoyancy zn is found at the height where the
buoyancy flux vanishes and the maximum penetration height zmax is estimated as the
point where the momentum flux goes to zero.

2.2. Plume energetics

The horizontally integrated flux of kinetic energy, Fk , across the horizontal plane of
a buoyant plume at height z and the rate of working due to buoyancy forces, Wp , are
given respectively by (Turner 1972)

Fk = πρ00

∫ ∞

0

w3rdr, (2.6)

Wp = 2πρ00

∫ ∞

0

wg′rdr, (2.7)

where ρ00 is a reference density. Assuming top-hat profiles, (2.6) may be evaluated to
get

Fk =
1

2
ρ00πw3b2, (2.8)

where w is the average vertical velocity at height z and b is the plume radius. For
top-hat profiles, the ratio of the divergence of the kinetic energy flux to the rate of
working owing to buoyancy forces is given by (Turner 1972)

∂Fk/∂z

Wp

=
3

8
. (2.9)

Thus, the vertically integrated rate of working of the plume, Fplume , from the virtual
origin to a height z = H is

Fplume =
4

3
ρ00πw3

i b
2
i , (2.10)

assuming Wp is zero at the virtual origin. Here wi and bi are the average vertical
velocity and radius of the plume at z = H . In the case of a plume in a linearly stratified
environment, (2.10) is also used to estimate the rate of working of the plume at its
neutral buoyancy level with wi and bi replaced by the vertical velocity wn and radius
bn of the plume at the level of neutral buoyancy, zn.

2.3. Axisymmetric intrusion speeds

Upon reaching its neutral buoyancy level, a plume in a stratified fluid first overshoots
this level and then falls back to spread radially as an intrusive gravity current. Such
radial currents undergo different spreading regimes as they propagate outward (Chen
1980; Didden & Maxworthy 1982; Zatsepin & Shapiro 1982; Ivey & Blake 1985;
Lister & Kerr 1989; Lemkert & Imberger 1993; Kotsovinos 2000).

The relationship between the radius of the current, R(t), and time, t , is predicted
to be a power law of the form R(t) ∼ tκ , where κ depends on the particular regime
of flow. Four main regimes have been identified in the literature: a regime dominated
by the radial momentum flux such that R(t) ∼ t1/2, a constant velocity regime
(Kotsovinos 2000), the inertia-buoyancy regime where R(t) ∼ tκ (with κ = 1/2 by
Ivey & Blake 1985, κ = 2/3 by Chen 1980, κ = 3/4 by Didden & Maxworthy 1982
and Kotsovinos 2000), and finally the inertia–viscous regime where R(t) ∼ t1/2. The
reasons for the discrepancies in the inertia–buoyancy regime have been addressed by
Kotsovinos (2000).
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In this study, we measure the initial speeds of the radial currents that spread at the
neutral buoyancy level and compare them with theory. We will focus on the first three
regimes since we are interested only in the initial speeds. Explicitly, if V = dR/dt is
the velocity of the intruding fluid, MR is the radial momentum flux and QR is the
radial volume flux, then compared to the time scale tMF = MR/FR , we get

V ∝ M
1/2
R /R, t � tMF (2.11)

V ∝ MR/QR, t ≈ tMF (2.12)

V ∝
(

NQR

R

)1/2

, t 
 tMF (2.13)

where the proportionality constant in (2.13) has been found to be around 0.36
(Kotsovinos 2000). Not all three regimes are necessarily present in a single experiment;
the presence of a particular regime largely depends on the competing effects of the
radial components of momentum and buoyancy in the flow (Chen 1980; Kotsovinos
2000; Ansong, Kyba & Sutherland 2008).

The radial component of momentum is unknown a priori. However, owing to the
loss in momentum by moving from a vertical flow to a radial current, we assume
that the radial momentum and volume fluxes are proportional to the momentum and
volume fluxes of the plume at the neutral buoyancy level (Mn and Qn , respectively).
Thus, from (2.11)–(2.13) and replacing MR and QR by Mn and Qn, we obtain the
expressions that may be used to predict the initial velocity of the axisymmetric
currents. The development of the theory above is similar to the approach used by
Kotsovinos (2000) and Ansong et al. (2008).

2.4. Representation of axisymmetric internal gravity waves

The equations governing the motion of small amplitude axisymmetric internal gravity
waves in an inviscid and incompressible fluid with no background flow can be reduced
to a single equation in terms of the streamfunction ψ(r, z, t):

∂2

∂t2

[
∂2ψ

∂z2
+

∂

∂r

(
1

r

∂(rψ)

∂r

)]
+ N2 ∂

∂r

(
1

r

∂(rψ)

∂r

)
= 0, (2.14)

where the radial and vertical velocities are respectively defined by

u = −∂ψ

∂z
, w =

1

r

∂(rψ)

∂r
, (2.15)

and r and z are the radial and vertical coordinates, respectively. Seeking solutions of
(2.14) that are periodic in z and t , we find for given vertical wavenumber, kz, and
frequency, ω, that the streamfunction satisfies

ψ(r, z, t) =
1

2
AψJ1(kr)ei(kzz−ωt) + cc, (2.16)

in which cc denotes the complex conjugate, J1 is the Bessel function of the first kind
and order one, and k is defined via the dispersion relation

ω2 = N2 k2

k2
z + k2

. (2.17)

From (2.15) and the implicit definition of the vertical displacement, w = ∂ξ/∂t , the
vertical displacement field is represented by

ξ =
1

2
AξJ0(kr)ei(kzz−ωt) + cc,
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Field Structure Relation to vertical displacement

Vertical displacement ξ = 1
2
AξJ0(kr)ei(kzz−ωt) + cc

Streamfunction ψ = 1
2
AψJ1(kr)ei(kzz−ωt) + cc Aψ = − i ω

k
Aξ

Vertical velocity w = 1
2
AwJ0(kr)ei(kzz−ωt) + cc Aw = − iωAξ

Radial velocity u = 1
2
AuJ1(kr)ei(kzz−ωt) + cc Au = − kzω

k
Aξ

Pressure p = 1
2
ApJ0(kr)ei(kzz−ωt) + cc Ap = iρ0

ω2kz

k2 Aξ

N 2
t N 2

t = 1
2
AN2

t
J0(kr)ei(kzz−ωt) + cc AN2

t
= − kzωN 2Aξ

Table 1. Polarization relations and representation of basic state fields for small-amplitude
axisymmetric internal gravity waves in the (r, z) plane in stationary, linearly stratified
Boussinesq fluid with no background flow. The table also shows the streamfunction and
the time derivative of the perturbation squared buoyancy frequency (N2

t ). Each field b is
characterized by the phase and magnitude of its complex amplitude, Ab , and the corresponding
Bessel functions of the first kind are order zero (J0) or one (J1).

where Aξ is the amplitude of the vertical displacement field and J0 is the Bessel
function of the first kind and order zero. Table 1 shows the representation of other
basic state fields in terms of Bessel functions for small-amplitude axisymmetric internal
gravity waves.

In practice, we Fourier–Bessel decompose the signal from horizontal time series for
0 � r � R and T1 � t � T2, and represent

ξ (r, z, t) =
∑

n

∑
m

1

2
AξnmJ0(knr)e

i(kzz−ωmt) + cc, (2.18)

where Aξnm is the amplitude of the component of vertical displacement field with
frequency ωm = mω0 with ω0 = 2π/(T2 − T1), radial ‘wavenumber’ kn = αn/R and αn

are the zeros of J0. Note that kz is found in terms of kn and ωm using (2.17). We only
include terms in the sum over m for which ωm � N .

Since the waves are assumed axisymmetric, we compute the time-averaged total
vertical energy flux, Fwave =

∫ ∫
〈wp〉dA, using Bessel series and get (see the Appendix)

Fwave =
1

4
πR2ρ0N

3
∑

n

∑
m

cos Θm sin 2Θm

|Aξnm|2J 2
1 (αn)

kn

, (2.19)

where p is pressure and Θm is the angle of propagation of each wave beam with
respect to the vertical satisfying

Θm = cos−1
(ωm

N

)
. (2.20)

3. Experimental set-up and analyses
3.1. Experimental set-up

Experiments were performed in an acrylic tank measuring 39.5 cm long by 39.5 cm
wide by 39.5 cm high (see figure 1). These were conducted by injecting dense fluid
downward into an initially less dense ambient fluid. The results are dynamically
equivalent to injecting light fluid upward from the bottom because the system is
Boussinesq. The qualitative results are presented in this section for experiments with
and without a uniform-density surface layer. For conceptual convenience and for
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H

HT

ρ1

ρ0

Nozzle

Connecting tube

Tank

39.5 cm ρ(z)

z

ρ1 ρ0 ρ2

Lc = 310 cm LT  = 39.5 cm Ls = 5 cm Lf  = 5 cm

Camera

Screen

Fluorescent
lights

(a) Front view

(b) Side view
(not to scale)

Figure 1. (a) Front view of the experimental set-up with background density profile and
(b) side view showing set-up used for synthetic Schlieren.

consistency with the theory presented in § 2, the snapshots from the experiments are
flipped upside down so that the plume appears to rise upward.

In all experiments, the total depth of fluid within the tank was HT = 38 cm. In the
absence of a uniform-density layer, a linear stratification is set up using the double-
bucket technique (Oster 1965). In the presence of a mixed-layer of depth z =H , the
tank was first filled to a depth HT − H with fluid whose density increases linearly
with depth. Once this height was attained, the flow of fresh water into the salt-water
bucket was stopped while the flow from the salt-water bucket into the tank was
allowed to continue at the same flow rate. This approach ensured that no density
jump was created between the linearly stratified layer and the uniform-density layer.
The variations in density were created using sodium chloride solutions and density
samples were measured using the Anton Paar DMA 4500 density meter. The density
profile in the environment was determined by withdrawing samples from different
vertical levels in the tank and by using a vertically traversing conductivity probe
(Precision Measurement Engineering). The depth of the mixed layer was varied such
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that H ≈ 5, 10 or 15 cm. Figure 1(a) shows a schematic of the density variation in the
ambient for the case with a mixed layer with ρ1 < ρ2 where ρ1 is the density of the
mixed layer and ρ2 is the density at the bottom of the stratified layer.

After the ambient fluid in the tank was established, a reservoir of salt water of
density ρ0 (ρ1 <ρ0 <ρ2) was dyed with blue food colouring and then allowed to
drain into the tank through a round nozzle of radius 0.2 cm. To ensure that the flow
turbulently leaves the nozzle, it was specially designed and fitted with a mesh having
openings of extent 0.05 cm. The flow rates for the experiments were recorded by
measuring the total volume released during an experiment. Flow rates ranged from
1.7 to 3.3 cm3 s−1.

Experiments were recorded using a single digital camera situated 310 cm from the
front of the tank. The camera was situated at a level parallel to the mid-depth of the
tank and the entire tank was in its field of view. Fluorescent lighting was placed 10 cm
behind the tank to illuminate the set-up (see figure 1b). A grid made of horizontal
black and white lines was placed between the lighting apparatus and the tank for
post-experiment analyses using the synthetic Schlieren method.

Using ‘DigImage’ software, the maximum penetration depth of the plume and the
initial velocity, w0, were determined by taking vertical time series constructed from
vertical slices of movie images at the position of the nozzle. The temporal resolution
was as small as 1/30 s and the spatial resolution was about 0.1 cm.

Horizontal time series were used to determine the radial velocity of intrusively
spreading gravity currents. They were taken at the vertical position of the neutral
buoyancy level.

The generated internal waves were visualized using axisymmetric synthetic Schlieren
method (Onu et al. 2003; Decamp, Kozack & Sutherland 2008). Apparent distortions
of the image of black and white lines were recorded by the camera and the time
derivative of their vertical displacement, Δzt , was estimated by comparing two images
taken within a short time interval. Using the Δzt field, the time derivative of the
squared buoyancy frequency, N2

t (r, z, t), is obtained. The N2
t field is useful since it

can be used to remove noise by filtering out fast time-scale disturbances. The field
is also in phase with the vertical displacement field. The amplitude of the vertical
displacement field, Aξnm, for waves with frequency ωm and radial wavenumber k is
calculated from the amplitude of the N2

t field, AN2
t nm, using (see table 1):

Aξnm = −
AN2

t nm

kzωmN2
, (3.1)

in which kz is determined using (2.17).

3.2. Qualitative analyses

3.2.1. Experiments with a uniform-density layer

Figure 2 presents series of spatial snapshots showing the evolution of a plume and
the generation of vertically and radially propagating waves. The images on the left
of figure 2 are snapshots of the evolving plume and the black and white lines in the
images are those of the screen placed behind the tank. The middle column of images
are the Δzt fields revealing the vertical and horizontal structure of distortions resulting
from the waves. These depend upon the horizontal x and vertical z coordinates. The
Schlieren-processed images on the right also show the structure of the internal waves
themselves as they depend upon the radial R and vertical z coordinates.

As is typical of turbulent forced plumes, when the experiment starts, the plume rises
due to its positive buoyancy and source momentum, linearly increasing in width as it
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Figure 2. Snapshots of plume (flipped upside down and shown on the left), the Δzt field
(middle) and the N2

t field of the waves (right) at (a) t ∼ 7.0 s, (b) t ∼ 9.0 s and (c) t ∼ 11.0 s.
For the figures in the middle and on the right, the mixed layer region is covered with a
white background to highlight the waves and schematics of the plume are superimposed
to approximately show its position. The experiment is performed with ρ0 = 1.0734 g cm−3,
ρ1 = 1.0363 g cm−3, N = 1.75 s−1, H ≈ 10 cm, Q0 = 3.3 cm3s−1.

rises due to entrainment from the ambient. It reaches the interface in a time of about
t ∼ 1.5 s and penetrates beyond the interface to a maximum height of z ∼ 17 cm
in about t ∼ 4.0 s (not shown). During the initial evolution of the plume as it rises
to its maximum height, internal gravity waves are not observed. The waves begin to
emanate away from the cap of the plume when it started to fall back upon itself.
This is consistent with previous observations of thermals generating internal gravity
waves (McLaren et al. 1973; Lane 2008). After collapsing upon itself the plume then
spreads radially outward as an intrusive gravity current at the neutral buoyancy level.

Figure 3(a) shows a horizontal time series taken at the neutral buoyancy level
(z ≈ 13 cm) of the experiment shown in figure 2. The level of neutral buoyancy
is usually located by inspecting spatial snapshots of the experiments. The radial
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Figure 3. (a) Horizontal and (b) vertical time series of the experiment in figure (2). The
horizontal time series is constructed from a slice taken at the neutral buoyancy level, z ≈ 13 cm.
The vertical time series is taken from a vertical slice through the source at R =0 cm.

propagation of the front of the intruding current can be seen. The parabolic nature
of the time series shows the change in speed of the front of the current as it spreads
towards the tank sidewalls.

Figure 3(b) shows a vertical time series taken through the centre of the plume
(R = 0 cm) illustrating the initial ascension and later vertical oscillatory motion of the
plume top with time. This is the same experiment shown in figure 2 in which the
plume penetrated to a maximum height zmax ≈ 17 cm. Upon reaching the maximum
height, the plume reverses direction due to negative buoyancy and collapses upon
itself. The collapsing of the fluid decreases the consequent maximum height of the
plume. However, because of the continuous release of fluid from the source, new
fluid penetrates the collapsing fluid so as to maintain the plume fluctuating about a
quasi-steady-state height zss . The maximum and steady state heights are indicated in
figure 3(b).

At time t ∼ 7.0 s, the rightmost image in figure 2(a) shows the waves beginning to
emanate from the plume cap. The black and white bands correspond to the troughs
and crests respectively of the wave beams. The waves propagate upward and outward
towards the tank walls at the same time. A new wave trough appears at t ∼ 9.0 s
(figure 2b) above the plume head with approximately the same amplitude as the
first trough. At t ∼ 11.0 s, figure 2(c) shows the region above the spreading current
completely covered with the wave beams. All this while, the radial current continues to
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spread towards the walls of the tank. Nevertheless, the wave beams can still be traced
back to the region around the plume cap. This indicates, qualitatively, that the waves
are generated by the bulge of fluid at the plume top and not by the spreading currents
at the neutral buoyancy level. A quantitative argument supporting this assertion is
made by taking the initial spreading speeds of the currents and comparing them with
the horizontal phase and group speeds of the waves (see § 4.2).

3.2.2. Experiments without a uniform-density layer

Experiments were also conducted for the case in which there was no mixed layer
but with a linearly stratified fluid over the whole tank depth. This is the special case
in which the uniform-density layer has depth H = 0. The evolution of plumes and
fountains in linearly stratified environments have previously been studied (Morton
et al. 1956; Bloomfield & Kerr 1998) but the wave field was not analysed. The wave
field is more complex in this case and the linear stratification results in the generation
of both upward and downward propagating wave cones by the turbulent plumes.

Figure 4 shows snapshots of a plume as well as the generated internal waves in an
experiment with H = 0 cm. Similar to the experiment with H = 10 cm, waves are not
observed until the plume reaches the maximum height and starts to fall upon itself.
The plume in this case reaches its maximum height zmax ∼ 10 cm in about 3 s (not
shown). At about 6 s (figure 4a) we observe the appearance of wave beams around the
plume head. Only upward propagating waves are prominent in the wave field at this
time even though the appearance of a downward propagating crest and trough can be
seen to emanate from around the plume cap. More wave beams are observed in figure
4(b) (t = 7 s) with upward propagating waves still prominent. In both figures 4(b)
and 4(c), we observe a cross-pattern of waves resembling the cross-pattern observed
in waves generated by oscillating cylinders and spheres (Mowbray & Rarity 1967;
Sutherland et al. 1999; Sutherland & Linden 2002; Flynn, Onu & Sutherland 2003).
The downward propagating waves appear to be generated by the resulting intrusions
but nevertheless the phase lines still appear to be radiating from a localized source
close to the region below the plume head. In this case the mean depth of the intrusion
is about 6 cm from the source. We also note that, despite the different ambient
stratifications, the radial scale of the waves is similar both in this case and in the
H > 0 cases (see figures 2c and 4c).

3.3. Bessel–Fourier analyses

Figure 5 shows the time series and power spectra used to obtain the characteristic
frequency and radial wavenumber of the waves.

In figure 5(c), the horizontal time series is taken at a vertical position z = 20 cm of
the experiment shown in figure 2. The plume in this case penetrated to a maximum
height z ≈ 17 cm. Thus, the position z =20 cm is about 3 cm above the maximum
penetration height which means that the bulge of fluid from the plume is not
captured in the time series; only the radially propagating waves moving up and away
from the plume cap are captured.

The horizontal time series shows the radial propagation of the waves with time,
and from this we measure the radial and temporal characteristics of the waves. To
obtain the characteristic radial wavenumber kc and frequency ωc of the waves, we first
compute Bessel–Fourier spectra over a specifically chosen window in radial space and
time (0 cm � R � 20 cm, 1.5 � t/Tb � 4.5) from several horizontal time series taken
above the maximum penetration height. Here Tb = 2π/N is the buoyancy period.
These spectra are then averaged to obtain a characteristic power spectrum of the
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Figure 4. Snapshots of plume (flipped upside down and shown on the left) and the N2
t

field of the waves (shown on the right contours in s−3) at (a) t ∼ 6.0 s, (b) t ∼ 7.0 s
and (c) t ∼ 8.0 s. For the figures on the right, schematics of the plume are superimposed
to approximately show its position. (Experiment with ρ0 = 1.0720 g cm−3, ρ1 = 1.0310 g cm−3,
N = 1.43 s−1, Q0 = 3.2 cm3s−1, H =0 cm).

waves. For example, the average power spectrum shown in figure 5(b) was obtained
by Fourier-transforming in time and Bessel-transforming in the radial direction over
several rectangular windows such as the one shown in figure 5(c) extracted from
images of the experiment shown in figure 2. In this case, the horizontal slices are
taken in the range 20 cm � z � 25 cm and the time interval is 7 s � t � 25 s. Choosing
a window avoids the inclusion of the reflected wave beams from the sidewalls of the
tank. From the power spectrum, we observe that the waves are quasi-monochromatic.
Averaging over all radial wavenumbers gives the frequency spectrum in figure 5(a).
This shows a peak frequency ω ≈ 1.1 s−1. However, there is non-negligible power in
neighbouring frequency components and so a characteristic frequency of the waves is
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Figure 5. (a) Frequency spectrum obtained by averaging over all radial wavenumbers in
(b), where (b) shows the average power spectrum from different horizontal time series taken
over the rectangular window shown in (c). (c) is a horizontal time series taken at z = 20 cm of
the experiment in figure 2. The horizontal slices are taken in the range 20 cm � z � 25 cm and
7.0 s � t � 25 s (rectangle with dashed lines). (d) Radial spectrum obtained by averaging over
all frequencies in (b). Experimental parameters are the same as in figure 2.

found by calculating a power-weighted average:

ωc =

∑
m

ωm|Aξm|2

∑
m

|Aξm|2
.

Computed in this way, the characteristic frequency of the waves in this case is found
to be ωc = 1.0 s−1 and the value of N =1.75 s−1.

Averaging over all frequencies gives the radial spectrum shown in figure 5(d) with
a peak radial wavenumber k ≈ 0.5 cm−1. The figure also shows that most of the radial
power lies in the second and third modes. A characteristic radial wavenumber is
obtained by calculating a power-weighted average to get kc = 0.4 cm−1.

4. Quantitative analyses
In this section, we give a quantitative analyses of the results and compare them

with theory. In the experiments without a uniform layer of fluid (H = 0), only the
upward propagating waves have been included in the analyses.
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Figure 6. (a) The maximum penetration height above the interface and (b) the ratio of the
steady-state height to the maximum height.

4.1. Maximum penetration height

Figure 6(a) shows the experimentally measured values of the maximum penetration
height above the interface compared with the theoretical prediction of Morton (1959).
The maximum plume height zmax is computed by numerically solving (2.2)–(2.4) using
values of M , F and Q evaluated at the interface. There is good agreement in the data
with a correlation of about 90 %. Figure 6(b) is a plot of the ratio zss/zmax against
the interfacial Froude number, Fri . The average value of this ratio was found to be
0.90 ± 0.1. Morton et al. (1956) did not measure the quasi-steady-state height in their
experiments of a plume in a linearly stratified ambient; however we find that this
ratio compares well with the case of a fountain in a linearly stratified environment
measured by Bloomfield & Kerr (1998) to be 0.93. This value is slightly greater than
the ratio obtained for a fountain in a two-layer density-stratified ambient in which
the ratio is about 0.88 (Ansong et al. 2008). Although within errors, the ratio may
also be due to the greater interaction of the descending annular plume with the main
upflow in the case of a fountain in a two-layer ambient as compared with a plume in
a stratified environment in which the distance of interaction is between the maximum
height and the neutral buoyancy level.

4.2. Radial intrusion speeds

The main goal of measuring the initial speeds of the axisymmetric currents is to show
that the measured waves are those generated by the vertical fluctuations of the plume
and not the radially spreading currents.

Figure 7 shows the experimentally measured values of the level of neutral buoyancy,
zn (see figure 11), compared with the theoretical prediction of (2.2)–(2.4) using values
of M , F and Q evaluated at the interface. Theoretically, the level of neutral buoyancy
is taken as the height at which the buoyancy flux first vanishes. In the experiments,
the neutral level is visually determined from spatial snapshots after the intrusion
is established. There is good agreement in the data with a correlation of about
95 %. Only experiments with the neutral buoyancy level greater than 0.5 cm from
the interface are plotted. This is because the neutral buoyancy level is usually
indistinguishable from the interface for zn < 0.5 cm and besides the error involved
in measuring the position of the interface is about 0.3 cm.

The relationship between theory and experiment is surprisingly good considering
the fact that the theory, as applied here, assumes that there is no mixing of ambient
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Figure 7. Intrusion height, zn, of the radial currents for experiments with zn > 0.5 cm.

fluid between the neutral level and the maximum height. This is probably because
the axial velocity of the plume continues to decrease from the neutral buoyancy level
until it finally comes to rest at the maximum height. Therefore, the assumption that
entrainment is proportional to the axial velocity implies that there is less entrainment
in this part of the plume motion (Morton et al. 1956). A similar assumption was used
by Abraham (1963) to model the topmost part of turbulent fountains where it was
assumed that there is detrainment rather than entrainment of ambient fluid.

The initial speeds of the axisymmetric currents were measured by taking the slope
near R ≈ Rn of horizontal time series as shown, for example, in figure 8(b). Rn is the
width of the plume at the neutral buoyancy level that is determined from horizontal
time series such as in figure 8(a). Both the left- and right-moving current speeds are
measured and the average used to estimate the initial speeds.

Figure 8(c) shows a typical log-log plot of distance against time taken from
figure 8(b). This is used to determine the appropriate initial scaling relationship
between distance and time for the intrusions. All the experiments were found to
spread initially as R ∼ tκ , with κ = 1.0 ± 0.1. Figure 8(d) shows the initial spreading
speeds of the intrusion compared with (2.12) with the initial radial momentum and
volume fluxes replaced by those of the plume at the neutral buoyancy level. The plot
shows a relationship of the form

V = (0.12 ± 0.02)

(
Mn

Qn

)
. (4.1)

Figures 9(a) and 9(b) show the initial speed of the intrusion against the radial
phase speeds and group velocities of the waves respectively. Both plots show a poor
relationship between the respective parameters. This provides further support to the
assertion that the waves are generated by a localized source around the plume cap
and not by the intrusion currents. Although the intrusions may also generate waves,
these are not the dominant waves measured in the experiments above the maximum
penetration height. Moreover, the waves were observed to be generated long before
the intrusion is well established.

4.3. Radial wavenumber

Since the most obvious horizontal scale of the generating source is the width of the
plume at the density interface, one might expect that the radial scale of the waves
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Figure 8. (a) Horizontal time series for an experiment with N = 1.62 s−1, H = 5 cm,
ρ0 = 1.0544 g cm−3, ρ1 = 1.0511 g cm−3. The time series was constructed from a slice taken
at the neutral buoyancy level (z ≈ 5.2 cm). (b) Typical approach of calculating the initial
spreading speeds with ΔR ≈ Rn (the width of the plume at the neutral buoyancy level) and
Δt is the time taken to travel the distance ΔR. �, experimental data; . . ., fitted line. (c) The
log-log plot of the horizontal time series showing the different spreading regimes. (d) Plot of
the initial spreading speeds for all experiments.

is set by this parameter. To investigate this, experiments with varying mixed layer
depths were conducted.

Figure 10(a) shows the inverse of the characteristic radial wavenumber against the
radius of the plume at the interface, bi , for all the experiments. We observe that
k−1

c ≈ 2.0 cm is almost constant for experiments with different mixed layer depths
(H ≈ 0, 5, 10, 15 cm) and therefore for different plume radii at the interface. The
source radius is used in the case H = 0 and has also been plotted in figure 10(a). The
lack of correlation in the experiments show that the radial scale of the waves is not
set by the width of the plume at the density interface. This is unlikely to be caused by
the effects of the tank size since the radial scale of the waves is set before the waves
reach the sidewalls of the tank (e.g. see figure 2).

Because we start observing the waves when the plume begins to fall upon itself, we
hypothesize the scale of the waves is set by the radius of the plume cap just after the
plume reached the maximum height. For each experiment, three measurements of the
plume cap radius were taken within one second of each other after the plume reached
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Figure 9. Radial intrusion speed, Ug , vs. (a) the radial phase speed, cgr , and (b) the group
speed, cg , of the waves. Characteristic error bars are shown at the top right corner in (a).
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Figure 10. The inverse characteristic radial wavenumber as a function of (a) the radius of
plume at the interface for the uniform-density layer case (the source radius is used on the
x-axis in the case H = 0 cm) and (b) the mean radius of the plume cap. Characteristic error
bar for bc is shown at the top left corner.

the maximum height. The measurements were taken at a vertical level midway between
the maximum height and the neutral buoyancy level (see figure 11). The average of
these radii was used as the radius of the cap, bc. Figure 10(b) shows the inverse of the
characteristic radial wavenumber against the mean radius of the cap. We find that
the radius of the cap generally lies between values of 1.0 cm and 1.7 cm comparable
to k−1

c for different values of H . It, therefore, appears that the characteristic radial
wavenumber is set by the mean radius of the plume cap after it collapses upon
itself and not upon the radius of the incident plume at the interface height. What
determines the horizontal extent of the plume cap, as it depends upon Q, M and F ,
is not yet well established in theory. Indeed, numerical and theoretical attempts to
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Figure 11. Schematic showing the position where the radius of the plume cap, bc , the
maximum penetration height, zmax and neutral buoyancy level, zn, are measured. za is the
distance above the neutral buoyancy level.
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Figure 12. Vertical displacement amplitude of waves, Aξ , vs. (a) the maximum penetration
height and (b) penetration above the neutral buoyancy level.

model the dynamics of the plume cap rely on heuristic methods (McDougall 1981;
Bloomfield & Kerr 2000).

4.4. Vertical displacement amplitude

One might expect that the amplitude of the waves would depend upon the maximum
penetration height of the plume into the stratified layer. This is because the greater
the penetration of the plume into the linearly stratified layer, the greater is the
displacement of the isopycnals above the plume cap.

Figure 12(a) shows the theoretical maximum penetration of the plume against the
maximum vertical displacement amplitude, Aξ , that is measured in the wave field.
The amplitudes are obtained from horizontal time series taken about 3 cm above
the maximum penetration height. This enables us to measure the near-maximum
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amplitudes of the waves without corruption of the signal by the plume itself that
would occur by taking measurements too close to the plume. For the H > 0 cases,
the trend in the plot suggests a strong linear dependence of the amplitude upon the
maximum penetration depth within the limits of the experimental parameters. Even
though the H =0 cases penetrated further into the stratified ambient, their amplitudes
are not as large. They have an almost constant amplitude around 0.1 cm. This means
that the maximum penetration height does not properly characterize the amplitude of
the waves. In figure 12(b), we have plotted the vertical displacement amplitude against
the penetration of the plume beyond its neutral buoyancy level, za (see figure 11).
The trend indeed shows a linear relationship for all cases even though there is less
variation in za for the H = 0 cases. The linear trend in figure 12(a) for the H > 0
cases may also be due to the fact that most of those experiments had their neutral
buoyancy levels close to the interface height so that zmax is approximately equal to za

as explained in § 4.2.
Caution needs to be taken in interpreting this result since the amplitudes of the

waves are not expected to increase to infinity with increasing maximum penetration.
Experiments with larger penetration depths could not be examined because we needed
to ensure that there was sufficient vertical and horizontal space for analysing the waves
in the limited domain of the tank. The time it takes for waves to reach the walls of the
tank after generation can be estimated based upon their group velocity (see figure 9b)
and characteristic frequency (see figure 14). Assuming that the waves emanated from
the centre of the plume at the maximum height in a tank of radius ∼ 20 cm, we
estimated that it takes 13–36 s for the waves to reach the tank walls depending on
the experiment.

It is also important to recognize the different dynamics involved in the H > 0 and
H = 0 cases. In the H > 0 case, the plume is largely controlled by buoyancy forces as
it enters the stratified layer since its initial momentum is mostly used up by the time
the plume impinges the interface. So its dynamics within the stratified layer is roughly
the case of a pure plume in a linearly stratified environment. On the other hand, in the
H = 0 case, the plume enters the stratified layer as a forced plume, being controlled
initially by the momentum at the source and later by buoyancy forces. Thus, even
though the plume in the H =0 case travelled farther in the stratified layer, it does not
necessarily have a higher overshooting distance. In general, the overshooting distance
largely depends on the excess momentum at the neutral buoyancy level which, in
turn, depends upon the strength of the stratification and the fluxes of buoyancy and
momentum at the source.

4.5. Wave frequency versus forcing frequency

When the plume reaches the initial maximum height, it falls upon itself because
of its negative buoyancy and, subsequently, it oscillates about a quasi-steady-state
depth. Though these oscillations appear random, to our knowledge, they have
not been analysed before to determine their spectral characteristics. Turner (1966)
observed that the quasi-steady fluctuations of salt water fountains in one-layer fresh
water environments were small and random. On the contrary, the fluctuations from
‘evaporating’ plumes (composed of various mixtures of alcohol and ethylene glycol)
were observed to be more dramatic in that they were more regular and with larger
amplitudes. The amplitudes decreased with time but eventually achieved the same
mean height as the salt water fountains (see figure 3 of Turner 1966).

In figure 13(a), we plot the fluctuations from an experiment with buoyancy
frequency N = 1.17 s−1. These were determined by taking a vertical time series through
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Figure 13. (a) Vertical time series through the centre of a plume with parameters:
ρ0 = 1.0400 g cm−3, ρ1 = 1.0230 g cm−3, N =1.17 s−1, Q0 = 2.15 cm3s−1, H ≈ 5 cm. The vertical
fluctuations are subtracted from their mean value to get the vertical axis. (b) The frequency
spectrum of the signal in (a) with the power normalized by the maximum power.
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Figure 14. Peak forcing frequency of the plume, ωplume , vs. the frequency of the waves both
normalized by the buoyancy frequency. Characteristic error bars are shown at the top right
corner.

the centre of the plume and the extent of the vertical fluctuations were subtracted from
their mean values. The figure shows a quasi-regular pattern of oscillations. A Fourier
decomposition of the signal gives the frequency spectrum shown in figure 13(b). The
spectrum exhibits a wide range of frequencies with a peak frequency around 1.6 s−1,
greater than the buoyancy frequency of the stratified layer and greater than the
characteristic frequency of the generated waves (ωc ≈ 1.0 s−1 in this case). Figure 14
shows a plot of the peak frequency of the plume, ωplume , versus the frequency of
the waves illustrating that there is no direct linear relationship between the two
parameters. Thus, unlike internal gravity waves generated by solid objects (such
as spheres and cylinders) undergoing small amplitude oscillations (see Mowbray &
Rarity 1967; Sutherland et al. 1999; Sutherland & Linden 2002; Flynn et al. 2003),
waves generated by turbulent forced plumes have peak frequencies that do not directly
relate to the observed fluctuations of the plume cap itself.
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Figure 15. Relative frequency of the waves vs. the normalized amplitude.

Both figures 14 and 15 further show that the characteristic frequency of
the waves generated by the turbulent plumes lie in a narrow frequency range
(0.45 � ωc/N � 0.85). This is consistent with the findings of Dohan & Sutherland
(2003), in which the waves generated by turbulence were found to lie in a
narrow frequency range (0.5 � ω/N � 0.75). They hypothesized that turbulent eddies
generating internal gravity waves interact resonantly with the waves in a manner
that most strongly excites those waves that vertically transport the most horizontal
momentum (Sutherland, Flynn & Dohan 2004; Dohan & Sutherland 2005). The
vertical flux of horizontal momentum away from the generation region is proportional
to ρ0N

2A2
ξ sin(2Θ); so that for a fixed displacement amplitude the maximum value

of the momentum flux occurs at Θ = 45◦. The dominant waves in our experiments
propagate with Θ in the range 32◦–63◦ with a mean value of around 45◦. Such waves
exert the most drag on the source and so are most efficient at modifying the structure
of eddies that excite them.

Note that some numerical cloud models also reveal that the dominant frequency
of gravity waves generated via the mechanical oscillator mechanism lie in a narrow
range. For example, in the two-dimensional cloud-resolving numerical model of Song
et al. (2003), a well-defined peak period of 18.1 min (corresponding to ωc ≈ 0.0058 s−1)
in an environment with N = 10−2 s−1 was observed. This implies that ωc/N = 0.58 and
lies in the relative frequency range observed in our experiments.

4.6. Energy extraction by waves

The rate of working owing to buoyancy forces of the plume at the neutral buoyancy
level was calculated from (2.10) by replacing the radius and velocity at the interface
with those at the neutral level. The average wave energy flux was calculated using
(2.19). This was derived by assuming that the waves generated were symmetric about
the centre of the tank. To verify this, energy fluxes from the left and right sides of
the tank were independently determined and the average energy flux was calculated.
Separately, the N2

t fields from the left and right sides of the tank were first averaged
and the mean energy flux calculated. The difference in the energy fluxes between
the two approaches approximately gives the error involved in the assumption of
axisymmetry. The asymmetry in the wave field is usually caused by the tilting to
one side of the plume cap from the centreline as the plume falls upon itself. This
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Figure 16. The energy flux of the plume at its neutral buoyancy level vs.
the energy flux of the waves.

behaviour is difficult to control even if the initial injection of plume fluid is kept
vertical.

Using the above criteria, if the difference between the two calculations is greater
than 20 %, the experiment is considered asymmetric and is not included in the analyses
of the energy fluxes. We find that about 30 % of the experiments had differences to
within 20 %.

Figure 16 shows the estimated energy flux of the plume at its neutral buoyancy
level against the mean energy flux of the waves (calculated by taking the average of
the energy fluxes from the left and right sides of the tank). The average energy flux
of the waves for each side of the tank is estimated by vertically averaging energy
fluxes over a 4 cm interval (zmax + 3 cm � z � zmax + 7 cm) in order to capture any
vertical fluctuations in the energy flux due to the transient and turbulent nature of the
source. This vertical range was also chosen to avoid reflected waves from the sidewalls
and bottom of the tank. There appears to be a linear relationship between the two
parameters. We find that 0.1 %–8 % of the energy flux of the plume at its neutral
level is extracted by the waves. The average energy extracted is about 4 % for the
experiments considered. Although so small, this should not influence the large-scale
plume dynamics. This is plausibly large enough to influence the eddy dynamics at the
boundary between the plume cap and ambient.

5. Application to convective storms
The percentage of energy extracted by waves from plumes may be substantial when

compared with the enormous amount of energy released by thunderstorms.
The study by Pierce & Coroniti (1966) first proposed that gravity waves may be

generated by severe thunderstorms via oscillations of the updrafts within the storm.
They stated that the updraught extends throughout most of the cell and are generally
of the order of 3 m s−1 but may locally exceed 30 m s−1. Using observational data
they were able to estimate the energy per unit volume to be on the order of 1.0 erg
cm−3. Assuming that the oscillations extended over an area roughly 10 × 10 km and
over a height interval of 3 km, they estimated the total energy of the oscillation to be
3 × 1010 J.
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Curry & Murty (1974) showed through field observations that internal gravity
waves are generated by thunderstorms through the transfer of kinetic energy from a
rising column of air within the storm cell to a stable region aloft. In a case study, the
amplitude spectra showed that the wave consisted essentially of a single component
having a period of ∼ 16 min and a buoyancy period of 25.0 min (N ≈ 0.004 s−1) that
is larger than the observed period of the waves.

They proposed a simple model for the generation of gravity waves by thunderstorms
based on energy considerations. The top of the developing thunderstorm cell was
assumed to be a hemispherical cap of radius R̃ and rising with velocity U . It was
assumed to interact with waves at its position of stability where it oscillates at a
characteristic frequency. The kinetic energy (KE) carried into the source was then
calculated as

KE =
π

3
R̃3U 2ρa, (5.1)

where ρa is the density of the air. An order of magnitude calculation was carried out
to find the value KE ≈ 5 × 109 J, where ρa was taken as 0.5 kgm−3, the value of R̃

was 500 m and U = 10 m s−1 were used. The rough estimate of the kinetic energy from
their model was found to agree well with an estimate from their case study where the
kinetic energy was found to be 6 × 109 J.

We recast (5.1) in terms of the energy flux at the source to get

Fstorm =
1

2
πR̃2U 3ρa. (5.2)

Using the values of Curry & Murty (1974) results in Fstorm ≈ 1.3 × 1015 ergs s−1.
Other observational studies of gravity waves generated by thunderstorms include

Balachandran (1980), Larsen, Swartz & Woodman (1982), Lu, VanZandt & Clark
(1984), Gedzelman (1983), Pfister, Scott & Loewenstein (1993b), Pfister et al. (1993a),
Alexander & Pfister (1995), Grachev et al. (1995), Karoly, Roff & Reeder (1996) and
Dewan & Coauthors (1998). In particular, Larsen et al. (1982) observed that waves
are generated only when the vertical extent of the developing clouds approaches the
level of the tropopause. However, like other observational studies of thunderstorm-
generated waves, the details of the horizontal scale of the storm as well as the speeds
of the updrafts could not be obtained. One of the difficulties is the fact that the storms
themselves are not stationary but vary in both space and time. Another problem is that
the observational techniques are unable to provide this information on the storms
(Lu, VanZandt & Clark 1984; Fritts & Alexander 2003). Aircraft measurements
and satellite imagery usually provide information on the horizontal scale of the
storms and limited information on updraft speeds (Pfister et al. 1993b,a; Dewan &
Coauthors 1998). Nevertheless, the information provided by aircraft measurements
about the characteristics of the generated waves is not enough to help make a
concrete quantitative link between the energy flux of the waves and the storms. Some
observational studies show that the horizontal scale of the waves are comparable
with the horizontal scale of the storms (Pfister et al. 1993a; Tsuda et al. 1994). The
periods of the waves have been reported by some observations to be close to the local
buoyancy period (Pierce & Coroniti 1966; Curry & Murty 1974; Larsen et al. 1982)
while others observe thunderstorm-generated waves to have periods longer than the
buoyancy period (Lu et al. 1984). The results of the laboratory experiments presented
here show that depending upon the strength of convection, the mechanical oscillator
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mechanism could contribute on average 4 % of the energy flux of the thunderstorm
to the waves.

The waves generated by thunderstorms have been reported to have horizontal
wavelengths in the range of 5–110 km, vertical scales in the range of 2–7 km, periods
ranging between 5 min and 3 h and with phase speeds in the range of 12–30 m s−1

(Larsen et al. 1982; Lu et al. 1984; Pfister et al. 1993b,a; Karoly et al. 1996; Vincent &
Alexander 2000). Thus, in general, convective sources generate waves with a broader
spectrum than topographically generated waves (Fritts & Alexander 2003). The
study by Fritts & Nastrom (1992) compared the contribution of different gravity
wave sources (specifically topography, convection, frontal systems and jet stream) on
the momentum budget of the middle atmosphere and concluded that convectively
generated waves played a significant role though their influence is not as much as
topographically generated waves.

The experimental results from this study suggest that, in the absence of a
background mean flow, the horizontal scale of thunderstorm-generated waves is
set by the horizontal scale of the top of the clouds in a well-developed storm. Thus,
the horizontal scale could be between 5 and 100 km. However, even though the
oscillations of updrafts and downdrafts within a storm are responsible for generating
the waves and have broad frequency spectra, their dominant frequency does not
necessarily correspond to the dominant frequency of the waves generated. We find
that the frequency of waves generated via the mechanical oscillator mechanism lies
in a narrow range relative to the local buoyancy frequency, N . The wave frequency
may range between 0.45N and 0.85N , where N lies between 10−2 and 10−3 s−1.
The experiments show that the vertical displacement amplitudes of waves generated
via the mechanical oscillator effect depends upon the distance updrafts overshoot
their neutral buoyancy level and not upon the vertical scale of the whole storm as
in the deep heating effect. From the experimental results, the vertical displacement
amplitudes may range between 1 % and 5 % of the overshooting distance. Based upon
observational studies this is about 30–150 m. The experiments also reveal that the
average energy flux of thunderstorm-generated waves could be as large as 1013 erg s−1

based upon the rough estimates of energy flux in a single storm cell.

6. Conclusions
In this study, we have presented the results obtained when axisymmetric internal

gravity waves are generated by turbulent buoyant plumes.
The results show that the radial wavelength of the waves is not set by the width

of the plume at the density interface. Rather, the characteristic radial wavenumber is
set by the mean radius of the plume cap. Even though the large-scale fluctuations at
the top of the plume were quasi-regular with some identifiable characteristic peaks
in their spectra, these frequency peaks did not match the observed frequency of the
waves. Instead, the frequency of the waves relative to the buoyancy frequency was
found to lie in a narrow frequency range ∼ 0.7N . The vertical displacement amplitude
of the waves shows a strong dependence on the maximum penetration of the plume
beyond its neutral buoyancy level for the experiments considered.

The principal goal was to determine the percentage of the energy of the plume at
the neutral buoyancy level that is extracted by the upward-propagating waves. We
found that, on average, 4 % of the plume energy is realized as the energy of the
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waves. Compared with the energy of a single storm cell we estimate the energy flux
to be 1013 erg s−1.

This research was supported by the Canadian Foundation for Climate and
Atmospheric Science (CFCAS) GR-615.

Appendix. Average energy flux of waves
For a bounded domain of radius R, the energy flux over any circular area is given

by

FE =

∫ 2π

0

∫ R

0

(wp)rdr dθ = 2π

∫ R

0

(wp)rdr, (A 1)

since both the vertical velocity w and the perturbation pressure p are independent
of the radial coordinate θ for axisymmetric waves. Because the waves are assumed
axisymmetric, we compute the average energy flux using Bessel series and define

w =
∑

n

∑
m

1

2
WnmJ0(knr)e

i(kzz−ωmt) + cc, (A 2)

p =
∑

n

∑
m

1

2
PnmJ0(knr)e

i(kzz−ωmt) + cc, (A 3)

where J0 is the Bessel function of the first kind and order zero, Wnm and Pnm are
the amplitudes of the w and p fields, kz and ωm are the vertical wavenumber and
frequencies, respectively.

Substituting (A 2) and (A 3) into (A 1) and applying the orthogonality property of
Bessel functions, we get

FE = 2π
∑

n

∑
m

PnmWnm cos2(kzz − ωmt)

∫ R

0

[J0(αnr/R)]2rdr. (A 4)

Using the properties of Bessel functions, this simplifies to

FE = πR2
∑

n

∑
m

PnmWnm cos2(kzz − ωmt)J 2
1 (αn), (A 5)

where J1 is the Bessel function of the first kind and order one.
The polarization relations of linear wave theory for each n and m gives

PnmWnm =
ρ0N

3 cos Θm sin 2Θm

2kn

|Aξnm|2,

where kn = αn/R, Θm are the angles of propagation of each wave beam about the
vertical and Aξnm are the vertical displacement amplitudes. Equation (A 5) becomes

FE =
1

2
πR2ρ0N

3
∑

n

∑
m

cosΘm sin 2Θm cos2(kzz − ωmt)
|Aξnm|2J 2

1 (αn)

kn

. (A 6)

Averaging over one wave period we get (2.19):

Fwave =
1

4
πR2ρ0N

3
∑

n

∑
m

cosΘm sin 2Θm

|Aξnm|2J 2
1 (αn)

kn

. (A 7)
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