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Abstract. We introduce the concept of a Zemanian logic above S4.3 and prove that an extension
of S4.3 is the logic of a Tychonoff HED-space iff it is Zemanian.

§1. Introduction. In topological semantics of modal logic, modal box is interpreted
as topological interior and modal diamond as topological closure. Under this interpretation,
Lewis’s well-known modal system S4 is the logic of all topological spaces. McKinsey and
Tarski (1944) proved that S4 is the logic of any dense-in-itself separable metric space.
This result was strengthened by Rasiowa and Sikorski (1963, sec. III.7 and III.8) who
showed that S4 is the logic of any dense-in-itself metric space. Recently this result has been
generalized in several directions. The McKinsey-Tarski completeness was generalized to
strong completeness by Kremer (2013), and the modal logic of an arbitrary metric space
was axiomatized by Bezhanishvili, Gabelaia, & Lucero-Bryan (2015).

The class of extremally disconnected spaces (ED-spaces) consists of mostly nonmetriz-
able spaces. The only metrizable ED-spaces are discrete. The logic S4.2 := S4+��p →
��p is the logic of all ED-spaces (see, e.g., Benthem & Bezhanishvili (2007, pg. 253)).
We point out that ED is not a hereditary property. The logic S4.3 := S4 + �(�p →
q) ∨ �(�q → p) is the logic of all hereditarily extremally disconnected spaces (HED-
spaces); Bezhanishvili, Bezhanishvili, Lucero-Bryan, & van Mill (2015), Prop. 3.1.

ED-spaces play an important role in topology. Compact Hausdorff ED-spaces are ex-
actly the projective objects in the category of compact Hausdorff spaces and continuous
maps. Moreover, each compact Hausdorff space X has a projective cover E(X), known
as the Gleason cover. We recall that an irreducible map is an onto continuous map such
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116 GURAM BEZHANISHVILI ET AL.

that the image of a proper closed subset is proper. The Gleason cover E(X) is the (unique
up to homeomorphism) compact Hausdorff ED-space for which there exists an irreducible
map π : E(X) → X . The Gleason cover of X is realized as the Stone space of the
complete Boolean algebra of regular open subsets of X , accompanied by the mapping
π(∇) = ⋂{cX (U ) | U ∈ ∇}; see Gleason (1958). By Bezhanishvili and Harding (2012,
Prop. 4.3), S4.2 is the logic of the Gleason cover E(I) of the closed real unit interval
I = [0, 1], and by Bezhanishvili et al. (2015, Theorem 3.6), S4.3 is the logic of a countable
subspace of E(I).

Tychonoff spaces are up to homeomorphism subspaces of compact Hausdorff spaces. In
this note we characterize the logic of an arbitrary Tychonoff HED-space. We introduce the
concept of a Zemanian logic above S4.3 and show that an extension of S4.3 is the logic
of a Tychonoff HED-space iff it is Zemanian. We call these logics Zemanian because of
their relationship to S4.Zn introduced in Bezhanishvili et al. (to appear), which generalize
the Zeman logic S4.Z := S4 + ���p → (p → �p).

§2. S4.3 and its extensions. We assume the reader is familiar with the basic concepts
and tools of modal logic (see, e.g., Chagrov & Zakharyaschev (1997); Kracht (1999);
Blackburn, de Rijke, & Venema (2001)). We will be mainly interested in the modal logic

S4.3 = S4 + �(�p → q) ∨ �(�q → p)

and its consistent extensions. By the Bull-Fine theorem (Bull 1966; Fine 1971), there are
countably many extensions of S4.3, each is finitely axiomatizable, and has the finite model
property (fmp). In fact, each L ⊇ S4.3 is a cofinal subframe logic (see, e.g., Chagrov &
Zakharyaschev (1997, Example 11.14)).

Rooted frames for S4.3 are rooted S4-frames F = (W, R) such that wRv or v Rw
for each w, v ∈ W . They can be thought of as chains of clusters. We will refer to them as
quasi-chains. By the Bull-Fine theorem, we will work only with finite quasi-chains. A finite
quasi-chain F is depicted in Figure 1, where min(F) and max(F) denote the minimum and
maximum clusters of F, respectively.
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Fig. 1. A finite quasi-chain F.

For a finite quasi-chain F, let χF denote the (negation of the) Jankov-Fine formula of F.
By Fine’s theorem (1974, sec. 2, Lemma 1), for any S4.3-frame G,

G � χF iff F is not a p-morphic image of a generated subframe of G.

Let Q be the set of all nonisomorphic finite quasi-chains. For F,G ∈ Q, define F ≤ G
iff F is a p-morphic image of a generated subframe of G. Then ≤ is a partial ordering of Q
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and there are no infinite descending chains in (Q, ≤). Thus, for any nonempty S ⊆ Q, the
set min(S) of minimal elements of S is nonempty, where

min(S) = {F ∈ S | G ≤ F and G ∈ S imply G = F}.
For each extension L of S4.3, let FL be the subset of Q consisting of L-frames. Then FL is
a downset of Q, and the assignment L 
→ FL is a dual isomorphism between the extensions
of S4.3 and the downsets of Q. Moreover, each L is finitely axiomatizable by adding to
S4.3 the Jankov-Fine formulas χF where F ∈ min(Q \ FL).

The following lemma, which shows that p-morphic images of a finite quasi-chain corre-
spond to its cofinal subframes, is a version of Fine’s result (1971, sec. 4, Lemma 6).

LEMMA 2.1. Let F and G be finite quasi-chains. Then F is a p-morphic image of G iff
F is isomorphic to a cofinal subframe of G.

Proof. Let F = (W, R) and G = (V, S). Suppose there is a cofinal subframe H = (U, S)
of G and an isomorphism f from H to F. If V = U , then there is nothing to show. Suppose
V �= U . For x ∈ V \ U , since U is cofinal, S[x] ∩ U �= ∅. Therefore, min(S[x] ∩ U ) �= ∅

and is contained in a cluster of G. Pick yx ∈ min(S[x] ∩ U ) and define g : V → W by

g(x) =
{

f (x) if x ∈ U,
f (yx ) otherwise.

That g is a well-defined onto map follows from the definition. To see that g is a
p-morphism, suppose x Sy. Then S[y] ⊆ S[x]. Therefore, S[y]∩U ⊆ S[x]∩U , and so for
each u ∈ min(S[x] ∩ U ) and each v ∈ min(S[y] ∩ U ), we have uSv . Thus, f (u)R f (v),
which yields g(x)Rg(y). Next suppose g(x)Rz. Then there is u ∈ U such that x Su and
f (u)Rz. Since f is an isomorphism, there is v ∈ U such that uSv and f (v) = z. Therefore,
x Sv and g(v) = z. Thus, g is an onto p-morphism, and hence F is a p-morphic image
of G.

Conversely, suppose there is a p-morphism g from G onto F. Since g is onto, g−1(w) �=
∅ for each w ∈ W . Thus, max(g−1(w)) �= ∅. Pick mw ∈ max(g−1(w)) �= ∅ and let
U = {mw | w ∈ W }. Suppose x ∈ V . Then x Smg(x) and mg(x) ∈ U . Therefore, U is
cofinal in V . Let f be the restriction of g to U . Clearly f is a bijection between U and W .
To see that f is an isomorphism, observe that wRv iff mwSmv . Thus, f is an isomorphism
from a cofinal subframe of G onto F. �

As an easy consequence of Lemma 2.1, we obtain:

LEMMA 2.2. A generated subframe of a finite quasi-chain F is a p-morphic image of F.

Proof. Since F is a quasi-chain, a generated subframe of F is a cofinal subframe of F.
Now apply Lemma 2.1. �

As an immediate consequence of Lemmas 2.1 and 2.2, we obtain:

LEMMA 2.3. For finite quasi-chains F and G, the following are equivalent:

1. F ≤ G.

2. F is a p-morphic image of G.

3. F is isomorphic to a cofinal subframe of G.

§3. Zemanian logics. In this section we introduce the concept of a Zemanian logic
above S4.3. We call F ∈ Q uniquely rooted if its root cluster is a singleton. Otherwise
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we call F nonuniquely rooted. By Cκ we denote a cluster of cardinality κ . Let Fr be the
ordinal sum C1 ⊕ F which adds a ‘new’ unique root r beneath F (see Figure 2). We view F
as a generated subframe of Fr .

F

•�
C1

Fr

r

Fig. 2. Adding a ‘new’ root to F.

DEFINITION 3.1. Let L be a consistent logic above S4.3. We call L Zemanian provided
for each nonuniquely rooted F ∈ FL, we have Fr ∈ FL.

To motivate the name ‘Zemanian logic’ we recall that the Zeman logic S4.Z is obtained
by adding to S4 the Zeman axiom

zem = ���p → (p → �p).

It is well known (see, e.g., Segerberg (1971)) that S4.Z is the logic of finite uniquely rooted
S4-frames of depth 2. For n ≥ 1, recall

bd1 = ��p1 → p1,

bdn+1 = � (�pn+1 ∧ ¬bdn) → pn+1.

For transitive frames it is well known that F � bdn iff depth(F) ≤ n, where depth(F) de-
notes the depth of F (see, e.g., Chagrov & Zakharyaschev (1997, Prop. 3.44)). In
Bezhanishvili et al. (to appear), the Zeman formula was generalized to n-Zeman formulas

zem0 = p1 → �p1,

zemn = pn+1 → �(bdn ∨ pn+1) for n ≥ 1,

and the Zeman logic was generalized to n-Zeman logics S4.Zn := S4 + zemn (n ≥ 0).
By Bezhanishvili et al. (to appear, sec. 4), S4.Z = S4.Z1 and each S4.Zn is the logic of
finite uniquely rooted S4-frames of depth n + 1.

Let S4.3.Zn = S4.3+zemn . The next lemma shows that S4.3.Zn is a Zemanian logic,
hence Definition 3.1 generalizes the concept of n-Zeman logics for extensions of S4.3.

LEMMA 3.2. If L is a Zemanian logic of finite depth, then L � zemn for some n ≥ 0.

Proof. Suppose L is a Zemanian logic of finite depth. Since L is of finite depth, there
is a least n ≥ 0 such that L � bdn+1. Let F ∈ FL. Then depth(F) ≤ n + 1. Suppose that
F �� zemn . It follows from Bezhanishvili et al. (to appear, Theorem 4.5) that depth(F) =
n + 1 and F is nonuniquely rooted. Since L is Zemanian, Fr ∈ FL. But depth(Fr ) = n + 2,
yielding the contradiction Fr �� bdn+1. Thus, F � zemn , and so L � zemn . �

REMARK 3.3. The converse of Lemma 3.2 is not true in general. To see this, let L be
the logic of the two-point cluster C2 shown in Figure 3. Then FL = {C1,C2}. Since the
depth of both C1 and C2 is 1 < 2, we have that L � zem1. But L is not Zemanian because
Cr

2 �∈ FL.
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C2

�
�

�
	• •

Fig. 3. The two-point cluster C2.

EXAMPLE 3.4.

1. It is clear that S4.3 and S4.3.Zn are Zemanian for all n ≥ 0.

2. It is also obvious that Grz.3 is Zemanian, and so is the logic of the cluster C1.

3. On the other hand, neither S5 nor S4.3n := S4.3 + bdn is Zemanian. Neither is
the logic of the cluster Cn for n ≥ 2.

4. If L is a consistent extension of S4.3 such that L �⊆ S5, then S5∩L is not Zemanian.
Indeed, since L is consistent and L �⊆ S5, there is n ≥ 2 such that Cn /∈ FL. But then
Cr

n /∈ FL. Therefore, Cn ∈ FS5 ∪FL but Cr
n /∈ FS5 ∪FL. Since FS5∩L = FS5 ∪FL,

we see that S5 ∩ L is not Zemanian. For example, S5 ∩ Grz.3 is not Zemanian.

We next describe all Zemanian logics above S4.3.Z := S4.3 + zem. It is clear that
FS4.3.Z = {Cn,Cr

n | n ≥ 1}. A picture of FS4.3.Z with the partial order induced from Q is
shown in Figure 4.

C1

C2

C3

C4Cr
1

Cr
2

Cr
3

Cr
4

����
����

��������
����

����

��

��

. . .

Fig. 4. The poset FS4.3.Z.

The lattice of extensions of S4.3.Z is dually isomorphic to the lattice of downsets of
FS4.3.Z. The lattice of consistent extensions of S4.3.Z is shown in Figure 5, where Log(F)
denotes the logic of F and the Zemanian logics above S4.3.Z are denoted by the larger dots.

The remainder of this section is dedicated to establishing some basic facts about Zema-
nian logics. For L ⊇ S4.3, let UL = {F ∈ FL | F is uniquely rooted}.

LEMMA 3.5. Let L ⊇ S4.3 be consistent. Then L is Zemanian iff UL is cofinal in FL.

Proof. Suppose L is Zemanian and let F ∈ FL. If F ∈ UL, then there is nothing to show.
So let F �∈ UL. Then F is nonuniquely rooted. Since L is Zemanian, Fr ∈ FL. Clearly Fr is
uniquely rooted and F ≤ Fr . Thus, UL is cofinal in FL.

Conversely, suppose UL is cofinal in FL. Let F ∈ FL be nonuniquely rooted. Then there
is G ∈ UL such that F ≤ G. By Lemma 2.3, up to isomorphism, F is a cofinal subframe
of G. Since G is uniquely rooted and F is nonuniquely rooted, the root of G is not in F.
Thus, we may identify the root of Fr with the root of G, yielding that Fr is isomorphic to
a cofinal subframe of G. Consequently, Fr ≤ G. Since FL is a downset of Q and G ∈ FL,
we see that Fr ∈ FL. Thus, L is a Zemanian logic. �

For a class of frames K, let Log(K) denote the logic of K.

https://doi.org/10.1017/S1755020317000314 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000314


120 GURAM BEZHANISHVILI ET AL.
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Fig. 5. The lattice of consistent extensions of S4.3.Z.

LEMMA 3.6. A Zemanian logic is the logic of its finite uniquely rooted quasi-chains.

Proof. Because L has the fmp, we have that L = Log(FL) ⊆ Log(UL). Suppose that
L �� ϕ. Then there is F ∈ FL such that F �� ϕ. If F ∈ UL, then there is nothing to show.
Suppose F �∈ UL. Then F is nonuniquely rooted. Since L is Zemanian, Fr ∈ UL. As F is a
generated subframe of Fr , from F �� ϕ it follows that Fr �� ϕ. Thus, L = Log(UL). �

We finish the section by characterizing Zemanian logics. For F ∈ Q, let Fa be the ordinal
sum C2 ⊕ (F \ min(F)) shown in Figure 6. Intuitively, Fa is obtained by replacing the root
cluster of F by the two-point cluster. When F is uniquely rooted, this amounts to adding a
second root.

�� �� �� ��
� �

F

min(F)

F \ min(F) Fa

C2• •

Fig. 6. The frame Fa .
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THEOREM 3.7. Let L ⊇ S4.3 be consistent. Then L is Zemanian iff for each G ∈ min(Q \
FL), either G is nonuniquely rooted or G \ {r} is uniquely rooted and (G \ {r})a �∈ FL.

Proof. For the right to left direction, suppose for each G ∈ min(Q \ FL), either G
is nonuniquely rooted or G \ {r} is uniquely rooted and (G \ {r})a �∈ FL. Let F ∈ FL
be nonuniquely rooted. If Fr �∈ FL, then there is G ∈ min(Q \ FL) such that G ≤ Fr .
Therefore, up to isomorphism, G is a cofinal subframe of Fr . Since Q \ FL is an upset of
Q and F ∈ FL, we have that G �≤ F, so G is not isomorphic to any cofinal subframe of F.
Thus, ∅ �= G \ F ⊆ Fr \ F = {r}, and hence G is uniquely rooted. By assumption, this
yields that G \ {r} is uniquely rooted and (G \ {r})a �∈ FL. Because G is cofinal in Fr , it
follows that G \ {r} is cofinal in Fr \ {r} = F.

Let t be the root of G \ {r}. We show that without loss of generality we may assume that
t ∈ min(F). Clearly, either G \ {r} = {t} or G \ {r} �= {t}. If G \ {r} = {t}, then since G
is not isomorphic to any cofinal subframe of F, we have that F consists of a single cluster,
and hence max(F) = min(F). Since G is cofinal in Fr , we have that

t ∈ max(G) ⊆ max(Fr ) = max(F) = min(F).

If G \ {r} �= {t}, then t �∈ max(G). Since G is cofinal in Fr , we obtain that t �∈ max(Fr ),
and hence without loss of generality we may assume that t ∈ min(F).

Since F is nonuniquely rooted, we have that (G \ {r})a is isomorphic to a cofinal
subframe of F. Therefore, (G \ {r})a ≤ F. As FL is a downset, we obtain that (G \ {r})a ∈
FL. The obtained contradiction proves that Fr ∈ FL, and hence L is Zemanian.

For the left to right direction, we proceed by contraposition. Suppose there is G ∈
min(Q \ FL) such that G is uniquely rooted, and either G \ {r} is nonuniquely rooted
or (G \ {r})a ∈ FL. Since G is uniquely rooted, G = (G \ {r})r . First suppose G \ {r} is
nonuniquely rooted. The minimality of G in Q \FL yields that G \ {r} ∈ FL. Therefore, L
is not Zemanian because G \ {r} ∈ FL is nonuniquely rooted and (G \ {r})r = G �∈ FL.
Next suppose G\{r} is uniquely rooted. Then (G\{r})a ∈ FL. By construction, (G\{r})a

is nonuniquely rooted. Because G \ {r} is uniquely rooted, G \ {r} is isomorphic to a
cofinal subframe of (G \ {r})a , so G \ {r} ≤ (G \ {r})a . Since G is uniquely rooted and
G \ {r} ≤ (G \ {r})a , it follows that G = (G \ {r})r is isomorphic to a cofinal subframe
of ((G \ {r})a)r , hence G ≤ ((G \ {r})a)r . As Q \ FL is an upset in Q containing G, we
have that ((G \ {r})a)r �∈ FL. Thus, (G \ {r})a ∈ FL but ((G \ {r})a)r �∈ FL, and so L is
not Zemanian. �

COROLLARY 3.8. Let L ⊇ S4.3. If min(Q \ FL) = {G}, then L is Zemanian iff G is
nonuniquely rooted.

Proof. Suppose that G is nonuniquely rooted. Then every quasi-chain in min(Q \ FL)
is nonuniquely rooted, so L is Zemanian by Theorem 3.7. Conversely, suppose that L is
Zemanian. Then Theorem 3.7 yields that either G is nonuniquely rooted or G \ {r} is
uniquely rooted and (G \ {r})a �∈ FL. We show that the latter condition is never satisfied
when min(Q \ FL) is a singleton. Suppose that both G and G \ {r} are uniquely rooted.
Since the depth of G is greater than the depth of (G\{r})a , we have that G is not isomorphic
to any subframe of (G \ {r})a . Therefore, G �≤ (G \ {r})a , and so (G \ {r})a ∈ FL. �

§4. S4.3 and HED-spaces. We assume the reader is familiar with basic topological
concepts (see, e.g., Engelking (1989)). For a topological space X , we use cX and iX for
closure and interior in X , respectively. We recall that a topological space X is extremally
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disconnected (ED) if the closure of any open set is open, and X is hereditarily extremally
disconnected (HED) if every subspace of X is ED. While HED is clearly a stronger
concept than ED, it is of note that every countable Hausdorff ED-space is HED (see,
e.g., Błaszczyk, Rajagopalan, & Szymanski (1993, pg. 86)). As we pointed out in the
introduction, if we interpret � as topological interior and � as topological closure, then
S4.2 is the logic of all ED-spaces, and S4.3 is the logic of all HED-spaces.

Since S4-frames can be viewed as special topological spaces, called Alexandroff spaces,
in which each point has a least open neighborhood (namely the set of points that are
R-accessible from it), relational completeness of logics above S4 clearly implies their
topological completeness. However, Alexandroff spaces do not satisfy higher separation
axioms. In fact, an Alexandroff space is T1 iff it is discrete. Therefore, obtaining com-
pleteness with respect to “good” topological spaces, such as Tychonoff spaces, requires
additional work.

As we pointed out in the introduction, S4.2 is the logic of the Gleason cover E(I) of the
real unit interval I = [0, 1], and S4.3 is the logic of a countable subspace of E(I). Our goal
is to build on this and show that an extension of S4.3 is the logic of a Tychonoff HED-
space iff it is a Zemanian logic. The key technique is to associate a Tychonoff HED-space
XF with each uniquely rooted finite quasi-chain F of depth > 1 so that the logic Log(XF)
of the space XF is equal to Log(F). For this we require some tools.

The Cantor cube, 2c, is the topological product of continuum many copies of the two-
point discrete space 2. We will consider the Gleason cover E(2c) of the Cantor cube 2c.

A space X is resolvable provided there is a dense subset D of X such that X \ D is dense
in X . If X is not resolvable, then X is irresolvable. If every subspace of X is irresolvable,
then X is hereditarily irresolvable, and X is open-hereditarily irresolvable if every open
subspace of X is irresolvable. A space X is nodec provided every nowhere dense subset is
closed (equivalently, closed and discrete).

DEFINITION 4.1 (Dow & van Mill, 2007, sec. 2). Suppose X is a topological space.

1. For a subspace Y of X, we define the set N (Y ) of near-points of Y by

N (Y ) =
⋃

{cX (D) | D is a countable discrete subspace of Y }.
2. The subspaces Y and Z of X are far if N (Y ) ∩ N (Z) = ∅.

A topological space is dense-in-itself or crowded if it has no isolated points.

THEOREM 4.2 (Dow & van Mill, 2007, sec. 2). There is a countable pairwise disjoint
family A of countable crowded dense subsets of E(2c) such that

1. each element of A is a nodec open-hereditarily irresolvable ED-space;
2. distinct elements of A are far.

REMARK 4.3. As follows from Dow & van Mill (2007, sec. 4), each element of A is
not only nodec and open-hereditarily irresolvable, but also maximal, hence submaximal,
and hence also hereditarily irresolvable.

A dense partition of a topological space X is a pairwise disjoint collection P of dense
subsets of X such that X = ⋃P . Call X n-resolvable provided there is a dense partition
of X consisting of n elements; otherwise X is called n-irresolvable.

Let A be as in Theorem 4.2. Enumerate A = {A1, . . . , An, . . . } and set Xn = A1 ∪· · ·∪
An .
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LEMMA 4.4.

1. Xn is nodec.

2. If k > n and N is nowhere dense in Xn, then N (Ak) ∩ cE(2c)(N ) = ∅.

3. A nonempty open subspace U of Xn is n-resolvable and (n + 1)-irresolvable.

Proof. (1). Suppose N is nowhere dense in Xn . We show that Ni := N ∩ Ai is nowhere
dense in the subspace Ai . Let U be an open subset of Ai such that U ⊆ cXn (Ni ). Then
there is an open subset V of Xn such that U = V ∩ Ai . Since Ai is dense in Xn , we have
V ⊆ cXn (U ). Therefore, V ⊆ cXn (Ni ) ⊆ cXn (N ). Because N is nowhere dense in Xn , we
have V = ∅. Thus, U = ∅, and so Ni is nowhere dense in Ai .

Since Ai is nodec, Ni is closed and discrete. If i �= j , then Ai and A j are far. Therefore,
as Ni is countable,

cE(2c)(Ni ) ∩ A j ⊆ N (Ai ) ∩ N (A j ) = ∅.

Because N = N ∩ Xn = N ∩ ⋃n
i=1 Ai = ⋃n

i=1(N ∩ Ai ) = ⋃n
i=1 Ni , we have that

cXn (N ) = cXn

(
n⋃

i=1

Ni

)
=

n⋃
i=1

cXn (Ni ) =
n⋃

i=1

[
cE(2c)(Ni ) ∩ Xn

]

=
n⋃

i=1

⎡
⎣cE(2c)(Ni ) ∩

n⋃
j=1

A j

⎤
⎦ =

n⋃
i=1

n⋃
j=1

[
cE(2c)(Ni ) ∩ A j

]

=
n⋃

i=1

[
cE(2c)(Ni ) ∩ Ai

] =
n⋃

i=1

cAi (Ni ) =
n⋃

i=1

Ni = N .

So N is closed in Xn . This yields that Xn is a nodec space.
(2). Suppose k > n. Then Ai and Ak are far for each i ≤ n. Since Ni is a countable

discrete subset of Ai , we have

N (Ak) ∩ cE(2c)(N ) = N (Ak) ∩
n⋃

i=1

cE(2c)(Ni ) =
n⋃

i=1

[
N (Ak) ∩ cE(2c)(Ni )

]

⊆
n⋃

i=1

[N (Ak) ∩ N (Ai )] = ∅.

(3). Let U be a nonempty open subspace of Xn . Note that Xn is n-resolvable since
{A1, . . . , An} is a dense partition of Xn . Therefore, U is n-resolvable by Eckertson (1997,
Prop. 1.1(c)). Since Ai is dense, U ∩ Ai is a nonempty open subset of Ai , and hence a

crowded open-hereditarily irresolvable space. Because U =
n⋃

i=1
(U ∩ Ai ), it follows from

Eckertson (1997, Lemma 3.2(a)) that U is (n + 1)-irresolvable. �
For m > 1 and a finite uniquely rooted quasi-chain F of depth m, we construct XF by

recursion on m. Suppose max(F) consists of n elements.

Base case: For m = 2, set XF = ⋃n
i=1 Ai . Then XF is a countable dense subspace of

E(2c), and hence XF is a countable crowded ED-space.

Recursive step: Suppose m > 2, G := F \ max(F), and Y := XG is already built. So Y
is a countable crowded ED-space constructed from the finite uniquely rooted quasi-chain
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G. Let Z = ⋃n
i=1 Ai . Since An+1 is crowded, it is easy to construct a countable family

{Ui | i ∈ ω} of open sets in An+1 such that their closures in An+1 are pairwise disjoint.
Picking a point from each Ui then yields a countably infinite closed discrete subset D of
An+1. Let βω denote the Čech-Stone compactification of the discrete space ω. By Walker
(1974, Prop. 1.48), cE(2c)(D) is homeomorphic to βω since countable sets in an ED-space
are C∗-embedded (see, e.g., Walker (1974, Prop. 1.64)). Also, cE(2c)(D) ∩ Z = ∅ since
Ai and An+1 are far for all i ≤ n.

By Efimov’s theorem (1970) (see also van Mill (1984, Theorem 1.4.7)), each compact
Hausdorff ED-space of weight ≤ c can be embedded in βω. Therefore, βY and hence Y
is embedded in βω, which is homeomorphic to cE(2c)(D). Since Y is crowded, we may
assume that Y is a subspace of cE(2c)(D) \ D. We set XF to be the subspace Y ∪ Z of
E(2c); see Figure 7.

Z

• • •

cE(2c)(D)

Y

. . .

A1

...
...

D

An

An+1

E(2c)

Fig. 7. Recursive step defining XF = Y ∪ Z .

§5. Properties of XF. It follows from the construction that XF is a countable crowded
Tychonoff ED-space, and hence an HED-space. Moreover, Z is open and dense in XF and
Y is closed and nowhere dense in XF. To see this, Y ⊆ cE(2c)(D) gives Y ∩ Z = ∅, so
Y = XF ∩ cE(2c)(D) is closed in XF, and so Z = XF \ Y is open in XF. Since each Ai

is dense in E(2c), it follows that Z is dense in XF. As Z is open and dense in XF, we see
that Y = XF \ Z is nowhere dense.

Let F = (W, R) be a finite quasi-chain. Call U ⊆ W an R-upset provided w ∈ U
and wRv imply v ∈ U (R-downsets are defined dually). Recall that the opens in the
Alexandroff topology on W are the R-upsets, and the closure in the Alexandroff topology
is given by R−1(A) := {w ∈ W | ∃v ∈ A with wRv}.

We recall that a map f : X → Y between topological spaces is interior provided f
is continuous and open. If f is an onto interior map, then we call Y an interior image of
X . Our next goal is to show that F, viewed as an Alexandroff space, is an interior image
of XF. To prove Lemma 5.2, we utilize the following two straightforward facts, which we
gather together in a lemma for easy reference.
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LEMMA 5.1.

1. Let X, Y be topological spaces and f : X → Y an onto interior map. Suppose
C ⊆ Y and D = f −1(C). Then the restriction of f to D is an interior mapping
onto C.

2. A dense subspace of a crowded T1-space is crowded.

LEMMA 5.2. Let X be a T1-space and F a nonuniquely rooted finite quasi-chain. Then
F is an interior image of X iff Fr is an interior image of X.

Proof. First suppose there is an onto interior mapping f : X → Fr . As F is a gen-
erated subframe of Fr , by Lemma 2.2, there is an onto p-morphism g : Fr → F. Since
p-morphisms correspond to interior maps between Alexandroff spaces, the composition
g ◦ f : X → F is an onto interior map, showing that F is an interior image of X .

Next suppose there is an onto interior mapping f : X → F. For each w ∈ min(F),
let Aw = f −1(w). Then D := f −1(min(F)) is partitioned into {Aw | w ∈ min(F)}. By
Lemma 5.1(1), the restriction of f is an interior mapping of D onto min(F). Therefore,
since R−1(w) = min(F), each Aw is dense in D. Because min(F) contains more than one
point, D is crowded. By Lemma 5.1(2), each Aw is crowded, hence infinite.

Choose x0 ∈ D and define g : X → Fr by

g(x) =
{

r if x = x0,
f (x) if x �= x0.

Clearly g is a well-defined map, and g is onto since g(x0) = r and D \ {x0} �= ∅. For
w ∈ Fr , observe that

g−1(R[w]) =
⎧⎨
⎩

X if w = r,
X \ {x0} if w ∈ min(F),

f −1(R[w]) otherwise.

Therefore, g is continuous since X is T1 and f is continuous. For a nonempty open subset
U of X , observe that

g(U ) =
{

f (U ) if x0 �∈ U,
Fr if x0 ∈ U.

Thus, g is open since f is open and F is a generated subframe of Fr . Consequently, Fr is
an interior image of X . �

We are ready to prove that F is an interior image of XF.

THEOREM 5.3. Each finite uniquely rooted quasi-chain F of depth m > 1 is an interior
image of XF.

Proof. Suppose max(F) consists of n elements. Let G = F \ max(F). We proceed
by induction on m ≥ 2. First suppose m = 2. By Lemma 4.4(3), XF is n-resolvable. By
Bezhanishvili et al. (to appear, Lemma 5.9), max(F) is an interior image of XF. Therefore,
since F = max(F)r , Lemma 5.2 yields that F is an interior image of XF.

Next suppose m > 2. By construction, XF = Y ∪ Z , where Y = XG and Z = ⋃n
i=1 Ai .

By the inductive hypothesis, there is an onto interior map g : Y → G. By Lemma 4.4(3),
the open subspace Z of XF is n-resolvable. Therefore, by Bezhanishvili et al. (to appear,
Lemma 5.9), there is an onto interior map h : Z → max(F). Define f : XF → F by

f (x) =
{

g(x) if x ∈ Y,
h(x) if x ∈ Z .
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Since Y and Z are complements in XF, the map f is well-defined. It is onto since g is onto
G and h is onto max(F). Moreover,

f −1(R−1(w)) =
{

XF if w ∈ max(F),

g−1(R−1(w)) if w ∈ G.

Notice that f −1(R−1(w)) is closed in XF whenever w ∈ G since g is continuous and Y is
closed in XF. Therefore, f is continuous. To see that f is open, let U be a nonempty open
subset of XF. Since Ai is dense in Z and hence in XF, we have U ∩ Ai �= ∅ for all i ≤ n.
So

f (U ) = f (U ∩ Z) ∪ f (U ∩ Y ) = h(U ∩ Z) ∪ g(U ∩ Y ) = max(F) ∪ g(U ∩ Y ).

Because g is open and U ∩Y is open in Y , we have g(U ∩Y ) is an R-upset of G. Therefore,
f (U ) is an R-upset of F. Thus, f is open, so f is an onto interior map, and hence F is an
interior image of XF. �

We next recall the definition of the modal Krull dimension mdim(X) of a topological
space X from Bezhanishvili et al. (to appear):

mdim(X) = −1 if X = ∅,
mdim(X) ≤ n if mdim(D) ≤ n − 1 for every nowhere dense subset D of X ,
mdim(X) = n if mdim(X) ≤ n and mdim(X) �≤ n − 1,
mdim(X) = ∞ if mdim(X) �≤ n for any n = −1, 0, 1, 2, . . . .

As follows from Bezhanishvili et al. (to appear, Rem. 4.8, Theorem 4.9), for a T1-space X ,
we have mdim(X) ≤ n iff X � zemn ; in particular, X is nodec iff mdim(X) ≤ 1.

THEOREM 5.4. For a finite uniquely rooted quasi-chain F of depth m > 1, the modal Krull
dimension of XF is m − 1.

Proof. The proof is by induction on m ≥ 2. First suppose m = 2. Then XF is nodec
by Lemma 4.4(1). Since XF is a crowded T1-space, it follows from Bezhanishvili et al. (to
appear, Rem. 4.8, Theorem 4.9) that mdim(XF) = 1.

Next suppose m > 2. Let max(F) consist of n elements and G = F \ max(F). By
construction, XF = Y ∪ Z , where Y = XG, Y ⊆ cE(2c)(D) ⊆ N (An+1), and Z =⋃n

i=1 Ai . By the inductive hypothesis, mdim(Y ) = m − 2. Let N be a nowhere dense
subset of XF. Since Z is open in XF, we see that N ∩ Z is nowhere dense in Z . By
Lemma 4.4(2),

Y ∩ cN (N ∩ Z) ⊆ N (An+1) ∩ cE(2c)(N ∩ Z) = ∅.

Therefore, cN (N ∩ Z) ⊆ N \ Y = N ∩ Z , showing that N ∩ Z is closed in N . Clearly
N ∩ Z is open in N since Z is open in XF. Thus, N ∩ Z is clopen in N . It follows that
N is the topological sum of N ∩ Z and N ∩ Y . By Lemma 4.4(1), Z is nodec. So by
Bezhanishvili et al. (to appear, Lemma 3.3), mdim(N ∩ Z) ≤ mdim(Z) ≤ 1 ≤ m − 2 and
mdim(N ∩Y ) ≤ mdim(Y ) = m−2. Therefore, Bezhanishvili et al. (to appear, Lemma 5.6)
yields mdim(N ) ≤ m − 2. Thus, by definition, mdim(XF) ≤ m − 1. But since Y is a
nowhere dense subspace of XF with mdim(Y ) = m − 2, we see that mdim(XF) �≤ m − 2.
Consequently, mdim(XF) = m − 1. �

LEMMA 5.5. Suppose a finite quasi-chain F is an interior image of X. If X has an
isolated point, then max(F) is a singleton.
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Proof. Let f : X → F be an onto interior mapping. If x ∈ X is an isolated point,
then since f is interior, { f (x)} is an R-upset of F. But the least nonempty R-upset of F is
max(F). Thus, max(F) = { f (x)} is a singleton. �

LEMMA 5.6. Suppose X is a nodec space and F is a finite quasi-chain. If f : X → F
is an onto interior mapping, then F = max(F) or F = max(F)r .

Proof. It is shown in Bezhanishvili, Esakia, & Gabelaia (2005, Prop. 3.8) that S4.Z
defines the class of nodec spaces. Therefore, an interior image of a nodec space is a nodec
space. It is a consequence of Bezhanishvili et al. (2005, Prop. 4.1) that a finite quasi-chain,
viewed as an Alexandroff space, is a nodec space iff F is a cluster or F = max(F)r . The
result follows. �

LEMMA 5.7. If C is a nonempty closed subset of a nodec ED-space X, then C is a
disjoint union of a clopen set and a closed discrete set.

Proof. Let E = cX iX (C). Then C ⊇ E and E is clopen since X is ED. Also F := C \ E
is a closed nowhere dense subset of X . Therefore, F is discrete since X is nodec. Clearly
E, F are disjoint and C = E ∪ F . �

The next lemma is the main technical result of the section.

LEMMA 5.8. If a finite quasi-chain G = (V, R) is an interior image of a closed
subspace C of XF, then G is isomorphic to a subframe of F. Moreover, if the interior
of C is nonempty, then G is isomorphic to a cofinal subframe of F.

Proof. Suppose that g : C → G is an onto interior mapping, depth(F) = m, max(F)
consists of n elements, and max(G) consists of k elements. By Bezhanishvili et al. (to
appear, Lemma 3.3) and Theorem 5.4, mdim(C) ≤ mdim(XF) = m − 1. Therefore, by
Bezhanishvili et al. (to appear, Theorem 3.6), C � bdm . Since G is an interior image of
C , we have G � bdm , and hence depth(G) ≤ m. If depth(G) = m and G is nonuniquely
rooted, then Lemma 5.2 yields that Gr is an interior image of C . This is a contradiction
since Gr �� bdm . Thus, if depth(G) = m, then G is uniquely rooted. We prove that G is
isomorphic to a subframe of F by induction on m ≥ 2.

Base case: Suppose m = 2. Then G = max(G) or G = max(G)r . We show that G
is isomorphic to a cofinal subframe of F. For this it is sufficient to show that max(G)
consists of no more than n elements. Since m = 2, we have that XF is a nodec ED-space,
so Lemma 5.7 gives that C = E ∪ F , where E and F are disjoint, E is clopen in XF, and F
is closed and discrete in XF. If F �= ∅, then since F is discrete, every point in F is isolated
in C . Therefore, C has an isolated point. Thus, by Lemma 5.5, max(G) is a singleton, and
hence max(G) consists of no more than n elements. If F = ∅, then C = E is open in XF,
so g−1(max(G)) is open in XF. By Lemma 4.4(3), g−1(max(G)) is (n + 1)-irresolvable.
Therefore, by Bezhanishvili et al. (to appear, Lemma 5.9), max(G) consists of no more
than n elements. Thus, G is isomorphic to a cofinal subframe of F.

Inductive step: Suppose m > 2. By construction, XF = Y ∪ Z , where Y := XF\max(F)

is closed and nowhere dense in XF and Z = ⋃n
i=1 Ai is open and dense in XF. If C ⊆ Y ,

then by the inductive hypothesis, G is isomorphic to a subframe of F \ max(F), and hence
G is isomorphic to a subframe of F.

Suppose C �⊆ Y , so C∩Z �= ∅. We first show that max(G) has no more than n elements.
Since C ∩ Z is open in C , it follows that g|C∩Z is an interior mapping of C ∩ Z onto
g(C ∩ Z), which is a generated subframe of G, and hence contains max(G). Also C ∩ Z is
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closed in Z . By Lemma 4.4(1), Z is nodec, so by Lemma 5.7, there are disjoint subsets E
and F of Z such that E is clopen in Z , F is closed and discrete in Z , and C ∩ Z = E ∪ F .
If F �= ∅, then C ∩ Z has an isolated point, and so max(G) = max(g(C ∩ Z)) is a
singleton by Lemma 5.5. So we may assume that F = ∅. But then C ∩ Z = E is open
in Z , and so (g|C∩Z )−1(max(G)) is open in Z . By Lemma 4.4(3), (g|C∩Z )−1(max(G))
is (n + 1)-irresolvable, so it follows from Bezhanishvili et al. (to appear, Lemma 5.9) that
max(G) contains no more than n elements.

We next show that G is isomorphic to a cofinal subframe of F. If depth(G) = 1, then
G = max(G). Since max(G) has no more than n elements and max(F) has n elements, G
is isomorphic to a cofinal subframe of F. Suppose depth(G) > 1. The set N := g−1(G \
max(G)) is a closed nowhere dense subset of C . Since the restriction g|C∩Z is interior,
we have N ∩ Z = (g|C∩Z )−1(G \ max(G)) is a closed nowhere dense subset of Z . By
Lemma 4.4(2),

Y ∩ cE(2c)(N ∩ Z) ⊆ N (An+1) ∩
n⋃

i=1

N (Ai ) = ∅.

Therefore,

cXF(N ∩ Z) = cXF(N ∩ Z) ∩ (Y ∪ Z)

= (
cXF(N ∩ Z) ∩ Y

) ∪ (
cXF(N ∩ Z) ∩ Z

)
= (

XF ∩ cE(2c)(N ∩ Z) ∩ Y
) ∪ cZ (N ∩ Z)

= ∅ ∪ (N ∩ Z) = N ∩ Z .

Thus, N ∩ Z is closed in XF. Clearly N ∩ Z is open in N since Z is open in XF. It follows
that N ∩ Z is clopen in N . Consequently, N ∩ Y = N \ Z is also clopen in N . We proceed
by cases.

First suppose N ⊆ Z . Then N = N ∩ Z , so N is closed in C ∩ Z . Therefore, (C ∩ Z)\ N
is open in C ∩ Z . The restriction g|C∩Z : C ∩ Z → G is interior and onto G since

g|C∩Z (C ∩ Z) = g((C ∩ Z) \ N ) ∪ g((C ∩ Z) ∩ N )

⊇ max(G) ∪ g(N ) = max(G) ∪ (G \ max(G)) = G.

Because Z is nodec and C ∩ Z is a (closed) subspace of Z , we see that C ∩ Z is nodec.
Since depth(G) > 1, Lemma 5.6 yields that depth(G) = 2 and G is uniquely rooted. As
depth(F) = m > 2, max(F) consists of n elements, and max(G) has no more than n
elements, G is isomorphic to a cofinal subframe of F.

Next suppose N ⊆ Y . It follows from Lemma 5.1(1) that the restriction g|N : N →
G \ max(G) is an onto interior map. Moreover, N is closed in C , which is closed in
XF, so N is closed in XF. Therefore, N is also closed in Y . By the inductive hypothesis,
G \ max(G) is isomorphic to a subframe of F \ max(F). Thus, G is isomorphic to a
cofinal subframe of F since max(F) consists of n elements and max(G) has no more than
n elements.

Finally, suppose N ∩Z �= ∅ and N ∩Y �= ∅. By Lemma 5.1(1), g|N : N → G\max(G)
is an onto interior map. Let r denote a root of G and hence a root of G \ max(G). Since
N ∩ Z and N ∩ Y are clopen in N , both g|N (N ∩ Z) and g|N (N ∩ Y ) are R-upsets in
G \ max(G). Either r ∈ g|N (N ∩ Z) or r ∈ g|N (N ∩ Y ).

If r ∈ g|N (N ∩ Z), then g|N (N ∩ Z) = G \ max(G), so g|N∩Z is an interior mapping
onto G\max(G). Since N ∩ Z is nowhere dense in the nodec space Z , we have that N ∩ Z
is discrete, so mdim(N ∩Z) = 0, and hence depth(G\max(G)) = 1 by Bezhanishvili et al.
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(to appear, Theorem 3.6). Since discrete spaces are irresolvable, G\max(G) is a singleton
by Bezhanishvili et al. (to appear, Lemma 5.9). Thus, depth(G) = 2 and G = max(G)r .
Because depth(F) = m > 2, max(F) consists of n elements, depth(G) = 2, and max(G)
has no more than n elements, G is isomorphic to a cofinal subframe of F.

If r ∈ g|N (N ∩ Y ), then g|N (N ∩ Y ) = G \ max(G), so g|N∩Y is an interior mapping
onto G \ max(G). Since C is closed in XF and N is closed in C , N is closed in XF. But Y
is also closed in XF, giving that N ∩Y is closed in XF, and so N ∩Y is closed in Y . By the
inductive hypothesis, G\max(G) is isomorphic to a subframe of F\max(F). Therefore, G
is isomorphic to a cofinal subframe of F since max(F) consists of n elements and max(G)
has no more than n elements.

Consequently, we have shown that G is isomorphic to a cofinal subframe of F whenever
C �⊆ Y . If the interior of C is nonempty, then C �⊆ Y since Y is nowhere dense in XF.
Thus, G is isomorphic to a cofinal subframe of F and the proof is complete. �

We conclude this section by the following consequence of Lemma 5.8, which will be
utilized in the last section.

THEOREM 5.9. If a finite quasi-chain G is an interior image of an open subspace of XF,
then G is a p-morphic image of F.

Proof. Suppose that there exist an open subspace U of XF and an onto interior mapping
g : U → G. Since g is onto, for each v ∈ G, there is xv ∈ g−1(v). As XF is a Tychonoff
ED-space, XF is zero-dimensional by Engelking (1989, Theorem 6.2.25). Therefore, for
each v ∈ G, there is a clopen subset Uv of XF such that xv ∈ Uv ⊆ U . Let C = ⋃

v∈G Uv .
Since G is finite, C is a clopen subset of XF contained in U . Because C is open in U , g|C
is an interior mapping of C onto G. Since C is closed in XF and has nonempty interior,
it follows from Lemma 5.8 that G is isomorphic to a cofinal subframe of F. Thus, G is a
p-morphic image of F by Lemma 2.1. �

§6. Main results. In this section we will prove the main results of the paper. Our
first result determines the logic of XF. The proof utilizes a topological version of Fine’s
theorem: for a finite rooted S4-frame F and a topological space X , we have X � χF

iff F is not an interior image of an open subspace of X (Bezhanishvili et al., to appear,
Lemma 3.5).

THEOREM 6.1. Let F be a finite uniquely rooted quasi-chain of depth m>1. Then Log(XF)
= Log(F).

Proof. By Theorem 5.3, F is an interior image of XF. Therefore, since interior im-
ages preserve validity, Log(XF) ⊆ Log(F). For the reverse inclusion, let G be a finite
quasi-chain. By Fine’s theorem (1974, sec. 2, Lemma 1), Lemma 2.3, Theorem 5.9, and
Bezhanishvili et al. (to appear, Lemma 3.5),

F � χG iff G is not a p-morphic image of a generated subframe of F,

iff G is not a p-morphic image of F,

iff G is not an interior image of an open subspace of XF,

iff XF � χG.

Since Log(F) = S4.3 + {χG1 , . . . , χGn }, where min(Q \ FLog(F)) = {G1, . . . ,Gn}, we
have F � χGi for each i . Therefore, XF � χGi for each i . Thus, Log(XF) � χGi for each
i , and so Log(F) ⊆ Log(XF). �
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LEMMA 6.2. Let X be a nonempty topological space and F be a finite rooted S4-frame.
If F � Log(X), then F is an interior image of an open subspace of X.

Proof. Suppose that F is not an interior image of an open subspace of X . By
Bezhanishvili et al. (to appear, Lemma 3.5), X � χF, so Log(X) � χF. Therefore, since
F � Log(X), we have F � χF. The obtained contradiction proves that F is an interior
image of an open subspace of X . �

THEOREM 6.3. [Main Theorem] Let L ⊇ S4.3 be consistent. Then L is the logic of a
Tychonoff HED-space iff L is Zemanian.

Proof. First suppose that L is the logic of a Tychonoff HED-space X . Let F ∈ FL
be nonuniquely rooted. By Lemma 6.2, F is an interior image of an open subspace U of
X . Since X is Tychonoff, U is T1. Therefore, by Lemma 5.2, Fr is an interior image of
U . Because open subspaces and interior images preserve validity, Fr ∈ FL. Thus, L is
Zemanian.

Conversely, suppose L is Zemanian. If L � zem0, then L is the logic of a singleton space
X , and hence the logic of a Tychonoff HED-space. Suppose L �� zem0. Then FL contains
a quasi-chain consisting of more than a single point. Therefore, since L is Zemanian, there
is F ∈ UL \ {C1}. By Lemma 3.6, L = Log(UL) ⊆ Log(UL \ {C1}). Because C1 is a
p-morphic image of F, we have that F can refute any formula refuted on C1, and hence
Log(UL) ⊇ Log(UL \ {C1}). Let X be the topological sum of the XF where F ∈ UL \ {C1}.
Since the logic of a topological sum is the intersection of the logics of the summands, by
Theorem 6.1,

Log(X) =
⋂{

Log(XF) | F ∈ UL \ {C1}
}

=
⋂

{Log(F) | F ∈ UL \ {C1}} = Log(UL \ {C1}) = Log(UL) = L.

As each XF is a Tychonoff HED-space, X is a Tychonoff HED-space. Thus, L is the logic
of a Tychonoff HED-space. �

REMARK 6.4.

1. The Tychonoff HED-space X built in the proof of Theorem 6.3 is countable because
in the case when L � zem0, X is a singleton; and in the case when L �� zem0, since
UL is countable, X is a countable topological sum of countable spaces, hence X
is countable. On the other hand, since a countable Tychonoff ED-space is HED,
the only logics above S4.2 that have the countable model property with respect to
Tychonoff spaces are Zemanian extensions of S4.3.

2. Since S4.3 is Zemanian, by Theorem 6.3, S4.3 is the logic of a countable crowded
Tychonoff HED-space X . A different construction of such an X was given in
Bezhanishvili et al. (2015), where X was constructed as a subspace of the Gleason
cover E(I) of the real unit interval I = [0, 1]. The recursive process of Bezhanishvili
et al. (2015) constructing X is based on nesting ω copies of E(I) within itself
by first selecting a countable ω-resolvable dense subspace X1 of E(I) such that
a homeomorphic copy E1 of E(I) is contained in E(I) \ X1, then repeating the
base step in each En giving Xn+1 and En+1 ⊆ En \ Xn+1, and finally setting
X = ⋃∞

n=1 Xn . Comparing Bezhanishvili et al. (2015) to this paper, we note that
the current construction builds ‘upwards from the bottom’ whereas the previous
construction builds ‘downwards from the top’. Also, the current construction
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provides control over the resolvability at each stage, while the previous one does
not. On the other hand, the previous construction does not require topological sums.

3. Instead of nesting ω copies of E(I) within itself we can nest ω copies of βω within
itself as follows. Observe that there is a subspace of βω \ ω homeomorphic to βω.
Let βn be homeomorphic to βω and Dn be the isolated points of βn for n ≥ 1.
Embed βn+1 in βn \ Dn and set X = ⋃∞

n=1 Dn . Then X a countable scattered
Tychonoff HED-space, and hence Log(X) = Grz.3. If we nest only n +1 copies of
βω within itself, then the logic of the so obtained X is Grz.3.Zn := Grz.3 + zemn

(note that Grz.3.Zn = Grz.3 + bdn+1).

4. In contrast to (3), the Tychonoff HED-space X built in the proof of Theorem 6.3
for the case when L �� zem0 is crowded since XF is crowded for each F ∈ UL
of depth > 1. If the uniquely rooted F is such that it has a unique maximal point
(and depth(F) > 2), a slight modification of the construction of §4 can produce a
Tychonoff HED-space XF in which the isolated points are dense. Let
Y = XF\max(F) be as in the recursive step defining XF. Up to homeomorphism,
Y is a subspace of βω \ω (see Figure 7). Identify D with ω and cE(2c)(D) with βω.
Take XF to be the subspace Y ∪ ω of βω. Then the isolated points of XF are dense.
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