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Is there an economic justification for why technical change is by assumption
labor-augmenting in dynamic macroeconomics? The literature on the endogenous choice
of capital- and labor-augmenting technical change finds that technical change is purely
labor-augmenting in steady state. The present paper shows that this finding is mainly an
artifact of the underlying mathematical models. To make this point, Uzawa’s steady-state
growth theorem is generalized to a neoclassical economy that, besides consumption and
capital accumulation, uses current output to create technical progress or to manufacture
intermediates. The generalized steady-state growth theorem is shown to encompass four
models of endogenous capital- and labor-augmenting technical change and the typical
model of the induced innovations literature of the 1960s.
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1. INTRODUCTION

Technical change is by assumption almost always labor-augmenting in dynamic
macroeconomics. This observation holds true irrespective of whether technical
change is treated as an exogenous or as an endogenous variable. However, is there
an economic justification for this assumption?

The so-called induced innovations literature of the 1960s constitutes the first
systematic attempt to address this question. The answer is given in the framework
of the neoclassical growth model of Solow (1956) and Swan (1956), which is ex-
tended to allow for the endogenous choice of capital- and labor-augmenting tech-
nical change.1 Recently, Acemoglu (2003) and Irmen and Tabaković (2015) revisit
this territory.2 These authors study the choice of capital- and labor-augmenting
technical change in models with an elaborate micro-foundation reminiscent of
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the modern theory of endogenous technical change initiated by Romer (1990),
Grossman and Helpman (1991), and Aghion and Howitt (1992).

The main finding of all these contributions is that economies may converge
to a steady-state path with only labor-augmenting technical change even though
capital-augmenting technical change is feasible.3 While the literature of the 1960s
and Acemoglu (2003) find this convergence to depend on an elasticity of substitu-
tion between capital and labor strictly smaller than unity, it obtains for any positive
value of the elasticity of substitution in the model studied in Irmen and Tabaković
(2015).4 These results may be traced back to the differential incentives that profit-
maximizing firms face in these models. While the direction of technical change
hinges on the relative share of capital in models of the 1960s and in Acemoglu
(2003) it is linked to relative factor prices in the model of Irmen and Tabaković
(2015). Yet, do these findings provide a satisfactory answer to the question of why
technical change should be expected to be labor-augmenting, at least in the long
run?

This paper argues that the main finding of the existing literature on the endoge-
nous choice of capital- and labor-augmenting technical change is mainly an artifact
of its underlying analytical structure. To make this point, I devise a generalized
steady-state growth theorem. This theorem is shown to encompass all contributions
mentioned in the preceding paragraph. More precisely, the reduced form of all
these models fits the generalized steady-state growth theorem. Roughly speaking,
this leads to the conclusion that—by design—none of them can find something
different from a steady-state path with only labor-augmenting technical change.

The generalized steady-state growth theorem of this paper complements and
extends Uzawa’s steady-state growth theorem [Uzawa (1961)].5 Uzawa derived
his insight with a view to neoclassical growth models that depict the process of
capital accumulation in a setting void of externalities where agents interact in
a system of complete, competitive markets, and technical change is exogenous.
The modern theory of endogenous technical change has called for a substantial
extension of this framework to capture the notion of technological knowledge and
the economics of its creation. This led to multi-sector models with incomplete
and (im)perfectly competitive markets that may feature intra- and inter-temporal
externalities. In spite of these complications, the present paper shows that Uzawa’s
main insight may also apply to such settings as exemplified by the contributions
of Acemoglu (2003) and Irmen and Tabaković (2015).

The generalized steady-state growth theorem applies to an economy where,
in addition to consumption and capital accumulation, current output is also used
to generate technical progress or to manufacture intermediates. I refer to the
latter resources as aggregate intermediate expenses. Typically, this additional
element matters in an economy where technical progress is endogenous and costly.
Moreover, it gives rise to the notion of net output defined as the difference between
aggregate final-good production and aggregate intermediate expenses.

Hence, the economy under scrutiny here comprises an aggregate production
function, an aggregate intermediate expenses function, a resource constraint, and
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an equation of motion describing the accumulation of capital. For such an econ-
omy, the generalized steady-state growth theorem characterizes steady-state paths
starting in finite time. The first part of the theorem establishes that net output,
aggregate output, aggregate intermediate expenses, capital, and aggregate con-
sumption grow at the same rate. Its second part shows that technical change is
purely labor-augmenting in the net output function. Moreover, the growth rate of
labor-augmenting technical change is shown to coincide with the growth rate of
all per-worker variables. While the proof of the first part follows directly from the
analytical structure of the model, its second part is shown to rely on the assump-
tion that both the aggregate production function and the aggregate intermediate
expenses function exhibit constant returns to scale in capital and labor. This proof
strategy builds on and extends Schlicht (2006)’s elegant and intuitive proof of
Uzawa’s original theorem.

From the perspective of the generalized steady-state growth theorem, I take
a new look at the question about why steady-state technical change is labor-
augmenting in the literature on the endogenous choice of capital- and labor-
augmenting technical change. I argue that in steady state the reduced form of
these models either involves a net output function that has constant returns in
capital and labor as required by the generalized steady-state growth theorem or is
consistent with Uzawa’s original formulation. Therefore, in steady-state capital-
augmenting technical change vanishes and labor-augmenting technical change
determines the growth rate of the economy.6

This point is made for the one-sector model of Irmen and Tabaković (2015), for
the multi-sector model of Acemoglu (2003) and its extension [Acemoglu (2009,
Chapter 15)] and for the typical model of the induced innovations literature of the
1960s.7

For the question at hand, it matters that these models differ in the way techni-
cal change is generated. In Irmen and Tabaković (2015), this requires the input
of current final-good production. Therefore, the generalized steady-state growth
theorem can be applied. In Acemoglu’s two variants, technical change is the result
of research conducted by labor. For Acemoglu (2003), this is shown to lead to
an application of Uzawa’s original theorem. As current final output is used up
as an input in the production of intermediates in Acemoglu (2009, Chapter 15),
aggregate intermediate expenses are strictly positive. Therefore, the generalized
steady-state growth theorem is shown to apply. Finally, I argue that the models
of the induced innovations literature lend themselves to a direct application of
Uzawa’s theorem.

The remainder of this paper is organized as follows. Section 2 has the statement
and the proof of the generalized steady-state growth theorem. Section 2.1 gives
the precise setup of the neoclassical economy under scrutiny. The generalized
steady-state growth theorem appears as Theorem 1 in Section 2.2. Section 2.3 dis-
cusses important assumptions and features of it. They include the role of differing
technologies affecting aggregate production and aggregate investment, the link to
Uzawa’s original result, the importance of capital accumulation and of constant
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returns. Finally, I turn to the special, yet important case of factor-augmenting
technologies. Section 3 establishes the link between the generalized steady-state
growth theorem and the steady-state properties of the above-mentioned models
of endogenous technical change. Section 4 concludes this paper. If not indicated
otherwise proofs are relegated to the appendix.

2. STATEMENT AND PROOF OF THE THEOREM

2.1. The Model

Consider a closed economy, and, without loss of generality, let time be continuous,
i. e., t ∈ (−∞,+∞). The production sector consists of two elements. First, there
is an aggregate production function of the final good

Y (t) = F̃ [K(t), L(t), AF (t)] , (1)

where F̃ : R2
+×AF → R+, Y (t) is aggregate output of the final good, K(t) > 0 is

the capital stock, L(t) > 0 is the labor endowment, and AF (t) ∈ AF represents the
components of technological knowledge available at t that affect the production
of the final good. Here, AF is an arbitrary set.8

Second, there is a function that specifies aggregate intermediate expenses. It
states the amount of period-t final-good output that is used up in the same period
as an input somewhere in the economy. For instance, the economy may invest con-
temporaneous final output to generate technical progress in its research sector or,
alternatively, use it as an input in an intermediate-good industry of the production
sector. In any case, the defining property of these resources is that they are neither
available for consumption nor for the accumulation of capital. I refer to them as
aggregate intermediate expenses denoted by I (t). Let

I (t) = Ĩ [K(t), L(t), AI (t)] , (2)

where Ĩ : R2
+ × AI → R+ is the aggregate intermediate expenses function and

AI (t) ∈ AI represents components of technological knowledge available at t that
affect the amount of expended final output given capital and labor. Again, AI is
an arbitrary set.

The inclusion of aggregate intermediate expenses generalizes Uzawa’s original
setting. In most applications, the functions F̃ and Ĩ will correspond to reduced-
form production and investment functions of the economy under scrutiny. As such,
they will reflect the technological environment and the market-clearing conditions.
This justifies the assumption that these functions depend both on the capital and
the labor endowment of the economy.9 However, there is little reason why the
technology applied in the production of the final good should coincide with the
technology used in the economy’s research or intermediate-good sector. This is
why AF (t) is allowed to differ from AI (t).
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Suppose that both F̃ and Ĩ are increasing in K(t) and L(t) and exhibit constant
returns to scale in these arguments. Then, V (t) = Y (t) − I (t) is net output, i. e.,

V (t) = F̃ [K(t), L(t), AF (t)] − Ĩ [K(t), L(t), AI (t)] ,

(3)

≡ Ṽ [K(t), L(t), AF (t), AI (t)] ,

where Ṽ : R2
+ × AF × AI → R+ exhibits constant returns to scale in K(t) and

L(t), too. Hence, net output is defined as the amount of the final good that is
available for consumption and capital accumulation. Henceforth, I refer to Ṽ as
the net output function. Capital and aggregate consumption, C(t), are measured
in units of the final good. Then, at all t capital accumulates according to

K̇(t) = V (t) − C(t) − δKK(t), δK ∈ R+, (4)

where δK is the instantaneous depreciation rate of capital. Finally, the evolution
of the labor endowment is given by

L(t) = L(0)egLt , L(0) > 0, gL ∈ R, (5)

i. e., the instantaneous growth rate of the labor force is time-invariant and may be
positive, zero, or negative.

In what follows, I denote by gx(t) ∈ R the instantaneous growth rate of a
variable x(t) at t . By definition, a steady state has gx(t) = gx for all variables
featured in the model.

2.2. The Generalized Steady-State Growth Theorem

THEOREM 1. Consider an economy described by equations (3), (4), and (5).
Suppose there exists a steady-state path starting at some date τ < ∞ such that
Y (t) > V (t) > C(t) > 0 for all t ≥ τ . Then, the following holds:

I. gV = gY = gI = gK = gC .
II. For any t ≥ τ , net output has a representation as

V (t) = V [K(t), A(t)L(t)] ,

where A(t) = e(gV −gL)(t−τ) ∈ R++, and

g = gV − gL,

is the growth rate of per-worker variables.

The main message of the generalized steady-state growth theorem is that steady-
state technical change is labor-augmenting in the net output function. Moreover,
the growth rate at which the technology evolves determines the growth rate of all
per-worker variables. This insight comes in two steps.
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Part I shows that the steady-state growth rates of net output, aggregate final-good
output, aggregate intermediate expenses, capital, and aggregate consumption are
the same. This follows since in steady state a strictly positive difference between
two strictly positive variables satisfies that the growth rates of the minuend and the
subtrahend coincide. Both, the definition of net output and of steady-state capital
accumulation give rise to such differences [see equations (A.1) and (A.2) in the
Proof of Theorem 1]. In the present context, this property has two implications.
First, net output requires gV = gY = gI since Y (t) > I (t) > 0. Second, steady-
state capital accumulation requires gV = gK = gC since V (t) > C(t) > 0.

Part II exploits constant returns to capital and labor in the net output function in
conjunction with gV = gK , the requirement of steady-state capital accumulation.
Together, these properties imply steady-state labor-augmenting technical change
with a growth rate equal to gV − gL. Labor-augmenting technical change at this
rate assures that the first two arguments in Ṽ of equation (3)—with respect to
which Ṽ has constant returns to scale—grow at the same rate. Accordingly, the
steady state has gV = gK = g + gL and, in light of Part I, g is the growth rate of
all per-worker variables.

Whether per-worker variables grow or shrink hinges on how gV = gK relates
to the exogenous growth rate of the labor force, gL. If gV = gK = gL then g = 0,
i. e., there is no technical change and per-worker variables remain constant over
time. If gV = gK > gL then capital grows faster than labor and strictly positive
labor-augmenting technical change makes up for the difference. Moreover, per-
worker variables grow at the rate of technical change. Finally, if gV = gK < gL

then capital grows slower than labor and labor-augmenting technical change is
negative to close the gap. In this case, per-worker variables shrink at the rate of
technical decline.

2.3. Discussion

Technical Change in Y (t) and I (t). In the economy under scrutiny here the
technology may affect aggregate production and aggregate intermediate expenses
in different ways, i. e., AF (t) �= AI (t). However, in light of equation (3) the
generalized steady-state growth theorem implies the existence of two linear ho-
mogeneous functions, F : R2

+ → R+ and I : R2
+ → R+, such that

Y (t) = F [K(t), A(t)L(t)] and I (t) = I [K(t), A(t)L(t)] ,

for all t ≥ τ where A(t) = e(gV −gL)t ∈ R++. Hence, even though AF (τ ) �= AI (τ )

may hold, steady-state technical change must be labor-augmenting and evolve at
the same pace in both the aggregate production and the aggregate intermediate
expenses function.

What if I (t) = 0 ? The generalized steady-state growth theorem postulates
an aggregate intermediate expenses function that takes on strictly positive values
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for all t ≥ τ . As shown in Section 3 below, this extension is important to un-
derstand key structural properties of some models with endogenous capital- and
labor-augmenting technical change. Absent an aggregate intermediate expenses
function, i. e., if I (t) = 0 for all t ≥ τ , the distinction between gross and net
output vanishes. In this case, Theorem 1 and Uzawa’s original theorem coincide.

What if V (t) = C(t) > 0 ? Capital accumulation is a central ingredient to
the generalized steady-state growth theorem. Indeed, the assumption that V (t) >

C(t) > 0 for all t ≥ τ assures that some final output is always used to accumulate
capital. If instead V (t) = C(t) > 0 holds, then no final output is allocated to the
accumulation of capital. The following corollary highlights the necessary changes
to Theorem 1.

COROLLARY 1. Reconsider the economy described by equations (3), (4), and
(5). Suppose there exists a steady-state path starting at some date τ < ∞ such
that Y (t) > V (t) = C(t) > 0 for all t ≥ τ . Then, the following holds:

I. gV = gY = gI = gC and gK = −δK .
II. For any t ≥ τ , net output has a representation as

V (t) = V [B(t)K(t), A(t)L(t)] ,

where B(t) = e(gV +δK )(t−τ) ∈ R++ and A(t) = e(gV −gL)(t−τ ) ∈ R++.
Capital per worker grows at rate − (δK + gL). All remaining per-worker variables
grow at rate g = gV − gL.

Corollary 1 states that steady-state capital-augmenting technical change does
not necessarily disappear in a world without capital accumulation. The intuition
for this comes in two steps. As to Part I, the new feature is that equation (4) and
V (t) = C(t) now imply gK = −δK and gV = gC . Hence, the evolution of net
output is decoupled from the evolution of capital whereas steady-state growth of
net output still requires gV = gY = gI since Y (t) > I (t) > 0.

Part II shows that this decoupling requires capital-augmenting technical change
at rate gV + δK to have “efficient capital” and “efficient labor” grow at the same
rate in the net output function Ṽ of equation (3). Capital-augmenting technical
change disappears only if gV = −δK , the case in which net output and capital
grow at the same rate.

Clearly, the growth rate of capital per worker is − (δK + gL). As gV = g + gL,
the growth rate of all other per-worker variables is given by g, the growth rate of
labor-augmenting technical change.

Constant Returns to Capital and Labor in F̃ and Ĩ . Constant returns to capital
and labor in the net output function (3) is key to the generalized steady-state growth
theorem. However, for this to hold it is not necessary that both F̃ and Ĩ share
this property. In fact, Theorem 1 does not change if we allow for the aggregate
production and/or the aggregate intermediate expenses function to be linear in
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either capital or labor. Doing so gives rise to the following six variants:

V (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(t) ˜̃F (AF (t)) − Ĩ [K(t), L(t), AI (t)] , or

F̃ [K(t), L(t), AF (t)] − L(t) ˜̃I (AI (t)) , or

K(t) ˜̃F (AF (t)) − Ĩ [K(t), L(t), AI (t)] , or

F̃ [K(t), L(t), AF (t)] − K(t) ˜̃I (AI (t)) , or

L(t) ˜̃F (AF (t)) − K(t) ˜̃I (AI (t)) , or

K(t) ˜̃F (AF (t)) − L(t) ˜̃I (AI (t)) ,

(6)

where ˜̃F : AF → R++ and ˜̃I : AI → R++. Intuitively, for all these specifications
Part I of Theorem 1 goes through since its proof relies only on the analytical
structure of the underlying model and not on functional forms. Moreover, Part II
of Theorem 1 remains valid since it relies on constant returns of the net output
function, a property that all specifications of equation (6) preserve.10

Factor-Augmenting Technical Change. Technical change is factor-
augmenting in the aggregate production function and the aggregate intermediate
expenses function if and only if these aggregates can be put into the form

Y (t) = F [BF (t)K(t), AF (t)L(t)] and I (t) = I [BI (t)K(t), AI (t)L(t)] ,

where Bj(t) ∈ R++ and Aj(t) ∈ R++, j = F, I , represent the capital- and the
labor-augmenting technology in the respective aggregate. Compared to the general
specification of technical change that appears in F̃ and Ĩ of equations (1) and (2),
the stipulation that technical change has to be factor-augmenting is restrictive. In
a sense, it assumes the “form of technical change” that results as an implication
in Theorem 1. However, imposing factor-augmenting technical change also leads
to additional insights as it allows for the identification of circumstances where
technical change involving growth rates gBF

�= 0 and gBI
�= 0 is consistent with

an overall representation of technical change as labor-augmenting. The following
corollary sharpens this statement further:

COROLLARY 2. Consider an economy comprising net output

V (t) = F [BF (t)K(t), AF (t)L(t)] − I [BI (t)K(t), AI (t)L(t)] , (7)

and equations (4) and (5). Suppose there exists a steady-state path starting at
some date τ < ∞ such that Y (t) > V (t) > C(t) > 0 for all t ≥ τ . Then, the
following holds:
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1. If gBF
= gBI

= 0 then g = gAF
= gAI

.
2. If gBF

= 0 and gBI
�= 0, then net output has the form

V (t) = F [BF (τ)K(t), AF (t)L(t)] − βIK(t)αI
(
eg(t−τ )L(t)

)1−αI
,

where 0 < αI < 1, βI = cIBI (τ )αI AI (τ )1−αI > 0, and

g = αIgBI

1 − αI

+ gAI
= gAF

. (8)

3. If gBF
�= 0 and gBI

= 0, then net output has the form

V (t) = βF K(t)αF
(
eg(t−τ )L(t)

)1−αF − I [BI (τ)K(t), AI (t)L(t)] ,

where 0 < αF < 1, βF = cF BF (τ)αF AF (τ)1−αF > 0, and

g = αF gBF

1 − αF

+ gAF
= gAI

. (9)

4. If gBF
�= 0 and gBI

�= 0 then net output has the form

V (t) = βF K(t)αF
(
eg(t−τ )L(t)

)1−αF − βIK(t)αI
(
eg(t−τ )L(t)

)1−αI
,

and

g = αIgBI

1 − αI

+ gAI
= αF gBF

1 − αF

+ gAF
. (10)

The upshot of Corollary 2 is that steady-state technical change may involve
gBF

�= 0 and/or gBI
�= 0. However, this is only permissible if the respective

aggregate is Cobb–Douglas and the growth rates gBF
, gAF

, gBI
, and gAI

are
aligned such that aggregate production and aggregate intermediate expenses grow
at the same rate.

Claim 1 is a benchmark and immediate from Theorem 1. If gBF
= gBI

= 0,
then technical change is labor-augmenting in F and I and evolves at the same
rate, g, which is also equal to the growth rate of per-worker variables.

Claims 2 and 3 deal with the related cases where either gBF
= 0 and gBI

�= 0 or
gBF

�= 0 and gBI
= 0. They show that whenever gBj

�= 0, j = F, I , the respective
aggregate must be Cobb–Douglas. Under this functional form, technical change
can be expressed as purely labor-augmenting at rate g.11 It is in this sense that
the distinction between capital- and labor-augmenting technical change is blurred
under a Cobb–Douglas.

In steady state the growth rates of Y (t) and I (t) must coincide. This requires
an alignment in accordance with conditions (8) and (9), respectively. Intuitively,
the growth rate of “labor-augmenting technical change” in the Cobb–Douglas
aggregate must coincide with the growth rate of labor-augmenting technical change
in the other aggregate. A remarkable feature of both conditions is then that gBj

�= 0
requires gAF

�= gAI
. Hence, one may think of capital-augmenting technical change

in the Cobb–Douglas aggregate as a necessary means to fill the gap between gAF

and gAI
. Void of such a gap, there is no room for Bj(t) to grow at a rate different

from zero.
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Claim 4 allows for gBI
�= 0 and gBF

�= 0. Accordingly, both aggregates must be
Cobb–Douglas. Again, g, the growth rate of “labor-augmenting technical change”
must be the same in both aggregates. Condition (10) states the required alignment.
Unlike Claims 2 and 3, a constellation involving gAF

= gAI
is now consistent with

a steady state if gBF
and gBI

adjust accordingly. Moreover, observe that gAF
= gAI

and gBI
= gBF

imply αF = αI .

Remark 1. Finally, it is worth mentioning that Corollary 2 also has some bearing
on the cases where either I (t) = 0, or I (t) > 0, BF (t) = BI (t), AF (t) = AI (t),
and I (t) = βF [BF (t)K(t), AF (t)L(t)], with 0 < β < 1. The first of these cases
concerns the scenario to which Uzawa’s theorem directly applies.12 In the second
case, the aggregate intermediate expenses function has a form that coincides with
the one of the aggregate production function up to a multiplicative constant. In
both cases, net output will look like

V (t) = cV F [BF (t)K(t), AF (t)L(t)] , cV > 0.

Hence, if gBF
= 0 then g = gAF

. Moreover, if gBF
�= 0 then

V (t) = βF K(t)αF
(
eg(t−τ)L(t)

)1−αF
,

and g = αF gBF
/ (1 − αF ) + gAF

.

3. ENDOGENOUS CAPITAL- AND LABOR-AUGMENTING TECHNICAL
CHANGE: FOUR EXAMPLES

Why is steady-state technical change purely labor-augmenting even in environ-
ments where capital-augmenting technical change is feasible? This section revisits
four growth models with endogenous capital- and labor-augmenting technical
change to shed light on this question. I show that the reduced form of all these
models satisfies the assumptions of Theorem 1. As a consequence, steady-state
technical change must have a representation as labor-augmenting. Moreover, un-
less Cobb–Douglas functions are involved capital-augmenting technical change
vanishes in the steady state, and the economy’s growth rate will be determined by
labor-augmenting technical change alone.

Section 3.1 takes a new look at the competitive one-sector growth model devel-
oped in Irmen and Tabaković (2015). Here, I (t), reflects aggregate productivity
enhancing innovation investments and constitutes foregone output of the final
good. This rightly suggests an application of Theorem 1. Section 3.2 revisits the
research and development-based variety expansion model of Acemoglu (2003).
Here, scientists invent new varieties of differentiated intermediate goods. Each of
them is manufactured and marketed by a single intermediate-good firm. I show
that this model does not feature intermediate expenses, i. e., I (t) = 0. This leads
to the conclusion that Uzawa’s original theorem characterizes the steady state.
Section 3.3 studies an extension of Acemoglu (2003) that allows for a market
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size effect to play a role in the determination of the direction of technical change
[Acemoglu (2009, Chapter 15.6)].13 In this model, some current final-good output
is used to produce contemporaneous intermediate goods. These resources qualify
as intermediate expenses. Hence, I (t) > 0 and Theorem 1 is shown to inform
us about how technical change looks like in the steady state. Finally, Section 3.4
deals with a typical model of the induced innovations literature of the 1960s that
involves capital accumulation. I show that here the generation of technical change
has no costs in terms of real resources. Hence, I (t) = 0 and, as for the model
of Acemoglu (2003), it is Uzawa’s original theorem that prescribes the mode of
steady-state technical change.14

3.1. Example 1: The One-Sector Model of Irmen and Tabaković (2015)

The economy studied in Irmen and Tabaković (2015) has a single sector on the
production side. It manufactures the final good and spends some current output to
increase the productivity of capital and labor in aggregate production. Productivity
enhancing outlays give rise to aggregate intermediate expenses.

Aggregate Production and Aggregate Intermediate Expenses. The aggregate
production function of the final good is Y (t) = F [M(t),N(t)], where Y (t) is
output, M(t) > 0 and N(t) > 0 denote the total amount of tasks performed by
either capital or labor. The function F : R2

+ → R+ has constant returns to scale
and is increasing in both arguments.

Let k(t) = 1/B(t) denote the amount of capital required to perform each of the
M(t) tasks. Similarly, let l(t) = 1/A(t) denote the amount of labor necessary to
perform each of the N(t) tasks. Accordingly, B(t) > 0 and A(t) > 0 indicate the
productivity of capital and labor in the performance of their respective tasks. As
before, K(t) > 0 and L(t) > 0 denote the capital and labor endowments. Then,
full employment of capital and labor implies

M(t)k(t) = K(t) ⇒ M(t) = B(t)K(t),

(11)

N(t)l(t) = L(t) ⇒ N(t) = A(t)L(t).

Accordingly, aggregate production of the final good is equal to

Y (t) = F [B(t)K(t), A(t)L(t)] , (12)

and technical change represented by the evolution of B(t) and A(t) is capital- and
labor-augmenting, respectively.

The economy may expend M(t)i (qB(t)) and N(t)i (qA(t)) units of contempo-
raneous output to increase B(t) and A(t) according to

Ḃ(t) = B(t) (qB(t) − δB) and Ȧ(t) = A(t) (qA(t) − δA) . (13)
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Here, qB(t) > 0 and qA(t) > 0 denote the growth rates of the respective pro-
ductivity indicator gross of depreciation at rate δB > 0 and δA > 0, respectively.
Moreover, i : R+ → R+ specifies strictly positive intermediate expenditures per
task.

Using equation (11), the expenses necessary to achieve strictly positive growth
rates qA(t) and qB(t) amount to A(t)L(t)i(qA(t)) and B(t)K(t)i(qB(t)), respec-
tively. The sum of these two outlays corresponds to what I refer to as aggregate
intermediate expenses, i. e.,

I (t) = A(t)L(t)i(qA(t)) + B(t)K(t)i(qB(t)). (14)

Net Output and the Steady State. The difference between Y (t) of equation
(12) and I (t) of equation (14) delivers net output as

V (t) = F [B(t)K(t), A(t)L(t)] − A(t)L(t)i(qA(t)) − B(t)K(t)i(qB(t)).

(15)

PROPOSITION 1. Consider the economy described by equations (15), (4), and
(5). Suppose there exists a steady-state path starting at date τ < ∞ such that
Y (t) > V (t) > C(t) > 0 for all t ≥ τ . Then,

V (t) = F [B(τ)K(t), A(t)L(t)] − A(t)L(t)i (qA (τ)) − B(τ)K(t)i (qB (τ )) ,

gB = 0 and g = gA.

The proof of Proposition 1 consists of two arguments that involve Theorem 1
and Corollary 2, respectively. I develop the proof here since it also reveals the
intuition underlying Proposition 1.15

To see that Theorem 1 applies observe that the right-hand sides of equa-
tions (12) and (14) correspond, respectively, to the economy’s aggregate pro-
duction function of equation (1), F̃ [K(t), L(t), AF (t)], and to its aggregate in-
termediate expenses function of equation (2), Ĩ [K(t), L(t), AI (t)]. Accordingly,
the right-hand side of equation (15) states the economy’s net output function
Ṽ [K(t), L(t), AF (t), AI (t)], which indeed exhibits constant returns to scale in
K(t) and L(t). Hence, the economy described by equations (15), (4), and (5) has
all features assumed in Theorem 1. Accordingly, net output has a representation
as V (t) = V [K(t), A(t)L(t)] with A(t) = e(gV −gL)(t−τ) ∈ R++. Moreover, as
Theorem 1 requires AI (t) = AI (τ ) for all t ≥ τ it must hold that qB(t) = qB (τ)

and qA(t) = qA (τ) so that i(qB (τ )) and i(qA (τ )).
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The second argument excludes a representation of labor-augmenting technical
change involving gB �= 0. It is based on Corollary 2. To see this, define

BF (t) ≡ B(t), AF (t) ≡ A(t), BI (t) ≡ B(t)i (qB (τ )) ,

AI (t) ≡ A(t)i (qA (τ)) .

Then, in steady state equation (15) may be written as

V (t) = F [BF (t)K(t), AF (t)L(t)] − (AI (t)L(t) + BI (t)K(t)) ,

where the term in parenthesis is I [BI (t)K(t), AI (t)L(t)]. Hence, technical
change is factor-augmenting in the net output function so that Corollary 2 indeed
applies. More precisely, since the aggregate intermediate expenses function cannot
be Cobb–Douglas I have to refer to either Claim 1 or Claim 3. The definitions of
AF (t) and AI (t) imply gAF

= gAI
= gA. Then, equation (9) excludes gBF

�= 0.
Moreover, the definitions of BF (t) and BI (t) imply gBF

= gBI
= gB . Since

gBF
= 0 it follows that gBF

= gBI
= gB = 0. Hence, g = gV − gL = gA for all

t ≥ τ .
Before concluding this section, two points are worth mentioning. First, let

me reemphasize that Theorem 1 excludes any form of technical change that
is not labor-augmenting. For instance, in steady state no technical change is
permitted that would reduce the amount of intermediate expenditures per task.
This is quite restrictive since the function i(·) represents a technical relationship
that, in principle, may change over time due to technical progress.

Second, observe that Proposition 1 does in no way rely on the accumulation
equations (13). The nature of steady-state technical change is entirely determined
by the structural properties of the production sector and its consistency with
Theorem 1. However, the stipulated accumulation processes for B(t) and A(t)

matter for the existence of a steady state starting at τ < ∞. More precisely,
they must allow for steady-state technical change with a representation as labor-
augmenting. Here, this is obviously the case for qB(τ) = δB . Then, the steady
state has gB = 0 and gA = qA(τ) − δA for all t ≥ τ .

3.2. Example 2: The Multi-Sector Model of Acemoglu (2003)

Acemoglu’s economy comprises four sectors on the production side. Section 3.2
sketches the relevant features. The main conclusion is that gross and net output
coincide in this economy. Therefore, Uzawa’s original theorem conveys the infor-
mation about technical change along the steady-state path. This result is derived
as Proposition 2 in Section 3.2. Throughout, I follow Acemoglu and set L(t) = L.

Production and Research. The first sector manufactures the final good, Y (t),
out of a capital-intensive intermediate good, YK(t), and a labor-intensive interme-
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diate good, YL(t). The production function of this sector is16

Y (t) = F [YK(t), YL(t)] . (16)

It exhibits constant returns to scale and is increasing in both arguments.
The second sector produces the intermediate goods YK(t) and YL(t) out of

(other) differentiated intermediate goods. The respective production functions are
of the CES-type,

YK(t) =
[∫ m(t)

0

√
yk(i, t)di

]2

and YL(t) =
[∫ n(t)

0

√
yl(i, t)di

]2

. (17)

Here, [0,m(t)] and [0, n(t)] denote disjoint sets of intermediate goods available
at t . All intermediate goods in use at t fully depreciate afterward.

The third sector comprises single-good firms each producing one variety of the
intermediate good yk(i, t) or yl(i, t). The production functions are linear, i. e.,

yk(i, t) = k(i, t) for all i ∈ [0,m(t)],

(18)

yl(i, t) = l(i, t) for all i ∈ [0, n(t)],

where k(i, t) is capital input and l(i, t) the input of unskilled labor at t .
Consider a symmetric configuration of these three sectors. Then, yk(t) = k(t),

yl(t) = l(t), and the factor market clearing conditions read m(t)k(t) = K(t) and
n(t)l(t) = L, respectively. Here, K(t) > 0 and L > 0 denote the endowments
of capital and unskilled labor. As a consequence, YK(t) = m(t)K(t) and YL(t) =
n(t)L, so that

Y (t) = F (m(t)K(t), n(t)L) . (19)

Hence, increasing m(t) and n(t) has an interpretation as capital-, respectively,
labor-augmenting technical change.

The fourth sector is the research sector. Let Sk(t) ≥ 0 and Sl(t) ≥ 0 denote
the “number” of scientists engaged in the invention of new varieties that expand
either the set [0,m(t)] or the set [0, n(t)]. The technologies for the creation of
new inventions are

ṁ(t)

m(t)
= Sk(t) − δ and

ṅ(t)

n(t)
= Sl(t) − δ, (20)

where δ ∈ R++ is the obsolescence rate of existing varieties. At all t , there are S

scientists in the economy, i. e., market clearing requires Sk(t) + Sl(t) = S.

Net Output and the Steady State. The key observation of the preceding section
is that current final-good output is neither used as an input in the two vertical chains
that end in the production of the final good, nor as an input in the research sector.
Hence, there are no intermediate expenses. Therefore, I (t) = 0 and the reduced
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form for Yt of equation (19) states the amount of the final good available at t for
consumption and capital accumulation, i. e., V (t) = Y (t).

The following proposition highlights the link between the steady-state path of
the economy and Theorem 1.

PROPOSITION 2. Consider the economy described by equations (19), (4), and
(5) with gL = 0. Suppose there exists a steady-state path starting at date τ < ∞
such that Y (t) > C(t) > 0 for all t ≥ τ . Then, the following holds:

1. If gm �= 0, then net output has the form

V (t) = βF [K(t)]αF
[
eg(t−τ )L

]1−αF
,

where

g = αF gm

1 − αF

+ gn.

2. If F is not Cobb–Douglas, then

V (t) = F (m(τ)K(t), n(t)L) ,

gm = 0 and g = gn.

To prove Proposition 2 start with the observation that F of equation (19) has
constant returns to capital and labor. Moreover, F corresponds to the economy’s
aggregate production function F̃ [K(t), L(t), AF (t)] of equation (1). Hence, as
V (t) = Y (t), the economy described by equations (19), (4), and (5) with gL = 0
satisfies all assumptions of Theorem 1 for I (t) = 0. Accordingly, steady-state
technical change has a representation as labor-augmenting.

Let BF (t) ≡ m(t) and AF (t) ≡ n(t). Then, (net) output can be written as
V (t) = F [BF (t)K(t), AF (t)L]. Accordingly, Section 2.3 applies and suggests
the distinction between the two cases mentioned in the proposition. First, gm �= 0
can only occur if F is of the Cobb–Douglas type. Here, the parameters αF and βF

are as introduced in Corollary 2, and g = αF gm/ (1 − αF )+gn is the steady-state
growth rate of the economy.

The second case follows immediately from the first. Any functional form other
than the Cobb-Douglas type implies gm = 0 and g = gn.

Again, two closing remarks are in order. First, it is worth emphasizing that
the production functions (17) and (18) of the intermediate-good sectors are time-
invariant and therefore not subject to technical progress. While this is so by
assumption, it is also required by Theorem 1. Formally, these functions are con-
tained in AF (t), and for t ≥ τ we must have AF (t) = AF (τ ). This is another
instance of the restrictiveness of Theorem 1. Any mode of technical change other
than labor-augmenting is forbidden in steady state.

Second, let me underline that Proposition 2 does not hinge on the presence nor
on the structural properties of the research sector.17 The nature of steady-state
technical change is entirely determined by the structural properties of the pro-
duction sector and its consistency with Theorem 1. Finally, recall that Theorem 1
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coincides with Uzawa’s original theorem for I (t) = 0. Hence, Uzawa’s theorem
directly applies to the model of Acemoglu (2003). We shall see in Section 3.4 that
the same conclusion holds for the models that belong to the induced innovations
literature of the 1960s.

3.3. Example 3: The Multi-Sector Model of Acemoglu (2009)

The economy studied in Acemoglu (2009, Chapter 15.6), extends the model of
Acemoglu (2003) by allowing for a market size effect that affects the direction of
technical change. In Section 3.3, I show how the production sector of Acemoglu
(2003) is modified and that these modifications give rise to a strictly positive aggre-
gate intermediate expenses function, i. e., I (t) > 0. This suggests an application
of Theorem 1. Proposition 3 of Section 3.3 has the details.18

Production and Research. Two changes to the production sector of Section 3.2
are made. First, the production functions of the intermediates YK and YL are
modified so that the market-size effect can play a role. Second, the single-good
firms that manufacture one type of machines now use current final-good output as
the only input. Due to the latter change, gross and net output differ. To make this
more precise let us reconsider the production and research sectors of Section 3.2.

The first sector, i. e., the production of the final good, is unchanged. Hence,
Y (t) = F [YK(t), YL(t)] as in equation (16).

In the second sector, the production functions for YK(t) and YL(t) of equation
(17) are replaced by

YK(t) = 2
√

K(t)

∫ m(t)

0

√
yk(i, t)di and

YL(t) = 2
√

L

∫ n(t)

0

√
yl(i, t)di. (21)

Here, the appearance of K(t) and L is new. Hence, the disjoint sets [0,m(t)] and
[0, n(t)] represent machines that are either complementary to capital or to labor.
All machines in use at t fully depreciate afterward.

The third sector comprising the single-good firms that each produce one variety
of the machines used in equation (21) is modified. The new feature concerns the
production of machines that now uses current final output as the sole input. For
all machines the production functions are identical and linear. Without loss of
generality, assume that the required input per manufactured machine is one unit
of the final good.

With these changes a symmetric configuration of the three production sectors
has the following properties.

With yk(i, t) = yk(t) and yl(i, t) = yl(t) intermediate expenses for capital-
comple- mentary machines amount to m(t)yk(t), those for labor-complementary
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machines are equal to n(t)yl(t). Since the sum of these magnitudes corresponds
to aggregate intermediate expenses it holds indeed that I (t) > 0.

As both types of machines are produced out of current final-good output using
a linear production function, we have

m(t)yk(t) = ζk(t)Y (t) and n(t)yl(t) = ζl(t)Y (t), (22)

where ζk(t) > 0 and ζl(t) > 0 denote the fractions of total output used in the
production of the respective machine type, and 0 < ζk(t) + ζl(t) < 1. Hence,
aggregate intermediate expenses may be written as

I (t) = [ζk(t) + ζl(t)] Y (t). (23)

Here, the conditions on the ζ s assure that Y (t) > V (t) > 0.
Symmetry and equation (22) imply that the output of YK(t) and YL(t) of (21)

may be expressed as

YK(t) = 2
√

ζk(t)m(t)K(t)Y (t) and YL(t) = 2
√

ζl(t)n(t)LY (t). (24)

The substitution of these expressions into the production function of the final good
(16) delivers

Y (t) = F
[
2
√

ζk(t)m(t)K(t)Y (t), 2
√

ζl(t)n(t)LY (t)
]
. (25)

Since F has constant returns to scale this expression may be solved for Y (t). This
gives the aggregate output of the final good as

Y (t) = 4
(
F

[√
ζk(t)m(t)K(t),

√
ζl(t)n(t)L

])2
. (26)

Hence, in line with equation (1), the economy’s aggregate production function is

F̃ [K(t), L(t), AF (t)] = 4
(
F

[√
ζk(t)m(t)K(t),

√
ζl(t)n(t)L

])2
, (27)

and exhibits constant returns to scale in K(t) and L.
Using equations (23) and (27) delivers the aggregate intermediate expenses

function corresponding to equation (2) as

Ĩ [K(t), L(t), AI (t)] = [ζk(t) + ζl(t)] F̃ [K(t), L(t), AF (t)] , (28)

which has constant returns to scale in K(t) and L, too.
Finally, observe that the research sector of Section 3.2 remains unchanged.

Net Output and the Steady State. The upshot of the preceding section is that F̃

of equation (27) has constant returns to scale in K(t) and L even though it results
as the solution to the fixed-point problem involved in equation (25). Then, with

https://doi.org/10.1017/S1365100516000407 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100516000407


796 ANDREAS IRMEN

equations (27) and (28) it becomes obvious that the economy’s net output function
corresponding to equation (3) is

Ṽ [K(t), L(t), AF (t), AI (t)] = (1 − ζk(t) − ζl(t)) F̃ [K(t), L(t), AF (t)] .

(29)

The following proposition exploits this fact and provides the link between the
steady-state path of the economy and Theorem 1. To simplify the notation, define
BF (t) ≡ ζk(t)m(t), AF (t) ≡ ζl(t)n(t).

PROPOSITION 3. Consider the economy described by equations (29), (4), and
(5) with gL = 0. Suppose there exists a steady-state path starting at date τ < ∞
such that Y (t) > V (t) > C(t) > 0 for all t ≥ τ . Then, the following holds:

1. If gm �= 0, then net output has the form

V (t) = (1 − ζk(τ ) − ζl(τ )) βF [K(t)]αF
[
eg(t−τ )L

]1−αF
,

where

g = αF gBF

1 − αF

+ gAF
.

2. If F is not Cobb–Douglas, then

V (t) = (1 − ζk(τ ) − ζl(τ )) F (m(τ)K(t), n(t)L) ,

gm = 0 and g = gn.

Despite the more complex structure of the economy, Proposition 3 looks strik-
ingly similar to Proposition 2. In fact, the only difference is the factor of propor-
tionality [1 − ζk(τ ) − ζl(τ )] reflecting the gap between gross and net output. In
steady state, both ζ s must be constant. To see why start with the observation that
net output of equation (29) exhibits constant returns to capital and labor. Hence,
the economy described by equations (29), (4), and (5) with gL = 0 satisfies the
assumptions of Theorem 1 with I (t) > 0. According to Claim 1 of the Theorem,
gI = gY . Since equation (23) must hold for all t ≥ τ and 0 < ζk(t) < 1,
0 < ζl(t) < 1 neither gζk

�= 0 nor gζl
�= 0 is sustainable in steady state.

In accordance with Claim 2 of Theorem 1, technical change has a representation
as purely labor-augmenting in steady state. In conjunction with Section 2.3, this
gives rise to the two cases stated in Proposition 3. The underlying intuition mimics
the one of Proposition 2.19 Finally, observe that, mutatis mutandis, the two closing
remarks of Sections 3.1 and 3.2 apply here, too.

3.4. Example 4: “Induced Innovations” and Capital Accumulation

This section revisits the so-called induced innovations literature of the 1960s. I
focus on a typical model with capital accumulation that allows for endogenous
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capital- and labor-augmenting technical change [see, e. g., von Weizsäcker (1962),
Drandakis and Phelps (1966), Samuelson (1966), or Funk (2002)].

There is one sector on the production side with access to the aggregate produc-
tion function

Y (t) = F (B(t)K(t), A(t)L(t)) . (30)

The function F has constant returns to scale, is increasing in both arguments, and
technical change is by assumption capital- and labor-augmenting.

The most remarkable features of this literature are related to the endogenous
choice of the growth rates gA(t) and gB(t). First, there is the assumption of
an innovation possibility frontier that specifies the set of feasible rates of factor
augmentation as

{(gA(t), gB(t)) ∈ R2
+|gB(t) = γ (gA(t))}.

The frontier γ (.) is time-invariant, decreasing, and strictly concave. Hence, there
is a trade-off: a greater gA(t) requires a smaller gB(t) and vice versa.

Second, the growth rates [gA(t), gB(t)] are endogenous in the sense that they
maximize the instantaneous rate of technical progress at given factor shares and
subject to the innovation possibility frontier.

What form of technical change will arise in the steady state starting at some
date τ < ∞? Since F has constant returns to scale in K(t) and L(t) an economy
described by equations (30), (4), and (5) satisfies all assumptions of Theorem 1.
Moreover, since the choice of gA(t) and gB(t) does not involve a cost in terms
of resources, there are no intermediate expenses, i. e., I (t) = 0. Accordingly,
V (t) = Y (t) and Uzawa’s original theorem informs us about the nature of technical
change in steady state. As technical change is by definition factor-augmenting in
F, we may also directly invoke Section 2.3 to characterize the steady state of
the economy. This reasoning leads to the conclusion that up to few notational
changes Proposition 2 applies also to the “induced innovations” economy with
capital accumulation under scrutiny here.20

4. CONCLUDING REMARKS

Why is endogenous technical change labor-augmenting in the steady state even
though capital-augmenting technical change is feasible? For the literature on
induced innovations with capital accumulation of the 1960s, Solow (1970, p. ix),
remarks that this theory “is set up to generate labor-augmenting technical change
because that is the only kind that combines with the other standard assumptions to
permit a steady state.” Section 3.4 confirms this assessment: these “other standard
assumptions” make this theory fit Uzawa’s original theorem.

The main conclusion of the present paper is that a similar assessment holds for
the modern theory of endogenous capital- and labor-augmenting technical change.
This may seem puzzling since compared to the literature of the 1960s the picture of
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a growing economy drawn in the modern literature is far more complex. Features
like a micro-founded research sector requiring resources to generate new capital-
or labor-augmenting technological knowledge, a micro-founded production sector
possibly operating under imperfect competition, or the presence of knowledge
spill-overs do certainly not belong to the set of “the other standard assumptions”
to which Solow refers.

Nevertheless, I establish that Uzawa’s Theorem explains why the steady state in
the model of Acemoglu (2003) has only labor-augmenting technical change. The
generalized steady-state theorem devised in this paper provides the same answer
for the models of Irmen and Tabaković (2015) and Acemoglu (2009, Chapter 15).

Arguably, among growth theorists there may be an intuitive feel or a folk
theorem saying that Uzawa’s theorem should somehow carry over to the modern
literature of endogenous capital- and labor-augmenting technical change. The
generalized steady-state growth theorem confirms this intuition and provides its
precise analytical underpinning. The four examples discussed in Section 3 show
in detail how the theorem is to be applied to the existing literature.

The main conclusion of this paper should not be interpreted as a plea to neglect
or eliminate capital-augmenting technical change altogether. Indeed, the results
derived in Irmen (2017) and Irmen and Tabaković (2015) suggest that both the nor-
mative and the positive implications of models with endogenous technical change
crucially hinge upon whether capital-augmenting technical change is included
in the analysis or not. Future research will have to elucidate this point. It will
be of particular interest to study whether policy recommendations are robust if
endogenous capital-augmenting technical change is added to the picture.

NOTES

1. See, e. g., von Weizsäcker (1962), Kennedy (1964), Samuelson (1965), Samuelson (1966), or
Drandakis and Phelps (1966).

2. Jones (2005) develops an alternative argument for why technical change may be labor-
augmenting.

3. A steady state is defined as a path along which all variables in a model grow at constant, and
possibly different, exponential rates. These rates may be positive, zero, or negative.

4. Some recent estimates of the elasticity of substitution between capital and labor find values
greater than unity [see, e. g., Duffy and Papageorgiou (2000), Karabarbounis and Neiman (2014), or
Piketty (2014)]. In this case, the steady-state path of the typical model of the literature of the 1960s is
a saddle [see, e. g., Drandakis and Phelps (1966)]. In the model of Acemoglu (2003), the steady state
is unstable.

5. Quite remarkably, Uzawa calls his main result “Robinson’s Theorem” [Uzawa (1961, p. 119)].
It is meant to formalize the graphical analysis of neutral inventions that appears in Robinson (1938).
Robinson’s Theorem shows the equivalence between labor-augmenting and Harrod-neutral technical
change that, by definition, does not affect the value of the capital coefficient at a constant rate of interest
[Harrod (1937)]. With this finding at hand, only a small step is needed to establish that steady-state
growth requires technical change to be Harrod-neutral. It is the latter result that the literature refers
to as Uzawa’s steady-state growth theorem. Concise statements of it can be found in Schlicht (2006),
Jones and Scrimgeour (2008), or Acemoglu (2009). As will become clear subsequently, the present
paper generalizes this theorem with the introduction of aggregate intermediate expenses that represent
resources used to generate technical progress or to manufacture intermediates.
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6. In other words, along the transition toward such a steady-state technical change should become
purely labor-augmenting and capital-augmenting technical change should peter out. Klump, McAdam,
and Willman (2007) find this pattern of technical change empirically for the US economy over the
period 1953 to 1998.

7. The reduced form of the three-sector model of endogenous capital- and labor-augmenting
technical change devised in Irmen (2011) shares the relevant properties with the one-sector model of
Irmen and Tabaković (2015). Hence, all findings derived in Section 3.1 also apply to this three-sector
model. They do also apply to the one-sector model under scrutiny in Irmen (2017).

8. In general, the specification of AF (and AI introduced below) will depend on how technological
knowledge and its components are represented.

9. This assumption will be relaxed in Section 2.3 below. In any case, observe that the dependency
of F̃ and Ĩ on K and L does not necessarily imply that all machines and the entire labor force
produce both the final and the investment good. For instance, let KY and KI denote homogeneous
machines allocated, respectively, to the production of the final and the investment good. Then market
clearing requires KY + KI = K . Accordingly, the equilibrium allocation of machines will hinge on
the exogenous capital endowment, K , which appears as an argument in F̃ and Ĩ . Mutatis mutandis,
the same point may be made for labor.

10. Observe that unlike Theorem 1, the character of Uzawa’s original theorem drastically changes
if the aggregate production function becomes either linear in labor or in capital. In the former case,
Y (t) = L(t) ˜̃F (AF (t)) and, void of capital and its accumulation, steady-state technical change has to
be labor-augmenting. In the latter case, Y (t) = K(t) ˜̃F (AF (t)), i. e., aggregate production is of the
AK-type. Here, labor is not explicitly accounted for and the mere notion of labor-augmenting technical
change becomes pointless.

11. In Theorem 1, I introduce g as the growth rate of per-worker variables. In a slight abuse of
notation, here I also use g to denote the growth rate of “labor-augmenting” technical change in a
Cobb–Douglas function. Observe that both growth rates coincide in steady state.

12. See, e. g., Barro and Sala-ı́-Martin (2004), 78–80, for a discussion of this case.
13. A brief discussion of this model is also contained in Section 5.3 of Acemoglu (2003).
14. All four examples are presented in continuous time. While the analysis in Irmen and Tabaković

(2015) is set up in discrete time the switch to continuous time is without loss of generality for my
qualitative results.

15. Observe that general conditions can be given so that the steady-state path of Proposition 1 indeed
exists. The same remark applies to the steady-state paths of Proposition 2, Proposition 3, and the one
studied in Section 3.4.

16. Acemoglu assumes F to be a CES production function. This specification is not necessary for
my purpose here (though, the elasticity of substitution plays an important role in Acemoglu’s analysis).
When referring to other functional forms that appear in Acemoglu (2003), I use particular values for
the following parameters: β = 1/2, bk = bl = 1. Moreover, I set the function φ(s) = 1, for s = Sk, Sl .
These choices simplify the exposition but are without loss of generality for the qualitative results I
derive.

17. However, Proposition 2 imposes severe constraints on the way the accumulation equations (20)
may be specified to support a steady state where technical change has a representation as labor-
augmenting. Here, full employment of all researchers and equation (20) imply in the first case of
Proposition 2 that any pair (gm, gn) must satisfy gm = Sk − δ, gn = Sl − δ, and Sk + Sl = S. In the
second case, it must be that gm = 0 and gn = S − 2δ.

18. In what follows, I use the same parameter values as set out in note 16. Again, these choices
simplify the exposition but are without loss of generality for the qualitative results I derive.

19. To justify Claim 1 of Proposition 3, one may alternatively invoke Claim 4 of Corollary 2 with
αF = αI .

20. To be precise, we need to replace (m, gm) and (n, gn) by (B, gB) and (A, gA), respectively.
Moreover, there is no reason here to keep (unskilled) labor constant. Hence, we may replace L by
L(τ)egL(t−τ ), gL ∈ R.
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APPENDIX: PROOFS

A.1. PROOF OF THEOREM 1

Observe that Y (t) > V (t) > C(t) > 0 implies both Y (t) > I (t) > 0 and V (t) > C(t) > 0.
Moreover, without loss of generality let τ = 0.

Part I. Given time-invariant growth rates, date t quantities may be expressed in terms
of date 0 quantities, i. e., V (t) = V (0)egV t , Y (t) = Y (0)egY t , and I (t) = I (0)egI t . Then,
from the definition of V (t), I have for all t ≥ 0

V (0)egV t = Y (0)egY t − I (0)egI t . (A.1)

Dividing both sides by egV t gives

V (0) = Y (0)e(gY −gV )t − I (0)e(gI −gV )t .

Differentiation with respect to t delivers

0 = (gY − gV ) Y (0)e(gY −gV )t − (gI − gV ) I (0)e(gI −gV )t .

The latter can hold for all t if any of the following conditions are satisfied: (a) gV = gY = gI ,
(b) gY = gI and Y (0) = I (0), (c) gV = gY and I (0) = 0, and (d) gV = gI and
Y (0) = 0. Alternatives (b) to (d) contradict Y (0) > I (0) > 0. Hence, gV = gY = gI must
apply.

With K(t) = K(0)egK t and C(t) = C(0)egC t , capital accumulation of equation (4)
delivers

K(0)egK t (gK + δK) = V (0)egV t − C(0)egC t . (A.2)

Divide both sides by egK t and obtain

K(0)(gK + δK) = V (0)e(gV −gK )t − C(0)e(gC−gK )t .

Differentiation of the latter with respect to t gives

0 = (gV − gK) V (0)e(gV −gK )t − (gC − gK)C(0)e(gC−gK )t .

The latter can hold for all t if any of the following conditions are satisfied: (a) gV = gK = gC ,
(b) gV = gC and V (0) = C(0), (c) gV = gK and C(0) = 0, and (d) gC = gK and V (0) = 0.
Alternatives (b)–(d) contradict V (0) > C(0) > 0. Hence, gV = gK = gC must apply as
claimed. This completes the proof of Part I.
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Part II. In light of equation (3), for any t ≥ 0, net output at time 0 may be written as

e−gV t · V (t) = Ṽ
[
e−gK t · K(t), e−gLt · L(t), AF (0), AI (0)

]
.

Multiplying both sides by egV t and using constant returns of Ṽ gives

V (t) = Ṽ
[
e(gV −gK )t · K(t), e(gV −gL)t · L(t), AF (0), AI (0)

]
. (A.3)

From Part I, I have gV = gK , hence for any t ≥ 0

V (t) = Ṽ
[
K(t), e(gV −gL)t · L(t), AF (0), AI (0)

]
.

Since the latter equation is true for all t ≥ 0 and Ṽ is linear homogeneous in the first two
arguments, there exists a linear homogeneous function V : R2

+ → R+ such that

V (t) = V
[
K(t), e(gV −gL)t · L(t)

] = V [K(t), A(t)L(t)] ,

with A(t) = e(gV −gL)t ∈ R++.
Part I and constant returns to scale imply that net output per-worker as well as all other

per-worker variables grow at rate g = gV − gL. This establishes the second part of the
theorem. �

A.2. PROOF OF COROLLARY 1

Again, without loss of generality let τ = 0.
Part I. Since Y (t) > V (t) = C(t) > 0 we now have Y (t) > I (t) > 0 and V (t) =

C(t) > 0. Therefore, the proof of gV = gY = gI remains as in the proof of Theorem 1.
However, V (t) = C(t) and equation (4) deliver gV = gC and gK = −δK , respectively.
This proves Part I of Corollary 1.

Part II. The first two steps in the proof of Part II of Theorem 1 remain valid. Then, using
gK = −δK in equation (A.3) delivers for any t ≥ 0

V (t) = Ṽ
[
e(gV +δ)t · K(t), e(gV −gL)t · L(t), AF (0), AI (0)

]
.

Since the latter equation is true for all t ≥ 0 and Ṽ is linear homogeneous in the first two
arguments, there exists a linear homogeneous function V : R2

+ → R+ such that

V (t) = V
[
e(gV +δK )t · K(t), e(gV −gL)t · L(t)

] = V [B(t)K(t), A(t)L(t)] ,

with B(t) = e(gV +δK )t ∈ R++ and A(t) = e(gV −gL)t ∈ R++. Hence, V (t) is as stated
in Corollary 1. Capital per worker, K(t)/L(t), grows at rate gK − gL = − (δK + gL).
Moreover, since gV = gY = gI = gC all remaining per-worker variables grow at rate
g = gV − gL. �

A.3. PROOF OF COROLLARY 2

Let me introduce

κF (t) = AF (t)L(t)

BF (t)K(t)
and κI (t) = AI (t)L(t)

BI (t)K(t)
.
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Now, consider equation (7) and divide by K(t). This gives

V (t)

K(t)
= Y (t)

K(t)
− I (t)

K(t)
,

= BF (t)F [1, κF (t)] − BI (t)I [1, κI (t)] ,

= BF (t)f (κF (t)) − BI (t)i (κI (t)) ,

where f : R+ → R+ and i : R2
+ → R+ are respectively defined as f (κF (t)) ≡

F [1, κF (t)] and i (κI (t)) ≡ I [1, κI (t)].
Observe that net output of equation (7) is a special case of the formulation given in

equation (3). Therefore, Part I of Theorem 1 applies and imposes the requirement that
gV = gY = gI = gK , i. e., the fraction V (t)/K(t) as well as Y (t)/K(t) = BF (t)f (κF (t))

and I (t)/K(t) = BI (t)i (κI (t)) are constant in steady state. Then, four cases may arise.
They correspond to the four claims made in the corollary. I consider each in turn.

1. If gBF
= gBI

= 0 then gκF
= gκI

= 0. Taken together, the implication is that
gAF

= gAI
= gK − gL. Since gV = gK , the growth rate of per-worker variables is

gAF
= gAI

= gV − gL = g.
2. If gBF

= 0 and gBI
�= 0 then gκF

= 0 whereas gκI
�= 0. For aggregate production the

implication is that gAF
= gK − gL. For aggregate intermediate expenses the growth

rates gBI
�= 0 and gκI

�= 0 must be of opposite sign such that BI (t)i (κI (t)) with
i ′ (κI (t)) > 0 can remain constant over time. In other words, the time derivative of
this product must vanish, i. e.,

ḂI (t)i (κI (t)) + BI (t)κ̇I (t)i
′ (κI (t)) = 0, (A.4)

or, in steady state,

i ′ (κI (t)) κI (t)

i (κI (t))
= −gBI

gκI

.

Integration reveals that the solution can be written as

i (κI (t)) = cI κI (t)
1−αI ,

where cI > 0 is a constant of integration and αI = 1 + gBI
/gκI

. A positive, yet
declining marginal product of capital requires 0 < αI < 1. Then, for all t ≥ τ

I (t) = cI (BI (t)K(t))αI (AI (t)L(t))1−αI = cI (BI (τ )K(t))αI
(
AI (τ)eg(t−τ )L(t)

)1−αI
,

where g = αIgBI
/ (1 − αI ) + gAI

. Introducing the constant βI , I (t) may be written
as stated in Claim 2.
To align gI and gY , express the growth rate of I (t) as

gI = αI

(
gBI

+ gK

) + (1 − αI )
(
gAI

+ gL

)
.

Since gI = gK the latter becomes

gI = αIgBI

1 − αI

+ gAI
+ gL.
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Next, recall that gY = gK = gAF
+ gL. Then, gY = gI requires

gAF
= αIgBI

1 − αI

+ gAI
= g.

Hence, any set of growth rates {gAF
, gBI

, gAI
} ∈ R2 × R \ {0} must satisfy the latter

condition to be consistent with a steady state.
3. The case where gBF

�= 0 and gBI
= 0 is the mirror image of the previous case.

Mutatis mutandis, the proof of Claim 2 applies here, too.
4. If gBF

�= 0 and gBI
�= 0 then the proof of Cases 2 and 3 implies immediately that

aggregate production and aggregate intermediate expenses may be written as

Y (t) = βF K(t)αF
(
eg(t−τ )L(t)

)1−αF
,

I (t) = βIK(t)αI
(
eg(t−τ )L(t)

)1−αI
,

where g is given by equation (10), the condition that any set of growth rates
{gBF

, gAF
, gBI

, gAI
} ∈ R2 × R \ {0, 0} must satisfy to be consistent with a steady

state. Accordingly, net output has the form given in Claim 4.

�

A.4. PROOF OF PROPOSITIONS 1, 2, AND 3

To be found in the main text. �
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