
A dynamic knowledge modeler

ROBERT HARRISON AND CHRISTINE W. CHAN
Energy Informatics Laboratory, Faculty of Engineering, University of Regina, Regina, Saskatchewan, Canada

(RECEIVED September 22, 2007; ACCEPTED June 24, 2008)

Abstract

This paper presents the development and application of a software tool for modeling knowledge to be used in knowledge-based
systems or the Semantic Web. The inferential modeling technique, which is a technique for modeling the static and dynamic
knowledge elements of a problem domain, provided the basis for the tool. A survey of existing knowledge modeling tools
revealed they typically failed to provide support in four main areas: support for an ontological engineering methodology or
technique, support for dynamic knowledge modeling, support for dynamic knowledge testing, and support for ontology
management. Dyna, a Protégé plug-in, has been developed, which supports the Inferential Modeling Technique, dynamic
knowledge modeling, and dynamic knowledge testing. Protégé and Dyna are applied for constructing an ontological model
in the domain of selecting a remediation technology for petroleum contaminated sites. Dynamic knowledge testing in Dyna
enabled creation of a more complete knowledge model.

Keywords: Knowledge Engineering; Ontology; Semantic Web; Software Engineering

1. INTRODUCTION

Knowledge-based systems (KBS) are often limited to prob-
lem solving in a narrow domain of knowledge because of
high development costs. The major cost is construction of
the knowledge base. Knowledge bases are often constructed
from scratch because KBS development occurs in a distrib-
uted, heterogeneous environment consisting of different loca-
tions, system types, knowledge representations, and so forth,
making it very difficult to share and reuse existing knowledge
base components.

Sharing and reusing knowledge can help reduce costs and
make it possible to create systems capable of more powerful
problem solving. The Semantic Web (SW) is the next evolu-
tionary step for the Web. The SW aims to provide semantics
to data on the Web, enabling computers to more easily share
and perform problem solving on the data (Berners-Lee et al.,
2001). SW technology can be used to share and reuse
knowledge between KBSs in a distributed, heterogeneous
environment.

A requirement for the SW is that data on the Web are struc-
tured semantically for machine processing, and ontologies
can contribute to that objective. Ontologies can also become
the basis for building KBSs. An ontology is an “explicit spec-

ification of a shared conceptualization” (Gruber, 1993); it can
be used for structuring the knowledge in a KBS and on the
SW. The main benefit of an ontology is that it enables the
sharing and reuse of application domain knowledge across
distributed and heterogeneous software systems (Guarino,
1998). Ontologies implemented in XML-based languages,
such as Resource Description Framework (RDF; http://
www.w3.org/RDF/) and Web Ontology Language (OWL;
http://www.w3.org/TR/owl-features/), enable different KBS
development groups or different SW applications to share
and reuse their knowledge and data. However, the construc-
tion of ontologies is time consuming and costly.

Software tools can help reduce the effort required to con-
struct ontologies and knowledge bases. The general objective
of our work is to provide software tool support for knowledge
creation for the SW. Our approach involves examining exist-
ing software tools for knowledge creation, and this examina-
tion provided the basis for the design of a new tool for sup-
porting knowledge creation. The new tool aims to address
deficiencies noted in some existing tools; it was applied for
building an application ontology in the petroleum contamina-
tion remediation selection domain.

This paper is organized as follows. Section 2 presents rel-
evant background literature. Section 3 describes the develop-
ment of a tool for dynamic knowledge modeling. Section 5
discusses the tool for developing an application ontology.
Section 6 provides some conclusions and Section 7 discusses
directions for future work.

Reprint requests to: Robert Harrison, Energy Informatics Laboratory,
Faculty of Engineering, University of Regina, Regina, Saskatchewan
S4S 0A2, Canada. E-mail: harrisor@uregina.ca

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2009), 23, 53–69. Printed in the USA.
Copyright # 2009 Cambridge University Press 0890-0604/09 $25.00
doi:10.1017/S0890060409000109

53

https://doi.org/10.1017/S0890060409000109 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409000109

2. BACKGROUND LITERATURE

2.1. Inferential modeling technique (IMT)

The IMT is a technique for modeling the static and dynamic
knowledge elements of a problem domain. Static knowledge
consists of observable domain objects (classes), attributes of
classes, and relationships between classes. Dynamic knowl-
edge consists of tasks (or processes) that manipulate the static
knowledge to achieve an objective. The IMT is an iterative
process of knowledge modeling, and the procedure is listed
below. For further details on the technique, see Chan (2004).

1. Specify static knowledge

a. Specify the physical objects in the domain
b. Specify the properties of objects
c. Specify the values of the properties or define the

properties as functions or equations
d. Specify the relations associated with objects and

properties as functions or equations
e. Specify the partial order of the relations in terms

of strength factors and criteria associated with the
relations

f. Specify the inference relations derived from the ob-
jects and properties

g. Specify the partial order of the inference relations in
terms of strength factors and criteria associated with
the relations

2. Specify the dynamic knowledge

a. Specify the tasks
b. Decompose the tasks identified into inference struc-

tures or subtasks
c. Specify the partial order of the inference and subtask

structures in terms of strength factors and criteria
d. Specify strategic knowledge in the domain
e. Specify how strategic knowledge identified is

related to task and inference structures specified

3. Return to Step 1 until the specification of knowledge
types is satisfactory to both the expert and knowledge
engineer.

2.2. Knowledge modeling system

Knowledge Modeling System (KMS) is a software tool for
modeling static and dynamic knowledge as defined in the
IMT. KMS contains a “class” module for modeling static
knowledge and a “task” module for modeling dynamic knowl-
edge. The class module enables the user to model concepts or
classes and properties of classes. The class module also sup-
ports the creation of inheritance and association relationships
between classes. The task module enables the user to create
tasks and objectives. A type of strategic knowledge can be
specified by adding a prioritized list of tasks to an objective.
The task module also supports the user in linking static

knowledge created in the class module to tasks. Task behavior
or operations that manipulate objects can also be defined. KMS
provided a basis for the work presented in this paper.

2.3. Ontology construction tools

Software tools enable ontology authors to ignore the com-
plexities of the ontology languages used in developing appli-
cation ontologies. The tools support efficient application
development, so that the development process can be com-
pleted with fewer errors and involves a lower learning curve.
From a survey of research work on ontology tools, we found
four areas that require improvement (Harrison & Chan,
2005), which are discussed in the following subsections.

2.3.1. Ontological engineering methodology

The process of developing an ontology consists of activities
in three different areas. First, there are ontology development ac-
tivities such as specification, implementation, and maintenance.
Second, there are ontology management activities such as re-
using existing ontologies and quality control. Third, there are
ontology support activities such as knowledge acquisition and
documentation (Gomez-Perez et al., 2005). An ontological
engineering methodology specifies the relationships among
the activities and when the activities should be performed.

A tool that supports an ontological engineering methodol-
ogy or technique can expedite the ontological engineering
process. Currently, there are few tools that directly support
an ontological engineering methodology; some existing tools
include OntoEdit, which supports On-To-Knowledge (Fensel
et al., 2002); WebODE, which supports METHONTOLOGY
(Gomez-Perez et al., 2003); and KMS, which supports IMT
(Chan, 2004).

On-To-Knowledge is an iterative methodology that con-
sists of five steps: feasibility study, kickoff, refinement,
evaluation, and maintenance (Gomez-Perezet et al., 2005).
OntoEdit provides support for ontology implementation,
which happens in the third step of refinement, and mainten-
ance (Fensel et al., 2002).

METHONTOLOGY is based on the software development
process and provides support for the entire process during the
development life cycle of an ontology. WebODE’s ontology
editor consists of a number of services that enable it to support
various activities in the ontology life cycle defined in
METHONTOLOGY. WebODE’s services include ontology
implementation, documentation, reasoning, and evaluation
(Gomez-Perez et al., 2005).

As discussed in Section 2.1, the IMT is a technique for
developing a classification of the knowledge elements of a
domain. KMS provides automated support for developing
the static and dynamic knowledge elements of a domain,
and the tool was developed based on the IMT (Chan, 2004).

2.3.2. Ontology modeling

An ontological engineering tool enables developing a knowl-
edge or ontological model of a problem domain. A brief survey

R. Harrison and C.W. Chan54

https://doi.org/10.1017/S0890060409000109 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409000109

of the different ontological engineering support tools reveal
there are diverse methods employed. For example, the method
used by Protégé (Gennari et al., 2003), Ontolingua (McGuiness
et al., 2003), and OntoBuilder (Gal et al., 2006) for modeling
ontologies involves listing all the concepts in a hierarchical
tree, and input fields are provided to capture characteris-
tics of concepts. A graphical method of modeling ontologies
is employed in tools such as KAON OI-Modeler (Gabel
et al., 2004) and Protégé OWLViz Plug-in (Horridge, 2005b),
in which the representational method uses nodes to repre-
sent concepts and edges to represent relationships between
concepts.

The Unified Modeling Language (UML) tools are com-
monly used for visual representation and communication of
software design. Because of the similarities between ontologies
and object-oriented design, UML class diagrams can be used
for modeling ontology classes and their properties, and rela-
tionships between classes (Cranefield et al., 2000). However,
UML’s expressiveness for modeling ontologies is limited;
for example, standard UML cannot express more advanced
ontologies that contain descriptive logic (Gasevic et al., 2005).

Because of the limitations of UML, there is ongoing re-
search work that aims to develop a graphical notation for
ontologies, called the Ontology Definition Metamodel
(ODM; Gasevic et al., 2005).

Existing ontological engineering tools can model static
knowledge to varying degrees. One issue is data type support.
Not all tools are capable of supporting all data types (string,
integer, float, etc.). The data types supported by the tool
should be investigated before the modeling process begins.

Although most tools can support representation of static
knowledge, there are significant difficulties when these tools
are used for modeling dynamic knowledge. The general pro-
cedure to model dynamic knowledge in tools such as Protégé,
KAON OI-Modeler, and KMS consists of the following
three steps:

1. Create classes to represent task and objective. These are
the main structures that will be used for modeling dy-
namic domain knowledge. It should be noted that this
step is not required in KMS, as it was designed for mod-
eling dynamic domain knowledge and most of the
necessary structures are built in.

2. Model the static domain knowledge.
3. Model the dynamic domain knowledge by instantiating

the task and objective classes that were created in
Step 1.

To better illustrate the problems encountered when model-
ing dynamic knowledge in existing tools, the above steps
using Protégé are applied to model a small part of the petro-
leum contamination remediation selection ontology. Protégé
uses a form-based user interface for inputting knowledge;
there are windows containing text fields for inputting knowl-
edge. The application of the above steps using Protégé is de-
scribed as follows:

1. Create classes to represent task and objective.

a. Create a new Protégé project for containing the task
and objective classes.

b. Create a class for representing task knowledge with
the following characteristics:

Class Name: Task
Super Class: owl:Thing
Properties:
— name (single string)
— behavior (single string)
— inputs
— objects
— output (single)
— subtasks (multiple Tasks)

The Task class properties include behavior, asso-
ciated objects, and a list of sub (or dependent)
tasks. In task interactions, data can be exchanged.
To capture this important information, two addi-
tional properties, inputs and output are added to
the Task class. A tool that supports inputs and out-
puts facilitates the ontology author in considering
the detailed interactions between tasks and objec-
tives; hence, a more complete model is likely to
be generated.

c. Task priority is a type of strategic knowledge that is
most likely to be found in an industrial domain, such
as petroleum contamination remediation selection.
For any particular objective, the task priority speci-
fies which tasks are required and the order in which
they are to be performed. Task priority can be em-
bedded in a prioritized list of tasks inside the objec-
tive class. However, the existing ontology tools, in-
cluding Protégé, lack support for specifying the
order (or priority) of specific items. This problem
can be solved with the addition of an intermediate
class, called TaskPriority, to relate a task to a prior-
ity. The class for representing TaskPriority is
shown as follows:

Class Name: TaskPriority
Super Class: owl:Thing
Properties:
— priority (single int)
— task (single Task)

The TaskPriority class contains the properties
task (an instance of a Task) and priority (an integer),
thus enabling the association of a priority to a task.

d. Create a class to represent an objective with the fol-
lowing characteristics:

Class Name: Objective
Super Class: owl:Thing
Properties:
— taskPriorityList (multiple TaskPriority)

A dynamic knowledge modeler 55

https://doi.org/10.1017/S0890060409000109 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409000109

The Objective class has a property for the taskPriorityList.

2. Model the static domain knowledge.

a. Create a new Protégé project for containing the static
domain knowledge.

b. Create classes, properties, and relations.

3. Model the dynamic domain knowledge.

a. Create a new Protégé project for containing the
dynamic domain knowledge.

b. Import both the Protégé project created in Step 1
(task, objective, and TaskPriority classes) and the
Protégé project created in Step 2 (static domain
knowledge) in the dynamic domain knowledge
project.

c. Choose an objective to model. In this example,
the objective, Determine Contamination Level
would be modeled. This is done by creating an
instance of the objective class identified as
DetermineContaminationLevel. The specification
of task priority (strategic knowledge) is discussed
later.

d. This step describes how to create a task that is re-
quired to achieve the chosen objective. In this exam-
ple, a task to Calculate Weighted Normalized
Benzene Concentration will be created. To model
this task, the Task class is instantiated and identified
with the name CalculateWeightedNormalized-
BenzeneConcentration. Next the task behavior
and objects can be modeled. These characteristics
are shown as follows:

Instance Name: CalculateWeightedNormalized-
BenzeneConcentration
Instance of Class: Task
behavior:
soilSamplingExp.benzeneConcentration ¼
soilSamplingExp.benzeneConcentration /
skStandard.skBenzene * benzene.contamination-

Weight
objects: skStandard, soilSamplingExp, benzene

An observation drawn from examining some exist-
ing ontology tools, including Protégé, is that the
structure for task behavior cannot be formally repre-
sented, which results in inconsistent syntax and
grammar. Consequently, machine processing of the
task behavior is impossible.

e. This step describes how to specify task priority,
which is a type of strategic knowledge. First, an
instance of TaskPriority is created and identified
as tp_CalculateWeightedNormalizedBenzene-
Concentration. The “tp_” prefix is used because
Protégé does not allow instances to have the same
name. Task Priority consists of a task and a priority

number. Below is the specification for this task
priority:

Instance Name: tp_CalculateWeightedNormalized
BenzeneConcentration
Instance of Class: TaskPriority
priority: 1
task: CalculateWeightedNormalizedBenzeneCon-
centration

f. After a task priority instance has been created, it
can be added to an objective. The specification for
the DeterminContaminationLevel objective is as
follows:

Instance Name: DetermineContaminationLevel
Instance of Class: Objective
taskPriorityList: tp_CalculateWeightedNormal-
izedBenzeneConcentration

There are two problems with this process for modeling task
priority. First, the software tool requirement that the user has
to create a separate entity of TaskPriority to link tasks to ob-
jectives distracts the users from the real activity of specifying
strategic knowledge. The second problem is related to the
visualization of the task priority list in the objective. Figure 7
illustrates the problem.

In Figure 1, the task priorities for SetContaminationLevel
and CalculateWeightedNormalizedTolueneConcentration
have been added to the DetermineContaminationLevel ob-
jective. From looking at the taskPriorityList, one might think
the tasks are in the following priority:

1. CalculateWeightedNormalizedBenzeneConcentration
2. SetContaminationLevel
3. CalculateWeightedNormalizedTolueneConcentration.

However, the actual priority of tasks is as follows:

1. CalculateWeightedNormalizedBenzeneConcentration
2. CalculateWeightedNormalizedTolueneConcentration
3. SetContaminationLevel.

In a form-based user interface, which is the kind adopted in
Protégé, task priorities are displayed in the order that they
were added. In graph-based user interfaces, such as Protégé
OWLViz or KAON OI-Modeler, there is no order to the dis-
play; the user must look at a separate window or screen for the
priority. Again, this problem distracts the user for the real pro-
cess of knowledge modeling.

To summarize in terms of modeling dynamic knowledge,
existing ontology tools demonstrate three main weaknesses.
First, their inability to enforce a consistent syntax for task
behavior makes computer processing of the task behavior
impossible. Second, the lack of support for input and
output of tasks can result in specification of an incomplete
model. Third, the visualization/input fields are not user

R. Harrison and C.W. Chan56

https://doi.org/10.1017/S0890060409000109 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409000109

friendly for enabling the user to easily specify/visualize
priority among tasks. Our research work addresses all three
weaknesses.

2.3.3. Ontology testing

For ontology tools, the third area in need of improvement is
support for ontology testing. Software testing is an important
part of the software development life cycle because it identi-
fies defects and results in a more stable software application.
It is considerably cheaper to fix defects early in the develop-
ment process. Unit testing is a method of testing the structure
of a program. Unit tests can be used as regression tests
to ensure that the software continues to work as expected
after modifications. Catching and fixing defects in the model-
ing stage is less expensive and easier than in the implementa-
tion stage.

Ontology testing can also help the knowledge engineer
develop a more complete model of the domain. In the onto-
logical engineering field, ontology testing is also called on-
tology evaluation. According to (Gomez-Perez et al., 2005),
ontology evaluation should be performed on the following:

† every individual definition and axiom,
† collections of definitions and axioms stated explicitly in

the ontology,
† definitions imported from other ontologies,
† definitions that can be inferred from other definitions.

Existing ontology testing systems such as the OWL unit
test framework (Horridge, 2005a) and Chimaera’s (Mc-
Guiness et al., 2000) test suite, evaluate the correctness and
completeness of ontologies. Chimaera performs tests in the
following four areas: missing argument names, documenta-
tion, constraints, and so forth; syntactic analysis (occurrence
of words, possible acronym expansion); taxonomic analysis
(unnecessary super classes and types); and semantic evalu-
ation (slot/type mismatch, class definition cycle, domain/
range mismatch; McGuiness et al., 2000). Such testing
tools are sufficient for testing static knowledge, but are
not suitable for testing the interactions between behavior
and objects.

Our research work aims to contribute to the field of onto-
logical evaluation by addressing the difficult issue of testing
behavior or dynamic knowledge. Our approach attempts to
combine unit testing techniques with the adoption of test cases
in test-driven development (TDD; Janzen & Saiedian, 2005).
This is a useful hybrid approach for addressing the complex
interactions of task behavior and objects. The general intuition
adopted from the TDD approach of testing is that it should be
“done early and done often.” In TDD, a test case is written first
and then the actual module is written. Writing test cases first
can be beneficial because instead of thinking of test cases as
“how do I break something,” writing test cases first make
you consider “what do I want the program to do.” In other
words, writing test cases first make you think about what func-
tionality and objects are required. We believe ontology devel-
opment could also benefit from this kind of approach.

2.3.4. Ontology management

The support for ontology management in ontology tools is
the fourth area that needs improvement. Ontology develop-
ment within the SW allows anyone to create, reuse, and/or ex-
tend concepts in a distributed, heterogeneous environment.
Many different versions of an ontology may be created, re-
sulting in problems of backward compatibility. To document,
track, and distribute ontologies in such an environment, an
ontology management system is needed. An ontology man-
agement system is analogous to a database management sys-
tem. Weaknesses of existing ontology management systems
include vulnerability to malicious ontology authors, no con-
sideration for intellectual property rights, and lack of support
for ontology versioning.

2.3.5. Specific research objectives

Our survey on existing ontology tools and the weaknesses
noted inform our design of a proposed suite of ontology tools.
Our design objective is to construct a suite of software tools
for modeling and managing knowledge. The tools should
have the following characteristics:

1. Provide support for a knowledge modeling technique
(we adopted for this purpose, the IMT).

2. Provide support for ontology management.

Fig. 1. Determining the contamination level objective with multiple task
priorities. [A color version of this figure can be viewed online at journals.
cambridge.org/aie]

A dynamic knowledge modeler 57

https://doi.org/10.1017/S0890060409000109 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409000109

3. Provide support for testing of the developed knowledge
model.

4. Provide support for diverse types of knowledge re-
quired for developing an ontological model of an indus-
trial domain.

For illustration purposes, we applied our tool for modeling,
in this case, the petroleum contamination remediation selection
domain. Next the application problem domain is described.

2.4. Application problem domain

2.4.1. Overview of petroleum contamination
remediation selection

Petroleum contamination of soil and groundwater is an
important environment issue because it can adversely impact
the health and well-being of a community and the surround-
ing natural environment. Petroleum contamination is often
the result of leaks and spills from petroleum storage tanks
and pipelines, as shown in Figure 2. From the gas tank, con-
taminants first leak into the top layer of soil, then eventually
through the soil, into the lower, groundwater layer. The petro-
leum contaminants include chemicals such as benzene,
toluene, ethyl benzene, xylene, and total petroleum hydrocar-
bon. These chemicals can potentially cause serious health
problems to humans.

The process of cleaning a petroleum-contaminated site is
called petroleum contamination remediation. A variety of re-
mediation methods/technologies are available. However, dif-
ferent contaminated sites have different characteristics
depending on the pollutants’ properties, hydrological condi-
tions, and a variety of physical (e.g., mass transfer between
different phases), chemical (e.g., oxidation and reduction),
and biological processes (e.g., aerobic biodegradation).
Thus, the methods selected for different sites vary signifi-
cantly. The decision making process for selecting a suitable
method at a given site often requires expertise on both the

remediation technologies and site hydrological conditions.
Because selection process is complex, an automated system
for supporting decision making on site remediation techniques
is useful. Development of such a decision support system
(DSS) can benefit from the use of SW technology like on-
tology construction.

2.4.2. Details of petroleum contamination
remediation selection

There are two categories of remediation techniques: in situ
and ex situ. In situ remediation techniques use treatments on
the soil or groundwater; some examples of in situ remediation
include soil flushing, biostimulation, chemical treatment, and
phytoremedizition (Chan et al., 2002). Ex situ remediation
techniques involve the removal of the contaminated soil by
excavation. Some examples of ex situ remediation include
land treatment, chemical extraction and excavation, air strip-
ping, and carbon adsorption (Chan et al., 2002).

The selection of a remediation technology involves the fol-
lowing five factors (Chen, 2001):

1. Contaminated media: The contaminated media (soil or
groundwater) can be either unsaturated or saturated. Not
all of the media require cleaning. There are three possi-
ble requirements for a remedy: only the unsaturated
zone needs to be cleaned, only the saturated ground-
water zone needs to be cleaned, or both the unsaturated
and saturated zones need to be cleaned.

2. Site hydraulic conditions: The hydraulic properties of a
site include the following considerations: soil perme-
ability, site heterogeneity, and isotropism. According
to these properties, a site can be classified as simple
or complex.

3. Estimated plume size: If the contaminated site size is
small, an ex situ remediation technique is preferred;
otherwise, an in situ remediation technique is recom-
mended.

4. Current phase of the immiscible contaminants: If the
immiscible contaminants are present in the free phase,
then oil recovery has to be considered. If the immiscible
contaminants are present in the residual phase, then
more complex techniques like integrated remediation
technology is needed.

5. Concentration of the contaminants: The concentration
of the contaminants can be grouped into the three
ranges of low, medium, and high. Different concentra-
tion levels of the contamination require different reme-
diation actions.

3. DESIGN AND IMPLEMENTATION OF DYNA

3.1. Overview

To address the objectives of modeling and testing dynamic
knowledge, we built a software tool that models dynamic

Fig. 2. An overview of the contamination problem caused by petroleum pro-
duction activities according to Chen (2001).

R. Harrison and C.W. Chan58

https://doi.org/10.1017/S0890060409000109 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409000109

knowledge, called Dyna. Dyna has been built as an extension
of Protégé, which is an ontology editing tool created by the
Department of Stanford Medical Informatics at Stanford Uni-
versity (Gennari et al., 2003). It is an open-source system pro-
grammed in Java, and is very extensible through its plug-in
architecture. Dyna is a “Tab Widget” that works with both
Protégé-Frames and Protégé-OWL. At the time of writing,
Dyna has been tested on Protégé 3.2.1.

A high level view of the architecture of Dyna and its inter-
action with Protégé is shown in Figure 3. The user creates
static knowledge (classes, properties, relations) in Protégé
and the dynamic knowledge (objectives and tasks) in Dyna.
Dyna contains two main modules for creating objectives
and tasks. From the objective module, strategic knowledge
can be specified by linking tasks to an objective and prioritiz-
ing the tasks. The task module supports the definition of task
behavior and the instantiation and manipulation of objects
and properties created in Protégé. The task module also sup-
ports the creation and running of test cases, a process that
helps to verify that the task behavior is working as expected.
Both Protégé and Dyna can import and export the models in
the OWL file format. Dyna can also import and export the
models in the XML file format.

Based on the IMT, the following procedure describes the
general process of modeling knowledge with Protégé and
Dyna. A detailed description of the process applied to the
modeling of a real-world problem domain is presented in
Section 4.

1. Model static knowledge in Protégé:

a. Create a class.
b. Create a property for the class.
c. Specify any additional attributes for the class, such

as restrictions.

d. Repeat steps a–c until satisfied that the static knowl-
edge model is complete or the knowledge engineer
has enough information for progressing to Step 2
to develop the dynamic knowledge model.

2. Model dynamic knowledge in Dyna:

a. Create an objective.
b. Create a task.

— Specify task behavior.
— Specify objects (instances of classes) used in the

behavior.
— Specify and run test cases. Object attributes can

be modified and checked if they are the expected
values.

— Specify strategy by linking task to objective and
setting priority.

c. Repeat steps a and b until satisfied that the model is
complete.

3. Optionally, the static and dynamic knowledge models
may be exported in the OWL file format.

3.2. Knowledge representation

The static knowledge components are handled by Protégé,
which uses both a Frames-based knowledge model and an
OWL-based knowledge model. Both knowledge models pro-
vide classes, properties (or slots) of classes, parent–child
relations between classes, and individuals (or instances) of
classes. Protégé–OWL also supports the many additional
knowledge components defined in OWL. See the Stanford
Protégé website (http://protege.stanford.edu) for more details
on the Protégé knowledge models.

The dynamic knowledge components as defined by the
IMT are organized into the object-oriented class hierarchy
shown in Figure 4. The top-level component is Knowledge-
Component, which defines the properties name and docu-
mentation, which are used for identification and description
of a knowledge component. The components Project, Task,
and Objective are derived from KnowledgeComponent.
A Project contains a list of tasks and a list of objectives.
An Objective consists of a prioritized list of tasks required
to achieve the objective. A Task is an activity that is per-
formed to achieve an Objective. A Task consists of behavior,
input values, one output value, preconditions, objects, and
dependencies. A task can also be decomposed into subtasks.

3.3. Objective modeling

Objectives are modeled in an Objective Window, which con-
tains input fields for the name of the objective, documenta-
tion, and tasks associated with the objective. The tasks asso-
ciated with an objective are in a prioritized order so that a task
with higher priority should be executed first. Test cases for
the tasks can also be run, and tests are run in the order of
task priority. This function is discussed further in Section 3.4.

Fig. 3. The architecture of Dyna.

A dynamic knowledge modeler 59

https://doi.org/10.1017/S0890060409000109 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409000109

3.4. Task modeling

Tasks are modeled in a tasks window, which contains input
fields for the name of a task, documentation, behavior, ob-
jects, dependencies, and test cases of a task. The main com-
ponents of the task module are the task behavior language
(TBL) and its interpreter. Together, TBL and its interpreter
enable the specification and manipulation of objects associ-
ated with a task and tasks dependent on other tasks. They
also enable dynamic knowledge to be tested. These features
are described as follows.

3.4.1. TBL and interpreter

A weakness of the KMS (Chan, 2004) is that the system
does not support a formal and systematic representation of
task behavior. As a result, the representation of task behavior
is not formal and involves inconsistent syntax and grammar,
which renders machine processing of the task behavior im-
possible. Dyna solves this problem by using a strictly en-
forced, formalized and high-level language, called TBL, for
representing task behavior.

TBL supports the following basic structures that are com-
mon to most programming languages:

† Types: integer, float, Boolean, string
† Mathematical operations: þ, 2, *, /, %
† Logical operators: and, or, not, xor
† Conditional operators: ,, ., ¼¼, ,¼, .¼, !¼
† Assignment operator: ¼
† If statement, While loop, Assert statement, Return

statement, Print statement
† Class Object Instantiation
† Function definition and calling
† Comments: #

Dyna enforces the structure of the task behavior with an in-
terpreter, which also enables the task behavior to be run. A
high-level view of the architecture of the TBL interpreter is
shown in Figure 5. The interpreter consists of a lexical ana-

lyzer and a parser, which were generated using JavaCC
(https://javacc.dev.java.net/) a tool for generating compilers
and interpreters. The lexical analyzer breaks the input task be-
havior into sequences of tokens. The parser then analyzes the
sequences of tokens according to the TBL grammar and gen-
erates an abstract syntax tree (AST). If the input task behavior
has errors, then the parser outputs an error message. The func-
tionality of each language element was implemented in the
AST nodes; and there is an AST node for each TBL language
structure. Interpretation of TBL is achieved by performing
a depth-first traversal of the AST. As the AST is traversed,
encountered symbols or identifiers are stored in the symbol
table, values are pushed/popped on/off the stack, and in-
stances of classes in Protégé are modified.

Two questions that might be asked are “why create TBL?”
and “why not use an existing language?” Any programming
language that supports the basic structures (math operators,
loops, conditions, etc.) could have been used for modeling
the behavior component of dynamic knowledge. The grammar
describing the language, for example Cþþ, would have been
processed with a tool similar to JavaCC resulting in a lexer and
parser, from which a custom interpreter could be generated. Ex-
isting programming languages have many features and lan-
guage attributes, many of which are not applicable for model-
ing dynamic knowledge. We believe processing these

Fig. 5. The design of the TBL interpreter.

Fig. 4. Dyna knowledge representation.

R. Harrison and C.W. Chan60

https://doi.org/10.1017/S0890060409000109 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409000109

languages would involve significantly more work as the extra
features would have to be navigated and dealt with in some
manner. Hence, it would be easier and more efficient to create
a simple language and interpreter built specifically for process-
ing task behavior. In contrast, there are nonprogramming lan-
guages that could also have been used, for example, the SW
Rule Language (SWRL; http://www.w3.org/Submission/
SWRL/). SWRL is a combination of OWL and Horn-like rules.
SWRL can be used to model processes (Happel & Stojanovic,
2006), so it may be possible to adapt SWRL to model tasks and
objectives. SWRL would be a radically different approach to
modeling task behavior than the approach adopted by KMS,
the system on which Dyna is based. Because the objective of
Dyna was to improve upon KMS, and not a different approach,
Dyna adopted TBL, which is like a programming language, for
modeling task behavior.

3.4.2. Task objects

Task behavior consists of calculations and operations on
static knowledge. The Task Window enables the user to select
a Class in Protégé to instantiate and specify a name for the re-
sulting object. Operations and calculations can be performed
on the object and its properties using TBL. For example,
car.color ¼ “red” where car is an instance of a Car class
and its property color is set to “red.” When a test case is
run through the interpreter, the defined operations and calcu-
lations on the object are actually performed.

3.4.3. Task dependencies

Tasks can have interactions with other tasks. When a task
requires a second task to perform its behavior, this second
task is considered to be a “dependency” of the first task.
Task dependencies are represented in TBL by: Dependent-
TaskName(). Calls to dependent tasks are similar to function
calls found in common programming languages. Values can
be passed to the dependent task via input parameters. An out-
put value can also be returned from the dependent task. When
a dependency is encountered by the interpreter, the depen-
dency is first added to the task’s list of dependencies, then
the interpreter evaluates the behavior of the dependency.

3.5. Testing dynamic knowledge

TDD is a very useful technique for dynamic knowledge mod-
eling. Writing test cases for tasks first can help the ontology
author derive which classes and properties are required in the
task behavior, resulting in a more complete model. However,
because writing test cases first may initially prove difficult for
some users, Dyna supports the creation of test cases at any
time during the ontology development process.

Dyna’s testing framework is based on JUnit (http://www.
junit.org), a unit testing framework for Java. To test a class
in JUnit, a test class is created, which contains methods for
each test case and a special method called setup() for doing
any initialization. Dyna’s testing framework is attached to
the tasks, because the tasks contain the testable behavior.
Each task contains a test suite, which provides a “setup” mod-
ule and facilities for creating test cases and defining them in
TBL. Test cases require that the “assert” function be called;
and the assert function takes as a parameter a condition that
is necessary for the test case to succeed. When the test case
is run through a test interpreter, the interpreter first performs
any necessary initialization, then it executes the behavior of
the task, and evaluates the condition of the assert function.
Depending on whether the assert function returns a “true”
or “false” value, the interpreter would display a message
notifying the user if the test case has “passed” or “failed.”

3.6. Knowledge storage and interoperability

3.6.1. XML

Dyna projects are stored in the XML file format, enabling
them to be shared and reused by other systems. Most of the
dynamic knowledge components and their properties are rep-
resented as a hierarchy of XML elements. The following is an
excerpt from the XML representation of a task:

The class objects that have been instantiated in Dyna require a
link to their definitions in Protégé. Protégé can save its data,
including the class object definitions, to an OWL file. OWL is
an XML-based SW technology. Another XML-based SW
technology, RDF, has the ability to create links to data defined
in other XML-based files. An example of using RDF to link
an object in a Dyna XML file to its definition in an OWL file
is as follows:

A dynamic knowledge modeler 61

https://doi.org/10.1017/S0890060409000109 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409000109

where rdf:resource defines where the definition of this object
can be found. The static knowledge is stored in the OWL file,

petrol_rem_sel.owl on a hypothetical web server at http://
example.com. Benzene_B, is the identifier of the object.

3.6.2. OWL

A weakness of Dyna XML is that it lacks semantics, mak-
ing it difficult to use the dynamic knowledge in other systems.
To achieve true interoperability with other systems, Dyna

projects can be exported to OWL, which provides semantics
to XML. In this way, it is possible for another system to know,
for example, that a Task is an instance of a task in the dynamic
knowledge model.

The modeling of the dynamic knowledge elements was
done in Protégé-OWL. There are three types of OWL to
choose from: OWL Lite, OWL DL, and OWL Full. OWL
Lite is the simplest, but least expressive. OWL DL is more ex-
pressive than OWL Lite. OWL Full is the most expressive, but
performing reasoning on it is very difficult. The type of OWL
chosen for the project was OWL DL because it is sufficiently
expressive, and the purpose of modeling the petroleum con-
tamination remediation selection domain is to eventually cre-
ate a DSS, which means automated reasoning is required.
OWL DL proved to be indeed expressive enough, and every
dynamic knowledge element in the remediation domain was
represented. The final OWL dynamic knowledge model was
verified as valid OWL DL by using the WonderWeb OWL
Ontology Validator (http://phoebus.cs.man.ac.uk:9999/
OWL/Validator). Because the model is in valid OWL DL,
any other system that can read OWL DL, will be able to
use this model.

The following is a sample of the OWL code used to model
the dynamic knowledge components. The OWL in this exam-
ple defines a class Task and states that it is a subclass of

KnowledgeComponent. There is also a definition of the
property name.

Dyna’s projects are exported to OWL simply by traversing
the internal knowledge model and outputting each element’s
OWL representation to a file. The following is a sample of the
OWL code for representing a task; the sample task is for de-
ciding the number of sampling points. dyn:Task defines an
instance of the Task class, with the name property set to
“DecideNumberOfSamplingPoints.”

Dyna’s exported OWL projects have also been verified as valid
OWL DL by the WonderWeb OWL Ontology Validator.

4. APPLICATION OF DYNA FOR DEVELOPING
AN ONTOLOGY MODEL OF PETROLEUM
CONTAMINATION REMEDIATION
SELECTION DOMAIN

4.1. Overview

Protégé and Dyna were applied to create an ontology of the
petroleum contamination remediation selection domain. The
process of selecting a remediation technology for a petroleum
contaminated site involves many steps that interact with a num-
ber of different objects. According to the IMT, knowledge is
considered to be either static or dynamic; therefore, the knowl-
edge elements in the petroleum contamination remediation se-
lection domain are categorized into the two types/groups of
knowledge. Static knowledge includes concrete objects such
as soil, water, and contaminants, which are modeled using Pro-
tégé-OWL 3.2.1 (described in Section 4.2). Dynamic knowl-
edge includes objectives, such as “Select Remediation
Method” and actions or tasks that are required to achieve the
objective. The dynamic knowledge is modeled in Dyna and
is described in greater detail in Section 4.3.

R. Harrison and C.W. Chan62

https://doi.org/10.1017/S0890060409000109 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409000109

4.2. Static knowledge

The static knowledge of the Petroleum Contamination Reme-
diation Selection domain was implemented in Protégé-OWL
3.2.1 using an existing ontology developed by (Chen, 2001)
with the assistance of an environmental engineer. Again,
OWL DL was adopted because of its expressiveness and its
support of automated reasoning. The static knowledge was
modeled using an iterative process of creating a class and
then its properties and other characteristics. The process of
class creation will be described with an example. Because
the media (soil, water, groundwater) that has been contami-
nated is an important knowledge element in the Petroleum
Contamination Remediation Selection domain, this element
is used in the following example for illustrating the process
of creating a class and other characteristics:

1. Create a class: Media
2. Create a property for the class. OWL supports two types

of properties: datatype and object. Datatype properties
are for properties of simple types such as “integer” or
“string.” Object properties are for properties that
are individuals of other classes. The size of Media can
be classified as “small,” “medium,” or “large.” Because
these are strings, a datatype property identified as
siteSize was created.

a. Specify the domain(s) of the property. For siteSize,
the domain was set to Media.

b. Specify the range of the property. The possible val-
ues for siteSize (“small,” “medium,” “large”) are all
strings, so the range of siteSize was set to string.

c. Specify restrictions for the property.

— Restrict the possible allowed values. The only
possible values for the size of a site are “small,”
“medium,” and “large.” To enforce this restric-
tion, these values were input into the Allowed
Values field.

— Specify whether or not the property is Func-
tional. OWL individuals (instances) can have
multiple values of a property, which means
that there can be multiple values of a property
for an individual. If a property is limited to one
value for an individual, then that property is
“functional.” An individual of Media can only
have one value of siteSize at a time (a medium
cannot be both “small” and “large”), so siteSize
is set to “functional.”

3. Repeat steps 1 and 2 until either all the classes are fin-
ished or the knowledge engineer has enough informa-
tion to develop the dynamic knowledge model.

4. Specify disjointness. OWL individuals can be of more
than one type. For example, it is possible to specify
that an individual is both a Media and a Remediation.
Such cases of multiple inheritance can cause unforeseen
negative consequences. To prevent such modeling

errors, a Class can be made disjoint with one or more
other classes. In the case of the Media class, it is dis-
joint with all of its sibling classes (Contaminant, Ex-
periment, Gas, Mathematics, and Remediation).

Shown in Figure 6 is the class hierarchy of the static
knowledge.

4.3. Dynamic knowledge

The dynamic knowledge was constructed in Dyna using an
existing ontology discussed in Chen (2001). An iterative pro-
cess of creating an objective, followed by its tasks was used.
An example of dynamic knowledge for the Petroleum Con-
tamination Remediation Selection domain is determining
the classification of the size of a site (or media). Site size

Fig. 6. The static knowledge class hierarchy in Protégé. [A color version of
this figure can be viewed online at journals.cambridge.org/aie]

A dynamic knowledge modeler 63

https://doi.org/10.1017/S0890060409000109 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409000109

determination is used in the following to show the process of
creating objectives and tasks:

1. Create an objective: DetermineSiteSize
2. Create a task: SetSiteSize

a. Specify task behavior and any inputs and output.
The behavior for SetSiteSize is as follows:

This task behavior is input into the Task Behavior
screen shown in Figure 7.

b. Specify any objects, that is, instances or individuals
of classes, which are used in the behavior. SetSite-
Size uses the object site, which is an individual of
Media.

c. Specify test cases. The test case for verifying that the
size of a site is “small” is as follows:

The test case begins with setting the area and volume of the
site. Then the task, SetSiteSize, is called and its behavior is run
through the TBL interpreter. The TBL interpreter will evaluate
the condition of the first “if” statement and determine that the
condition is true and then the interpreter will set the value of
site.siteSize to “small.” When the TBL interpreter is finished
interpreting SetSiteSize, the size of the site is verified with
the assert function. In this case, the assertion will be “true;”
therefore, the following message will be output to a screen:

If the assertion was “false,” the message output to a
screen would be:

The testing suite, shown in Figure 8, provides the facil-
ities for adding, deleting, and running test cases. Test
cases may be run individually or together. The test cases
shown in Figure 8 are for the task of SetSiteSize. The test
case that is highlighted is for testing of a “small” site size,
which was described above.

3. Link the task to the objective. The link between the task
SetSiteSize and the objective DetermineSiteSize is
shown in Figure 9.

4. Adjust the priority of the task in the objective, if neces-
sary. SetSiteSize has a priority of 3, which means that it
is to be performed after the tasks MeasureSiteArea and
MeasureSiteVolume.

5. Repeat Steps 1–4 until the knowledge engineer is satis-
fied that the model is complete. Although it is difficult
to know when the model is complete, a useful heuristic
is to assess whether all the tasks have test cases and if
they run successfully. If both criteria are satisfied,
then it is likely the model is complete.

Most of the petroleum contamination remediation selec-
tion ontology was successfully modeled. The root objective
is SelectRemediationMethod; all the other objectives and
tasks fall under this objective. SelectRemediationMethod
is described in Table 1 to briefly discuss the final ontology.

Fig. 7. Dyna: task behavior. [A color version of this figure can be viewed
online at journals.cambridge.org/aie]

R. Harrison and C.W. Chan64

https://doi.org/10.1017/S0890060409000109 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409000109

The first task, DetermineSiteSize, measures the area and
volume of the site and then classifies the size of the site.
The SoilSampling task involves a number of different activ-
ities such as collecting soil samples, measuring thicknesses
and percentages of the soil types in the soil samples, and mea-
suring contaminant concentrations. DetermineSiteHydrau-
licConductivity finds the degree to which water can move
between the spaces between the particles of soil. Determine-
ContaminationLevel finds the contamination level by calcu-
lating the concentrations of benzene, ethyl benzene, toluene,
and xylenes. DetermineContaminationPhase simply sets
the phase as “free” or “residual.” The final task, SetRemedia-
tionMethod, considers the following five factors, which are
found in the preceding tasks, to determine the appropriate
remedial technology:

1. Media type (soil or soilgroundwater)
2. Hydraulic conductivity (simple or complex)
3. Site size (small or large)
4. Contaminant phase (free or residual)
5. Contamination level (low or high).

All of the static knowledge was successfully implemented
in Protégé and most of the dynamic knowledge was success-
fully implemented in Dyna. There are some limitations of
Dyna, which prevented some knowledge from being mod-
eled. These limitations are discussed further in Section 5.
There were a few tasks, whose behavior could not be modeled
due to lack of information. The values for soil texture contri-
bution factor were stored in a database; there were no calcula-
tions on how the values were derived. Therefore, for testing
purposes a value for soil texture contribution factor has
been hard coded into the behavior of the task for calculating
soil texture contribution factor.

5. DISCUSSION

During the implementation of the petroleum contamination
remediation selection ontology in the Class Editor and
Dyna, a number of interesting observations were made. While
discussing these observations it is important to keep in mind
that at the time of writing the tools have only been tested on

Fig. 8. Dyna: testing task behavior. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

Fig. 9. Dyna: DetermineSiteSize objective. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

A dynamic knowledge modeler 65

https://doi.org/10.1017/S0890060409000109 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409000109

a single domain of knowledge. Most of these points may be
applicable when the tool is applied to other domains.

A number of observations can be drawn about Dyna from
the process of modeling the petroleum contamination reme-
diation selection ontology; some comments can be made
about the modeling process itself. The following presents
some observations about the modeling process, and some ad-
vantages and weaknesses of Dyna.

In modeling with the IMT, a distinction is made between a
“task” and an “objective.” High-level operations are objec-
tives (e.g., SelectRemediationMethod) and operations with
specific actions are tasks (e.g., MeasureSandThickness).
Tasks can be identified using keywords that describe simple
actions, such as “set,” “measure,” or “add” and keywords
that indicate more general or higher level action words, “de-
termine” or “find” can be used for identifying objectives.
However, when this distinction is applied for modeling the re-
mediation domain, it became apparent that the general guide-
line that objectives are high-level operations and tasks are
specific actions cannot always be followed. For example,
the original knowledge table in (Chen, 2001) listed the objec-
tive “Select Remediation Method” as containing the task
“Determine Site Size.” Following the guideline, “Determine
Site Size” is an objective as it is a high-level operation that
contains a few different actions. The ideal solution would
be to add the “Determine Site Size” objective to the list of
tasks of “Select Remediation Method,” but this is not possible
as the knowledge representation in Dyna does not support
this. The solution used was to create a task called Determine-
SiteSize. The behavior for such a task duplicates the objec-
tive’s prioritized tasks. This solution is not satisfactory
because the task behavior duplicates the objective’s priori-
tized tasks.

Using the correct names for tasks and objectives is very
important as it greatly affects the intended meaning of the
model. Many of the tasks are “Measure” tasks, such as
MeasureBenzeneConcentration. These “Measure” tasks
set the value of some property for an object. In the case of
MeasureBenzeneConcentration, the SoilSamplingExperi-
ment object’s benzeneConcentration value is set. This is
typical behavior of a “setter” function, which is used to
set the value of a member variable for a class. Therefore, in-
stead of MeasureBenzeneConcentration, we could have
SetBenzeneConcentration. However, “Set” is not a suitable
prefix in this situation. “Set” and “Measure” have different

meanings. “Measure” implies that we are performing some
action to find a value. In contrast, “set” implies that we
already know the value, and are simply recording it.

The IMT has suggested that a knowledge engineer
should model static knowledge first, and when the static
knowledge model has been developed, then the dynamic
knowledge is modeled. However, we have found this sug-
gested sequence of modeling is not always practical. Often,
the ontology author is uncertain what classes and properties
are required. As a consequence, creating static knowledge
first leads to errors, such as incorrectly named objects and
properties attached to the wrong classes. From our experi-
ence, we found a more fruitful approach is to use an iterative
process of creating some dynamic knowledge first, and using
it as a guide to create the static knowledge required to ensure
the dynamic knowledge can be implemented. This is similar
to the process of writing test cases first in TDD, described in
Section 2.3.3. By creating tasks and objectives first, the user
has to think about what functionality and objects are required,
which greatly reduces the amount of errors when objects are
specified.

The two main components that were most helpful in reveal-
ing missing information and modeling errors were the fields
for task behavior input and output and dynamic knowledge
testing. Both components were helpful in revealing new
classes and properties that need to be added to the static
knowledge. The fields for task behavior input and output
can be used for prompting the user to think about the relation-
ships between tasks and the objects manipulated by the tasks.
The testing of dynamic knowledge can be used in identifying
new classes and properties that need to be added to the static
knowledge. The creation of test cases can also reveal logical
errors in the task behavior. For example, an erroneous “if
statement” for classifying site size was as follows:

The logical error is in bold and underlined in the above
behavior. If area equals 2000, then the size of the site will
not be set. Running the test cases for this task would generate
a failure, thereby alerting us of the error in the model. When
the error is corrected, the test cases should all run success-
fully. Dynamic ontology testing facilitated verification and
enabled creation of a more complete knowledge model.

Table 1. Select remediation method objective

Objective Tasks

SelectRemediationMethod 1. DetermineSiteSize
2. SoilSampling
3. DetermineSiteHydraulicConductivity
4. DetermineContaminantionLevel
5. DetermineContaminationPhase
6. SetRemediationMethod

R. Harrison and C.W. Chan66

https://doi.org/10.1017/S0890060409000109 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409000109

Not all of the dynamic knowledge in the original ontology
could be modeled in Dyna. The main weakness of Dyna is its
lack of support for the array data type. Many of the tasks per-
form operations on groups (or arrays) of objects. For example,
one of the tasks measures the percentage of sand for each soil
sample in the soil sampling experiment. This task requires a
loop that iterates through one or more soil samples. However,
because Dyna does not support arrays, only one soil sample
can be measured. Therefore, in implementing the ontology
model, it is assumed that the number of sampling points
equals one (numSamplingPoints ¼ 1), and there is one soil
sample (soilSample1). The lack of support for arrays also
made it impossible to select multiple remediation methods.
Under certain conditions more than one remediation method
can be selected. However, without arrays, it is not possible to
model those conditions.

Another weakness of Dyna is its lack of support for compre-
hensive visualization of objectives and tasks. Objectives and
tasks occur in a sequence or flow; however, the forms-based
visualization that is currently used makes the sequence or
flow difficult to understand. Figure 10, shows the objective
DetermineSiteHydraulicConductivity and its prioritized
list of tasks. The prioritized list of tasks is a sequence. A
visualization of the sequence of tasks and objectives can
give the user a better understanding of the interactions between
the different objectives and tasks. It is difficult for the user to
picture the entire sequence of tasks and objectives because of
two problems with the visualization. First, the view of the se-
quence is limited to a single objective. In Figure 10, for
example, DetermineSoilType is followed by CalculateSoil-
TextureContributionFactor. This sequence is missing tasks

of the objective DetermineSoilType. The second problem is
that the there is no context for which the objective takes place
in. In Figure 10, the screen does not show that Determine-
SiteHydraulicConductivity takes place within the context
of the objective SelectRemediationMethod or that the objec-
tive SoilSampling and its tasks precede DetermineSite-
HydraulicConductivity. Because of these two problems the
user is required to picture the sequence of tasks and objectives
in their mind, thus making the modeling process more diffi-
cult. A graphical view that can show the full sequence of ob-
jectives and tasks would be very beneficial.

The use of TBL requires programming experience. TBL is
not intended for use by domain experts, because they may
not have expertise in programming. Only the knowledge
engineers, who should have programming experience, are
intended to use TBL. The domain expert is the source of
knowledge. The knowledge engineer acquires knowledge
from the domain expert and represents the acquired knowl-
edge in a model specified in TBL. A change in the domain
knowledge is likely to be initiated by the domain expert,
who must inform the knowledge engineer. Then the knowl-
edge engineer is responsible for implementing the changes
in the model.

The lack of support for ontology management in Dyna is
also a weakness. The task behavior is dependent on the
classes and properties defined in the static knowledge model.
The static knowledge cannot be modified or removed without
having an effect on the dynamic knowledge. If a static knowl-
edge element, such as a class, is deleted from Protégé, there is
no notification to the user in Dyna that the knowledge ele-
ment has been deleted. The user may not realize that the

Fig. 10. Objective: DetermineSiteHydraulicConductivity. [A color version of this figure can be viewed online at journals.cambridge.
org/aie]

A dynamic knowledge modeler 67

https://doi.org/10.1017/S0890060409000109 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409000109

knowledge element has been removed until the test cases are
run and error messages alert the user regarding an “un-
defined” knowledge element. An ontology management sys-
tem can alert the user to the effect their modifications on the
static knowledge will have on the dynamic knowledge and
possibly prevent any possible problems that will result from
their changes.

6. CONCLUSIONS

Sharing and reusing knowledge can help reduce the high
costs of constructing KBSs. Technologies and ideas from
the emerging SW can be useful for developing KBSs. One
of these technologies is the ontology, which can be defined
as a shareable, computer processable model of a domain of
knowledge. However, there are difficulties in constructing
ontologies.

The objective of the research work presented in this paper
is to construct a software tool for modeling knowledge for the
SW. For modeling dynamic knowledge, Dyna has been de-
veloped by extending Protégé so as to render it capable of
supporting IMT. A new language called TBL has been pro-
posed for representing task behavior. TBL supports formal
expression of task behavior so that task knowledge defined
in an ontology can be more shareable and reusable. The dy-
namic knowledge model can be tested by running test cases
on the task behavior. The dynamic knowledge is stored in
an XML format, but can also be exported to OWL so that it
can be shared and reused by other systems.

Protégé and Dyna have been applied for creating an on-
tology in the petroleum contamination remediation selection
domain. Because Dyna supports testing of the dynamic
knowledge model, the test cases generated enable creation
of a more complete knowledge model.

7. FUTURE WORK

7.1. Knowledge evolution

The software tool described in this paper is part of a set of
tools (Harrison & Chan, 2007). Development of an ontology
management system, called the Distributed Framework for
Knowledge Evolution (DFKE), is currently ongoing (Obst,
2006). DFKE uses a peer-to-peer (P2P) architecture to share
ontologies. Within the P2P network, ontologies are shared
using an internal knowledge representation format. The
DFKE supports the export of ontologies in its P2P network
to XML. DFKE addresses problems of vulnerability of ontol-
ogies to malicious authors and the lack of consideration for
intellectual property rights. Support for ontology versioning
is under development within the DFKE. An interesting fea-
ture of the versioning component is that it enables the user
to add new concepts from other ontologies into the one under
development.

Because Dyna does not currently support ontology man-
agement, a possible direction for future work is to integrate

DFKE with Dyna. However, the integration is challenging
in two aspects. The first challenge is the diverse knowledge
representation schemes adopted because DFKE and Dyna,
which is built on Protégé, use different knowledge represen-
tation mechanisms for both static and dynamic knowledge.
The second challenge involves compatibility and communi-
cation between Dyna and DFKE because Dyna has been
built on Protégé, which is implemented in Java, while DFKE
is implemented in Python. These challenges remain on the
future research agenda.

7.2. Evaluation of Dyna

A preliminary evaluation should be performed by comparing
the completeness of the petroleum contamination remediation
selection ontology created in Dyna to the same ontology cre-
ated in KMS. Further research is required to find an appropri-
ate formal evaluation method for assessing the ontology tool.

ACKNOWLEDGMENTS

We are grateful for the generous support of research grants from the
Canada Research Chair Program and Natural Sciences and Engi-
neering Research Council (NSERC). We also thank Zhiying Hu
for her help in clarifying knowledge in the ontology model of the
domain of selection of a remediation technology for a petroleum
contaminated site.

REFERENCES

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web. Sci-
entific American 2001 (May), 35–43.

Chan, C.W. (2004). From knowledge modeling to ontology construction. In-
ternational Journal of Software Engineering and Knowledge Engineer-
ing 14(6).

Chan, C.W., Huang, G., & Hu, Z. (2002). Development of an Expert Decision
Support System for Selection of Remediation Technologies for Petro-
leum-Contaminated Sites. Rep. No. 00-03-018. Regina, Canada: Univer-
sity of Regina, Petroleum Technology Research Center.

Chen, L. (2001). Construction of an ontology for the domain of selecting re-
mediation techniques for petroleum contaminated sites. MSc Thesis.
University of Regina, Canada.

Cranefield, S., Pan, J., & Purvis, M. (2000). A UML ontology and derived
content language for a travel booking scenario. In Ontologies for Agents:
Theory and Experiences (Tamma, V., et al., Eds.), pp. 259–276. Basel:
Birkhäuser Verlag.

Fensel, D., Harmelen, F. van, Ding, Y., Klein, M., Akkermans, H., Broekstra,
J., Kampman, A., Meer, J. van der Studer, R., Sure, Y., Davies, J., Duke,
A., Engels, R., Iosif, V., Kiryakov, A., Lau, T., Reimer, U., & Horrocks, I.
(2002). On-to-knowledge in a nutshell. IEEE Computer.

Gabel, T., Sure, Y., & Voelker, J. (2004, April 7). KAON—An Overview.
Technical Report, University of Karlsruhe, Insitute AIFB.

Gal, A., Eyal, A., Roitman, H., Jamil, H., Anaby-Tavor, A., Modica, G., &
Enan, M. (2006). OntoBuilder. Accessed at http://iew3.technion.ac.il/
OntoBuilder/

Gasevic, D., Djuric, D., & Devedzic, V. (2005). Ontology modeling and
MDA. Journal of Object Technology 4(1), 109–128.

Gennari, J.H., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubezy, M.,
Eriksson, H., Noy, N.F., & Tu, S.W. (2003). The evolution of Protégé:
an environment for knowledge-based systems development. Interna-
tional Journal of Human–Computer Studies 58(1), 89–123.

Gomez-Perez, A., Fernandez-Lopez, M., & Corcho, O. (2003). WebODE on-
tology engineering platform. Accessed at http://webode.dia.fi.upm.es/
WebODEWeb/index.html

R. Harrison and C.W. Chan68

https://doi.org/10.1017/S0890060409000109 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409000109

Gomez-Perez, A., Fernandez-Lopez, M., & Corcho, O. (2005). Ontological
Engineering: With Examples From the Areas of Knowledge Manage-
ment, e-Commerce, and the Semantic Web. Berlin: Springer.

Gruber, T. (1993). Towards principles for the design of ontologies used for
knowledge sharing. In Formal Ontology in Conceptual Analysis and
Knowledge Representation (Guarino, N., & Poli, R., Eds.). Padua, Italy:
Kluwer.

Guarino, N. (1998). Formal ontology in information systems. Proc. 1st Int.
Conf. Formal Ontology in Information Systems (FOIS 098), pp. 3–15.
Amsterdam: IOS Press.

Harrison, R., & Chan, C.W. (2005). Implementation of an application ontol-
ogy: a comparison of two tools. Artificial Intelligence Applications and
Innovations II:2nd IFIP TC12 and WG12 Conf. Artificial Intelligence
Applications and Innovations (AIAI-2005), pp. 131–143, Beijing, Sep-
tember 7–9.

Harrison, R., & Chan, C.W. (2007). Tools for industrial knowledge model-
ing. Proc. 20th Annual Canadian Conf. Electrical and Computer Engi-
neering (CCECE007), Vancouver, April 22–26.

Horridge, M. (2005a). OWL unit test framework. Accessed at http://www.
co-ode.org/downloads/owlunittest/

Horridge, M. (2005b). Protégé OWLViz. Accessed at http://www.co-ode.
org/downloads/owlviz/co-ode-index.php

Janzen, D., & Saiedian, H. (2005). Test driven development: concepts, tax-
onomy, and future direction. IEEE Computer 38(9), 43–50.

McGuiness, D., Fikes, R., Rice, J., & Wilder, S. (2000). An environment for
merging and testing large ontologies. Proc. KR 2000, pp. 485–493.

McGuiness, D., Fikes, R., & Feigenbaum, E. (2003). Ontolingua. Accessed
at http://www.ksl.stanford.edu/software/ontolingua/

Obst, D. (2006). Distributed framework for knowledge evolution. University
of Regina Graduate Student Conf., Regina, SK, Canada.

Robert Harrison is currently a Consultant and Software De-
veloper at Online Business Systems in Calgary. Robert is a
graduate student at the University of Regina and recently
completed the requirements to receive an MASc degree in
electronic systems engineering. Robert has a BSc degree in
computer science from the University of Regina.

Christine W. Chan is currently Canada Research Chair Tier
1 in Energy and Environmental Informatics and Professor of
engineering in software systems engineering in the Faculty of
Engineering of the University of Regina. She received MSc
degrees in computer science and management information
systems from the University of British Columbia and a PhD
degree in applied sciences from Simon Fraser University.
Dr. Chan is an Editor of Engineering Applications of Artifi-
cial Intelligence and Associate Editor of International Jour-
nal of Cognitive Informatics and Natural Intelligence and
Journal of Environmental Informatics. She is an associate
member of the Laboratory of Theoretical and Experimental
Philosophy at Simon Fraser University and an adjunct
scientist of Telecommunications Research Laboratories.

A dynamic knowledge modeler 69

https://doi.org/10.1017/S0890060409000109 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409000109

