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Learning the lexical aspects of
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We present an original model designed to study how a second language (L2) is acquired in bilinguals at different
proficiencies starting from an existing L1. The model assumes that the conceptual and lexical aspects of languages are stored
separately: conceptual aspects in distinct topologically organized Feature Areas, and lexical aspects in a single Lexical
Network. Lexical and semantic aspects are then linked together during Hebbian learning phases by presenting L2 lexical
items and their L1 translation equivalents. The model hypothesizes the existence of a competitive mechanism to solve
conflicts and simulate language switching tasks. Results demonstrate that, at the beginning of training, an L2 lexicon must
parasitize its L1 equivalent to access its conceptual meaning. At intermediate proficiency, L2 items may evoke their semantics
independently of L1, but with a high risk of interference. At higher proficiency, the L2 representation becomes progressively
similar to the L1 representation, according to Green’s (2003) convergence hypothesis.
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1. Introduction

In recent decades the neurolinguistic literature has
increasingly focused on the capacity of the human
brain to acquire and manage more than one language
concurrently. Today, neuroimaging techniques (fMRI and
PET), electroencephalography (especially event-related
potentials, ERP) and sophisticated cognitive tests provide
much data and valuable information on bilinguism,
against which modern theories can be challenged.

Several open questions exist on how bilinguals acquire
their lexicon, store and retrieve it, and control language
selection by minimizing interference. Some of these
questions are related to the second language (L2)
proficiency level (which is generally poorer than that
of native speakers) and the context in which the learner
acquires the language (i.e., the degree of recent exposure
to a given language).

A first problem when building a neurolinguistic model
is whether the lexical and semantic information is
memorized separately for the two languages, or shared in a
single store. There is widespread consensus in the current
literature on the need to separate the semantic and the
lexical levels. Most influential theories (de Groot, 1992;
Francis, 1999; Kroll & Stewart, 1994; Potter, So, Von
Eckardt & Feldman, 1984; see French & Jacquet, 2004,
for a review) assume a single semantic (conceptual) store
which is common across languages and clearly separated
from lexical aspects. This idea comes from results on

Address for correspondence:
Cristiano Cuppini, DEIS, University of Bologna, viale Risorgimento, 2 40136 Bologna, Italy
cristiano.cuppini@unibo.it

semantic priming, showing that a semantic distractor
can activate lexical nodes or lemmas in both languages
(Caramazza & Brones, 1980; Chen & Ng, 1989; Keatley,
Spinks & de Gelder, 1994; Kirsner, Smith, Lockhart, King
& Jain, 1984).

A more debated question is whether the lexical aspects
of the second language are processed by the same neural
structure as those of the first language (L1), or whether the
second language exploits a different lexical neural system.
Despite long-standing controversy on the topic, the latest
theories converge on the idea that the two languages use
a single lexical store. Justification for this assumption
can be found in several excellent recent review papers
(Abutalebi, 2008; Abutalebi & Green, 2007; French &
Jacquet, 2004).

The previous aspects (in particular, the presence of a
single lexical store for L1 and L2) rise two additional
crucial problems:

(i) How is the second language progressively acquired
and how does its proficiency affect the neural
organization of L2?

(ii) How can the brain manage two languages
simultaneously (for instance when shifting from one
language to another) by minimizing interference
effects?

The first problem has been tackled by several cognitive
and psycholinguistic studies suggesting that organization
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of the second language changes during the learning
period. It has been proposed that in the early stage of
language acquisition, when proficiency is low, L2 can
access the semantic meaning of words only by being
parasitic on L1 words. Conversely, in later stages of
learning, L2 words can directly access their semantics
without the participation of L1 (Chen & Leung, 1989;
Kroll et al., 1994; Potter et al., 1984). Potter et al.
(1984) proposed that bilinguals with low L2 proficiency
may realize a direct lexical link from a word in L2 to
the corresponding word in L1 (a theory named “word
association model”). Conversely, bilinguals with high
proficiency mainly connect lexical words in L2 directly
with their semantic concepts (“conceptual mediation
model”). Kroll and Stewart’s influential paper (Kroll &
Stewart, 1994) proposed a more flexible model (“revised
hierarchical model”), according to which translation from
L2 to L1 is realized via both concept mediation and
direct lexical links. Moreover, the strengths of direct
lexical links between L2 and L1 in this model are
asymmetrical.

Important information is also provided by recent
neuroimaging studies. Some of these suggest that
bilinguals with low L2 proficiency engage additional brain
activity (mostly in prefrontal areas) compared to L1,
whereas activation is similar in the two languages when
L2 proficiency becomes comparable to L1 (see Abutalebi,
2008; Abutalebi & Green, 2007 for recent exhaustive
reviews). These results support Green’s convergence
hypothesis (Green, 2003), according to which differences
in neural organization between L1 and L2 disappear as
proficiency increases.

Although the previous conceptual models provide
important suggestions on how the lexical-semantic system
can be organized, an understanding of the bilingual
brain must also entertain the mechanisms controlling
this network. Indeed, neuroimaging studies show that
the main differences in brain activation between tasks
in L1 and in a low-proficiency L2 are actually found
outside the classical language areas (for instance, in
areas involved in problem solving such as the prefrontal
cortex and the anterior cingulate cortex) suggesting that
these differences are mainly engaged in language control
rather than in lexical aspects per se. Language control
in bilinguals is probably realized through a competition
between L1 and L2. Green (1998), in a conceptual model
named the inhibitory control (IC) model, suggested that
this competition is resolved by inhibiting all non-target
competitors at the lemma level. Although questioned by
some experiments (e.g., Finkbeiner, Almeida, Janssen
& Caramazza, 2006), the idea that inhibition plays an
essential role in language selection is supported by many
recent behavioral and neuroimaging studies (Abutalebi &
Green, 2007; Christoffels, Firk & Schiller, 2007; Kroll,
Bobb & Wodniecka, 2006).

The previous elements provide a rich conceptual
framework for the study of the lexical-semantic aspects of
bilingualism that can be further verified through upcoming
neuroimaging and behavioral data. An increasing role in
this field is being played by computational connectionist
models. Brain-inspired mathematical models making
use of distributed neural networks can offer important
benefits for cognitive neuroscience in general, and for
neurolinguistic studies in particular. These models may
force conceptual theories to be described in rigorous
terms; can be used to emulate brain development
processes through realistic learning rules; can check the
feasibility of existing theories against available data, and
can be used to generate testable predictions that can
drive the design of future experiments. Finally, differences
between the model and real data can provide indications
on aspects that need to be modified or removed in future
theories.

Indeed, several connectionists models on bilingualism
based on neural distributed networks have been developed
in the past thirty years, as summarized in some review
papers (French & Jacquet, 2004; Thomas & van Heuven,
2005) (a more detailed analysis of some of these models
is postponed to the “Discussion” section below).

Most of the existing models, however, are aimed at
investigating the phonological aspects of bilingualism.
Some simulate how words in two languages can be
segregated into clusters based on phonetic differences
(Li & Farkas, 2002), or on the statistics of word
association (French, 1998), others emulate interference
effects between phonologically similar words (Dijkstra
& van Heuven, 1998, 2002). Indeed, the model by Li
and Farkas also considers semantic aspects, including
two distinct self-organizing maps, one for phonological
information and the other for semantic information. Two
more recent models developed by Miikkulainen and Kiran
(2009) and Zhao and Li (2010) also lay emphasis on the
semantic aspects of bilingualism (i.e., on how connections
develop between the conceptual store and the lexical one).
A main limitation of these models, however, is that they
do not provide a clear explanation of how a competition
between L1 and L2 develops during acquisition of the
second language.

In recent years, we developed an original model
(Cuppini, Magosso & Ursino, 2009; Ursino, Magosso
& Cuppini, 2009) to explore several important issues of
semantic memory, emphasizing the possible topological
organization of the neural units involved, their reciprocal
connections and synapse learning mechanisms. The
model assumes that objects are represented via different
multimodal features, encoded through a distributed
representation among different cortical areas: each area
is devoted to a specific feature. Features are topologically
organized and linked together by implementing two
high-level rules: similarity and previous knowledge.
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Furthermore, the model can retrieve multiple objects
simultaneously through the synchronized activity of
neural oscillators in the gamma-band (Bertrand & Tallon-
Baudry, 2000). Finally, lexical aspects are represented in a
separate cortical area, and linked with the object semantics
via a Hebbian mechanism.

Previous publications (Cuppini et al., 2009; Cuppini,
Magosso & Ursino, 2010) used the model to study the
lexical-semantic aspects of a single language. Naturally,
the same theoretical structure, with some extensions and
with the inclusion of additional mechanisms, can also
be used to explore some aspects of bilingualism. To
this end, the monolingual model should be broadened by
considering the following additional aspects: how words
in the second language are acquired by being parasitic
on a previously existing language; how words in the
two languages can compete via inhibitory mechanisms;
how the second language representation changes with
proficiency; how inhibitory mechanisms can be used to
switch from L1 to L2.

In a recent paper (Ursino, Cuppini & Magosso,
2010) we presented a preliminary simple model of
bilingualism, which assumes an inhibitory competition
between L1 and L2. In the following, this will be named
the BASAL MODEL. Since this model exhibits some
evident drawbacks (especially at low L2 proficiency), the
present paper implemented a second model (named the
EXTENDED MODEL) assuming the existence of additional
direct links among L1 and L2 units in the Lexical Layer,
which can be excitatory or inhibitory. The performances
of the two models are compared, laying emphasis on the
second model.

Firstly, the model is described in qualitative terms.
Simulation results are then presented to show how
the model responds to L2 word recognition tasks, L1
word recognition tasks, or to word production tasks at
different proficiency levels. An example of language
switching is also provided in case of high proficiency
L2.

After a training phase, the model can be used to provide
possible answers to the following questions: How are
words in the two languages acquired? Is L2 acquired
by exploiting existing L1 words or rather through a
direct link to semantic concepts? What competition may
develop between words in the two languages having
the same semantics? Does this competition vary with
the proficiency level? Can this competition provide
indications to explain semantic interferences among
words? Do model results support the “convergence
hypothesis” and can they help to explain neuroimaging
results (at least approximately)? Is it possible to
distinguish between direct (i.e., automatic) competitive
mechanisms and top–down inhibitory strategies, as
hypothesized by some authors (Rodriguez-Fornells, De
Diego Balaguer & Münte, 2006)?

2. Method

The model is based on the idea that the semantic and
lexical aspects of languages are stored in two distinct
areas (de Groot, 1992; Francis, 1999; French & Jacquet,
2004; Kroll et al., 1994; Potter et al., 1984). Hence, the
model consists of two main networks: the first (named
“Feature Network”) is devoted to object representation
realized as a collection of sensory-motor features. The
second (named “Lexical Network”) is devoted to the
representation of word forms or lemmas, as they derive
from an upstream processing of phonemes or letters,
regardless of which language they belong to. The two
networks communicate via direct trained synapses. The
Lexical Layer also receives a signal from a “Decision
Network”, which recognizes whether a correct object
is present in the Feature Areas, and avoids a word
being evoked by a misleading representation. Finally,
a “Competition Area” is inserted between lexical units
by means of a network of inhibitory interneurons. This
is explicitly devoted to implementing a winner-takes-all
(WTA) dynamics between words which may be co-active
in different languages. WTA means that the neural unit
with stronger activation inhibits the other ones, so that
only a single unit is active in steady state conditions (i.e.,
when the transient response after receiving the input has
been extinguished).

This work considers two variants of the model. In a
first version (hereinafter named the Basal Model), units in
the Lexical Layer are not directly connected to other units
in the same area, but connections occur only indirectly
via the semantic and competitive networks (Figure 1A).
In the second version of the model (the Extended Model),
units in the Lexical Layer can also be linked via direct
synapses that can be excitatory or inhibitory and are the
result of Hebbian learning (Figure 1B). In other words,
the Extended Model includes an additional synaptic
mechanism in the Lexical Layer with respect to the Basal
Model.

The Basal Model is first described in qualitative
terms, then the Extended Model is presented emphasizing
its differences with respect to the Basal Model.
Equations and parameter numerical values are given
in Supplementary Materials online accompanying
this paper on the journal’s webpage accessible via
http://journals.cambridge.org/BIL.

A schematic description of the two model variants is
presented in Figures 1a and 1b, before and after learning
a word in L2.

2.1 The Basal Model

The Feature Network
As described in previous papers (Cuppini et al., 2010,
2009; Ursino et al., 2009), this network is composed of F
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Figure 1. Simplified block diagrams describing the
relationship between the lexical items and their semantic
representation, at different proficiency stages during L2
learning in the Basal and the Extended Models. See
Supplementary Material Online for explanation.

distinct cortical areas (in the following examples, F = 4),
each devoted to the representation of a specific attribute
or feature of the object (for instance, one may represent
colours, another may represent shapes, or actions). We
assume that each feature has been extracted from a
pre-processing stage in the neocortex, which elaborates
sensory-motor information. In the present work, only
schematic objects are used (i.e., these simulations are
“proofs of concepts”).

Each unit in the Feature Areas consists of an oscillator
(see also Ursino, La Cara & Sarti, 2003): this means
that the unit is silent if it does not receive enough
excitation, but oscillates in the γ -frequency band (30–
50 Hz) if excited by a sufficient input. This oscillator is
realized via the feedback connection of two neural groups
(one excitatory and one inhibitory) (Wilson & Cowan,
1972), an arrangement that mimics that encountered in the
cortical column. Examples of oscillations can be found in
subsequent figures of this work (Figures 2, 3 and 5–12).

The oscillators are placed in a bi-dimensional lattice.
This structure more closely resembles that found in the

cerebral cortex. In particular, a two-dimensional map
is more suitable to represent the columnar organization
of the cortex where features may vary both within a
column and from one column to another (Tanaka, 2003).
Furthermore, a two-dimensional map encodes a richer and
more flexible description of similarity in which a feature
has several neighbours.

The Feature Network implements two main cognitive
principles (similarity and previous knowledge). First, all
features in the same area are topologically organized, i.e.,
spatially nearby oscillators code for similar features (a
condition commonly encountered in the cortex; Rolls
& Treves, 1998). Accordingly, oscillators in the same
area are connected via lateral excitatory and inhibitory
synapses with a classical “Mexican hat” disposition.
This signifies that two proximal units coding for similar
features tend to excite reciprocally, but inhibit dissimilar
features. As a consequence, presentation of a given feature
to the network activates a “bubble” of units, located
around the unit encoding the given feature. Second,
neural oscillators belonging to different areas can be
connected via excitatory synapses after training, on the
basis of frequent previous co-occurrence. These synapses
are initially set at zero, but may assume a positive value
through a learning phase.

Training of an object in the semantic network is
achieved by presenting all its features simultaneously
and reinforcing excitatory synapses among the different
features via a time-dependent Hebbian rule, used in a
previous work (Ursino et al., 2009). This rule assumes
that the synapses are reinforced on the basis of the co-
occurrence of the present activity in the post-synaptic
neuron, and the average activity of the pre-synaptic
neuron in the previous 10 ms (Markram, Lubke, Frotscher
& Sakmann, 1997). At the end of this phase, enough
information is stored inside the network to allow object
recognition even in the presence of incomplete or
moderately altered properties. Moreover, several objects
can simultaneously oscillate in time division in the
gamma-band. Details are described in Ursino et al. (2009).

The Lexical Network
This network is devoted to a representation of lexical
aspects. Each unit represents a specific “word form” or
“lemma”. The present model codes a word form by a
single unit at a given position in the Lexical Network
(similarly, a feature is coded by a single unit in the
corresponding Feature Area). At present there is no
relationship between the position of a word form in the
Lexical Area and its phonetic representation, hence the
position is chosen arbitrarily. When a neuron in the Lexical
Area receives enough excitation to jump from the silent
to the active state, we say that the corresponding word
has been recognized. Excitation, in turn, can arrive from
an external input (in that case we assume that the subject
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is listening to the word or is reading it) or can arrive
from the semantic network (in that case the subject is
perceiving the object and evokes the correct word). This
paper describes external inputs as an array of 20 × 20
scalar values (one input per each lexical unit). We assigned
the value 0 to the input when the word is not listened to
(or read) and the value +1 when the subject is listening
to the word (or is reading it). This value is sufficient to
drive the lexical unit from the silent to the active state.
A pre-processing network linking the Lexical Network
with realistic external inputs can be incorporated in future
works, taking inspiration from previous models (see e.g.,
Dijkstra & van Heuven, 1998, 2002; French, 1998; Li &
Farkas, 2002; Thomas & van Heuven, 2005; Zhao & Li,
2007 for possible models).

The activity of each unit in the Lexical Area is
computed from its input by means of a filter which cuts off
frequencies above 100–150 Hz (to simulate the temporal
response of neurons to a sudden input) and a sigmoidal
characteristic ranging between 0 and 1 (0 means that
the unit is silent, and 1 conventionally means maximal
activation).

For the sake of simplicity, the present study does
not consider a topological organization for this network
(and so we cannot simulate interference between
phonologically similar words). This aspect can be the
subject of future extensions.

Lexico-semantic links
The conceptual and the lexical levels are reciprocally
connected by the formation of long-range excitatory
synapses between co-active units in the two networks.
These connections are created through a second learning
phase, during which a “word” and the corresponding
conceptual representation are simultaneously given to the
model.

Synapses from the Feature Areas to the Lexical Layer
(WF

ij,hk in Figure 1) and from lexical units to the features
layer (WL

ij,hk) are initially set at zero, and increased with a
Hebbian rule, using the co-activation of the pre-synaptic
and the post-synaptic activity. Moreover, we assumed
that inter-area synapses cannot overcome a maximum
saturation value. This is realized assuming that learning
factors are progressively reduced to zero when synapses
approach saturation. After training, a “word” and its
specific attributes are combined to realize an integrated
lexical-semantic representation of the object that can
be activated indifferently by language or sensory-motor
inputs.

The decision network
We assumed that, during an object naming task a word in
the Lexical Network can be activated from information
in the semantic network only if all features of the

object are recovered, and correctly segmented from those
of other objects (i.e., we assume that generalization
from incomplete or noisy inputs occurs entirely in the
semantic net). In case of incorrect object recognition or
wrong segmentation, the corresponding word must not be
evoked. To deal with this problem, we used a “decision
network”, developed in the previous paper (Ursino et al.,
2009), which implements a top-down strategy. This
network receives inputs from the Feature Areas and
verifies that there is one and only one “activation bubble”
in any area. To this end, the network computes the total
activity in any area at a given instant, and checks whether
the activity ranges between a minimum threshold and a
maximum threshold. If activity is too low, no activation
bubble is detected in that area, i.e., the object lacks
some features. If activity is too high, too many activation
bubbles are evoked simultaneously in the area, i.e., the
objects have not been correctly segmented. Furthermore,
the previous condition must be verified along a certain
time interval to ensure the continuity of object perception.

Finally, we assume that the “decision network” sends
sufficient inhibition to all units of the Lexical Layer to
keep them silent as long as no object is recognized in the
Feature Areas. This inhibition is then withdrawn as soon
as a correct object is present, and the Lexical Layer can
be activated by the properties in the Feature Network.

The competitive mechanism
The previous model can work satisfactorily in case of
monolingual subjects. In bilingualism the Lexical Layer
can store words belonging to different languages, but
referring to the same concept. (A case of two words with
exactly the same semantic meaning might also occur in
one language, albeit rarely. We suggest that it might be
treated as in bilingualism.)

To ensure that only one word at a time is activated by
the conceptual representation, units in the Lexical Layer
interact via a competitive mechanism. The role of this
mechanism is to solve possible conflicts when two or
more words are referring to the same concept and tend
to be simultaneously active. The two words compete with
one another to emerge, but usually only one can win the
competition.

To this end, we implemented a layer of inhibitory
interneurons, with the same number of units as units in
the Lexical Layer. They are described in the same way
as lexical units (i.e., by means of a low-pass filter and a
sigmoidal relationship). Each element in this “inhibitory
Competition Area” receives an excitatory synapse from
just one element in the Lexical Layer (say, its “master”)
and tries to inhibit all other units in the Lexical Layer
competing with the master.

The synapses from the Competition Area to the
Lexical Layer are the result of a training phase (see
the sub-section “Training a bilingual” below). Finally,
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the Competition Area receives an additional input from
top-down influences. This may be used to switch from
one word to another, causing the inhibition of the
non-target word.

Training a bilingual
The third training phase consists in learning L2 words,
assuming that L1 words have already been learned with
high proficiency (i.e., synapses between L1 words and
the corresponding conceptual representations are close
to saturation). To simulate L2 learning, a unit coding
for a word in the second language is activated by
its external input together with its translation in L1
(i.e., we provide both simultaneous excitatory inputs
to the Lexical Network). The L1 word activates the
object conceptual representation in the semantic store
by means of its connections with the Feature Areas.
Hence, the following units are co-active in the model:
the L1 word and the L2 word in the Lexical Layer; the
corresponding inhibitory units in the Competition Area,
and the oscillators describing the object semantics in the
Feature Areas.

Two kinds of synaptic changes occur, considering units
that are simultaneously active and applying the learning
rules

(i) Excitatory synapses linking the Feature Areas and the
L2 word (i.e., synapses WF

ij,hk and WL
ij,hk) are created

using the same Hebbian mechanism implemented
in language L1. The effect of these synapses is
that after prolonged learning the L2 word can
evoke its conceptual representation per se, without
the participation of L1. Moreover, the conceptual
representation may evoke the L2 word.

(ii) Inhibitory synapses are created from the interneurons
in the Competition Area to the units in the Lexical
Layer. At the beginning of training these synapses are
set at zero. After a bilingual training, an interneuron
sends inhibition to other words (generally in another
language) which were co-active with its master,
trying to inhibit them. This implements a competition
mechanism between L1 and L2 words with the same
semantics.

At the end of the L2-training, a unit in the Lexical Layer
receives its conceptual input from the Feature Networks,
and an inhibitory input mediated by the Competition
Area from the other words referring to the same object
representation.

A simple schema of L2 learning in the Basal Model is
depicted in Figure 1A.

2.2 The Extended Model: Differences with respect to
the Basal Model

The Extended Model differs from the Basal Model due
to the presence of direct connections among units in the
Lexical Layer. All other aspects (including the learning
rules) are identical.

According to previous conceptual models (de Groot,
1992; Kroll et al., 1994; Potter et al., 1984), we assume
the possibility that direct L1–L2 lexical links are also
learned with experience. Furthermore, since these links
may be asymmetrical (Kroll et al., 1994), we assume
the possibility of excitatory or inhibitory connections
occurring.

These connections are initially set at zero and are
subject to a learning mechanism during the learning of
languages L1 and L2, when units in the Lexical Layer
are active. The difference compared with the previous
formulation of the Hebbian rule is that we are now
assuming both the possibility of reinforcement (positive
change) or weakening (negative change) for these
synapses, whereas only reinforcement was considered
for the other synapses in the network. In particular, we
assumed that the weight of the connection between two
lexical units changes whenever the pre-synaptic neuron
is active; the sign of the change (positive or negative)
depends on the activity (above or below a given threshold)
of the post-synaptic neuron. We must distinguish two
different phases during learning of these synapses:

(i) During learning of language L1, just one lexical
element is active, together with the corresponding
object representation. As a consequence, at the end
of the L1 learning, inhibitory synapses are formed
within the Lexical Layer: these emerge from the
lexical units in L1 and target all other units in
the Lexical Layer. The presence of these inhibitory
synapses explains why, during the early phase of
L2 training, synapses between L1 and L2 words are
asymmetrical.

(ii) During L2 learning, two units are co-active within
the Lexical Layer: the L1 word and the new L2
word. Hence, the Hebbian rule predicts that excitatory
synapses between these two words are reinforced. As
a consequence, a positive synapse sprouts from the
L2 to the L1 word, which progressively increases
to saturation at high L2 proficiency. Furthermore,
the link from the L1 word to the L2 word becomes
less inhibitory and, at high L2 proficiency, may also
become positive (due to a prevalence of excitation on
inhibition). At the same time, inhibitory synapses are
formed between L2 words and all other (non-active)
words in the Lexical Network.

In general, we can say that at low proficiency the L1 word
directly inhibits the L2 word, whereas the L2 word sends
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excitation to the L1 word. At high proficiency, the synapse
from the L1 to the L2 word is converted to a moderate
excitation, while the excitatory link from the L2 to the L1
word reaches saturation. The pattern of direct synapses
is asymmetrical, as predicted by the “revised hierarchical
model” (Kroll et al., 1994). Only at very high proficiency,
will synapses tend to become equal, as predicted by the
“convergence hypothesis” (Green, 2003).

Of course, besides these direct links in the Lexical
Layer, the Extended Model maintains a competition
between L1 and L2 words, realized through the
Competition Area and progressively reinforced with
proficiency. We assumed that the competition mechanism
develops more slowly than the direct synaptic links, but
exhibits a stronger asymptotic behaviour.

A simplified schema of learning in the Extended Model
is illustrated in Figure 1B.

2.3 Some considerations on the training rules adopted

The present work used different rules to train connections
among units. These choices were adopted in part following
classical knowledge on synaptic plasticity (long-term
potentiation, LTP, and long-term depression, LTD) in part
following recent ideas on the role of the anterior cingulate
cortex in “conflict detection” (see Botvinick, Braver,
Barch, Carter & Cohen, 2001) (especially the competition
mechanism). These rules require ad hoc validation and
may represent testable aspects in future studies.

Hence, it is interesting to justify these differences in
training rules and discuss their implications.

Synapses within the Lexical Area
The training rule for these synapses (see Eq. 24 in the
supplementary material) was written assuming that the
connections between two units in the Lexical Network
make use of both excitatory and inhibitory synapses
(hence the total connection can change its sign) and that
synapses are subject to long-term potentiation (LTP) and
long-term depression (LTD) depending on the value of
pre-synaptic and post-synaptic activity. To realize LTP and
LTD within the same rule, neural computation textbooks
(see Dayan & Abbott, 2001; Trappenberg, 2002) suggest
comparing neuron activity with a threshold (this rule
is often named the “covariance Hebb rule” (Dayan &
Abbott, 2001) when the threshold is close to the neuron
average activity). Accordingly, we assumed that excitation
is reinforced (and inhibition reduced) when both the
presynaptic activity and the post-synaptic activity are
above threshold (LTP). Conversely, excitation is weakened
(and inhibition reinforced) when the presynaptic activity
is above a threshold and the post-synaptic activity is
below a threshold (HOMOSYNAPTIC LTD). This rule may
result in a different sign (positive or negative) of the
overall synaptic connection between the two lexical units,

depending on whether excitation or inhibition prevails. It
is worth noting that we did not assume HETEROSYNAPTIC

LTD (i.e., depression when the pre-synaptic activity is
off and the post-synaptic activity is on) since inclusion
of this mechanism would lead to symmetrical synapses
(as in traditional autoassociative nets, like the Hopfield
model; Hopfield, 1984), whereas we wish to obtain
an asymmetrical pattern of synapses as in the revised
hierarchical model (Kroll et al., 1994).

Training of synapses between the lexical and the
semantic networks
In order to train these synapses, we made use only of
LTP because during our training periods a word and its
semantic representation are always active together. Hence,
only potentiation of excitatory synapses can occur.

Training connections from the control area to the
lexical units
These connections are inhibitory, but in the model follow
a different rule: they are reinforced (i.e., become more
inhibitory) when both the presynaptic interneuron in the
control area and the postsynaptic neuron in the Lexical
Area are active. Depression was not incorporated. How is
this different choice explained?

Our basic idea is that connections from the Competition
Layer to the Lexical Layer reflect a mechanism for conflict
resolution, which may involve different brain areas and
is not merely a synaptic change. Some authors, (see,
among the others, Botvinick et al., 2001), starting from
data on the anterior cingulate cortex (ACC), assumed
that the ACC is specialized in conflict detection and
produces a cognitive control signal. In this model, conflict
is computed using the product of activity in pairs of co-
active units (Botvinick et al., 2001; Yeung, Botvinick &
Cohen, 2004). When two units are simultaneously active,
conflict is detected and a control signal is reinforced. Our
rule basically follows the same strategy, implementing a
sort of “conflict detection model”. Moreover, our model
assumes that the control signal is inhibitory, as often
postulated in the literature on bilingualism (Green, 1998;
Kroll et al., 2006).

In conclusion, our model does not detect conflict
when there is only one active word in the Lexical Area
during training, hence there is no reinforcement of a
control signal. Conversely, the occurrence of a conflict
(the presence of both L1 and L2 words during training)
leads to the development of a control inhibitory signal;
since this control is inhibitory, it implements a sort of
winner takes all dynamics between the two words.

2.4 Parameter assignments

An important aspect of neurocomputational models is
parameter assignment. Several parameters in our model
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do not have a clear neurophysiological counterpart (for
instance, individual units in the model do not represent
single neurons, but groups of co-active neurons coding
for the same information). Hence, several parameters
must be given “a posteriori” on the basis of the
behavior obtained. These parameter choices represent
assumptions requiring further validation on the basis of
future neurophysiological or behavioral data.

Training rates
The main assumption is that the synapses implementing
the control mechanism from the competition to the lexical
area are trained more slowly (β = 0.001) compared
with those within the lexical area (β = 0.01), and with
those linking semantic and lexical units (β = 0.01). The
effects of this choice will be evident in Figure 4 below.
It is worth noting that this difference in learning rates
cannot be easily demonstrated in vivo, hence represents
a fundamental “working hypothesis” of this study, which
finds a justification only “a posteriori”, on the basis of the
obtained results. Indeed, this hypothesis leads to a pattern
of synapses in agreement with several experimental
findings. In particular:

(i) studies on cross-language priming provide straight-
forward evidence that low proficiency bilinguals
present a clear asymmetric pattern of priming effects,
suggesting that cross-lingual lexical connections
actually develop at very early stages of L2
(Dimitropoulou, Duñabeitia & Carreiras, 2011;
Keatley, Spinks & de Gelder, 1994; Kroll et al., 1994).
The rationale is that, at the beginning of training, a
word in L2 must activate the corresponding L1 word
to access its semantics. Only after the creation of its
own semantics, L2 should inhibit L1.

(ii) Studies testing bilinguals at the highest levels of L2
show symmetric effects across the two translation
directions (Duñabeitia, Perea & Carreiras, 2010).
iii) The competition signal in the model does not
represent a simple synapse, but a more sophisticate
control strategy (involving probably the ACC) to
solve conflict conditions. This conflict resolution
system requires a longer training phase.

Saturation values for synapses
Synapses within the semantic network and in the decision
network agree with those described in a previous paper
(Ursino et al., 2009). The synapses from the Lexical Layer
to the semantic layer were made strong enough for an
active word to evoke all its features (i.e., activity of a word
in the Lexical Layer causes all its features to oscillate in
the gamma range). The synapse from the decision unit
to the lexical unit was made so that when the decision
unit is in the OFF state, all lexical units are inhibited. The
synapses from the Feature Network to the lexical unit were

made strong enough so that when all features of an object
are simultaneously active (and so the decision network
is in the ON state), the associated lexical unit receives
enough excitation to jump from the silent to the active
state. The sigmoidal relationship of the lexical units and
the competitive units are sharp, so that their passage from
the OFF to the ON state occurs quite abruptly.

Time constants for neuron dynamics are of the same
order (10 ms) as those typical of neuron membranes.

In conclusion, we made use of just two fundamental
assumptions: that the competition mechanism develops
more slowly than the others, and that synapses (at the end
of training, i.e., at high proficiency) are strong enough
to allow words to activate its semantic representation and
vice versa.

3. Results

This section presents the results of different simulations
to illustrate the differences between the two models and
highlight how they can mimic the mechanisms involved
in L2 learning.

Although the network can store and retrieve different
objects and their relative words, for the sake of
simplicity we will use just one exemplary object and the
corresponding words in the two languages. Simulations
were performed assuming that L1 had been completely
learned. Three different stages will be shown:

(i) the beginning of training, when the connections
between L2 and the Feature Areas are still weak;

(ii) an intermediate learning stage (intermediate
training);

(iii) the stage after a long training period, when
proficiency is high (advanced training).

For each training phase we present two simulation
results characterized by different inputs to the model: in
the first, the network is stimulated with all features of an
object (word production task); in the second, the L2 word
is used as input to the model (word recognition task).
Moreover, in case of highly trained synapses (last stage of
training), the model is tested in two additional cases: L1
word recognition, to disclose differences in the Lexical
Layer with respect to the L2 word recognition; word
production paired with an additional inhibitory top–down
input, to switch the preferred language from L1 to L2.

3.1 Basal Model

First we tested how the Basal Model modifies synapses
and responds to different inputs during the different
phases of the learning process. Since its behavior is less
interesting than the behavior of the Extended Model, only
a few simulation results are displayed.
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Figure 2. Examples of model behavior in response to a word production task (left panels) and an L2 word recognition task
(right panels) obtained with the Basal Model at WEAK PROFICIENCY. The upper panels show the oscillatory activity in the
Feature Areas (the four attributes of the object are oscillating in phase) while the bottom panels show activity in the Lexical
Layer. L1 word is represented with a continuous line, and the L2 word with a dashed line.

Beginning of training (stage i)
In response to the object features, the model correctly
recalls the corresponding L1 word. Conversely, when it
is stimulated with the L2 word, it is not able to recall
the object features. This means that the synapses linking
L2 to the Feature Areas are still too weak to evoke any
semantics about the word. Since no link exists between
L2 and L1 in this model, the L2 word fails to produce any
effect.

Intermediate training (stage ii)
The responses of the model at this training stage are
reported in Figure 2. The left panels show the case of word
production; the right panels the response to presentation of
the L2 word. The object presentation in the Feature Areas
evokes the corresponding L1 word, whereas no activity is
elicited in the element describing the L2 word (Figure
2A). Conversely, when the L2 word is used as input,
the model shows activation not only of the L2 word in
the Lexical Layer and object representation in the Feature
Areas, but also moderate activation of the L1 word in the
Lexical Layer (Figure 2B). The reason for this behavior
is that synapses between the Feature Areas and L1 word
are strong, whereas the competitive mechanism is still
immature and subject to training. Hence, in this phase the
L2 word cannot completely win the competition with its
L1 counterpart.

Advanced training (stage iii)
Figure 3 shows the results of the same two simulations
performed in case of higher proficiency. After presentation
of the object in the Feature Areas, L1 is activated in
the Lexical Layer while L2 shows just a mild activation.
This signifies that, despite improved learning of L2, the
subject still commonly uses L1 as a default language
and can almost completely inhibit L2. Conversely, during
presentation of the L2 word, L1 is inhibited. L2 is well
learned, and its direct stimulation produces an activity
in the Feature Areas comparable to that produced by L1
stimulation, without the participation of the L1 word. The
competitive mechanism is strong enough, and only one
word is active at a time.

3.2 Extended Model

In order to clarify the differences between the Extended
Model and the Basal Model, and to help understand
subsequent simulation results, Figure 4 shows the pattern
of synapses at different steps during training in the
Extended Model. The left upper panel of this figure shows
the synapses targeting to the L2 word from the L1 word.
The left bottom panel shows the synapses targeting into
the L1 word from the L2 word. Finally, the right panel
shows the synapses entering the L2 word from the Feature
Areas (we can see four peaks associated with the four
properties of the object).
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Figure 3. Examples of model behavior in response to a word production task (left panels) and an L2 word recognition task
(right panels) obtained with the Basal Model at STRONG PROFICIENCY. The meaning of panels is the same as in Figure 2.

The inhibitory synapse coming from the competition
layer in Figure 4 has been drawn with a positive value
although its effect is inhibitory (hence, it has a negative
effect on the target unit). This choice was adopted to
allow a direct comparison between the excitation coming
from the lexical layer and inhibition coming from the
competition layer: when the two curves cross, inhibition
and excitation are equal.

The synapses linking an L1 word to the L2 word start
with a negative value since L1 was frequently active in
past experience without the presence of the L2 word.
This resulted in HOMOSYNAPTIC DEPRESSION and in the
creation of an inhibitory link. Conversely, the synapse
from L2 to L1 is initially at zero, since L2 was never
active before (our training rule does not contemplate
HETEROSYNAPTIC DEPRESSION). Finally, the inhibitory
connections from the Competition Area to both L1 and L2
are also initially at zero, since these “competition signals”
are reinforced only in the presence of a conflict (they
follow a different learning strategy, see above) and no
conflict between L1 and L2 was revealed before.

As training of the second language progresses, LTP
causes the creation of a excitatory link between L1 and
L2 (dashed line in the left panels), while the control
mechanisms trigger a reinforcement of the competition
signal (continuous lines). Simultaneously, the semantic
connections between the semantic net and the L2 word
are also reinforced (right panel).

The effect of these synapses at different proficiency
levels can be commented as follows. At the beginning
of training, the interaction between the L1 and L2 words

occurs especially via a direct link (dashed lines in the
left panels) whereas competition via the inhibitory layer
(continuous lines) is still negligible. Moreover, the L2
word exhibits only a weak connection with the Feature
Areas. In this condition, the L2 word excites the L1
word via a direct connection created by Hebbian learning
(this is the main difference compared with the Basal
Model, which lacks this link). This means that L2 tries to
parasitize on L1 to have access to its semantics. As training
progresses, competition through the inhibitory layer
becomes more important than any direct links between the
two words, while the L2 word exhibits a strong connection
with its semantic representation in the Feature Areas. In
this situation, the L2 word tries to inhibit L1, to access
its semantics directly. However, in case of activation of
both words from an external cue (word production) L1
still wins the competition thanks to a difference in direct
synapses. Only at very high training levels do the two
language representations become equivalent in terms of
synaptic strength (convergence hypothesis). Simulations
are illustrated in Figure 5.

Beginning of training (stage i)
Figure 5 shows the results during a word production
task. The two panels on the left display the activity
elicited in the Feature Areas, (upper panel) and in the
Lexical Layer (bottom panel). The external inputs directly
activate the object representation in the Feature Areas; in
turn, the Feature Areas activate the L1 word through the
strong synapses from the Feature to the Lexical Layer.
No L2 word activity is evoked. In order to gain a deeper
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Figure 4. Changes in synaptic strength occurring in the Extended Model at different proficiency levels. The left upper panel
shows the synapses entering into the L2 word from the L1 word, either directly (dashed line) or via the Competition Area
(continuous line). The left bottom panel shows the synapses entering into the L1 item (same meaning of symbols as in the
upper panel). The right panel shows the synapses entering into the L2 item from the Feature Areas at three different
proficiency levels (20 steps, 200 steps and 350 steps; these proficiency levels are the same used throughout the simulations).

understanding of these simulations, the right panels show
some expanded snapshots of the activity in the Lexical
Layer (upper panel), the different inputs converging to the
L1 word (second panel), the different inputs converging
to the L2 word (third panel), and activity in the Feature
Areas (bottom panel). It can be seen that the overall input
from the Feature Areas to L1 is strong, whereas inputs
from the Lexical Layer and from the Competition Area to
L1 are negligible. On the other hand, L2 receives a weak
stimulus from the Feature Areas (since these synapses
are still immature), whereas it receives a strong inhibition
both from the L1 word in the Lexical Layer, and from the
Competition Area. The result is that only L1 is active in
the Lexical Layer.

Figure 6 displays the activities elicited in the network
after presentation of the L2 word. As shown in the bottom
panel on the left, both words are simultaneously strongly
active in the Lexical Layer. The reasons are explained
in the right-hand column. As shown in the second panel
on the right, the L1 word receives a strong excitatory
stimulation (dashed line) directly from the L2 word in
the Lexical Layer; this excitatory contribution overcomes
the inhibitory contribution coming from the Competition
Area (dashed-dot line). Thanks to its net excitatory input,
the L1 word pops out and triggers activation of the object
representation in the Feature Areas (see the left upper
panel). Feature activation, in turn, reinforces activation of

the L1 word (solid line in the right second panel). Finally,
L1 activity induces a competition in the Lexical Layer, i.e.,
inhibition from L1 to L2 (dashed line in the third panel
on the right) reducing the activity of the L2 word.

Two aspects of the previous simulations deserve
comment. First, the model activates both L1 and L2
words in the Lexical Layer (and so it also activates the
corresponding inhibitory interneurons in the Competition
Area). Hence, the global activity in these areas is double
that in a monolingual task. Second, the model can recall
the object representation in the Feature Areas (i.e., the
semantics of the word) only thanks to the activation
of the L1 word. In order to verify this assumption, we
repeated the same simulation with the Extended Model by
eliminating all synapses from L2 to L1: in this condition,
the model is unable to elicit any activity in the Feature
Areas (note that this is the same result obtained with
the simple model at stage one). This result is consistent
with the hypothesis of others (Kroll et al., 1994) that
during the initial learning phase, L2 exploits the L1 lexical
representation to make direct connections to semantics.

Intermediate training (stage ii)
In this stage the synapses between the L2 word and the
corresponding object representation, and the synapses
coming from the Competition Area to the Lexical Layer
are stronger than in the previous case (see Figure 4).
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Figure 5. Model behavior in response to a word production task (features are given as input) obtained with the Extended
Model at the BEGINNING OF TRAINING (step 50 in Figure 4). The upper left panel shows activity in the Feature Areas (the
four attributes of the object are oscillating in phase). The left bottom panel shows activity in the Lexical Layer, where L1
word is represented with a continuous line, and the L2 word with a dashed line. The right panels show some enlarged
snapshots of model dynamics during a single oscillatory cycle, to point out the different components of the model. From top
to bottom: activity in the Lexical Layer (the same as in the left bottom panel), the three inputs entering into the L1-item in the
Lexical Layer; the three inputs entering into the L2-item in the Lexical Layer; activity in the Feature Areas (the same as in the
upper left panel).
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Figure 6. Model behavior in response to an L2 word recognition task (the L2 word is given as input) obtained with the
Extended Model at the BEGINNING OF TRAINING (step 50 in Figure 4). The meaning of panels is the same as in Figure 5.
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Figure 7. Model behavior in response to a word production task (features are given as input) obtained with the Extended
Model at WEAK PROFICIENCY (step 200 in Figure 4). The meaning of panels is the same as in Figure 5.

Moreover, the excitatory synapse from the word in L2
to the word in L1 has almost reached its saturation, and is
overcome by the inhibitory synapse from the Competition
Area. Hence, L1 is no longer excited by L2.

Figure 7 shows the results obtained during the word
production task. The behavior is almost the same as that
shown at the beginning of training (Figure 5): activity is
present in the Feature Areas together with L1 word activity
in the Lexical Layer; the L2 word is almost completely
inhibited. However, contrary to the situation depicted
at the beginning of training, in this condition the L2
word receives strong stimulation from the Feature Areas,
but also strong inhibitory input from the Competition
Area (right third panel). This pattern reflects a greater
maturation of synapses. The final result is that the L2
word is not stimulated enough to be active.

Figure 8 shows the response to presentation of the
L2 word. The L2 word is able to recall the object
representation in the Feature Areas per se, i.e., without any
need to exploit the L1 lexicon (this can be demonstrated
observing how activity in the Feature Areas emerges in
the bottom right-hand column at 16 ms, i.e., before the
emergence of the L1 activity in the upper right-hand
column at about 17 ms). The L1 word also emerges
in the Lexical Layer since is indirectly activated by the
semantic representation in the Feature Areas. The reason
is that inhibition from the Competition Area is not strong
enough to solve the competition between the two language
representations. As can be seen in the second right-
hand panel in Figure 8, the Competition Area sends an
inhibition to the L1 word (dashed-dot line), but this is less

than the sum of the excitatory contributions coming from
the L2 word (dashed line), and from the Feature Areas
(solid line). As a consequence, the L1 word is active, but
with a value lower than that of the L2 word. This signifies
a possible interference of L1 with L2.

Advanced training (stage iii)
Lastly, we tested the model after a protracted
training, when the synapses had almost reached their
maximum value (see Figure 4). Since this case is
particularly interesting as an exemplum of a high-
proficiency bilingual, a more complete simulation set is
presented.

Figure 9 shows the results during a word production
task. We can note that the L1 word is retrieved in the
Lexical Layer, but a small amount of activity is also
elicited in the L2 word. As shown in the right-hand panels
of Figure 9, both words receive a strong input from the
stimulated features (solid lines), but due to the still higher
proficiency of L1 with respect to L2, the L1 word is
activated faster and can drive the Competition Area to
send strong inhibition to the L2 word (dashed-dot line). It
is worth noting that in this stage of training the effect of
the direct synapses between the two units in the Lexical
Layer is less important both for L1 word and the L2 word
(dashed lines).

When the network is stimulated by the L2 input
(Figure 10), only this word is activated in the Lexical
Layer and is able to recall the corresponding object
representation in the Feature Areas. As can be seen in
the right-hand panels of this figure, the L2 word is now
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Figure 8. Model behavior in response to an L2 word recognition task (the L2 word is given as input) obtained with the
Extended Model at WEAK PROFICIENCY (step 200 in Figure 4). The meaning of panels is the same as in Figure 5.
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Figure 9. Model behavior in response to a word production task (features are given as input) obtained with the Extended
Model at STRONGER PROFICIENCY (step 350 in Figure 4). The meaning of panels is the same as in Figure 5.

able to elicit an inhibitory input from the Competition
Area to the L1 word; L2 wins the competition and avoids
the concomitant activation of the L1 word. In this training
condition, the overall activity elicited by the L2 word is
comparable to that obtained by presentation of the word
in language L1 (the latter is displayed in Figure 11). So

we can say that the network shows the behavior of a
high-proficiency bilingual, which can evoke the correct
semantics from both the L1 and L2 words, with almost
no interference from the other language. However, in
response to object presentation, the subject still prefers
L1. In fact, in this phase, the direct synapses between L1
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Figure 10. Model behavior in response to an L2 word recognition task (the L2 word is given as input) obtained with the
Extended Model at STRONGER PROFICIENCY (step 350 in Figure 4). The meaning of panels is the same as in Figure 5.
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Figure 11. Model behavior in response to an L1 word recognition task (the L1 word is given as input) obtained with the
Extended Model at STRONGER PROFICIENCY (step 350 in Figure 4). The meaning of panels is the same as in Figure 5

and L2 are still asymmetrical. The final schema reflects
that hypothesized in Kroll et al. (1994).

Figure 12 reports the results obtained during a word
production task in which the L2 interneuron in the
Competition Area also receives an external top-down
input, which has the task of switching from L1 to L2. This
additional input forces the interneuron to send a stronger

inhibitory input to the not-targeted word, in this case the
L1 word. As we can see in the figure, the network presents
an activity coinciding with the L2 word and correct object
representation. Looking at the right-hand panels, it is
worth noticing that inhibition to the L1 word differs from
zero even when the L2 word is in the off-period, since it
is driven by an external stimulus.
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Figure 12. Model behavior in response to a word production task (features are given as input) obtained with the Extended
Model at STRONGER PROFICIENCY (step 350 in Figure 4). The meaning of panels is the same as in Figure 5. This simulation
differs from that presented in Figure 9, since a strong top–down input has been given to the inhibitory interneuron of the L2
word (this is visible in the second panel in the right) to simulate a LANGUAGE SWITCH TASK from L1 to L2.

Finally, an important aspect of bilingualism concerns
the behavior of patients with lesions. Some preliminary
results are shown in the supplementary material.

4. Discussion

Research on multilingualism has made impressive
advances in the past decade due to the concomitant
presence of sophisticated neuropsychological and
behavioral studies and the advent of new neuroimaging
and electrophysiological techniques. A novel field, “the
neuroscience of multilingualism” (Abutalebi, Tettamanti
& Perani, 2009) is assuming an increasing role in
neuroscience today, not only owing to the enormous
number of subjects who can manage more than
one language all over the world, but also because
many neurocognitive problems faced in multilingualism
may have a general validity in neuroscience. Within
this emerging field, computational models based on
connectionist neural networks may play a significant
role in helping the conceptualization of knowledge by
summarizing existing data into a coherent theoretical
framework and testing the reliability of current hypotheses
in rigorous quantitative terms.

In this work we implemented two models: the first
named a posteriori the “Basal Model” (Ursino et al., 2010)
does not include any direct link between words in the
lexical area. It is worth noting that this model structure
resembles the “conceptual mediation model” proposed

by Potter et al. (1984). This model, however, has some
important drawbacks, especially evident during the initial
phase of L2 acquisition. In particular, the network abruptly
passes from a condition in which L2 is unable to evoke
any concept, to a condition where L2 competes with L1.

Conversely, several results (Chen & Leung, 1989;
Dufour & Kroll, 1995; Kroll et al., 1994) suggest that
at low proficiency levels, when L2 is unable to evoke
its conceptual representation per se, the L2 lexical items
are processed primarily through association with their
semantic equivalents in L1.

In order to overcome the previous limitation of
the Basal Model, we introduced additional learning
mechanisms in the “Extended Model” allowing the
creation of direct links (both excitatory and inhibitory)
between items in the Lexical Layer. With this further
mechanism the present model resembles the “revised
hierarchical model” proposed by Kroll and colleagues
(Kroll et al., 1994). These authors suggested that at low
proficiency the direct links between the L2 word and its
L1 translation must be asymmetrical. This asymmetry
naturally emerges in our model assuming the presence
of both excitatory and inhibitory synapses learned on the
basis of previous correlation (or anti-correlation) between
words

In the following, we discuss testable predictions of the
Extended Model, compare it with existing models and
neuroimaging data, highlight the original aspects of this
work and point out lines for future investigations.
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4.1 Testable predictions

The Extended Model makes several testable predictions,
which may be the targets of future studies. These are
briefly summarized as follows:

(i) Inhibition plays a fundamental role at high L2
proficiency, whereas it is less important during the
early phase of L2 learning.

(ii) The model predicts greater neural activation when
a low-proficiency L2 is used, compared with
activation caused by high-proficiency L1, i.e., more
units are active when using a weak language.

(iii) Neural activation decreases with proficiency, and
so the use of high-proficiency L2 causes a similar
neural activation as the use of high-proficiency L1.

(iv) The use of L2 with moderate-proficiency during
object naming tasks requires involvement of a
“control centre”, which inhibits L1.

(v) The model predicts a strong L1 interference on
L2 during word recognition tasks performed at
moderate L2-proficiency.

(vi) If both languages have high proficiency, control
mechanisms must constantly operate to solve the
conflict.

(vii) The interactions between high-proficiency L1
and high-proficiency L2 may be modulated by
exposure to the environment, assuming a permanent
modification of synapses, so that the language most
frequently used in recent time tends to inhibit the
other.

The following discussion will clarify some of these
predictions.

4.2 Model behavior at different proficiency levels

Looking at Figures 5–12, we can distinguish three main
levels of proficiency, which can roughly be defined as:
beginning, weak, and strong.

During the beginning period, the model is in the
situation depicted in Figure 1B left-hand panel: L1 inhibits
L2 via a direct connection, whereas L2 excites L1. The
L2 word must parasitize on L1 to access its conceptual
representation.

During the period of weak proficiency, synapses
linking L2 and the Feature Areas are more developed
(Figure 1B, middle panel), hence an L2 item can directly
access its conceptual meaning. However, the competitive
mechanism is immature, while direct synapses in the
Lexical Layer are still strongly asymmetrical (L2 excites
L1 but L1 still inhibits L2, although with less intensity).
The result is a strong interference of L1 on L2 in case of L2

word recognition (Figure 8). In particular, in this situation,
as illustrated in Figure 8, the use of an L2 word evokes a
significant activation of the L1 word, thus exciting also the
corresponding inhibitory interneuron. As a consequence
(see the testable prediction ii above) model predicts that
a greater activation exists in the overall lexical network
compared with that caused by a high-proficiency L1 word.
Moreover, in case of object presentation, L1 completely
dominates the Lexical Layer.

Finally, in case of high proficiency, the competitive
mechanism becomes very strong (it resembles a winner
takes all dynamics). However, L1 remains stronger than
L2 (the reciprocal synapses are asymmetrical and the
subject is not a perfect bilingual). The result is that there
is almost no interference between L1 and L2 during a
word recognition task (regardless of which word is given
as input). In particular, the use of a high-proficiency L2
word does not evoke any appreciable activity of the L1
word (see Figure 10). Hence, the model predicts that the
use of the L2 word induces global network activation like
that in the use of the L1 word (testable prediction (iii)
above). Conversely, during an object recognition task L1
dominates. Naming L2 during an object recognition task
requires strong external inhibition direct to L1.

Were L2 acquisition to continue, the model would reach
a completely symmetrical condition (“perfect bilingual”)
in accordance with Green’s (2003) convergence
hypothesis (see Figure 4). The final model would
reassemble the “mixed model” described by de Groot
(1992). In this perfectly symmetrical condition we would
expect a high level of interference during word production,
with the need to maintain a permanent active inhibition of
one language to favor the other.

Since inhibition plays an important role in our model,
it deserves more comment. In a high proficiency subject a
lexical item can be inhibited by the competitive network,
which works to avoid interference. In normal conditions,
when one language is stronger than the other, this network
works autonomously, without the need for any external
input (we normally speak L1). However, in particular
cases, an external input can force inhibition of one word,
thus consenting a switch to its alternative. This mechanism
may be exploited in future works to simulate a language
switching task, or to simulate language translation.

Two alternative models have been proposed in the
literature to describe how a correct word is selected
in bilinguals. The “language specific selection model”
(Costa, Miozzo & Caramazza, 1999) assumes that
only one language is accessed at a time. Conversely,
non-specific language models (Green, 1998) assume
the simultaneous access to words in both languages,
and that candidates across languages actively compete.
The present model substantially assumes a non-selective
access and, as in Green (1998), presupposes the
existence of a clear distinction between a single
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integrated lexical-semantic system, and control proce-
dures operating on it. According to recent proposals, the
model implicitly assumes that words can be at different
levels of activation, and in order to use one word, its
activation must exceed that of the translation equivalent
in the Lexical Layer (Grosjean, 1988; Paradis, 1984).
Within this framework, our model assumes two control
strategies to select words: a bottom–up strategy, internal to
the model, which automatically selects the stronger word
via a competitive mechanism, and a top–down strategy
which requires external inputs.

4.3 Comparison with existing models

Several computational models of bilingualism have been
proposed in past years, stressing the importance of
a connectionist approach in multilingual neuroscience
research (see Thomas & van Heuven, 2005, for a
recent review). Most of these models, however, have
a different purpose, emphasizing the possibility to
cluster the two languages automatically on the basis
of phonological cues (Li & Farkas, 2002) or on the
statistics of word association (French, 1998). Thomas
(1997) built a model that transforms an activation pattern
of a word’s orthography into its meaning, based on a
distributed semantic feature set. The model includes a
group of hidden units as in classic feed-forward networks.
The main result is that activity in hidden units allows
L1 and L2 words to be grouped in separate clusters.
Dijkstra and van Heuven (1998) extended a connectionist
model by McClelland and Rumelhart (named IA model),
which simulates orthographic processes in visual word
recognition (McClelland & Rumelhart, 1981) to the
bilingual domain (BIA model). Aim of the network was
to recognize if a word belongs to one language or the
other on the basis of its orthographic aspects and to
study the effect of word neighbors in both languages.
A more recent version of the model (named BIA+)
also includes phonological and semantic representations
(Dijkstra & van Heuven, 2002). This model, however,
does not consider how a bilingual structure develops
over time and during learning. A similar model (named
BIMOLA) was developed by Grosjean (2008). It uses
auditory features, phonemes and words, and differs from
BIA especially due to a more evident separation between
L1 and L2 words.

Models which describe lexical development and
include some competition mechanisms have also been
realized in past years. Zhao and Li (2007), by extending
a previous monolingual model by Li, Farkas and
MacWhinney (2004), investigated how the structure of a
bilingual lexicon can emerge. The model assumes distinct
semantic and phonological representations connected
via Hebbian learning, and develops topographically
organized maps for both representations using self-

organizing algorithms. In this model, the competition
between words is a function of the position in the
orthographic map which, in turn, depends on the
way lexical distributions are packaged. Regier (2005)
describes a model for word learning which uses emergent
symbols together with a competition mechanism. Like the
present model, Regier’s model includes a bidirectional
associative memory from word forms to meaning and
vice versa; these connections, however, are mediated
by two hidden layers. Competition in the model is
captured through a normalization rule, which computes
the probability of word (or meaning) production.

Another model resembling the present one was devel-
oped by Miikkulainen (1993, 1997) for monolinguals and
recently extended to the bilingual case (Miikkulainen &
Kiran, 2009). The model consists of two self-organizing
maps, one for lexical symbols and the other for word
meaning, and associative connections between them based
on Hebbian learning. The model modulates relative
language proficiency by the exposure to each specific
language. An important result, somewhat similar to ours,
is that asymmetry emerged between the L1 and L2 maps
so that lexical activation in the non-dominant language
results in activation of the corresponding representation
in the dominant language. The Mikkulainen’s model
includes an orthographic map (absent in our model), but it
does not include competitive mechanisms between L1 and
L2 words, which are an important aspect of our model.

Briefly, although the previous models share some
aspects with the present model (two stores for words and
meanings, associative links, the need to select a winner
for the network), the competition mechanisms necessary
to discriminate between L1 and L2 are substantially
different. In particular, our model is the first to explicitly
incorporate the existence of inhibitory mechanisms
between L1 and L2 words having the same semantics,
simulate the maturation of different L2 vs. L1 interactions
(from dependence to winner takes all competition) and
train these mechanisms via physiological (Hebbian) rules.
It can also easily incorporate top–down mechanisms
for language selection by modulating the initial WTA
competition bias (to favour one word vs. the other).

4.4 Comparison with neuroimaging data

An important aspect to be considered (in present and
future model versions) is the relationship between model
results and neuroimaging data. fMRI and PET data
are becoming essential for any bilingualism theory
(Abutalebi, 2008; Abutalebi & Green, 2007; Perani &
Abutalebi, 2005). Indeed, the present model is still too
simple to attempt a clear relationship with neuroimaging.
However, a few tentative considerations can be made. A
coarse comparison between our model and neuroimaging
data can be performed, by considering the amount of
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activity evoked in different areas at various proficiency
levels. The model simulations suggest that at very low
proficiency level recognition of an L2 word causes a
greater neural activation in the Lexical Layer and in the
Competition Area than recognition of an L1 word. Let
us consider the situation presented in Figure 6. Here
one can observe two zones of the Lexical Layer which
are simultaneously active during L2 word recognition,
corresponding to activation of the L2 word and the L1
word; of course, the inhibitory interneurons are also
active in the same zones (since they receive their input
directly from the lexical units). This signifies that a greater
activation is recruited when the low-proficiency subject is
trying to use an L2 word. At higher proficiency levels,
L2 can be used without an evident activation of L1,
thus reducing the overall activation in the Lexical Layer.
This result is supported by neuroimaging data (Abutalebi,
2008), although it is difficult to force this parallelism
beyond a very qualitative level. Studies investigating the
lexical-semantic domain show that bilinguals with low-
proficiency L2 entail additional brain activity compared
with the L1 word or with monolingual subjects: the
increased activity is especially observed in the left inferior
frontal gyrus and in prefrontal areas (Briellmann, Saling,
Connell, Waites, Abbott & Jackson, 2004; De Bleser,
Dupont, Postler, Bormans, Speelman & Mortelmans,
2004). It is likely that some of these differences may
be caused by the activation of control mechanisms. Let
us consider a word production task. If L2 has lower
proficiency than L1, it is obliged to inhibit L1 via further
control mechanisms (which, in the present version of
the model, are simply simulated by an external input)
to produce the correct L2 word.

Our model assumes a simple inhibition mechanism
reinforced by conflict detection to implement a
competition between L1 and L2 words. Future versions
of the model should focus on an explicit representation
of these external control strategies, which may provide
additional comparison with neuroimaging activation
maps. In particular, a more complex control strategy
may be implemented in future work, also exploiting
information obtained from connectivity estimation
techniques. Indeed, methods to estimate functional
connectivity from fMRI data (such as dynamical causal
modeling Friston, Harrison & Penny, 2003) are currently
available and allow network structure to be investigated
in individual patients. These may be compared with
the predictions of the model or may provide important
suggestions to improve model structure (see Abutalebi,
Rosa, Tettamanti, Green & Cappa, 2009 for a recent
interesting example on the control network).

An attractive aspect of this model, rapidly tested
in Figure A1 of the Supplementary Material on line,
is that the network may be subject to malfunctioning
in case of lesions (for instance reducing the number

of active neurons, hence the synaptic strength). In this
condition, one can expect interferences of one language
on the other, depending on which of the two words was
subject to the greater damage (either in its semantic
input or in its control mechanism). Examples of such
interferences are shown in Abutalebi, Miozzo and Cappa
(2000). The role of connections between the control and
language networks during language recovery was stressed
in a recent work by Abutalebi et al. (Abutalebi, Rosa,
Tettamanti, Green & Cappa, 2009). Some recent studies
analyzed bilingual deficits using a similar computational
approach. In particular, Miikkulainen (1997) used his
model, based on self-organizing maps, to simulate various
damage to the lexical system, resulting in dyslexic
and aphasic impairments. Recently, a preliminary report
appeared that extend this study to a bilingual language
system (Grasemann, Sandberg, Kiran & Miikkulainen,
2010).

5. Conclusions: Model limitations and future
research

We terminate this discussion by commenting on two main
model limitations, which should become the target of
future studies.

A first significant limitation is that it does not
use realistic inputs. This does not signify that the
model is unrealistic, but that it focuses attention on an
internal processing stage, and it needs other preprocessing
networks to compute appropriate inputs and to be linked
with the external world.

In particular, the lexical input represents a stimulus to
a unit in the Lexical Area coding for a given word form.
It may derive from a pre-processing network processing
phonemes or orthographic symbols. Several previous
models can be used as a pre-processing stage of the present
Lexical Network to implement a relationship between
phonology/orthography and word forms, so that the model
can be used in future works with real inputs. Examples
of such networks can be found in Hopfield and Brody
(2001); Li et al. (2004); Zhao and Li (2007).

The inputs to the semantic network are more complex:
they represent the principal features of objects. In this
case too, inputs should be extracted from a pre-processing
network. Several examples of data sets using a feature
representation of objects can be found in the literature
(see among the others, Miikkulainen & Kiran, 2009;
Vigliocco, Vinson, Lewis & Garrett, 2004) and these can
be used to provide realistic inputs to the semantic network
in future works.

Linking the present model with pre-processing
networks (such as those mentioned above) may allow the
model to be used to simulate results of psychological tests,
and to check its main hypotheses against real data.
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A further limitation consists in the absence of
top–down control strategies (although a bottom–up
competitive mechanism is operative to solve conflicts
in simpler cases). Results in Figure 12 stress the need
for a second top–down control strategy, which can
be considered an external input to the model, and
inhibiting one language to favor the other. This control
system may be recruited during paradigms like language-
switching, language translation or language selection. In
our simulations this external input may become necessary
when two languages have a similar proficiency level
(Figure 12) or when the subject is forced to use a low-
proficiency language despite interference from the high-
proficiency one (Figure 6). A classic point of view is
that these conflicts are solved by a dynamic inhibitory
input to the non-target language, and this may originate
from various brain areas classically related to cognitive
control, such as the caudate nucleus, prefrontal cortex
and anterior cingulate cortex (Abutalebi, 2008). An
interesting question is whether this top–down control
system is specifically dedicated to language, or represents
a more general structure devoted to conflict resolution
independently of its explicit domain. A further important
question is how this control system discriminates words
in one language from those in the other without the need
for explicit tags or explicit language nodes (as exploited
in most previous models). Inclusion of top–down control
strategies should be the main challenge of future model
versions.
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