
TPLP 19 (5–6): 1021–1037, 2019. c© Cambridge University Press 2019

doi:10.1017/S1471068419000334

1021

Using Answer Set Programming for Commonsense
Reasoning in the Winograd Schema Challenge

ARPIT SHARMA
Arizona State University, Tempe, USA

(e-mail: asharm73@asu.edu)

submitted 30 July 2019; accepted 31 July 2019

Abstract

The Winograd Schema Challenge (WSC) is a natural language understanding task proposed
as an alternative to the Turing test in 2011. In this work we attempt to solve WSC problems
by reasoning with additional knowledge. By using an approach built on top of graph-subgraph
isomorphism encoded using Answer Set Programming (ASP) we were able to handle 240 out of
291 WSC problems. The ASP encoding allows us to add additional constraints in an elaboration
tolerant manner. In the process we present a graph based representation of WSC problems as
well as relevant commonsense knowledge.

KEYWORDS: Answer Set Programming, Winograd Schema Challenge, Commonsense Reason-
ing, Graph-Subgraph Isomorphism

1 Introduction

The Winograd Schema Challenge (WSC) (Levesque et al. 2011) is a natural language

understanding task. It is made up of special types of pronoun resolution problems. Each

WSC problem consists of a sequence of sentences (currently 1-3) which contain a definite

pronoun. A WSC problem also contains a binary question about the sentences such

that the answer to the question provides the most natural resolution for the concerned

pronoun. Additionally, two answer choices for the question are also provided. The answer

choices are always present in the sentences. The goal in the WSC challenge is to determine

the correct answer choice. Following is an example WSC problem.

Sentences: The fish ate the worm. Itpronoun was tasty

Question: What was tasty? Answer Choices: a) fish b) worm

AWSC problem also specifies an “alternate word” for a “special word” in the sentences.

Replacing the “special word” by the “alternate word” changes the resolution of the

pronoun. In the example above, the special word is tasty and the alternate word is

hungry. Thus every schema represents a pair of coreference resolution problems that are

almost identical but have different answers. Based on our analysis of how people solve the

WSC problems, it suggests that for solving them a program would have to use relevant

world knowledge. For example to solve the above question, the knowledge that ‘something

that is eaten may be tasty’ is needed.

Earlier attempts to solve the challenge are mainly based on two different approaches.

Works such as (Schüller 2014) and Bailey et al. (2015) solve 8 and 72 WSC problems

https://doi.org/10.1017/S1471068419000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000334
https://orcid.org/0000-0002-0966-2890
mailto:asharm73@asu.edu
https://doi.org/10.1017/S1471068419000334


1022 A. Sharma

respectively by reasoning with the explicitly provided knowledge. Such works presented

algorithms which take a WSC problem and a suitable knowledge as input and produce

the solution of the problem. Other attempts however utilize the recent advancement in

the field of neural language modelling. For example the language model in Radford et al.

(2019) correctly answered 193 out of 273 WSC problems by predicting the more plausible

answer choice based on the support generated by a language model trained on large body

of text.

In this work we attempt to solve the WSC by reasoning with additional knowl-

edge. We define an algorithm which is built on top of graph-subgraph isomorphism

(Cordella et al. 2004). By using an Answer Set Programming (ASP) (Baral 2003;

Gelfond and Lifschitz 1988) based implementation of the algorithm, we were able to

tackle 240 out of 291 WSC problems. The motivation behind using ASP is that we would

like the process of adding new constraints to be easier. It plays an important part in the

isomorphism detection step of the algorithm where the nodes in two graphs are paired

based on a set of constraints. Adding new constraints in other high level languages such

as python would take one to delve deep into the code to identify the actual place of injec-

tion whereas it can be easily accomplished in ASP by writing a new constraint anywhere

in the code. The main contributions of this work are summarized below.

• a graph based representations of WSC sentences and commonsense knowledge,

• Winograd Schema Challenge Reasoning (WiSCR) algorithm,

• an ASP implementation of the WiSCR algorithm, and

• an experimental evaluation of the implementation showing that it handles 240 out

of 291 WSC problems. This is accomplished by performing three experiments, one

of which involves an automatic approach to extract knowledge from text.

The rest of the paper is organized as follows. Sections 2 and 3 describe graphical rep-

resentations of a WSC problem and a piece of knowledge. Section 4 details the reasoning

algorithm and its ASP implementation. Section 5 presents the evaluation results of the

ASP implementation. Section 6 provides the literature review. Finally Section 7 presents

our conclusion.

2 Graphical Representation of a WSC Problem

Graphical meaning representations are popular for natural languages such as English.

It is because of their simplicity, readability and ability to be easily processed, that in

the recent years there has been a significant amount of progress (Sharma et al. 2015a;

Banarescu et al. 2013) in defining graphical representations for natural language and

development of systems which can automatically parse a natural language text into those

representations. Inspired by such representations, in this work we use a graphical schema

to represent the sentences in a WSC problem, and a piece of knowledge.

In the following section, we define a graphical representation of a sequence of English

sentences in a WSC problem. For that reason we define a set of tokens in a sequence of

sentences, a POS (part-of-speech) tagging function which maps each token in a sequence

of sentences to a POS tag, a class mapping function which maps each token in a sequence

of sentences to its class (or type) and finally we define a graphical representation of a

sequence of sentences by using a POS tagging function and a class mapping function.

The nodes in the graphical representation are made up of the tokens in the sentences

https://doi.org/10.1017/S1471068419000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000334


Theory and Practice of Logic Programming 1023

and the classes of the tokens. The edge labels in the graphical representation are from a

set of binary relations between two nodes in the representation.

Definition 1 (Set of Tokens in a Sequence of Sentences). Let S = (S1, S2, ..., Sn),

n ≥ 1, be a sequence of English sentences, Wi be the sequence of words in the sentence

Si and WS = W�
1 W�

2 ...�Wn be the concatenation of the word sequences. Then the set

of tokens T(S) is defined as follows:

T(S) = {w i | w is the ith word in WS}
Example 1. Let us consider the sequence of English sentences S = (‘The man could

not lift his son because he was so weak.’ ) where S contains only one sentence. Then,

T(S) = {The 1, man 2, could 3, not 4, lift 5, his 6, son 7, because 8, he 9, was 10,

so 11, weak 12}.
Definition 2 (A POS Tagging Function). Let S be a sequence of one or more

English sentences, T(S) be the set of tokens in S. Then, the POS (Part-Of-Speech)

tagging function fpos
S maps an element in T(S) to an element in the set {verb, noun,

pronoun, adverb, adjective, other}, i.e.,
fpos
S : T(S) → {verb, noun, pronoun, adverb, adjective, other}

Example 2. Let us consider the sequence of English sentences ‘The man could not lift

his son because he was so weak.’ The set of tokens in the sequence is as shown in the

Example 1. Then an example of a mapping produced by a POS tagging function is,

fpos
S (The 1) = other

fpos
S (man 2) = noun

fpos
S (could 3) = verb

fpos
S (not 4) = adverb

fpos
S (lift 5) = verb

fpos
S (his 6) = pronoun

fpos
S (son 7) = noun

fpos
S (because 8) = other

fpos
S (he 9) = pronoun

fpos
S (was 10) = verb

fpos
S (so 11) = adverb

fpos
S (weak 12) = adjective

Definition 3 (A Class Mapping Function). Let S be a sequence of one or more

English sentences, T(S) be the set of tokens in S. Then, the class mapping function

f class
S maps an element of T(S) to an element in a set C, i.e., f class

S : T(S) → C where

the set C is a union of three sets C1, C2 and {φ} such that,

• C1 = {c | c is the lemmatized1 form of w where w i ∈ T(S) and fpos
S (w i) ∈ {verb,

adverb, adjective}}

1 https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html,
https://www.thoughtco.com/what-is-base-word-forms-1689161

https://doi.org/10.1017/S1471068419000334 Published online by Cambridge University Press

https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html
https://www.thoughtco.com/what-is-base-word-forms-1689161
https://doi.org/10.1017/S1471068419000334


1024 A. Sharma

• C2 = {object, person, group, location, quantity, shape, animal, plant, cognition,

communication, event, feeling, act, motive, phenomenon, possession, process,

relation, state, time}2
and,

f class
S (x) =

⎧⎪⎪⎨
⎪⎪⎩
c1 ∈ C1 if fpos

S (x) ∈ {verb, adjective, adverb}
c2 ∈ C2 if fpos

S (x) ∈ {noun, pronoun}
φ otherwise

Example 3. Let us consider the sequence of English sentences ‘The man could not lift

his son because he was so weak.’ The set of tokens in the sequence is as shown in the

Example 1. Also let a mapping produced by a POS tagging function is as shown in the

Example 2 above. Then an example of a mapping produced by a class mapping function

is,

f class
S (The 1) = φ

f class
S (man 2) = person

f class
S (could 3) = can

f class
S (not 4) = not

f class
S (lift 5) = lift

f class
S (his 6) = person

f class
S (son 7) = person

f class
S (because 8) = φ

f class
S (he 9) = person

f class
S (was 10) = be

f class
S (so 11) = so

f class
S (weak 12) = weak

Definition 4 (A Formal Representation of a Sequence of One or More English

Sentences). Let S be a sequence of English sentences, T(S) be a set of tokens in S,
fpos
S be a POS tagging function and f class

S be a class mapping function. Then, a formal

representation of S is an edge labeled directed acyclic graph, GS = (V,E, f). The set of

vertices V, is a union of two disjoint sets V1 and V2, such that,

• V1 = {w i | w i ∈ T(S) and fpos
S (w i) ∈{verb, adverb, adjective, noun, pronoun}}

• V2 = {c | f class
S (w i) = c where w i ∈ V1}

The nodes in V1 are called instance nodes and the nodes in V2 are called class nodes.

E ⊆ V× V, has following properties,

• E is a union of the two disjoint sets E1 and E2,

• (v1, v2) ∈ E1 if v1 ∈ V1 and v2 ∈ V1, where (v1, v2) represents a directed edge between

the nodes v1 and v2,

• (v1, v2) ∈ E2 if v1 ∈ V1 and v2 ∈ V2, where (v1, v2) represents a directed edge between

the nodes v1 and v2,

2 Inspired from WordNet (Miller 1995) lexicographer files https://wordnet.princeton.edu/
documentation/lexnames5wn

https://doi.org/10.1017/S1471068419000334 Published online by Cambridge University Press

https://wordnet.princeton.edu/documentation/lexnames5wn
https://wordnet.princeton.edu/documentation/lexnames5wn
https://doi.org/10.1017/S1471068419000334


Theory and Practice of Logic Programming 1025

• if (v1, v2) ∈ E2 then there does not exist v ∈ V2 such that (v1, v) ∈ E2 where v �= v2.

This means that v1 has only one class node as its successor. This is because a concept

can be of one type only in this representation.

f : E → L ∪ {instance of}, is an edge labelling function where L is a set of binary

relations between two nodes in V1 and instance of is a binary relation between a node

in V1 and a node in V2, i.e.

f((v1, v2)) =

{
l ∈ L if (v1, v2) ∈ E1

“instance of” if (v1, v2) ∈ E2

Example 4. Let us consider the sequence of sentences ‘The man could not lift his son

because he was so weak.’, POS mapping shown in Example 2 and class mapping shown

in Example 3. Then a representation of the sentences is shown in Figure 1. All the

edges labels other than instance of part of a predefined set of binary relations between

two nodes (as mentioned in the Definition 4). In this work, these relations are from the

relations in a semantic parser called K-Parser (Sharma et al. 2015a).

Fig. 1: A Graphical Representation of Sequence of Sentences in a WSC Problem, “The

man could not lift his son because he was so weak.”

3 Graphical Representation of a Piece of Knowledge

The WSC corpus was created in a way that each problem in it requires an additional

knowledge. Let us consider the following WSC example.

Sentence: The man could not lift his son because hepronoun was so weak.

Question: Who was weak? Answer Choices: a) man b) son

The above problem can be correctly solved by using the commonsense knowledge that,

“someone being weak prevents her to lift someone else”. This knowledge can be written

as, “if person1 can not lift someone because person2 is weak then person1 is same as

person2”. Intuitively, it means that if person2 being weak prevents person1 from lifting

something then person1 is same as person2. Such a knowledge is made up of two parts.

The first part is an if-condition, which consists of an English sentence, i.e., ‘person1

can not lift someone because person2 is weak’. The second part of the knowledge is the

consequent of the if-condition. The consequent is always an ‘is same as’ commutative

https://doi.org/10.1017/S1471068419000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000334


1026 A. Sharma

relationship between two words (e.g., person1 and person2 above) in the sentence. Such

a knowledge and its graphical representation are formally defined below.

Definition 5 (A Piece of Knowledge). A piece of knowledge K is a statement of

the form ‘IF S THEN x is same as y’ where S is an English sentence, T(S) is a set

of tokens in S, x, y ∈ T(S), fpos
S (x) = noun and fpos

S (y) = noun, where fpos
S is a POS

tagging function.

Example 5. An example of a piece of knowledge is, IF ‘person1 can not lift someone

because person2 is weak’ THEN person1 1 is same as person2 7.

Definition 6 (A Graphical Representation of a Piece of Knowledge). Let K =

‘IF S THEN x is same as y’ be a piece of knowledge where S is an English sentence, x

and y are tokens in S and GS = (VS ,ES , fS) be a graphical representation of S. Then, a
graphical representation of K is an edge labeled directed graph GK = (VK,EK, fK), such
that,

• VK = VS ,
• EK = ES

⋃{(x, y), (y, x)}, and
•

fK((v1, v2)) =

{
fS((v1, v2)) if (v1, v2) ∈ ES
“is same as” Otherwise

Here, we say that fK is defined using fS .

Example 6. An example of a representation of a piece of knowledge is shown in Figure 2.

Fig. 2: Graphical Representation of the Knowledge, “IF person1 can not lift someone

because person2 is weak THEN person1 1 is same as person2 7”

4 Reasoning with Commonsense Knowledge

In this work we defined a reasoning algorithm for solving the WSC problems. The al-

gorithm takes graphical representations of a WSC problem and a piece of knowledge as

input and outputs the answer of the WSC problem if it is inferred from the inputs. As per

the problem definition the correct answer provides the ‘most natural resolution’ for the

pronoun in the WSC sentences. In the following two definitions we formally defined the

‘most natural resolution’ and the answer of a WSC problem with respect to the graphical

representations of a WSC problem and a piece of knowledge needed to answer it.

Definition 7 (Most Natural Resolution). Let S be a sequence of sentences in a

WSC problem, GS = (VS ,ES ,fS) be a graphical representation of S, G′
S = (V′

S ,E
′
S ,f

′
S)

https://doi.org/10.1017/S1471068419000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000334


Theory and Practice of Logic Programming 1027

be a subgraph of GS such that V′
S = VS − V

c
S where V

c
S is the set of all the class nodes

in GS , f ′
S = fS and E

′
S = ES − E

c
S where e ∈ E

c
S iff fS(e) = “instance of”. Let GK =

(VK,EK,fK) be a graphical representation of a piece of knowledge where fK is defined

using fS , G′
K = (V′

K,E
′
K,f

′
K) be a subgraph of GK such that V

′
K = VK − V

c
K where V

c
K

is the set of all the class nodes in GK, f ′
K = fK and E

′
K = EK − E

c
K where e ∈ E

c
K iff

fK(e) ∈ {is same as, instance of}. Also, let M be a set of pairs of the form (a,b) such

that either all of the below conditions are satisfied or M = ∅.
• a ∈ V

′
S and b ∈ V

′
K,

• a and b are instances of same class, i.e., (a, i) ∈ ES , (b, i) ∈ EK, fS((a, i)) = instance of

and fK((b, i)) = instance of

• if for every pair (a,b)∈ M, a is replaced by b in V
′
S then G′

K becomes a subgraph of the

node replaced G′
S

Then we say that x ∈ V
′
S provides the ‘most natural resolution’ for y ∈ V

′
S if

(x,n1)∈ M, (y,n2)∈ M and either one of the following is true

• (n1, n2) ∈ EK and fK((n1, n2)) = is same as

• (n2, n1) ∈ EK and fK((n2, n1)) = is same as

Example 7. Let us consider the representation of a piece of knowledge shown in the

Figure 2, the representation of the sentences in a WSC problem as shown in the Figure

1. Then, according to the Definition 7, following is the value of the set of node pairs (i.e.,

M).

M = {(weak 12, weak 9 ), (lift 5, lifts 4 ), (he 9, person2 7 ),(man 2, person1 1, (son 7,

someone 5 ), (was 10, is 8 ), (not 4, not 3 ), (could 3, can 2 )}. We can see that (he 9,

person2 7 )∈ M and (man 2, person1 1 )∈ M, (person1 1, person2 7) is an edge in the

graphical representation of the knowledge with label is same as. Then, according to the

Definition 7 the ‘most natural resolution’ for he 9 is man 2 .

Definition 8 (Answer of a WSC Problem). Let S be a sequence of sentences in a

WSC problem P, T(S) be the set of tokens in S, p ∈ T(S) be the token which represents

the pronoun to be resolved, a1, a2 ∈ T(S) be two tokens which represent the two answer

choices, GS = (VS ,ES , fS) be a graphical representation of S, and GK = (VK,EK, fK)
be a graphical representation of a piece of knowledge such that fK is defined using fS .
Then,

• a1 is the answer of P, if only a1 provides the ‘most natural resolution’ for p,

• a2 is the answer of P, if only a2 provides the ‘most natural resolution’ for p,

• no answer otherwise

Example 8. Let us consider the representation of a piece of knowledge from Figure 2, the

representation of WSC sentences from Figure 1, the token for pronoun to resolve is ‘he 9’,

the tokens for answer choices are ‘man 2’ and ‘son 8’. Then according to the Definition

7, only ‘man 2’ provides the ‘most natural resolution’ for ‘he 9’. Hence, according to the

Definition 8 ‘man 2’ is the answer of the WSC problem.

4.1 Winograd Schema Challenge Reasoning (WiSCR) Algorithm

Input to the Algorithm: a graphical representation, GS = (VS ,ES), of the sentences

in a WSC problem (By Definition 4), a node p in GS which represents the pronoun to be

resolved, two nodes a1 and a2 in GS which represent the two answer choices for the WSC

https://doi.org/10.1017/S1471068419000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000334


1028 A. Sharma

problem, and a graphical representation, GK = (VK,EK), of a commonsense knowledge

(By Definition 6).

Output of the Algorithm: The algorithm outputs a1, a2 or it does not output any

answer.

Behavior of the Algorithm:

STEP 1: In this step a subgraph of GS is extracted. Let the extracted subgraph be

named GS′. GS′ contains all the nodes which are not class nodes in GS . All the edges

which connect such nodes are also extracted. An example of the output of the Step 1 is

shown in the Figure 3. The entire graph is the representation of the sentences in a WSC

problem, and the highlighted part of the graph represents the subgraph extracted in this

step.

Fig. 3: An Example of Step 1 Output of the WiSCR Algorithm with Respect to the

WSC Sentence “The man could not lift his son because he was so weak.”

STEP 2: In this step a subgraph of GK is extracted. Let the extracted subgraph be

named GK′. GK′ contains all the nodes from GK which are not class nodes and it contains

all the edges which connect such nodes, except the edges which are labeled as ‘is same as’.

An example of the output of the Step 2 is shown in the Figure 4. The entire graph in

the figure is the representation of a piece of knowledge (as shown in Figure 2) and the

highlighted part of the graph is the subgraph extracted in this step.

Fig. 4: Example of Step 2 Output of the WiSCR Algorithm

STEP 3: In this step, all possible graph-subgraph isomorphisms (Cordella et al. 2004) are

detected between GS′ and GK′ (the subgraphs from the previous two steps respectively).

A graph-subgraph isomorphism is a mapping (say M) between two graphs (GS′ and GK′)
such that M is a set of pairs of the form (x, y) where x is a node in GS′, y is a node in GK′,
and if for every (x, y) ∈ M, x is replaced by y then GK′ becomes a subgraph of the node

https://doi.org/10.1017/S1471068419000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000334


Theory and Practice of Logic Programming 1029

replaced GS′. If such a mapping does not exist then M = ∅. An important constraint that

we put on the mapping set is that for each (x, y) ∈ M, both x and y must be instances of

same class. This is because our assumption for a correct knowledge is that it represents

a scenario which is similar to the sentences in the concerned WSC problem. For example

if a WSC sentence mentions about ‘lift’ action with the help of the word ‘lifting’ then a

suitable knowledge must also mention about ‘lift’ action. It does not matter which form

of a word (e.g., ‘lifting’ or ‘lifts’ ) is used in the knowledge or the WSC sentences. This

information is captured by the class nodes in the graphical representations.

STEP 4: In this step an answer to a WSC problem is deduced from the input repre-

sentations and the results of the previous steps of this algorithm. For each of the graph-

isomorphism detected in Step 3, an answer to the input WSC problem is extracted by

using the following rules.

• The answer choice a1 is an answer with respect to the setM if (p, n1) ∈ M, (a1, n2) ∈ M,

either (n1, n2) or (n2, n1) is a directed edge in GK and it is labeled as ‘is same as’, and

there does not exist an n and an x such that (x, n) ∈ M and either (n1, n) or (n, n1) is

an edge in GK labeled as ‘is same as’

• The answer choice a2 is an answer with respect to the setM if (p, n1) ∈ M, (a2, n2) ∈ M,

either (n1, n2) or (n2, n1) is a directed edge in GK and it is labeled as ‘is same as’, and

there does not exist an n and an x such that (x, n) ∈ M and either (n1, n) or (n, n1) is

an edge in GK labeled as ‘is same as’

• Otherwise the input WSC problem does not have an answer with respect to the set M

Finally, after processing all the isomorphisms, if a1 is the only answer retrieved then

a1 is the final answer. If a2 is the only answer retrieved then a2 is the final answer.

Otherwise the algorithm does not ouput an answer.

Theorem 1. Let S be a sequence of sentences in a WSC problem P, GS = (VS ,ES , fS)
be a graphical representation of S, p be a node in GS such that it represents the pronoun

to be resolved in P, a1 and a2 be two nodes in GS such that they represent the two

answer choices for P, and GK = (VK,EK, fK) be a graphical representation of a piece

of knowledge such that fK is defined using fS . Then, the Winograd Schema Challenge

Reasoning (WiSCR) algorithm outputs,

• a1 as the answer of P, if only a1 provides the ‘most natural resolution’ (By Definition

7) for p in GS ,
• a2 as the answer of P, if only a2 provides the ‘most natural resolution’ for p in GS ,
• no answer otherwise.

Proof. Proof can be found in the supplementary material corresponding to this paper at

the TPLP archives.

4.2 Implementation of the WiSCR Algorithm

There are various constraints imposed on the two input graphs in the WiSCR algorithm to

retrieve the final answer. For example, in Step 3 a constraint that both the nodes in a pair

belonging to an isomorphism set must be instances of the same class node. Considering

that, our main motivation of using ASP to implement the WiSCR algorithm is to make

the process of adding new constraints easier. In this section, first we present the details

of the ASP encoding of the inputs to WiSCR algorithm and an ASP implementation

https://doi.org/10.1017/S1471068419000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000334


1030 A. Sharma

of the WiSCR algorithm. Then we show, with the help of examples, how the current

implementation can be easily updated to include new constraints.

4.2.1 ASP encoding of Inputs

There are four inputs to the algorithm, a sequence of sentences in a WSC problem, a

pronoun to be resolved, two answer choices and a piece of knowledge. The WSC sentences

are represented as a graph. Each edge in the graph is encoded in the ASP format by using

a ternary predicate has s(h,l,t), where h and t are two nodes and l is an edge label of

the directed edge from h to t. Similarly, a piece of knowledge is represented as a graph. It

is encoded in ASP by using a ternary predicate has k(h1,l1,t1), where h1 and t1 are two

nodes and l1 is an edge label of the directed edge from h1 to t1. The pronoun is encoded

in ASP by using a unary predicate pronoun(p) where p is the pronoun. Similarly, the two

answer choices are encoded by using the unary predicates ans ch1(a1) and ans ch2(a2),

respectively.

4.2.2 ASP implementation of the Step 1 of WiSCR Algorithm
In Step 1 of the WiSCR algorithm a subgraph of the graphical representation of WSC
sentences is extracted such that the subgraph contains only the non-class nodes and the
edges which are not labeled as instance of. Following ASP rules encode the first step of
the WiSCR algorithm.

s11: node_G_s(X) :- has_s(X,R,Y), R!=" instance_of ".

s12: node_G_s(Y) :- has_s(X,R,Y), R!=" instance_of ".

s13: edge_G_s(X,R,Y) :- has_s(X,R,Y), R!=" instance_of ".

node G s(X) represents a node X in the extracted subgraph, edge G s(X,R,Y) repre-

sents an edge, labeled R, between the nodes X and Y in the extracted subgraph.

4.2.3 ASP implementation of the Step 2 of WiSCR Algorithm
In Step 2 of the WiSCR algorithm a subgraph of the graphical representation of a piece
of knowledge is extracted such that the subgraph contains only the non-class nodes and
the edges which are not labeled as instance of or is same as. Following ASP rules encode
the second step of the WiSCR algorithm.

s21: node_G_k(X) :- has_k(X,R,Y), R!=" instance_of ".

s22: node_G_k(Y) :- has_k(X,R,Y), R!=" instance_of ".

s23: edge_G_k(X,R,Y) :- has_k(X,R,Y), R!=" instance_of",

R!=" is_same_as ".

node G k(X) represents a node X in the extracted subgraph and edge G k(X,R,Y)

represents an edge, labeled R, between the nodes X and Y in the extracted subgraph.

4.2.4 ASP implementation of the Step 3 of WiSCR Algorithm

Let G′
S and G′

K be the graphs extracted in step 1 and 2 of the WiSCR algorithm re-

spectively. Then, in this step, all possible sets of pairs (say Mi) of the form (x, y) are

extracted from G′
S and G′

K such that x is a node in G′
S , y is a node in G′

K, both x and y

are instances of the same class and if for every (x, y) ∈ Mi, x is replaced by y then G′
K

becomes a subgraph of the node replaced G′
S . Following ASP rules encode the third step

of the WiSCR algorithm.

https://doi.org/10.1017/S1471068419000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000334


Theory and Practice of Logic Programming 1031

s31: { matches(X,Y) : node_G_s(X), node_G_k(Y) }.

s32: :- matches(X,Y), matches(X1 ,Y), X!=X1.

s33: :- matches(X,Y), matches(X,Y1), Y!=Y1.

s34: k_node_matches(Y) :- matches(X,Y).

s35: :- not k_node_matches(Y), node_G_k(Y).

s36: :- matches(X,Y), has_s(X," instance_of",C),

not has_k(Y," instance_of",C).

s37: :- edge_G_k(X1 ,R,Y1), matches(X,X1), matches(Y,Y1),

not edge_G_s(X,R,Y).

matches(X,Y) represents a pair in a Mi. The rule s31 above generates all possible

groundings of the form matches(X,Y) such that X is a node in the graph extracted in

Step 1 and Y is a node in the graph extracted in Step 2. The rules s32 and s33 only keep

the answer sets in which each X in the groundings of matches(X,Y) contains exactly one

corresponding Y and vice-versa. The remaining answer sets are removed by the rules s32

and s33. The rules s34 and s35 removes all the answer sets in which there does not

exist a grounding of matches(X,Y) corresponding to each node in the graph extracted

in Step 2. The rule s36 removes all the answer sets in which at least one grounding

of matched(X,Y) exists such that both X and Y are not instances of the same node

in the knowledge graph. Finally, the rule s37 ensures that if two node X and Y in the

graph extracted in the Step 2 match with two nodes X1 and Y1 respectively in the graph

extracted in the Step 1, and (X1,R,Y1) is an edge in the graph from Step 2 then (X,R,Y)

is an edge in the graph from Step 1.

4.2.5 Implementation of the Step 4 of WiSCR Algorithm

In this step an answer to the input WSC problem is retrieved from the inputs of the
WiSCR algorithm and the outputs of the steps 1 through 3. There are two parts of
this the implementation in this step. The first part uses ASP rules to extract an answer
from each set of pairs generated by the ASP implementation of Step 3 of the algorithm.
Separate rules are used for each answer choice. Following ASP rules encode this part of
Step 4 for the first answer choice.

s41: invalid_1 :- matches(P,N1), matches(X,N2), ans_ch1(A),

pronoun(P), A!=X, N1!=N2 ,

has_k(N1 ," is_same_as",N2).

s42: invalid_2 :- matches(P,N1), matches(X,N2), ans_ch2(A),

pronoun(P), A!=X, N1!=N2 ,

has_k(N1 ," is_same_as",N2).

s43: ans(A) :- matches(P,N1), matches(A,N2), ans_ch1(A),

not invalid_1 , pronoun(P),

has_k(N1 ," is_same_as",N2).

s44: ans(A) :- matches(P,N1), matches(A,N2), ans_ch2(A),

not invalid_2 , pronoun(P),

has_k(N1 ," is_same_as",N2).

Here, ans(A1) represents that A1 is an answer of the input WSC problem given a set of

matches. Similar rules are written for the second answer choice (assume rules s45, s46,

s47, s48). Finally the following rule makes sure that there is one answer generated with

respect to one set of matches(X,Y) facts.

s49: :- ans(A1), ans(A2), A1!=A2.

https://doi.org/10.1017/S1471068419000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000334


1032 A. Sharma

The above AnsProlog program produces zero or more answer sets. Zero answer sets

mean that none of the sets of matches were able to produce an answer. The second

part assembles all the answers and produces the final answer of the input WSC problem.

This part of the algorithm is implemented in python. Let us call the python procedure

which implements this part as AnswerFinder. AnswerFinder takes as input the

answers generated by the ASP code and outputs the final answer based on the following

conditions.

• if all the answers correspond to one common answer then the algorithm outputs it as

final answer,

• otherwise the algorithm does not ouput anything.

The WiSCR algorithm requires graph-subgraph isomorphism detection as a sub-

module. Graph-subgraph isomorphism3 is an NP-Complete problem. In recent times,

there has been remarkable progress made in computing answer sets efficiently. Some of

the popular answer set solvers are SModels4, CModels5 and Clingo6. In this work we

used Clingo, which use techniques similar to the ones used in SAT solvers (Lin and Zhao

2004). The rest of the steps in the algorithm can be performed in polynomial time.

4.2.6 Adding New Constraints

Suppose we would like to add a constraint that a pair of nodes are valid in a graph-

subgraph isomorphism if the two nodes in it are synonyms of each other or they are

instances of the same class node. Then we can encode such constraint by replacing the

rule s36 with the following three rules.

valid_pair(X,Y) :- has_s(X," instance_of",C),

has_k(Y," instance_of",C).

valid_pair(X,Y) :- synonyms(X,Y).

:- matches(X,Y), not valid_pair(X,Y).

Here, synonyms(X,Y) represents that a node X in the WSC sentences’ graph is syn-

onymous to a node Y in the knowledge graph. We assume that a set of synonymous(X,Y)

facts are provided as input. Let us consider the following WSC problem and knowledge

as an example to understand the significance of the above rules,

Sentence: The man could not lift his son because hepronoun was so weak.

Question: Who was weak?Answer Choices: a) man b) son.

Knowledge: IF person1 could not lift someone because person2 was frail THEN per-

son1 1 is same as person2 7

The basic implementation of the WiSCR algorithm will not be able to utilize the above

knowledge because the knowledge has the word frail instead of weak. However since weak

is a synonym of frail, if we provide synonyms(weak 12,frail 9) as an input to the code

which is updated by replacing the rule s36 with the above mentioned three rules then the

ASP implementation can handle the knowledge and the algorithm outputs the correct

answer, i.e., man 2.

3 https://en.wikipedia.org/wiki/Subgraph_isomorphism_problem
4 http://www.tcs.hut.fi/Software/smodels/
5 http://www.cs.utexas.edu/users/tag/cmodels/
6 http://potassco.sourceforge.net/

https://doi.org/10.1017/S1471068419000334 Published online by Cambridge University Press

https://en.wikipedia.org/wiki/Subgraph_isomorphism_problem
http://www.tcs.hut.fi/Software/smodels/
http://www.cs.utexas.edu/users/tag/cmodels/
http://potassco.sourceforge.net/
https://doi.org/10.1017/S1471068419000334


Theory and Practice of Logic Programming 1033

Replacing an existing rule with only three new ones allows the algorithm to be more

flexible with respect to the needed knowledge. This also shows how additional constraints

and generalizations can be easily expressed as new ASP rules. Another generalization

could be done by using similarity along with synonymy to add node pairs in an isomor-

phism. We say that if the similarity between two nodes is above a certain threshold then

allow them to be added to the isomorphism set. An additional rule to encode that would

be,

valid_pair(X,Y) :- similar(X,Y).

Here, similar(X,Y) represents that a node X in the WSC sentences’ graph is similar

to a node Y in the knowledge graph. We assume that a set of similar(X,Y) facts are

provided as input.

Definition 9 (AnsProlog Program for WiSCR Algorithm). Let S be a sequence

of sentences in a WSC problem P, T(S) be the set of tokens in S, p ∈ T(S) be the

token which represents the pronoun to be resolved, a1, a2 ∈ T(S) be two tokens which

represent the two answer choices, GS = (VS ,ES , fS) be a graphical representation of

S, and GK = (VK,EK, fK) be a representation of a piece of knowledge such that fK is

defined using fS . Then, we say that the AnsProlog program Π(GS ,GK , p, a1, a2) is the

answer set program consisting of

(i) the facts of the form has s(h1, l1, t1) and has k(h2, l2, t2),

(ii) a fact of the form pronoun(p),

(iii) two facts of the form ans ch1(a1) and ans ch2(a2),

(iv) the rules s11 to s49

Theorem 2. Let S be a sequence of sentences in a WSC problem P, T(S) be the set

of tokens in S, p ∈ T(S) be the token which represents the pronoun to be resolved,

a1, a2 ∈ T(S) be two tokens which represent the two answer choices, GS = (VS ,ES , fS)
be a graphical representation of S, and GK = (VK,EK, fK) be a representation of a piece

of knowledge such that fK is defined using fS . Also, Π(GS ,GK , p, a1, a2) be the AnsProlog

program for WiSCR algorithm and AnswerFinder be the python procedure defined in

Section 4.2.5. Then, the WiSCR algorithm produces an answer x to the input WSC

problem iff Π(GS ,GK , p, a1, a2) and AnswerFinder together output the answer x.

Proof. Proof is present in the supplementary material at the TPLP archives.

5 Experimental Evaluation of the WiSCR Algorithm

The main goal of the evaluation process is to validate if the WiSCR algorithm is able to

correctly answer the WSC problems if the problem and a relevant knowledge is provided

as inputs to it in the specified formats. We evaluated a corpus7 of 291 WSC problems. In

this section we present the three experiments which we performed to validate the WiSCR

algorithm and our findings with respect to those experiments.

Experiment 1: In this experiment we manually created the input graphical repre-

sentations of the WSC sentences and the needed knowledge. We found that the WSC

7 Avaiable at https://tinyurl.com/y22ykz5p

https://doi.org/10.1017/S1471068419000334 Published online by Cambridge University Press

https://tinyurl.com/y22ykz5p
https://doi.org/10.1017/S1471068419000334


1034 A. Sharma

problems require different kinds of knowledge. The knowledge defined in this work (See

Definition 5) is helpful in tackling 240 out of 291 WSC problems (82.47%). So we wrote

the representations for those 240 problems by hand. The ASP implementation answered

all of those problems correctly. The reasoning algorithm defined in this work relies on the

fact that the provided knowledge contains the same or similar scenarios as that of the

original WSC sentences. A scenario is basically defined by the actions, properties and the

type of entities present. By performing a comprehensive analysis of the WSC problems,

we found that 240 out of 291 WSC problems can be answered using such knowledge.

The remaining problems require two different kinds of knowledge. 26 problems require

multiple pieces of knowledge. For example, WSC Sentence: Mary tucked her daughter

Anne into bed, so that she could work. Question: Who is going to work? Knowledge

1: someone who is tucked into bed, may sleep Knowledge 2: someone who’s daughter is

sleeping may be able to work. It was observed that such knowledge has a partial overlap

with the scenarios in a WSC problem. For example see the WSC sentence and knowledge

1 shown above. Due to this, such knowledge is not handled by the current algorithm.

If one tries to format such knowledge according to the Definition 5 then the reasoning

algorithm will not answer anything because it will not be able to find a graph-subgraph

isomorphism between the subgraphs of WSC sentences’ representation and knowledge’s

representation. The remaining 25 problems require the knowledge that one statement is

more likely to be true than the other. For example, WSC Sentence: Sam tried to paint

a picture of shepherds with sheep, but they ended up looking more like dogs. Question:

What looked like dogs? Knowledge: Sheep looks like a dog is more likely to be true

than Shepherd looks like a dog. Such knowledge is also not handled by the current rea-

soning algorithm because it does not satisfy the definition (Def 5) of knowledge reasoned

with in this work. A list of the WSC problems which are not handled by the WiSCR

algorithm because of the reasons mentioned above is also present at https://tinyurl.

com/y22ykz5p.

Experiment 2: In this experiment we considered the 240 WSC problems that are

handled by the WiSCR algorithm. The needed knowledge for all the 240 problems was

manually written in the ‘IF S THEN x is same as y’ format as mentioned in the Defini-

tion 5. Both, the WSC problems and the needed knowledge were automatically converted

into graphs by using two K-Parser wrappers. The details of the K-Parser wrappers are

provides in the paragraph below. 200 (82.98%) out of 240 problems were correctly an-

swered in this experiment by the WiSCR algorithm. The remaining 40 problems were

not answered because of syntactic dependency parsing errors and part-of-speech errors

while generating the representations.

Two wrappers over K-Parser were developed as part of this work. The first translates

a sequence of sentences into a graphical representation that satisfies the Definition 4.

K-Parser produces a graph for an input English sequence of sentences. The only two

differences between the K-Parser output and the representation in Definition 4 is that

in K-Parser output there are two levels of class nodes instead of one and the K-Parser

output contains semantic roles of entities. So, as part of this wrapper the two levels of

classes was reduced to one by keeping the superclasses of noun and pronoun words and

by keeping the classes which represent the lemmatized form of other types of nodes.

The semantic roles are not considered by the wrapper. The second wrapper is used to

https://doi.org/10.1017/S1471068419000334 Published online by Cambridge University Press

https://tinyurl.com/y22ykz5p
https://tinyurl.com/y22ykz5p
https://doi.org/10.1017/S1471068419000334


Theory and Practice of Logic Programming 1035

translate a knowledge of the form IF S THEN x is same as y where S is a sentence

and x, y are tokens in S. In this wrapper the same modifications to the K-Parser output

of S are made as were in the wrapper 1 along with the addition of two extra edges. An

edge from the node representing x to a node representing y was added and labeled as

is same as and another edge from y to x with same label is also added.

Experiment 3: In this experiment we used a technique to automatically extract the

knowledge that is needed for the WSC problems which were correctly represented by

using K-Parser. The knowledge was found and automatically extracted for 120 problems.

The ASP implementation was able to correctly answer all of the 120 problems. The

automated extraction of knowledge is inspired from the work done in (Sharma et al.

2015b). The idea there is to extract a set of sentences (by using a search engine) which

are similar to the original WSC sentences in terms of the actions and properties in it.

Such sentences are then parsed with the help of K-Parser to extract the knowledge. For

example, a sentence extracted for the Winograd sentence shown in Figure 1 is “She could

not lift him because she is weak.”. And the knowledge extracted from the above sentence

is “IF person1 could not lift someone because person2 is weak THEN person1 1 is same

as person2 7”. Because of the limited availability of search engine access, the sentences

similar to only 120 WSC sentences could be extracted. Those sentences are then passed

to a rule based knowledge extraction module. The module uses the K-Parser outputs to

find the patterns which satisfy the kind of knowledge handled by our reasoning algorithm.

6 Related Work

Over the years various approaches have been proposed to solve the Winograd Schema

Challenge by using additional knowledge. Such works include the ones which focus on

defining the reasoning theories (Bailey et al. 2015; Schüller 2014; Richard-Bollans et al.

2018; Wolff 2018). These approaches mention the need of additional knowledge and rea-

soning, but they suffer from the issue of low coverage on the WSC corpus.

Another set of approaches address the knowledge extraction and reasoning with it in

a joint method. Such approaches include the ones which use on the fly knowledge extrac-

tion (Sharma et al. 2015b; Emami et al. 2018), and the ones which perform knowledge

extraction with respect to a pre-populated knowledge base (Isaak and Michael 2016).

These approaches rely on the heuristic procedures. More recently, composition embedding

(Liu et al. 2017) and statistical language modelling (Radford et al. 2019) based ap-

proaches have been used to address the challenge. The later recently reported the state

of the art accuracy (70.70%) on the overall corpus. Such approaches try to capture the

knowledge in the form of word and sentences embedding and later use it to infer which

phrase is more probable. This helps in the cases where the needed knowledge is based on

the possible correlation between two terms for example “a ball is kicked” where there is

a correlation between kicked and ball. But it is not be able to infer that “worm is tasty”

for the Winograd Schema Challenge problem “Fish ate the worm. It was tasty.”. On the

other hand it is more possible that it finds “fish is tasty” more probable because “fish”

and “tasty” has higher chances of occurring in the same context in text corpora.

https://doi.org/10.1017/S1471068419000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000334


1036 A. Sharma

7 Conclusion

In this work, we attempted to solve the Winograd Schema Challenge by reasoning with

additional knowledge. To that end we defined a graphical representation of the English

sentences in the input problems and a graphical representation of the relevant knowledge.

We also defined a commonsense reasoning algorithm for WSC (WiSCR algorithm). We

showed how an approach built on top of graph-subgraph isomorphism encoded in ASP

is able to tackle 240 out of 291 WSC problems. We presented how the ASP implementa-

tion of the algorithm allows us to add new constraints easily. It also makes the current

implementation to easily generalize by adding new rules.

Supplementary material

To view supplementary material for this article, please visit https://doi.org/10.1017/

S1471068419000334.

References

Bailey, D., Harrison, A., Lierler, Y., Lifschitz, V., and Michael, J. 2015. The winograd
schema challenge and reasoning about correlation. In In Working Notes of the Symposium on
Logical Formalizations of Commonsense Reasoning.

Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U.,
Knight, K., Koehn, P., Palmer, M., and Schneider, N. 2013. Abstract meaning rep-
resentation for sembanking. In Proceedings of the 7th Linguistic Annotation Workshop and
Interoperability with Discourse. 178–186.

Baral, C. 2003. Knowledge representation, reasoning and declarative problem solving. Cam-
bridge university press.

Cordella, L. P., Foggia, P., Sansone, C., and Vento, M. 2004. A (sub) graph isomorphism
algorithm for matching large graphs. IEEE transactions on pattern analysis and machine
intelligence 26, 10, 1367–1372.

Emami, A., De La Cruz, N., Trischler, A., Suleman, K., and Cheung, J. C. K. 2018.
A knowledge hunting framework for common sense reasoning. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing. 1949–1958.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In
ICLP/SLP. Vol. 88. 1070–1080.

Isaak, N. and Michael, L. 2016. Tackling the winograd schema challenge through machine
logical inferences. In STAIRS. Vol. 284. 75–86.

Levesque, H. J., Davis, E., and Morgenstern, L. 2011. The winograd schema challenge. In
AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning. Vol. 46. 47.

Lin, F. and Zhao, Y. 2004. Assat: Computing answer sets of a logic program by sat solvers.
Artificial Intelligence 157, 1-2, 115–137.

Liu, Q., Jiang, H., Evdokimov, A., Ling, Z.-H., Zhu, X., Wei, S., and Hu, Y. 2017. Cause-
effect knowledge acquisition and neural association model for solving a set of winograd schema
problems. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence (IJCAI). 2344–2350.

Miller, G. A. 1995. Wordnet: a lexical database for english. Communications of the
ACM 38, 11, 39–41.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. 2019. Language
models are unsupervised multitask learners. OpenAI Blog 1, 8.

https://doi.org/10.1017/S1471068419000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000334.
https://doi.org/10.1017/S1471068419000334.
https://doi.org/10.1017/S1471068419000334


Theory and Practice of Logic Programming 1037

Richard-Bollans, A., Gomez Alvarez, L., and Cohn, A. G. 2018. The role of pragmatics
in solving the winograd schema challenge. In Proceedings of the Thirteenth International Sym-
posium on Commonsense Reasoning (Commonsense 2017). CEUR Workshop Proceedings.

Schüller, P. 2014. Tackling winograd schemas by formalizing relevance theory in knowledge
graphs. In Fourteenth International Conference on the Principles of Knowledge Representation
and Reasoning.

Sharma, A., Vo, N., Aditya, S., and Baral, C. 2015a. Identifying various kinds of event
mentions in k-parser output. In Proceedings of the The 3rd Workshop on EVENTS: Definition,
Detection, Coreference, and Representation. 82–88.

Sharma, A., Vo, N. H., Aditya, S., and Baral, C. 2015b. Towards addressing the winograd
schema challenge-building and using a semantic parser and a knowledge hunting module. In
IJCAI. 1319–1325.

Wolff, J. G. 2018. Interpreting winograd schemas via the sp theory of intelligence and its
realisation in the sp computer model. arXiv preprint arXiv:1810.04554 .

https://doi.org/10.1017/S1471068419000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000334

	Introduction
	Graphical Representation of a WSC Problem
	Graphical Representation of a Piece of Knowledge
	Reasoning with Commonsense Knowledge
	Winograd Schema Challenge Reasoning (WiSCR) Algorithm
	Implementation of the WiSCR Algorithm

	Experimental Evaluation of the WiSCR Algorithm
	Related Work
	Conclusion
	References

