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Introduction

In the smooth representation theory of reductive groups G over nonarchimedean local
fields from its very beginnings the parabolic induction functor played a paramount role
for the construction of representations. But attention was largely restricted to admissible
smooth representations. This finiteness condition was introduced by Harish-Chandra and
allowed him to explore the harmonic analysis on G for the purposes of representation
theory. An important example for this analytic approach to smooth representation theory
is his notion of exponents (cf. [Sil, §3.1]). Beginning with Jacquet and Casselman the
emphasis was shifted to the more algebraic aspects. Through Jacquet’s introduction
of the parabolic restriction functors (often called Jacquet functors) it became possible,
e.g. to characterize the analytic notions of exponents and of supercuspidal representations
in an equivalent purely algebraic way. Parabolic induction and restriction are functors
which through Frobenius reciprocity are adjoint to each other. But it was Bernstein who
systematically freed the theory from the admissibility requirement. Most importantly he
realized the existence of a second adjointness relation between parabolic induction and
restriction. This seemingly formal statement in fact implies powerful finiteness properties
of the category M(G) of all smooth G-representations.
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In the Langlands classification of irreducible smooth representations as well as in many
aspects of harmonic analysis (like trace formulae) Harish-Chandra’s notion of tempered
admissible smooth representations plays a crucial role. Having the power of Bernstein’s
algebraic approach in mind it seems natural to attempt an algebraic approach to tem-
pered representations a well. This is the topic of the present paper. Since it is crucial to
abandon the admissibility condition we first of all have to decide in which category we
should work. The abelian category M(G) of smooth G-representations can equivalently
be viewed as the category of non-degenerate modules over the Hecke algebra H = H(G) of
locally constant and compactly supported functions on G. This algebra H is contained in
Harish-Chandra’s Schwartz algebra S = S(G) of uniformly locally constant and rapidly
decreasing functions on G. It is known (cf. [SSZ, Appendix]) that on a tempered admissi-
ble representation the H-module structure extends uniquely to an S-module structure. It
therefore seems clear that we will work in a category of S-modules. But there is a subtle
point. The algebra S naturally comes as a topological algebra and the S-module structure
on a tempered admissible representation is continuous in a certain sense. For this reason
one might be tempted to use the category of continuous S-modules. But this would not
be a truly algebraic approach. Our point in this paper is to view S as an abstract algebra
and to study the abelian category M!(G) of all non-degenerate S-modules. There is an
obvious forgetful functor from M*(G) to M(G).

It quickly turns out that, given any parabolic subgroup P = MN of G with Levi
component M and unipotent radical N, the parabolic induction functor from M (M)
to M(G) directly lifts to a functor from M*(M) to M*(G), i.e. for any S(M)-module
its parabolic induction as an H(M)-module carries a natural S(G)-module structure. In
particular, this lifted functor again is exact. It also is relatively formal to see that it
has a left adjoint functor from M*(G) to M*(M) which we call the tempered parabolic
restriction functor. This new restriction functor definitively is not compatible with the
parabolic restriction from M(G) to M (M) under the forgetful functor. Moreover, from
its construction it only appears to be right exact. Most of our paper is devoted to under-
standing this tempered restriction functor. In doing so we have to remember that our
algebra S(G) is a topological algebra. This allows us to use spectral theory in order to
analyse the so to speak universal case, i.e. the tempered parabolic restriction of S(G)
itself as a left S(G)-module. Technically Bushnell’s reinterpretation in [Bus| of Bern-
stein’s results in terms of localization methods will turn out to be a very useful guiding
principle. We will have to work with some form of completed localization of course. As an
input for our spectral analysis we use what is known about the structure of the Jacquet
modules of tempered irreducible representations. As an output we obtain the exactness
of our tempered parabolic restriction functor as well as an analogue of Bernstein’s second
adjointness.

In a second part of this paper we plan to apply these results in order to construct
explicit projective generators with good additional properties for the category M¥(G)
like Bernstein did for M(G). We emphasize that we do not make any use of the Plancherel
isomorphism (cf. [Wal]) in this paper. It is conceivable that our results can actually be
used to give an algebraic proof of this isomorphism.
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We briefly describe now the content of the five sections of this paper. The first section
is devoted to the properties of a very basic map. Whenever P = M N is a parabolic
subgroup of G it is well known that averaging over N gives rise to a continuous map
from S(G) to S(M). In the later construction of our functors this map plays an absolutely
crucial technical role. In the second section we construct the tempered parabolic induction
functor Ind§ : M!(M) — M*(G). In the third section we show that Ind% has a left
adjoint functor rg p : MY(G) — M*(M), the tempered parabolic restriction functor.
We also show the formula 7 p(-) = 7 p(S(G))®s(g)- Which allows us to reduce the
investigation of this functor to an analysis of the universal case 1 p(S(G)). In the central
section four we express the (S(M),S(G))-bimodule 7 p(S(G)) in terms of topological
tensor products and then use spectral theory to determine it explicitly. In the final section
five we apply the acquired knowledge to obtain the exactness of the functor Té, p, the
second adjointness relation which says that the restriction functor rtG p for the opposite
parabolic subgroup P is right adjoint to Indg7 and the compatibilify of the tempered
restriction functors with smooth duality.

Notation

Throughout this paper k is a locally compact nonarchimedean field with absolute
value | - |;. Let G be the group of k-rational points of a connected reductive k-group.
As usual we denote by H = H(G) and S = S(G) the Hecke and Schwartz algebra of
G, respectively. The category of non-degenerate H-modules, respectively S-modules, is
denoted by M(G), respectively M*(G). We have the forgetful functor M*(G) — M(G).
The second category M(G) coincides with the category of all smooth G-representations.
The multiplication in each of these two algebras as well as their action on a module
always is denoted by a x (for convolution). As a general convention we write the left
and right translation action of a ¢ € G on any locally constant function ¢ on G as
(96) () = 9(g~1h) and (¢)(h) = o(hg ™).

For any compact open subgroup U C G we let H(G, U), respectively S(G, U), denote
the subalgebra of all U-bi-invariant functions in #(G), respectively S(G). Both these
algebras are unital with the unit being the idempotent ey (g) = volg(U) ™}, respectively
ey (g) =0, for g € U, respectively g € U, corresponding to U. For any unital ring R we
let M(R) be the category of left unital R-modules. The map g — ¢g~! on G induces on
any of the rings H(G,U) and S(G, U) a canonical anti-involution so that, for these rings,
we do not have to distinguish between left and right modules.

1. The map 9 — ¥¥

We fix a parabolic subgroup P C G together with a Levi decomposition P = M N where
M is the Levi subgroup and N is the unipotent radical of P. Let § = §p denote the
modulus character of P (in the sense of [B-INT, VII.1.3]). Since there exist different
conventions in the literature we recall that

§(mn) = |det(ad(m); Lie(N))|;! for any m € M, n € N,
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where | - | denotes the normalized absolute value of the field k. (To avoid confusion we
warn the reader that in [Car] and [Sil] our § is denoted by 6~1.)
A crucial technical tool in this paper is the map

H(G) — H(M),
6105 0 (m) =37 /2m) - [ o) dn
N
By [Sil, 4.3.20] it extends continuously to a map
S(G) = S(M),
v ) i 57 m) - [ (o) dn

For the convenience of the reader we begin by recalling the well known basic properties
of this map.

Lemma 1.1. (mnw)P —_ 5—1/2(m) . m(,(/}P) and (wnm)P _ 61/2(7’)7,) . (wP)m for any
méeM,née N, and ¢ € S(G).

Proof. Straightforward. O
In addition we now fix a special, good, maximal compact subgroup K C G (this notion
depends on M; cf. [Car, 3.5] or [Sil, §0.6]). Moreover, from now on we always normalize

the Haar measure on any of the unimodular groups G, K, M, N by the requirement that
the intersection of the respective group with K has volume one (cf. [Car, 4.1]).

Lemma 1.2. For any ¢, € S(G) we have
[ @t k= (90"
Proof. We compute
1@ < )y
= [ [ @ ) G on ) amak

:/ / 5*1/2(m)./ ¢(mnk)dn.5*1/2(m*1m’)-/ Yk~ m ™ m/n’) dn/ dm dk

—/ “12(m //¢mnk /wk m~ m'n')dn’ dndm dk

:/ “12(m /¢pk / Yk~ p~im/n’) dn’ dp dk
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=02y [ [ [ swkuloh)tmn') dpakan
NJKJp
=5 2) [ [ olgyoty tmn) dg
NJa
=57 2) [ (0% 0)m'nd)dn’ = (650" ).
N

O

Let U C G be a compact open subgroup. Whenever H C G is some closed subgroup
we write Uy :=U N H.

Lemma 1.3.
(i) Under the map v + ¥ the algebra S(G,U) is mapped into S(M, Uyy).
(ii) If Up = Uy Uy then €} = volp(Up) volg(U) ™t - ey, -

Proof. (i) If ¢ is U-bi-invariant then the Uys-bi-invariance of ¢* is an immediate conse-
quence of Lemma 1.1 using that ¢ is trivial on Uy,. (ii) This is a simple computation. [

The map (-)¥ : H(G) — H(M) is surjective: By Lemma 1.3 (ii) we have enough idem-
potents, which generate H(M) as an M-representation, in the image; but by Lemma 1.1
this image is M-invariant. We now will present an argument due to Waldspurger which
shows that the extended map (-)¥ : S(G) — S(M) is surjective as well.

Let P C G denote the parabolic subgroup opposite to P with respect to M. If N is
the unipotent radical of P then P has the Levi decomposition P = M N. The modulus
character & of P satisfies 6 | M = §~1 | M. In the following we fix a compact open sub-
group U C G which is normal in K and which is totally decomposed (with respect to
a minimal Levi subgroup contained in M) in the sense of [Bus, §1.1]. By [Bus, §1.1,
Proposition 1] we then have in particular the decomposition

U =UgUnUy.

It is shown in [Bus, §1.2] that there exist a fundamental system of such subgroups. We
also introduce the function

Evu(m) = voly (m ™' UnmUy)
on M.
Lemma 1.4. For any m € M we have
MNUmU =UymUy and NNm 'UMU =m™'UymUy.
Proof (see also [BK, Lemma 6.10]). Let m’ = uymus € M N UmU and write

U1 = n1N1ma, ug = Namang with n; € Uy, n; € Uy, and m; € Uy for ¢ = 1,2. Setting

/—1

n o= ﬁlmlmﬁgmflmfl, T = mimms, and n = nom’~!'nym’ we have nan = m’.
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But n € N,n € N, and z,m’ € M, hence n = 7 = 1 and 2 = m/. It follows that
m’ € UpymUyps which proves the first identity.

For the second one let mn’ € UMU with n’ € N. In the same way as above (but
interchanging m and m') we obtain fizn = m with 7 := Aymim/agm’~'m;t, = =
"~Im~In;m. We must have n = 1 and hence n’ € m~1UymUy.

O

mim’ms, and n := nan

Whenever C' C G is a closed U-bi-invariant subset we let S(G, U)¢ denote the subspace
in S(G,U) of all functions supported on C.

Lemma 1.5. For ¢y € S(G,U)ypu we have
YF(m) = 672 (m)¢n,u(m)yp(m)  for any m € M.

Proof. By assumption we have, for m € M and n € N, that ¢(mn) # 0 if and only if
mn € UMU which by Lemma 1.4 is equivalent to n € m~'UMU NN = m~'UymUy.
Furthermore, the U-bi-invariance of ¢ then implies that ¢¥(mn) = ¢)(m). Hence we may
compute

P (m) = 57 V/2(m) / $(m) dn = 62 (m)ex g (m)(m).

m_lUNmUN

The above lemma shows in particular that the restricted map
(')P : S(G, U)UMU — S(M, UM)

is injective. In order to show that it is, in fact, bijective we first need information about the
growth of the function {n,y. We let Z¢ and =); denote the Harish-Chandra Z-function
of G and M, respectively. We fix a scale function o on G and use o | M as a scale function
on M. The topology on S(G) and S(M) is given by the seminorms

vare(9) = sup [d(m)|Znr(m) = (1 + o (m))"
meM

and

vG,s(¥) = sup [(9)|Zc(9) 7' (1 + o (9))°
geG

with real numbers r, s > 0, respectively (cf. [Sil, Chapter 4]).

Lemma 1.6. There is an ng € N and a constant ¢ > 0 such that
Y2 m)en.u(m) " ey (m) < cSg(m)(1 +a(m))™  for any m € M.

Proof. According to [Sil, 4.1.1, 4.2.1] (or [Wal, I.1.(5), II.1.1]) there exist r¢ € N and
constants ¢y, co > 0 such that

c1 < volg(KgK)'2Z¢(g) < ca(1+ o(g))"c
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for any g € G. A corresponding formula holds for M. Hence our assertion is implied by
the inequality

volg(KmK) /2
volps ((K N M)m(K N M)))

exolm) > e 8%m) -
or equivalently
voly (m ™ *UxmUy)? - volpy (K N M)Ym(K N M)) > c¢-6(m) - volg(KmK)
for any m € M. Up to changing the constant c¢ the latter is the same as
voly (m ™' UnmUxy)? - volp (UprmUypy) = ¢+ 6(m) - volg(UmU). (1.1)

‘We have

volg(UmU) = volg(m™*UmU) = volg(m™'Um) volg(U) volg(m ™ 'Um NU) ™",
volps (UnymUny) = volps (m ™ Uprm) volps (Ung) volpr (m ™ Uyym N Upp) ™2,
VolN(mflUNmUN) = VOIN(milUNm) VOIN(UN) VOlN(milUNm n UN)il.

The latter formula of course has a counterpart for N. Using these formulae as well as the
decomposition U = UxUp Uy we see that (1.1) is equivalent to

—1 _ —177_ _ _ —1
voly (m™"Uxm) voly (Un) ([ volg(m™ Ugm)volg(Uyx) > - 3(m). (1.2)

voly (m~1Uxym N Uy) voly(m=1Uzym N Uy)

Since
voly (m ™ tUnm) = §(m) voln (Uy)
and
Volﬁ(mflUNm) = 5p(m) VOIN(UN) = 571(771) VO]N(UN)
the formula (1.2) simplifies, again allowing a change of the constant ¢, to
=177 _

voly(m=1UymNUy) =~

We now fix a minimal Levi subgroup My C M of G as well as a minimal parabolic
subgroup Py = MyNy C P with unipotent radical Ny. We also fix a maximal split torus
Ap in My and we let X' denote the set of reduced roots of Ay in Lie(G). Corresponding
to any o € X we have the root subgroup N, C G. We put U, := Uy, = U N N, and
Sa(a) = |det(ad(a); Lie(Ny))|,; ! for any a € Ag. Let XM+ respectively £V, denote the
subset of all roots o € X such that N, C M N Py, respectively N, C N. According
to [Cas, Proposition 1.4.6] (or [Wal, 1.1.(4)]) there is a finite subset I" C M such that

M = Uy T AgTUyy.
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Hence the equivalent inequalities (1.1)—(1.3) need only to be shown for m = a € A,.
Since U is assumed to be totally decomposed with respect to My we have

a'UyanUy = [] (a7'UaanUs)
acXN
and

a 'UganUg = H (a'U_nanU_y)

aeXN

for any a € Ay (with an arbitrarily chosen but fixed total order on V). Hence, finally,
(1.3) reduces to the inequality

H voly__ (a tU_nanNU_,)

>c-61 1.4
voly, (a=1Usa NUy) c:07(a) (1.4)

aeXN

for any a € Ag. But there is a constant c3 > 0 such that
Uy : (a UqanUy)] < 3
if |a(a)] <1 and
(a7 Uya: (a7 UpaNU,L)] < 3
if |a(a)| = 1. Using in addition that
voly, (a7 Uqa) = 84(a) voly, (Uy)

it follows that the left-hand side in (1.4) can be replaced by

II &t.

a€X N, |a(a)|#£1
Since 6(a) = [[,e s~ da(a) the inequality (1.4) therefore certainly holds if
Sa(a) =1 for any a € Ag and o € % such that |a(a)|x = 1.

But by the structure of the root subgroups N, there are natural numbers m(«) € N such
that

Ja = |al;, ™.

Lemma 1.7. The restricted map
()7 S(G, Dy = S(M,Uy)

is a linear topological isomorphism.
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Proof. It suffices to show that the map s = S%U :S(M,Up) — S(G,U) given by

§12(m)énp(m)~to(m) if g € UmU, m € M,

0 otherwise

s ()(9) = {

is well defined and continuous. By the first formula in Lemma 1.4 the function s"V (¢) is
U-bi-invariant. As a consequence of Lemma 1.6 we have

VG,S(SW((b)) < WM stn0(9)
for any real number s > 0. 0

In the limit with respect to U we obtain from Lemma 1.7 the surjectivity of the map
()7 : S(G) — S(M). In the rest of this section we analyse the algebraic properties of
the map

sV = s%U :S(M, Uy ) — S(G,U)

constructed in the above proof. Because of Lemma 1.3 (ii) it has the property that
voly(Ux )™t - sW (ey,,) = ey. It therefore is natural to introduce the renormalized map

s=snu =volg(Ux) ™" sy

An element m € M is called positive for (P,U) if
mUxym™ ! C Uy and mflUNm CUgw.

The subset M+ = M} C M of all elements which are positive for (P,U) clearly is
multiplicatively closed and contains K N M. It follows that

H+(Ma UM) = H(Ma (]M)I\/[Jr and S+(M7 UJV[) = S(Mv le\/[)MJr
are subalgebras of H(M,Uys) and S(M, Uyy), respectively, with the same unit element.
Lemma 1.8.

(i) The map s : ST(M,Uy) — S(G,U) is an injective and continuous unital ring
homomorphism.

(ii) For any ¢ € ST(M,Uy) and ¢ € S(G,U) we have
(s(9) x ) = g+ 9"

Proof. (i) Since &n,p(m) = §(m) voly(Uyn) for m € M™*, we have for ¢ € ST(M,Up)
the formula

volps (Ung) volg (U) =162 (m)p(m) if g € UmU, m € M+,

0 otherwise.

s(¢)(g) == {

In view of this formula it is shown in [BK, Corollary 6.12] that the restriction of s to the
Hecke algebra HT (M, Uyy) is multiplicative. From this the assertion follows by continuity.
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(ii) For any mo € M we compute
(5(6) )7 (mo) = 5~ V/2(m) /N (5(6) * ) (mon) dn
= 571/2(1my) /N /G 5(6)(9)(g™ mon) dg dn

=6 (m s “Imgn) dndg.
=57 2mo) [ [ s@)apota mon) andg

Observe that UMTU = Uy MU and that, for g € UymU, g = uymuy with m € M,
uy; € Uy, and us € U, we have

-1 _ volys (Unr) 51 2
/N5(¢)(9)¢(9 mon)dn—m / /¢m mon)
o VOlM(UM) _ _
*W5 Y (m)8' /2 (mo)(m)w” (m™ my).
Hence
(s(¢) * ) (mo) = > volg (Uxm0) YD) 5ot s )b ().

meUN\UNnM+U/U VOIG(U)

For positive m we have

volg(UnmU) volg(U)§ ™ (m) = [UymU : U6~ (m)
= [Uy : Uy nmUm™ )67 (m)
= [Uy : mUxm ™6 (m)
=1.

Moreover, the first part of the proof of Lemma 1.4 shows that
MUy = UN\UNMTU/U.
It follows that

(s(@)x ) (mo) = > volar(Unr)d(m)y" (m™"my)

meMt /Uy
/ $(m)wP (m~1mo) dm
M+
$(m)y (m™"mo) dm
M
= (¢ * ") (mo).

O

Lemma 1.8 says that the map (-)” is a homomorphism of S* (M, Uy )-modules where
the module structure of S(G, U) is the one induced by the map s.
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2. Parabolic induction for S-modules

We keep all the notation introduced in the previous section. In particular P = M N is a
fixed parabolic subgroup and K denotes our fixed maximal compact subgroup. Parabolic
induction (in the normalized sense) is the functor

d$ : M(M) - M(G)
given as follows. For any smooth M-representation F one defines

IndIG; (E) := the space of all locally constant maps F': G — E such that
F(gmn) = §'%(m) -m~"(F(g))
forany g € G, m € M, n € N,

and one lets G act by left translations ("F)(g) := F(h™g).

Our aim in this section is to lift Ind$ to a functor M*(M) — M*(G) (which is compat-
ible with respect to the forgetful functors). To prepare this construction we first rewrite
the H(G)-action on Ind$(E) in terms of the H(M)-action on E. The convolution of any
¢ € H(G) and any F € Ind$(E) can be computed as follows:

(¢px F)(h /¢ (g 'h)d
:/amwwl
G
:// ¢(hmnk)F(k™*n"'m™1) dm dndk
Mx N
— / / ("4 ) (mn) 62 (m)m(F (k™)) dm dn dk
MxN
// T )P mym(F(k7Y)) dm dk
:/ (h’ ¢k71) *F(k_l)dk
K
= [0 rwan 1)
K

The last integrand only involves the H(M)-action on E; moreover, the last integral in
fact is a finite sum provided the integrand is locally constant in k € K (as it is the case
above).

Suppose now that F is a non-degenerate S(M)-module. Viewing E as a smooth M-
representation we may form the parabolic induction Indg(E). The existence of the map
Y+ YT on S(G) allows us to turn the above computation (2.1) into a definition: for any
¢ € 8(G) and any F € Ind%(E) we define the map 1 % F : G — E by

@ FYW) = [ (7" (k) a.
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As pointed out already the integral in fact is a finite sum. Since % is uniformly locally
constant it is immediately clear that ¢ % F is locally constant. We observe that

(@) xv = ("(ev * §)) x v = (("ew) ¥ ¢) ¥ v ="ey * (¢ * v) = m(¢ * V)

forme M, v € E, and ¢ € S(M) where the compact open subgroup U is chosen such
that ¢ is left U-invariant. Using this and Lemma 1.1 one easily checks that

(1 % F)(hmn) = 6Y2(m) -m™Y((¢) x F)(h)) for any m € M, n e N.
So far we have seen that

S(G) x nd$(E) — nd$%(E),
(Y, F) = px F (2.2)
)
(

is a biadditive map which, because of (2.1), extends the H(G)-module structure on
Ind%(E). To show that this is indeed an S(G)-module structure it remains to verify
that

¢x(YxF)=(px¢)«F
for any ¢, € S(G) and F € Ind%(E). Using Lemma 1.2 we compute

(6% (4 F))(h) = /K (") (6% F) (k) dk

:/K(h‘lgbk)P* (/K(k_lujk')P*F(k’)dk’) dk
:/K</K(hl¢k)P*(kl¢k’)Pdk> * F(K') dk'

= [0 )" e P ar

:/K(h*(gbw)k')f’*}?(k’)dk’
= ((p*¢) x F)(h).

This establishes that (2.2) is an S(G)-module structure. It obviously is functorial in the
S(M)-module E. Hence we have constructed a functor

Ind% : MH(M) = MH(G)

which after forgetting corresponds to the (normalized) parabolic induction for smooth
representations. With the latter also the new functor is exact. As it stands our lifted
functor seems to depend on the choice of the maximal compact subgroup K. But this
choice in fact is just a matter of convenience. Recall that we have fixed Haar measures
on G, M, N, and hence a left as well as a right invariant Haar measure on P. These
choices determine uniquely a G-invariant functional

ha/p Indg(é’l/z) - C
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(cf. [BZ, 1.21]). Going back to the definition of the module structure (2.2) we consider,
for any h € G, ¢ € S(G), and F € Ind%(E), the map

éhﬂ/’xF G — E’7
-1
g (" )P« Fg).
Using Lemma 1.1 it is easily seen that this map is locally constant and satisfies

Ph,y,r(gp) = 0(p) - Phyy,r(g) for any g € G and p € P.

Hence
Bp,p.r € IndE(67Y2) ¢ E.

We therefore obtain the formula

(W F)(h) = / B1.r(9) dpicsyp(9),

G/P

which shows that our lifted functor is independent of the choice of K.

It will be technically important to understand parabolic induction as a functor from
M(S(M,Upr)) to M(S(G,U)) where U runs over appropriate compact open subgroups
in G. In the Hecke algebra case this is described in [Bus] as follows. In the following
we always let U, as in the previous section, be an open normal subgroup of K which is
totally decomposed. We have the obvious functor

M(H(M,Unr)) = M(H(G,U)),
X = HOIH?-[*(M,UM)(H(G’ U),X).

Let My (G) denote the full subcategory of all V in M(G) such that H(G)VY = V.
By [Bus, §4.1, Corollary 1.ii and Remark 6] the diagram

Mu(G) —Y=2Y o MH(G,U))

Ind§ T

MUM (M)

THom’H+(AI,UM)(H(G1U)7‘)
BB M(H(M, Unr))
is commutative up to the following natural isomorphism
Ind§3(E)" = Homg: (ar,0,) (H(G, U), B7),
F o (o F)(1));

moreover, the horizontal arrows are equivalences of categories. We suppose now that
E lies in M*(M) and satisfies E = H(M)EY». Then EY™ is naturally an S(M,Up)-
module and the right-hand side of the above natural transformation is equal to

HOIHH+(M’UNI)(H(G, U), EUM) = HOmS(M7UM)(S(M, UM) QH+(M,Unr) H(G, U), EUM),
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where S(M,Uys) is viewed as a right HT(M,Uy) via the ring homomorphism s in
Lemma 1.8 (i). On the other hand Ind%(E)V and therefore, by transport of structure,
Homgs(ar,0,,) (S(M, Unt) @p+(a,u,) HIG, U), EUM) is naturally an S(G, U)-module. We
will show in the following that this latter module structure is induced by a natural right
S(G,U)-module structure on the tensor product S(M,Upr) @4+ (amr,v,,) H(G, U).

At this point we fix an element z € M+ which is strongly (P,U)-positive and lies in
the centre of M (cf. [Bus, 3.2]). The function ¢, := *ey,, € HT (M, Uy) is supported on
UnrzUp with value ¢, (z) = volas (Upr) ™t More generally, for any i € Z, the i-fold power
¢! = *'ey,, € H(M,Ups) is supported on Upz*Up with value ¢ (2%) = volpr (Uns) ™
and, in fact, lies in the centre of H(M,Uys). We put ¢, := s(¢.) € H(G,U). Its i-fold
power ¥’ := s(¢), for i € N, is supported on Uz'U with value ! (z*) = volg(U)™! -
§12(2h).

We consider the obvious map

io : S(M,Unr) ®@p+ (m,ung) H(G,U) = S(M,Unr) s+ (a,0,0) S(G,U)
as well as the map
eo : S(M,Unr) @s+m,un) S(G,U) — S(M, Unr) @44+ (ar,v5) HIG,U),
p@v > volg(U)- Y ¢x @ )T e ke,

keK/U

which is well defined by Lemma 1.8 (ii). Both maps of course are homomorphisms of left
S(M, Upr)-modules. We put
R := ker(ep),

which is an S(M, Uxs)-submodule of S(M,Unr) @s+(ar,v,,) S(G,U).

Proposition 2.1. The maps iy and ey induce isomorphisms
S(M7 UM) ®H+(M7U]M) H(G’ U) = [S<M7 UM) ®S+(M,U]\/I) S(G7 U)}/R
which are inverse to each other.

Proof. First we establish that egoig is the identity map. This amounts to showing that,
for any ¢ € H(G,U), the element

ey @Y —volg(U) - Y (k)P @ key (#)
keK/U

is equal to zero in the tensor product S(M,Upr) ®+ (v, H(G,U). This will be
achieved in three steps.

Step 1. We assume that ¢ = €. The support supp(e’ffl) =Uk~! C Pk~'U has empty
intersection with P if k ¢ KpU in which case we therefore have (€5 )P = 0. On the
other hand let k = k,k,, € KnKy = Kp. Then

kP Pyt _ volp(Up)
(e )" = ()™ = olg(0) U
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Together we obtain

volg(U) - Z (6];]71)13 ® ey = volg(U) - Z (61571)13 ® Fey
keK/U keKp/Up
-1
= VOIP(UP) . Z CI;]]'\L/I (39 k"kmeU
keEKp/Up
1

1
= T X @ e
L keKp/Up

and hence

ey ® ey — volg(U) - Z (6](“;1)13 ® Fey
keEK/U
1

_ . _ ktknkm
“He T 2 el )
EKP/UP

(note that k, k., Up + k,'k,knU is a well defined map from Kp/Up into KyU/U).
Since ¢, is invertible in H(M, Uys) we have, for any ¢ € N, that

evy ® ey — volg(U) - Z (e]f]fl)P ® ey
keK/U
1 . . _
LS s g

[KP : UP] keKp/Up

It therefore suffices to find, for any given n € Ky, an i € N such that
¢: * (eg — "ey) = 0.

Since z is strongly positive we do find an i € N such that z'nz~* € Uy. Then Uz'Un =
Uz'nU = U(2'nz"%)2'U = Uz'U and more precisely (%)™ = 1L.

Step 2. We assume that supp(¢)) € UM T K. By additivity we then may even assume
that supp(¢)) C UM TkoU for some kg € K. Then vy := ko has support in UM+U
and hence, by Lemma 1.7, is of the form 1y = s(¢g) for a unique ¢pg € H (M, Uys). We
compute

vy @1 —volg(U) - Z W )P @ key

keK/U
= vy ® 5(¢0)" —vola(U) - > (s(g0)"" )" @ Fey
keK /U
=¢o ® elf}) —volg(U) - Z oo * (elfj’kil)P ® Fey
keK/U
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= g @ et —vola(U) - Y gox (el )T @ Fely
keEK/U

= ¢ * <€UM ® ey — volg(U) - Z (e’fj_l)P ® keU> * elg’
keK/U

= 07
where for the second identity we have used Lemma 1.8 (ii).

Step 3. We now let v € H(G,U) be a general element. First we claim that
Y i= (v € H(G,U) : supp(¥)) C UMK}

is an HT (M, Upys)-submodule of H(G,U), and that any element in the quotient mod-
ule H(G,U)/Y is annihilated by some power of ¢,. The first part of this assertion is
immediate from

UMTUMTK =UMTUyM*tK =UM™K.

For the second part we recall that N is the union of its compact open subgroups and
that M is the increasing union of the 27*M™ for i > 0. We therefore find an i > 0 and
a compact open subgroup Ny C N such that

supp(¢) € Noz "M TK.
Choosing i large enough we may further assume that z'Ngz~* C Uy. We then have

supp(v * ) C Uz'U - supp(v) C Uz" - supp(¥))
CUZNyz"MTK CUMTK.

This establishes the claim.
Given a ¢ € H(G,U) we now find an ¢ > 0 such that, by Step 2, we have

€vp @ YL =volg(U) - Y (@Lxyh ) @ Fey.

kEK /U
The left-hand side is equal to ¢% * (er,, ® 1), and the right-hand side, by Lemma 1.8 (ii),

’ oL x (volG(U)~ o W HPe ’%U).

keK/U

Since ¢, is invertible in H(M, Uyy) it follows that

vy @Y =volg(U)- > (¥ )P @ ke
keK/U

This finishes the proof of the identity

€o Oio =id.
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In particular, the map iy is injective. Moreover, e := ig o ey is a projector on

S(M,Unr) ®@s+(m,uy) S(G,U). We obtain that
R = ker(eg) = ker(e) = im(id — e)

and that
S(M7 UM) ®$+(M,UM) S(G7 U) = lm(Zo) ®R.

O

The tensor product S(M,Upr) ®s+ar,vu,,) S(G,U) of course is a bimodule with
S(M,Uyr) acting from the left and S(G,U) acting from the right. Using Lemma 1.2
one easily checks that the map e = iy o ey satisfies

e(¢ @Y1+ o) = e(e(d @ 1) *12).

It follows that R = im(id—e) = ker(e) is a right S(G, U)-submodule of the tensor product
S(M,Unr) ®@s+(m,ua) S(G,U). Hence [S(M,Unr) ®@s+(a,uy,) S(G,U)]/R is a bimodule
quotient of S(M, Unr) ®s+(m,u,,) S(G, U). Using Proposition 2.1 we may rewrite, for any
E in M!(M), our earlier natural isomorphism as the isomorphism

md&(E)Y = Homg (0, (IS(M, Unt) @5+ (ar.vn) S(G,U)] /R, EVM),
F— Ar(p@¢) = ¢* (¢ x F)(1)).

This visibly is an isomorphism of S(G,U)-modules where the S(G,U)-action on the
right-hand side is the one coming from the right S(G,U)-module structure of the first
entry. To write this fact, similarly as before, as a commutative diagram of functors we
introduce the full subcategory Mt (G) of all V' in M*(G) such that S(G)VY = V.

Lemma 2.2. Let V be in M!(G); we then have
(i) V lies in M}, (G) if and only if, as an H(G)-module, it lies in My (G);

(ii) V decomposes as an S(G)-module into a direct sum V = Vy & Vy such that Vy lies
in M%(G) and ViV = 0.

Proof. Let
M(@G) = [[Ma(@)
2

be the decomposition of the category M(G) into its Bernstein components (cf. [BD]).
Suppose that V' lies in M}, (G). We consider the corresponding decomposition V' =
D, V(£2) of V as an H(G)-module into its Bernstein components V' ({2). As explained in
[SSZ, p. 166] this decomposition is in fact an S(G)-module decomposition. Since eV =
Y eV (2) our assumption that V = S(G)VY implies that V(2) = S(G)eyV ($2)
for any 2. According to [Bus, §1.4, Proposition 3| there are finitely many Bernstein
components (21, ..., {2, such that My (G) = Mg, (G) x -+ x Mg, (G). It follows that
ey V($2) = 0 for any 2 # (2;. Hence V. = V(1) & --- & V(£2,) lies in My(G). For a
general V in M*(G) the decomposition in (ii) is given by Vj := V(£21)@®---®V(£2,) and
Vii= @0 V(). O
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Lemma 2.3. The functor
My (G) = M(S(G,U)),
Vi vy
is an equivalence of categories with a quasi-inverse functor being given by
X = S(G) *ev @sa,vy X

Proof. The category My (G), being a finite product of Bernstein components, is closed
under the passage to H(G)-module subquotients. Lemma 2.2 (i) then implies that the
category M}, (G) is closed under the passage to S(G)-module subquotients. The asserted
equivalence of categories is a formal consequence of this fact (cf. the proof of Proposi-
tion 3.3 in [BK]). O

Proposition 2.4. The diagram

Vv
M (G) ————= M(S(G,U))
IndgT THomS(NI,UM)(BU,')
E—EYM
M (M) —===—— M(S(M, Unr))
is commutative up to the natural isomorphism F — Ag, where
By = [S(M,Unr) @s+m,uy) S(G,U)|/R;
moreover, the horizontal arrows in the diagram are equivalences of categories.

Proof. We first of all point out that, by [Bus, § 1.1, Proposition 1], the compact open
subgroup Uy; € M has properties exactly analogous to the properties which we assumed
to hold for U C G. By [Bus, §1.7] the functor Ind% maps My, (M) into My (G). Tt
therefore follows from Lemma 2.2 that this functor also maps My, (M) into Mg (G).
The asserted commutativity was established before Lemma 2.2. Finally, Lemma 2.3 says
that the horizontal arrows are equivalences of categories. |

3. Parabolic restriction for S-modules

The parabolic induction functor for smooth representations has a left adjoint—the
Jacquet functor—which is given by

ra.p : M(G) — M(M),
V= Vy == V/V(N),

where V(IN) C V denotes the vector subspace generated by all nv — v for n € N and
v eV (cf. [Car, 2.2]). If

V—)VN,

Vv
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denotes the canonical projection map then M acts on Vi by mo = 6'/2(m) - mw. It is
known that this functor does not respect tempered admissible representations. To con-
struct a left adjoint for our parabolic S-module induction therefore requires a modifica-
tion of the above functor even on the level of the underlying smooth representations; in
other words we cannot expect compatibility with the forgetful functors.

For any V in M(G) there is a natural H-module homomorphism

V-oSoyV,
V= €y QU,

where € is chosen in such a way that U fixes the vector v. We first want to show that the
projection map V' — Vyy naturally extends to a map S(G) @) V — S(M) @y ar) V-

We compute
gb*v:/qb(g)gvdg:/ / /gb(mnk)mnkvdmdndk
G KJMmJIN

E/ / /¢(mnk)mkvdmdndk mod V(N)
M
/ (¢F )P (m)5Y2 (m)mkv dm dk
M

_/K(¢ )P« ko dk

and hence

Gxv= / (") x k=Tvdk (3.1)
K
for any ¢ € H(G) and v € V. We now put
J:=Jp: S(G) On(a) V — S(M) (M) Vn,
YR v / WM @ k=Tvdk,
K
which is well defined since, using Lemma 1.2, we have
Hwsoou) = [ (x0T Todk
/ / WP« (KT P Ak @ ko dk
— / ()P ®/ (K7 M) P w k1o dk dK/
K K
(3.1)

W[ @) e g vk
K

:/ W) @ K=1(p*v) dk’
K
=J(Y®¢*v).
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We check that the diagram

pr

v Vn

| |

S(G) (@) v_L. S(M) ®34(a1) VN

is indeed commutative. Given a vector v € V' and a compact open subgroup U C G which
fixes v let U’ C Ups be a compact open subgroup of M which fixes ((err)*)F € H(M) for
any k € K (in fact, these are only finitely many different elements); then

Jew ®v) = /K((eu)k)%gﬁdk

= e ®/ ((er)®)F * k=T dk
K

(3.1) _
= € Rey*xv =€y Q.

For any V in M'(G) we let my : S(G) ®y ) V — V denote the obvious multiplication
map. We now define our parabolic restriction functor by

rG.pt MH(G) = MY(M),
V s (S(M) @gan) Vir)/(S(M) - T (ker my)).
Proposition 3.1. The functor rtG’P is left adjoint to the functor IndIGg constructed in § 2.
Proof. We begin by observing that we have the chain of natural isomorphisms

Homgs () (S(G) ®n(q) V,Ind%(E)) = Homyy ) (V, Ind% (E))
= Homy(ar)(Vn, E)
= Homs(ar) (S(M) @w a1y Vi, E) (3.2)

for any non-degenerate S(M)-module E. More explicitly, if
A:8(G) @)V = IndE(E) and B:S(M)®ymn Vy — E
correspond to each other under the above natural isomorphisms then we have
Blp®7) = p+ (Aler ®v)(1).

‘We obtain

B(J(¢ ®v)) = B(/K(wk)l’ ® k‘%dkz)
= [ B 97T

:/ (WP % Aley ® k~0)(1) dk
K
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_ /K(z/,k)P « Alev ® 0) (k) dk
= x Aley ®0))(1) = A(Y ® v)(1),

where the fourth identity holds by the definition of the S(G)-module structure on
Ind%(E). This says that the diagram

S(G) @) V —2> ndS(E)
Ji J(evl(F):Fu) (3.3)
S(M) @y Vi

E

is commutative. It follows that, for a given S(G)-submodule W C S(G) @)V, we
have
A(W) =0 if and only if B(S(M) - J(W)) = 0.

(For the reverse implication observe that A(w) = 0 if and only if A(gw)(1) = 0 for any
g€ @)

Let now V be a non-degenerate S(G)-module and apply the above discussion to W :=
ker(my ). In this situation it follows that the natural isomorphisms (3.2) induce, because
of (3.3), a natural isomorphism

Homg ) (V, Ind%(E)) = Homgan (S(M) @w(ary Vi) /(S(M) - J(ker my)), E).
O

All the information obtained so far can best be displayed in one large commutative
diagram (the broken arrow only makes commutative the parallelogram of which it is the

top):

S(G) @c) V A Ind$(E)

J evy

’"tG,P(V)

By the uniqueness of adjoints, with IndIG_-; also the functor rtc) p is independent of the
choice of the maximal compact subgroup K. As an immediate consequence of (3.2) we
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have
76,p(S(G) @) V) = S(M) @py(ary Vv,

i.e. that the diagram of functors

S(G .

M(G) (&) (a) Mt(G)
TG,P\L TG p
S(M M)*

M(M) (M)®3(nr) ./\/lt(M)

is commutative. We also remark that it is a formal consequence of having a right adjoint
that the functor ¢ p is right exact.

The kernel of my is C-linearly generated by elements of the form ¢y @ v — ey ® ¥ x v
with v € V, ¢ € §(G), and U C G a compact open subgroup such that ey ¢ = . It
follows that ré;y p(V) is nothing else than the cokernel of the map

S(M) ®c 8(G) @) V = S(M) @) Vi,
¢®1/)®v»—>¢®1/)*v—/ ¢ * (WM @ k—Todk.
K
This evidently is a map of left S(M)-modules. But in case V' = S(G) it also is a map
of right S(G)-modules since the projection map S(G) —» S(G)n is. We therefore see
that this map for arbitrary V arises from the map for V.= S(G) by the tensor product

- ®s(@) V. It also follows that rg p(S(G)) is an (S(M), S(G))-bimodule. Hence we have
the following fact.

Proposition 3.2. For any V € M*(G) we have 1§, p(V) = 14 p(S(G)) ®s(a) V-

As in the previous section we want to understand parabolic restriction also as a functor
from M(S(G,U)) to M(S(M,Uys)). We again fix an open normal subgroup U of K which
is totally decomposed. We also recall the bimodule

By = [S(M,Un) ®s+ar,ua) S(G,U)|/R.
It is clear that the functor
Homs a0, (Bu, ) - M(S(M, Unr)) = M(S(G,U))
has the left adjoint
By ®@sc,vy - M(S(G,U)) = M(S(M,Un)).

Proposition 3.3. The diagram
U
MHG) — = M(S(G, D))

TE‘,P\L le@sm,m'

BB M(S(M, Un))
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is commutative (up to a natural isomorphism which is made explicit after Corollary 3.5).
In particular, the surjection

S(M,Upr) ®s+(m,uy) S(G,U) —» By
of (§(M,Uy),S(G,U))-bimodules induces a surjection
S(M,Unt) ®@s+aauag) VY —» Bu @s(go) VY =21k p(V)
of left S(M, Upy)-modules.

Proof. We first of all claim that the functor rgyp maps the category M (G) into
My, (M). If V lies in Mp;(G) then, by Lemma 2.2 (i), as an H(G)-module it lies in
My (G). Hence Vi lies in My;,, (M) by [Bus, §1.7], i.e. we have that Vy = H(M)V M.
It easily follows that rf p(V) = S(M)rg p(V)V™, ie. that rf p(V) lies in M, (M).
By the uniqueness of adjoints Proposition 2.4 therefore implies the commutativity of the
diagram

M (G) —V=V s M(S(G,U))

t
TG,P\L

\LBU®S(G,U)'
M, (M) —E2E2 pM(S(M, Unp)

Because of Lemma 2.2 (ii) it remains to show that for any V in M*(G) with VY = 0
we have &, p(V)U™ = 0. By [BD, 3.5.2] we certainly have VJ* = 0. In terms of
Bernstein cdmponents this means the following. Similarly as in the proof of Lemma 2.2,
if M(M) =[],y Mgq/ (M) is the Bernstein decomposition of the category M(M), then
there are finitely many components (21, ..., 2; such that My,, (M) = Mg (M) x --- x
Mgy (M). We see that Viy has tolie in [, o M (M). The subsequent lemma (applied
to M) implies that then also S(M) @y (ar) Vi and a fortiori its quotient ra.p(V), as
H(M)-modules, lie in ], oy Mg (M) and therefore have no non-zero Ujs-invariant
vectors. ' O

We remark that it will follow from Theorem 4.18 later on that even the natural map
VY =g p(V)
is surjective.

Lemma 3.4. Suppose that V lies in the Bernstein component Mg, (G) of M(G); then
S(G) @3 (e V, as an H(G)-module, lies in Mg, (G) as well.

Proof. As we have recalled earlier the Bernstein decomposition of S(G) @)V =
[1o(S(G) @) V)($2) is a decomposition into S(G)-modules. By assumption V' is
entirely contained in (S(G)®4 ) V)(20). On the other hand, V' obviously generates
S(G) ®3(c) V as an S(G)-module. Hence we must have

S(G) @na) V = (S(Q) @) V) (£20)-
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Corollary 3.5. With B :=r( p(S(G)) we have
(i) Bu = ey, Bey as (S(M,Uypy),S(G,U))-bimodules;
(ii) B lim By as (8(M),S(G))-bimodules;
(i) the functor Ind% : M*(M) — M*(G) is naturally isomorphic to the functor
E — Homg (B, E) := §(G) * Homgs ) (B, E).

Proof. (i) By the functoriality of rg; p we have Bey = rg; p(S(G/U)) where S(G/U)
denotes the left S(G)-submodule of all right U-invariant functions in S(G). On the other
hand, Proposition 3.3 implies that

e, 76,p(S(G/U)) = 15 p(S(G/U))"™ = By.
(ii) This follows immediately from (i).
(iii) Using Proposition 3.2 we have
Homg (g (V. Ind%(E)) = Homg ) (rg p(V), E)
= Homg 1) (B ®s(q) V; E)
= Homg ) (V, Homgrr) (B, E))
= Homg e (V, Homgo(M)(B, E)).
U

We remark that by going through the formulae one can see that the natural isomor-
phism in Proposition 3.3 is explicitly given by
By @sco) VY =16 p(V)" =rg p(S(G)"™ @s(c) V,
@ey)ev— (@19) @,
where ¢ € S(G)n denotes the image of 1) € S(G, U) under projection.

Lemma 3.6. Let U’ C U be another compact open subgroup with the same properties
as U; we then have
Byrey = S(M,Uy) @sm,ua) Bu

as (S(M,Uy,), S(G,U))-bimodules.
Proof. Quite generally, as a consequence of Lemma 2.3 applied to U as well as U’ one
obtains the natural isomorphism

X =S(M,Uy) @s(a,up) €Un X

for any S(M, U}, )-module X which is generated by ey, X. Since S(G/U) lies in M}, (G)
we know from the proof of Proposition 3.3 that rg p(S(G/U)) lies in M, (M) C
M. ;W(M) Using Lemma 2.3 again we deduce that Byrey = r&P(S(G/U))UM as an
S(M, U}, )-module is generated by rf, p(S(G/U))Y™ = By. Our assertion therefore is a
special case of the initial observation. ([
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4. The bimodules By

Keeping all our notation we will make in this section a detailed investigation of the
structure of the (S(M, Uxr),S(G,U))-bimodule

By = [S(M,Un) ®s+m,vy) S(GU)]/R
with R = im(id — e) = ker(e) for the projector
€: S(M, UM) RS+ (M,Up) S(G, U) — S(M, UM) QS+ (M,Unr) S(G, U)7
oY vola(U)- Y ¢ (@F )T @ bey.

kEK/U

First we study By as a left S(M, Ups)-module. As a consequence of Lemma 1.8 (ii) we
have, for any k € K/U, the well defined S(M, Ups)-module homomorphism

S(M7 UM) ®S+(M,UM) S(G7 U) - S(M7 UM)a
bRy ox (U ).

By Lemma 1.2 it is zero on R. Hence we may combine these maps into an S(M, Uyy)-
module homomorphism

T+ (S(M,Unr) @s+(as,vn) S(G,U)) /R = S(M, Upg) Y,
@9 = volg(U) - (6 (V*) )i
into the finitely generated free S(M, Uy;)-module S(M, Uy )5V of rank equal to [K : U].
In the reverse direction we have the homomorphism
S(M, Un)FU = (S(M,Uni) @5+ (a0, S(G,U))/R,
(Pr)k Z ok © "y +R.

keK/U

Using that

vy @Y =volg(U) - Z (wkil)P ® Py mod R
kEK/U

we see that F is a section of this latter map. We in particular obtain the following fact.
Lemma 4.1. By is a finitely generated projective left S(M, Uy )-module.

Using once more Lemma 1.2 one can show that the image of F is characterized by the
relations

ok =vola(U) - Y o x(Vefy )7

K EK/U
for k € K/U. We also remark that

S(Gv U) - M[K:U] (S(M7 UM))7
b s M() = volg(U) - (*4* )P ) s
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is a non-unital ring homomorphism into the algebra of (r x r)-matrices over S(M, Ups)
with 7 := [K : U]. The right multiplication of a ¥ € S(G,U) on By corresponds under
the map F to the right multiplication of the vector F(-) by the matrix M ().

Before we begin the much more crucial study of By as a right S(G,U)-module
we explain how to identify in a rather conceptual way By as a topological tensor
product. All three algebras S(G,U), S(M,Uys), and ST (M,Uy) are Fréchet alge-
bras, ST(M,Uys) is a closed subalgebra of S(M,Uys), and the algebra homomor-
phism s is continuous (Lemma 1.8(i)). The (completed) projective tensor product
S(M,Uyy) ®3+(M’UM) S(G,U) is formed in the following way. First we form the usual
completed projective tensor product of complex Fréchet spaces S(M,Uys) @c S(G,U)
(cf. [Sch, IIL.6.1-3]), and then we consider the continuous linear map:

S(M,Un) ®c 8T (M, Unr) @¢ S(G,U) = S(M,Un) ¢ S(G,U),
PR¢TRY = (px0T) QY — @ (s(¢T) x ).

The completed tensor product S(M, Ups) ®5+(M7UM) S(G,U) is defined to be the quo-
tient of S(M,Uys) ®c S(G,U) by the closure of the image of this map. Due to the open
mapping theorem this quotient is naturally a Fréchet space again. The natural map

S(Mv UJW) ®S+(M,UM) S(Ga U) — S(Mv UM) ®S+(M,UM) S(Ga U)

has dense image. To compute this projective tensor product we use the map F above.
Its image, being characterized by the above finitely many explicit relations, is closed in
the Fréchet space S(M, Uy )Vl On the other hand, viewing the map F as a map on
S(M,Upr) ®c S(G,U) it extends by continuity to the completion S(M, Up) ®c S(G,U)
and factorizes through the quotient S(M,Unr) ®s+(a,u,,) S(G,U). Hence we have the
commutative diagram

S(M,Unr) @s+(am,up) S(G,U) ——— S(M,Unr) @s+(a,0,) S(G,U)

| |

(S(M, Unr) ®s+(am,va) S(G,U)) /R im(F)

IR

Next we look at the continuous linear map

S(G,U) = S(M,Unr) @5+ arvay) S(G,U),
Y epy, @ —volg(U) - Y. " )P @ key

keK/U

and claim that it is, in fact, the zero map. But in Step 3 of the proof of Proposition 2.1
we have seen that this map vanishes on the dense subspace H(G,U). This means that
the horizontal map in the above diagram is zero on R and hence that we have the
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commutative triangle

By S(Mv UM) ®S+(M,UM) S(G7 U)

F /

im(F)

1R

The inverse of the map F viewed as a map

im(F) = S(M,Uyy) ®S+(M,UM) S(G,U),
Gk > or®Fey

kEK/U

is visibly continuous. It follows that all three maps in the above triangle must be bijec-
tions.

Proposition 4.2. By — S(M,Unr) @s+ (M) S(G,U) as bimodules.

It is technically important that this completed tensor product can be simplified further
at the expense of choosing a strongly (P,U)-positive element z € M™ in the centre
of M as in §2. In addition to the notation introduced there we need Z := z” and
Zt =N =Zn M+, In S(M,Uy) we have the closed (central) subalgebras

S, ={¢ € S(M,Unr) : supp(¢) € U ZUn }
and
82_ = {¢ € S(M,Upy) : supp(¢) C UMZ+UM} =38, ﬂS+(M, Unm).

Lemma 4.3. Sz ®Sj S+(M, UM) = S(M, UM)

Proof. We recall that M is the increasing union of the subsets z!M*, and consider
first the case that the intersection (1., 2*M™ is non-empty and hence contains some
element. Then there exists, for any i € Z, an element m; € M™ such that m = z'm,.
In particular 271 = m(m_1)~! = m;2*(m_;)~!. By choosing i large enough so that
2i(m_1)"t € M+ we see that 27! € M T and consequently that M+ = M. In this case
our assertion therefore is trivial. We henceforth assume that ;o 2'M™ = 0. As a space
M then decomposes into the open and closed subsets 2z M+ \ 21 M+ for i € Z which

are Ups-bi-invariant. Correspondingly we introduce the closed subspaces
S i={p € S(M,Uy) :supp(¢) C 2'MT\ 2T MT}
of S(M,Uys). Acting by z is a topological isomorphism

+ = ot
S; ?Siﬂ.
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We claim that the map

p:S.®cSy — S(M,Unp),
PRP I pxd

is a topological isomorphism. The left-hand side contains as a dense subspace the alge-
braic tensor product H, Q¢ S{f where H, denotes the subalgebra of all those functions
in 8, which have compact support. The right-hand side contains as a dense subspace the
algebraic direct sum @, ,
between these two subspaces. We therefore have to show that it identifies the corre-
sponding subspace topologies. The Fréchet space structure on S(M, Uyy) is given by the
norms

S;". Obviously, the map p restricts to a linear isomorphism

v (¢) = sup |6(m)|Znr(m) (1 + o (m))"
meM

for r > 0. Hence on H, Q¢ SJ’ it is given by the tensor product norms v, ® vas,,. As
w clearly is continuous it suffices to find, for any given r > 0, an s > 0 and a constant
C' > 0 such that

VM,S(N(J:)) = C- (VM,T by VM,T)(x)

holds true for any = € ‘H, ®c¢ SS'. Since the functions ¢? := zieUM for i € Z constitute a
basis of H, any element = € H, ®¢ SJ can be written in a unique way as a finite sum

r=> ¢. 9.
i
Its image under the map p then is

ula) = or

Since the summands in this expression have pairwise disjoint support we obtain

vars(u(x)) = sup var (*'6:)

K2

= sup sug\)/l |ps (27 m) | Znr(m) ™1 (1 + a(m))*
1 me

= sup sup |ps(m)|Ens (2'm) (1 + o (2'm))*.
i meM

From the very definition of the function =y one has Sy (y) = 1 and Sy (ym) = Zpr(m)
for any m € M and any element y in the centre of M. Hence

Vars(#(w)) = sup sup |6i(m)|Znr(m) ™1 (1 + o (2"m))".

i me
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For var,» ® var,r(z) on the other hand we certainly have

VMT®VM’I" ZVMT‘ VMT‘(¢’L)
= ZVOIM Un) M1+ 0(2")" Sgp|¢i(m)|5M(m)_l(1+0(m))r
= Vol (Uar) ™ 321+ 0(=)) sup ox(m) a0 (m) (1 + o (m)'

As a consequence of [Sil, 4.2.5] there is an ro > 0 such that C' := voly (Up)~!
(1 +0(2%) "™ < co. Hence

Ve @ vare(x) < C' - supsup i (m)| Zpr(m) 7 (L + o (m)" (1 + o ().
According to (a special case of) [Vi2, Proposition 3.1.2] there is an r1 > 0 and, for any
r > 0, a constant C). > 0 such that

(L +o@)"(L+o(m)" < Cr- (1+o(ym))*
for any m € M and any y in the centre of M. It follows that

Ut @ Ua1p(2) < C'Crry - SUpSUp gs(m)| Sag (m) ™ (1 + () 2+ 2o

= CICT-H”O " VM, 2r+2rg+1; ([L(ﬂ?)),

which is what we wanted to establish.
In the same way we obtain that S} ®&c S — ST(M, Uas). We now conclude that

S. Qg+ ST(M,Upp) = S. ©g+ (ST @cSF) =S, @ S§ = S(M,Un).

d
Lemma 4.4. S.®g+ S(G,U) = 8(M,Uyy) Qs+ (m,ua) S(G,U).
Proof. Using the previous lemma we have
S(M,Uyy) ®S+(M,UM) S(G,U) = (S, ®5; ST(M,Uyy)) ®S+(M,UM) S(G,U)
=S, 0gr S(G,U).
O

Corollary 4.5. By = S, ®SZ+ S(G,U) as right S(G,U)-modules.

The structure of the tensor product S, ®sj S(G,U) is closely related to the spectral
theory of the left multiplication operator

L.:S(G,U) =5 S(G,U)

on the Fréchet space S(G,U). We recall that the Waelbroeck spectrum o(L,) := C U
{0} \ p(L,) of the operator L, is the complement in C U {oo} of the set p(L.) of all
A € CU {oo} for which there is an open neighbourhood Uy such that
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(1) L, — p-id is invertible for any p € Uy N C, and

(2) {(L,—p-id)~1 : p € UxNC} is a bounded subset of the locally convex vector space
Ly(S(G,U)).

Here we denote by £, (X) the locally convex vector space of all continuous linear endo-
morphisms of a Fréchet space X equipped with the strong topology.

On the other hand, the naive spectrum of the element 1, in the Fréchet algebra S(G, U)
is defined to be the set

U(’(/Jz) = {>‘ €C:y, — A gS(G?U)X}

Due to certain simplifying features of the algebra S(G, U) listed in the subsequent lemma
these two sets turn out to coincide.

Lemma 4.6.
(i) Every simple unital (left) S(G, U)-module is finite dimensional over C.
(ii) S(G,U)* is open in S(G,U).
(iii) The map S(G,U) N S(G,U) of passing to the inverse is continuous.

(iv) Given any ¢ € S(G,U) there is a constant ¢ > 0 such that ¢ — A € S(G,U)* for
any X € C with |\| > ¢, and limy_,o0(¢p — A\) ™t = 0.

Proof. (i) We have seen in Lemma 2.3 that the functor

My (G) = M(S(G,U)),
Vi VY

is an equivalence of categories. Hence it suffices to show that dim¢ VYV < oo for any sim-
ple non-degenerate S(G)-module V. But according to [SSZ, Appendix, Proposition 3]
any such V in particular is an irreducible and hence admissible smooth G-representation.
The assertions (ii) and (iii) are shown in [Vil, Theorem 29.3]. (iv) Taking [Vil, Propo-
sitions 13 and 18] into account this is a version of [Vil, Lemma 16] with the same
proof. ([l

Lemma 4.7. o(L,) = o(¢).

Proof. Suppose that the operator L, — p - id on S(G,U) is invertible. We then find a
¢ € S(G,U) such that (1, — u) x ¢ = 1. As a consequence of Lemma 4.6 (i) the element
(¢p*(1p,—p))—1 is contained in every maximal left ideal. It follows that S(G, U)* (1, —pu) =
S(G,U), i.e. that ¢, — p also has a left inverse and therefore is a unit in S(G,U). This
shows that o(¢,) = C\ pnaive(L.) where

Pnaive(Lz) :={A € C: L, — X\-id is invertible}.
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We obviously have p(L,) N C C ppaive(L:). On the other hand, as a consequence of
Lemma 4.6 (ii), the set pnaive(L:), as the preimage of S(G,U)* under the continuous
map

C — S(G,U),
A=), — A,

is open in C. Furthermore, by Lemma 4.6 (iii) and [B-T'VS, I11.31, Proposition 6], the
composed map

paive(L2) = S(G UV 5 S(G, U %5 Lu(S(G,U)),
A=, — A

is continuous. Finally, Lemma 4.6 (iv) implies that ppaive(L,) U {o0} is open in C U {oc}
and that this composed map extends by zero continuously to a map from ppaive(L,)U{oc0}
to Ly (S(G,U)). On a compact neighbourhood of any point in ppaive(L.)U{o0} the image
under this map therefore is compact and hence bounded in £, (S(G,U)). We conclude
that p(Lz) = pnaive(Lz) U {OO} u

Since the Waelbroeck spectrum by construction is compact it follows that o(¢,) is a
compact subset of the complex plane. We let O(o(¢),)) denote the topological algebra of
germs of holomorphic functions on o(¢,).

Proposition 4.8.

(i) There is a unique continuous unital algebra homomorphism

O(o(¥2)) = Lu(S(G,U)),
[ f(L2)

such that «(L,) = L, where ¢ : o(v,) =N C; every map in the image of this homo-
morphism is an (ST (M, Uy),S(G,U))-bimodule endomorphism of S(G,U).

(ii) Ifo(¢,) = A1 U --- UA,, is a disjoint decomposition into closed subsets then there
is a corresponding (ST (M,Uy;), S(G,U))-bimodule decomposition S(G,U) = S; ®
@S, such that o(L, | S;) = Aj for any 1 < j < m.

Proof. Thisis, in view of Lemma 4.7, a special case of [Vas, I111.3.10] or [EP, 2.5.7] for (i)
and [Vas, I11.3.11] for (ii). We point out that in (ii) the decomposition of o(1,) gives rise,
through the characteristic functions of the sets A;, to a decomposition 1 = e;+- - -+e,, of
the unit element in O(o(¢,)) into a sum of idempotents e;; then S; = e;(L,)(S(G,U)).
The unicity is a consequence of Runge’s theorem (cf. [Con, I11.8.1]). O

We now will construct a particular such decomposition of the spectrum o (1. ). Given a
linear operator T' on a finite-dimensional complex vector space X we let E(T; X) denote
the set of its eigenvalues. We also need the notation |A| := {|u| : © € A} for any subset
ACC.
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Lemma 4.9. o(¢.) = Uy, E(¥.; VY) C {0} UUy E(z; V™) where V' runs over all irre-
ducible tempered representations in My (G).

Proof. From Lemma 4.6 (i) and its proof we know that the V¥ in question constitute
all the simple unital S(G, U)-modules and that these all are finite-dimensional vector
spaces. If \ is an eigenvalue of 1, on some VU then v, — A cannot be a unit in S(G,U)
and hence A\ € o(1),). Vice versa, if 1, — X is not a unit in S(G, U) then, by an argument
symmetric to the one given at the beginning of the proof of Lemma 4.7, this element
cannot have a left inverse which means it is contained in a maximal left ideal. But then
1, has an eigenvector with eigenvalue A on the corresponding simple quotient module.
This establishes the first equality in the assertion. Next we consider, for each individual
V', the projection map
VU v,

The action of 1, on VY corresponds under this map to the action of the group element
z on VJ\[{M. Moreover, from [Bus, §3.4, Theorem 1] we know that the map is surjective
and that ¢, is nilpotent on its kernel. Tt follows that E(i.; VV) C {0}U E(2; V™). O

We may (cf. the proof of [BK, Lemma 6.14]) and always will assume in the following
that our strongly positive element z lies in the maximal split torus Z,; in the centre
of M.

Proposition 4.10. |o(1),)| is finite.

Proof. By the previous lemma it suffices to show that the set Uy, |E(z; V™), where
V runs over all irreducible tempered representations in My (G), is finite. Since My (G)
by [Bus, §1.5, Proposition 3.i] is a finite product of Bernstein components it suffices to
let V' run over all irreducible tempered representations in a fixed Bernstein component
M (G). This means that there is a parabolic subgroup Q¢ C G with Levi component L
and a supercuspidal representation 7¢ of Lo such that any irreducible V' in M (G) is a
subquotient of a parabolic induction Indgo(xm) for some unramified character y of L.
On the other hand, any irreducible tempered V"’ has a discrete support (cf. [Wal, IT1.4.1])
which similarly means that there is a parabolic subgroup @ C G with Levi component
L and a smooth discrete series representation 7 of L such that V" is a subquotient of
the parabolic induction Indg(T). For our tempered V' in Mg(G) we may assume that
L D Lo and that 7 is a subquotient of IndgOm 1.(Co) for some unramified character ¢
of Lg. Applying [Sil, 5.4.5.1] to these finitely many groups L (which contain Ly) we see
that there are, up to unitary unramified twist, only finitely many possibilities for the
occurring characters (. This reduces our assertion to the claim that the set

UIE(z Indg, (x170) 31,
X1

where x; runs over all unitary unramified characters of Lg, is finite. By the geomet-
ric lemma (cf. [Cas, Theorem 6.3.5]) the Jacquet module Indgo(xﬂo)N, as an M-
representation, has a filtration whose subquotients are of the form

InduAf[QowflmM(w(XlTO))
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where w runs over finitely many appropriate group elements such that wLow™! C
M. If xo denotes the central character of 79 then z € Zy C Z,p,,-1 acts on
IndeQow—lmM(w(XlTo)) through multiplication by the scalar

—1/2 _ B
wQ/ow_lﬂM(z)XO(w Lzw)x1(w™ zw).

We therefore obtain that the set under consideration is equal to the finite set of numbers
—-1/2 1

S @ow-1nar (2) Xo(w ™ zw)]. O
This last result says that there are finitely many real numbers 0 < R; < -+ < R,
such that the spectrum

o(¥:) = or,(Y2)U -+ Uog,, (¢2)
decomposes into the finitely many closed subsets or;(1).) := {\ € 0(3.) : |\ = R;}. Let
SGU)=51@-- DSy

be the corresponding (Proposition 4.8 (ii)) decomposition of the (ST (M, Up), S(G,U))-
bimodule (G, U).

Lemma 4.11.
(i) Ry =1.
(ii) If M # G then 01(¢p,) = {A € C: |\| = 1} is the full unit circle.

Proof. (i) The inequality R,, < 1 is an immediate consequence of the classical criterion
for the temperedness of an admissible smooth representation (cf. [Wal, 111.2.2]). This
argument can be expanded to give the equality. But for the latter there is another quite
simple observation which avoids representation theory. According to [Vil, Proposition 28]
the algebra S(G, U) is contained in the reduced C*-algebra C} (G, U) which is defined to
be the completion of H(G,U) in the operator norm on L?(U\G/U). In addition, [Vil,
Propositions 13 and 18] say that S(G,U)* = S(G,U) N CH(G,U)*. We therefore may
alternatively show that the spectral radius of ¢, as an element of C}(G,U) is greater
than or equal to 1. But a simple straightforward computation shows that every power
! has the same L?-norm equal to volg(U)~! and hence has an operator norm greater
than or equal to 1 on L2(U\G/U).

(ii) Let V be an irreducible tempered representation in My (G) such that E(z; V™)
contains a A with |A| = 1. For the action of Z; the Jacquet module Viy decomposes into
generalized eigenspaces for finitely many characters xi,...,x:. After renumbering we
may assume that precisely the characters x1, ..., xs for some 0 < s < ¢ are unitary. Let
FE denote the direct sum of the generalized eigenspaces corresponding to these unitary
characters. By [Wal, II1.3.1] this E is an admissible tempered representation of M. The
classical criterion for temperedness (cf. [Wal, 111.2.2]) implies that any |x;| is of the

form |x;| =[], \a|Z"(i) with real numbers ¢, (¢) > 0 and « running over the roots which
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are positive and simple for N. By [BK, Lemma 6.14] we must have |a|;(z) < 1 since
z is strongly (P, U)-positive. It follows that |x;(z)] < 1 for any s < ¢ < ¢. This means
that A € E(z; EYM). Now let x be any unitary unramified character of M. Then V; :=
d%(x ® E) is an admissible tempered representation of finite length in My (G) such
that x® F is a quotient of its Jacquet module (V7). It follows that x(2)A € E(z; (V1)5M)
and a fortiori that x(2)\ € E(z; (Va){) for some irreducible tempered subquotient Vs
of V1. We obtain x(z)A € o(¢,). If M # G then dp(z) is a positive real number not equal
to 1. Hence the values at z of the unramified characters of M of the form §%¢, with a € R
arbitrary, realize the full unit circle. O

Before we apply these results to the tensor product S, & s+ S (G,U) we want to recog-
nize the Fréchet algebras S, 2 S in more familiar terms. The Schwartz algebra S(Z) of
the discrete group Z is the algebra of all functions ¢ : Z — C which satisfy

vi(9) := sup (@1 + [i])* < 00

for any k € N; its Fréchet topology is defined by the norms vy.
Lemma 4.12. The map
S. = 8(z),
¢ = [i = volas (Unr )¢ (2")]
is an isomorphism of Fréchet algebras.
Proof. Recall that the norms on the left-hand side come by restriction from the norms

VM (0) = sup |6(m)|Znr(m) (1 + o (m))".

Since =) is trivial on the centre of M and since o can be chosen in such a way that it
satisfies o(y*) = |i|o(y) for any y in the centre of M we obtain

vm,r(9) = Sup 6(z)|(1 + [ilo(2))"
for any ¢ € S,. U

Let D denote the closed unit ball in the complex plane, D° its interior, and T the
unit circle. The Fourier transform

S(z) = C=(T),
¢ o(i)E
i€Z
is an isomorphism of Fréchet algebras (cf. [Tre, Theorem 51.3]). Under the composed

isomorphism

S. = 8(Z) = C>(T)

the subalgebra SF in the left-hand side corresponds to the subalgebra O(D) of all con-
tinuous functions on D whose restriction to T, respectively to DY lies in C°°(T), respec-
tively is holomorphic.
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Lemma 4.13. S. &g S; = C=(T) ®(§(D)8j =0 for any j # m.

Proof. From Lemma 4.11 (i) we know that R; < 1 for j # m. Let U be an open annulus
which contains the unit circle and whose inner radius is bigger than R;. From [EP, p. 135]
we then have

O(U) ®oc)S; = 0.

To avoid confusion we point out that our completed tensor product is the one in [EP]
made Hausdorff. Here the ring O(C) of entire holomorphic functions acts on S; through
the unique continuous homomorphism of algebras O(C) — L£1,(S;) which sends the com-
plex variable ¢ to the operator L,. In particular this arrow can be obtained as the
composite

O(C) — O(D) — Ly(S;),

where the left arrow is the obvious restriction map and the right arrow comes from the
S -module structure of S;. We see that C**(T) @5 (p)S; is a quotient of

0=C™(T) ®ow) (OU) &o(c) Sj) = C*(T) Roc) S;
and hence is zero. O

So far we have seen that
By 28,0+ S(G,U) =S, Qg+ S

as right S(G,U)-modules. To deal with the summand S,, we need to extend the holo-
morphic functional calculus from Proposition 4.8.

Proposition 4.14. There is a unique continuous unital algebra homomorphism from
C*(T) into L, (S,,) which sends the complex variable £ to L, | Sy,.

The proof requires some preparation. In particular we need to recall a few basic facts
from C*-algebra theory. As in the proof of Lemma 4.11 we consider the reduced C*-
algebra A := C*(G,U). We let A denote the space (of isomorphism classes) of simple
unital .4-modules equipped with the Jacobson topology [Dix, § 3.1]. One has the following
properties.

e The obvious restriction map induces a bijection between A and the set of isomor-
phism classes of simple unital S(G,U)-modules [SSZ, pp. 206, 207]. In particular,
by Lemma 4.6 (i), any module in A is finite dimensional.

e Any module X in A carries an (up to scalar multiples) unique inner product for
which X becomes a unitary representation of A [Dix, 2.9.6]. In particular, the
finite-dimensional space End¢(X) carries a distinguished operator norm || - || x.

e Let || - || denote the unique C*-algebra norm on A; then [Dix, 2.7.3]

||aH = sup ||aHX for any a € A.
XecA
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e For any a € A the function
A= R,
X = [lallx
is lower semi-continuous [Dix, 3.3.2].

The last two properties imply that given any dense D C A we have

|la|]| = sup ||la|]|x for any a € A.
XeD

This can equivalently be expressed by saying that the natural map

(A = T Ende(X), |- 1x)

XeD
a— (X5 X)x,

where [ denotes the direct product in the sense of Banach spaces is a closed isometric
embedding.

In order to describe the specific set D to which we will apply this observation let us
first consider a single module X in A. This module is of the form X = VU for some
irreducible tempered representation V' in My (G) which is unique up to isomorphism.
As recalled in the proof of Lemma 4.9 the projection map

VU v

is surjective, 1, is nilpotent on its kernel, and the action of ¢, on V'V corresponds to the
action of z on Vg“ .

On the other hand, due to the presence of the unit element ¢y € S(G,U) the map in
Proposition 4.8 (i) gives rise to the unique continuous unital algebra homomorphism

O(o(¥2)) — S(G,U),
[ op = f(L:)(ev)

such that ¢, = ¢, and
f(L2)(p) = @p xp  for any ¢ € S(G,U).

If e; € O(o(1).)) denotes the characteristic function of og,(¢.) and if we put €; := @,
then
Sj = ¢;(L:)(S(G,U)) = e;(Lz)(ev) * S(G,U) = €+ S(G, V).

Moreover, the idempotents €; are orthogonal to each other and satisfy ey = €14 -+ €5,
For our module X = VY we therefore obtain the ST (M, Uy )-invariant decomposition

X:Xl@@Xm WithXjS:SjXZGjX
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and such that E(¢.; X;) C og,(¢.). It follows that either R; > 0 and the map X =N VM
is bijective or Ry = 0 and the restricted map Xo ® -+ ® X,,, — VJ\[{M is bijective. In both
cases the respective bijection further restricts to the bijection

X = (V)

where V/ denotes the tempered direct summand of the Jacquet module V as defined
in [Wal, IIL.3] (cf. the proof of Lemma 4.11 (ii)). As an admissible tempered M-repre-
sentation V3 in a unique way is, by [SSZ, Appendix, Proposition 1], a non-degenerate
S(M)-module. We see that the natural H (M, Uys) = HT (M, Uxs)[¢; 1]-module structure
on X, = (V¥)U™ extends uniquely to an S(M, Ups)-module structure.

We now define

D := the set of all X = VY in A such that V}¥ is
semisimple as a smooth M-representation.

Suppose that X = VY lies in D. Since any simple and hence any finite length semisim-
ple S(M,Ujps)-module naturally extends to a unitary C;(M,Uys)-representation [SSZ,
pp. 206, 207] the S [¢; *]-action on the finite-dimensional space X, in this case therefore
extends naturally to a unitary representation of the C*-completion C*(Z) of S, = S(Z).
This means we have the commutative diagram of (non-unital) algebra homomorphisms:

S ——> e % AC A—= [Tep Ende(X)

T T (4.1)

O(T) = C*(2)

1
N

Here C(T') denotes the C*-algebra of continuous functions on T' and the isomorphism in
the lower right-hand corner is another instance of the Fourier transform. The horizontal
arrows are the obvious ones. The right perpendicular arrow is the direct product (cf. [Dix,
2.2.3]) of the composed homomorphisms C*(Z) — End¢(X,,) — Endc(X) with the
second arrow being the extension by zero. To describe the left perpendicular arrow we
recall that the left S} -module structure on S(G,U) is given by the continuous algebra
homomorphism

SHCSH (M, Un) = S(G,U)
from Lemma 1.8 (i). It maps ¢, to .. Since the idempotent €,, commutes with the
ST (M, Uyy)-action the induced left SF-action on S, is given by the (non-unital) contin-
uous algebra homomorphism
ST — S,
¢ > €m * 5(¢) = 5(@) * €m.
Its composite with the Fourier transform is denoted by

$m: O(D) 2 S = S,
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Since ¢, corresponds to £ under the Fourier isomorphism we have s,,(£) = €, *1,. The
map S,, and the continuous algebra homomorphism

Oo(T) = S,
[ pp=ém*ps

obviously coincide on the intersection @(D) N O(T) = O(D). Therefore, the map s,,
extends uniquely to an algebra homomorphism

sm: O(D)E] = S
which maps {1 to pg-1.
Proposition 4.15. The subset D is dense in A.

Proof. Let V be an irreducible tempered G-representation with a non-zero U-fixed
vector so that VU lies in A. We have to prove that VU lies in the closure of D. If
V¥ = 0 then nothing is to show since V'V already lies in D. We therefore assume that
VN # 0. Then there is a parabolic subgroup ¢ C G with Levi component L C M
and a smooth discrete series representation 7 of L such that V is a subquotient of the
parabolic induction Indg (7). Let X! (L) denote the compact torus of unitary unramified
characters of L. For any x € X! (L) and any irreducible constituent V' of Indg(XT) the
module (V/)V lies in A. On the other hand, it is shown in the proof of [Wal, V.1.1]
(see also [Wal, IV.2.2], [Sil, p. 272] and [HC, Theorem 13]) that the unitary unramified
characters x such that Indg(XT) is irreducible and Indg(XT)% is semisimple form a dense
subset of X} (L). Our assertion therefore reduces to the following claim.

Claim. Let (xn)nen be a sequence in X! (L) which converges to the trivial character
and such that V,, := Indg(an), for any n € N, is irreducible; then V' lies in the closure
of the subset {V,V : n € N} of the space A.

This is a variant of Lemma 4.4 (ii) in [Tad]. We fix G-invariant inner products (-, -)
and (-,-)y, on Indg (1) and any V,,, respectively. Since Indg(r) is preunitary V can be
viewed as a direct summand of Indg(T); in particular (-,-) restricts to an inner product
on V. According to [Dix, 3.4.10] we have to find non-zero vectors v € VY and v, € V.Y
such that for the corresponding positive forms

L(a) :== (av,v) and {,(a) = (avy,v,)v,

n

on A we have that the sequence (¢,,),, converges to ¢ pointwise on A. In fact, by [Dix,
2.7.5], pointwise convergence on L*(U\G/U) is sufficient. But for a € L*(G) we have

(@.0) = [ alo)eulo)dg and (av,.v, = [ alo)pu.(6)dg
with the functions of positive type

ou(g) = (gv,v) and ¢y, (9) := (gUn,vn)v,
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in L>°(G). By [Dix, 13.5.2] we therefore are reduced to finding vectors v € VU and
vn € VU of length one such that the sequence (g, ), of functions on G converges
uniformly on compact subsets to the function ¢,,. In the proof of [Tad, Lemma 4.4 (ii)] it is
shown that for any v € Ind§(7)V we find vectors v, € V, such that the sequence (¢, )n
converges to ¢, uniformly on compact subsets. The additional length one requirement
can be achieved by scaling. O

Beginning the proof of Proposition 4.14 formally now, we have that the upper right
horizontal arrow in the diagram (4.1) is a closed isometric embedding. On the other
hand the lower horizontal arrow has dense image. We therefore conclude that the right
perpendicular arrow factorizes through a (non-unital) homomorphism of C*-algebras
C(T) — A with image contained in €, * A which, for simplicity, we again denote by s,
i.e. we have the following commutative diagram:

Sy ——s e xAC A
SMT TSM (4.2)
O(D)[g~!] —— O(T)

In particular, the element €, = $,,(1), respectively €, 1), = $,,(£), in A is self-adjoint,
respectively normal. Hence ¢, * A * €,, is a C*-subalgebra of A, and the diagram (4.2)
induces a commutative diagram of unital algebra homomorphisms:

em*S(G,U)*eméem*A*em

T Tsm (4.3)

C(T)

O(D)[¢]

We note that the right perpendicular arrow can also be viewed as induced by the con-
tinuous functional calculus for the normal element €, x¥, = ¥, x €, (cf. [Con, VIII, §2]
or [Dix, §1.5]).

Lemma 4.16. S(G,U) is a smooth subalgebra of the unital C*-algebra A in the sense
of [BC, Definition 6.6].

Proof. Our scale function o on G is K-bi-invariant and hence induces a scale on U\G/U.
We consider the densely defined self-adjoint and hence closed unbounded linear operator

D: L*(U\G/U) — L*(U\G/U),
Y=oy
together with the closable (cf. [BR, Corollary 3.2.56]) unbounded *-derivation

§: Ly(LAHU\G/U)) — Ly(LAH(U\G/U)),
Avsi(DoA— Ao D).
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It is shown in [Vil, Theorem 29] that
S(G,U) ={a € A: 6 (ax-)is bounded on L*(U\G/U) for any j > 0}

holds true and that the Fréchet topology on S(G,U) can alternatively be defined by the
seminorms |67 (ax*-)|| for j > 0 where ||-|| denotes the operator norm on Ly,(L?(U\G/U)).

The
¢

T® (a Z ||5] a* -

:0

for £ > 0 then form a countable family of derived seminorms of finite order [BC, Def-
inition 5.1] defining the Fréchet topology on S(G,U). They are closable since § is clos-
able. O

If €, # ey then the spectra of €, x 1, as an element in A, respectively in €,, *x A * €,,,
are related by

oal€m %) = {0} Uoc,, ac,, (€m *12).

From the diagram (4.3) we know that o¢, 4, (€m *1¥,) C T. The continuous functional
calculi in both cases therefore induce the commutative diagram

Cc(T) em * A* €y

extension by O\L l C

c({oyuT) A

Applying Propositions 6.4 and 6.8 from [BC] (based on Lemma 4.16) we obtain that
the lower horizontal arrow restricts to a continuous algebra homomorphism C*°({0} U
T) — S(G,U). Hence sy, restricts to a continuous unital algebra homomorphism
Sm : C®(T) = €n x S(G,U) * €y, If €, = ey then we may apply [BC] directly to
Sm. We therefore have in both cases the commutative triangle of continuous algebra

homomorphisms:
/ \ (4.4)

C=(T)

This means that we have a (unique) continuous unital left C°°(T")-module structure on
Sy such that £ acts as the map L,. By [B-TVS, II1.31, Proposition 6] the corresponding
map

C>(T) = Lb(Sm);
[ o= sm(f) * ol

is continuous. This concludes the proof of Proposition 4.14.
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Lemma 4.17. The natural map

is an isomorphism of (8T (M, Uy),S(G,U))-bimodules.

Proof. Let us denote by j the map in question. Since L, is invertible on S, the O(D)-
module structure on §,, extends uniquely to a module structure for the localization
O(D)[¢71]. But O(D)[¢7] is dense in C°°(T). It follows that j has a dense image. On
the other hand, by the previous proposition, the @(D)—module structure on S, even
extends to a continuous C'*°(T')-module structure. The corresponding scalar multiplica-
tion provides a continuous left inverse for j. Hence the image of j is closed. O

We now may establish the main result of this section.

Theorem 4.18. The natural map of (ST (M, Uyr),S(G,U))-bimodules
S(G, U) — S(M, UM) ®S+(M,UM) S(G, U) ~ By

is surjective and has a unique continuous (ST(M,Uy),S(G, U))-bimodule splitting wi;;
in particular, as a right S(G,U)-module By is projective of rank one.

Proof. With the exception of the uniqueness assertion this follows from the combination
of Proposition 4.2 and Lemmas 4.4, 4.13 and 4.17. The kernel of the map under consid-
eration is equal to S @ - - - ® S;,,—1. The splitting w$ is provided by the direct summand
Sm of S(G,U) whose definition seems to depend on the choice of the element z. But any
other continuous S (M, Ups)-module splitting would give rise to a continuous S, -linear
map S, = S1 @ -+ @ Sp—1, but which has to be the zero map by [EP, 2.5.8]. O

5. Consequences for parabolic restriction

Keeping the notation introduced earlier we now collect the fruits of our labour from the
previous section.

Proposition 5.1. The functor rg; p : M*(G) — M*(M) is exact.

Proof. We already know that rg, p is right exact. Let therefore V; — V5 be an injec-
tive S(G)-module map. Since the 7 p(V;) in particular are smooth M-representations
it suffices to show that rf p(V1)"™ — rf p(V2)U™ is injective for U running over an
appropriate fundamental system of compact open subgroups of G. By Proposition 3.3
this reduces to the injectivity of By ®s(q,v) VYV — By ®s(a,v) VY which is a consequence
of the projectivity of By as a right S(G,U)-module (Theorem 4.18). O

Proposition 5.2. For any V in M*(G) the natural map Vy — v p(V) is surjective
and has a natural M-equivariant splitting.
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Proof. As a consequence of Proposition 3.3 and Theorem 4.18 the restricted maps
Vv —>rtG?P(V)UM are surjective with a natural ST (M, Ups)-linear splitting. Conse-
quently, the maps
VM s ot (V)

are surjective with a natural H* (M, Ups)-linear splitting. But since H(M,Uys) is the
localization of HT (M, Uy) in the element ¢, which acts invertibly on both sides these
splittings automatically are H(M, Ups)-linear. By passing to the limit over the U we
immediately obtain the asserted surjectivity. To obtain also the splitting in the limit it
remains to check that the splittings for varying U are compatible. To reduce this problem
to the case of the representation S(G/U) = S(G) x ey we consider the commutative

diagram
S(G/U)Y @s@oy VY vu
S(G/U)M @s@cry VY VM

| |

rt p(S(G/U)) @scu) VY =2 By @s,u) VY ——15 p(V)M

All three horizontal maps are isomorphisms. This is obvious for the top map and follows
from Proposition 3.3 for the bottom map. For the map in the middle we observe that by
Lemma 2.2 (ii) we have a decomposition V = V5 @ V4 with Vg in M¢(G) and ViV = 0.
Furthermore, Lemma 2.3 says that S(G/U) ®@s(a,v) 7A=N Vb is an isomorphism. Hence,
by functoriality

S(GIR" @i VY = ()R = V™

is an isomorphism as well. This diagram shows that the right-hand vertical maps arise
as the tensor product of the corresponding maps for the representation S(G/U) with
the identity map on VV. The same, by construction (cf. Theorem 4.18), holds true for
our splitting of the lower right vertical map. We are therefore reduced to show that the
splittings of the maps

S(G/U)R — TtG,P(S(G/U))UM = By

are compatible if U varies. Let U’ C U be another compact open subgroup of the type
we consider. By replacing z by an appropriate power 2/ we may assume that our element
z is strongly (P,U)-positive as well as strongly (P,U’)-positive. According to Theo-
rem 4.18 the splitting on the level U is provided by the summand S,, in the decom-
position S(G/U)Y = S(G,U) = 8 @ --- & S,,. Moreover, the kernel of the projection
map from S(G/U)V onto S(G/U)YM either is zero or coincides with the summand S
(cf. [Bus, §3.4, Theorem 1]). The left multiplication by 1, on S(G/U)Y becomes the
action of the group element z on S(G/U)%M . Hence the Fréchet space S(G/U){M decom-
poses as
S(G/U)%M = 8, ® S,
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where the spectrum of the z-action on Sy, respectively on S,,, is contained in the unit
circle, respectively is contained in the open unit disk. Note that this is a decomposition
as (H(M,Up), S(G,U))-bimodules. Let

S(G/UY =8l @ Sy

be the corresponding decomposition on the U’-level. The compatibility we are looking
for amounts to the claim that

Sm C S

On the other hand, we consider the decomposition
S(GIUN = S(G/U)F & S(G/UNR (evr = ev) & (v, — e, JS(G/UNR,

which is z-invariant since z lies in the centre of M. Decomposing further each summand
according to the spectrum of z as before we see that indeed S,,, C S,,. O

Corollary 5.3. The functor rtG, p respects admissibility.

It follows in particular that on tempered admissible representations the func-
tor rg’ p coincides with Waldspurger’s construction in [Wal, II1.3.1]. We recall that
P = MN denotes the parabolic subgroup of G opposite to P. The whole theory
developed in §§3 and 4, of course, holds correspondingly for P instead of P. For

the corresponding notation we use M~ = (MT)™t S~ (M,Uy) = S(M,Up) -,
and By := S(M,Unr) @s-(am,v,,) S(G,U). We also introduce the (S(G,U),S(M,Ux))-
bimodule

By := Homg(q,v)(Bu, S(G,U)).
Similarly as in Lemma 1.8 (i) we have the ring homomorphism
s:=syp:S (M, Uy) — S(G,U).
Lemma 5.4. By, = Homg(u,v,,)(Bu, S(M,Uy)) as (S(G,U),S(M, Upr))-bimodules.

Proof. Quite generally, if f is a function on some group we let f° denote the function
defined by f(z) := f(z~1). Simple calculations show that we have

o ()7 = (¥F) for any ¢ € S(G);
o 5(&") = 5(9) for any ¢ € S*(M, Upy).
It then follows from Lemma 1.8 (ii) that
(W*35(¢)" =99 (5.1)

holds true for any ¢ € S(G) and ¢ € S~ (M,Up). We now may introduce (cf. the
beginning of §3) the (S(G,U),S(M, Ups))-bimodule

BZU = [S(G, U) ®S*(M,U]W) S(M7 UM)]/RZ
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with R? := im(id — e’) = ker(e’) for the projector
e 1 S(G,U) ®s-(mva) S(M,Upt) = S(G,U) ®@s-(ar,000) S(M, Ui ),
Y@ ¢ — volg(U) - Z e’ffl @ (*)F x ¢.

keK/U

On the other hand, our map () : S(G,U) — S(M, Uxs) (cf. Lemma 1.3 (i)) is continuous
and a homomorphism of left ST (M, Uyps)-modules (cf. Lemma 1.8 (ii)). Hence it defines
the homomorphism of left S(M, Ups)-modules

7T[J]r By & S(M, UM) ®S+(1\/I,UM) S(G, U) — S(M, Uv]\/[)7
PR Y pxp”

(cf. Proposition 4.2). It gives rise to the homomorphism of (S(G,U),S(M,Uxr))-
bimodules

II: S(G, U) ®c S(M, UM) — HOII’IS(M,UM)(BU,S(M, U]w))7
Yo ® do = [ @Y ¢ (1 % 1hg) T * o).

It follows from (5.1) that IT factorizes over S(G,U) ®s-(ar,u,,) S(M, Upr). Moreover,
using Lemma 1.2 one checks that

ITo(id — ) = 0.
Hence IT induces a homomorphism of (S(G,U),S(M,Uys))-bimodules
1T : Bé — HOII’I‘S'(]\/[’UM)(B’U,3(1\47 UM))

As a first step towards our assertion we claim that this map is an isomorphism. For
that purpose we recall from §4 that we have, at least as left S(M, Ups)-modules, the
embedding

F (S(M,Unr) ®@s+ w04y S(G,U)) /R — S(M, Upp) Y1,
$@ ¢ > volg(U) - (6% (WF )Py,
which is a section of the homomorphism
2 S(M UMY = (S(M, Unp) @s+(at,van) S(GU))/R,
(o) — Z b @ ey +R.

keK/U
In a completely analogous way we obtain the maps

F(8(G,U) ®s—(M,Un) S(M, Un))/RE — S(M, Uy )Y
¥ ® ¢ = volg(U) - (") x ¢)i
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and
24 S(M,Un) BV = (S(G,U) ®s- (a.0n) S(M, Unr))/RE,
(G > € @op+ R

keK/U

such that X* o F* = id. One easily checks that the diagrams

B¢, I Homgar,v,,)(Bu, S(M, Unr))
]-‘Zl iHOm(Z,S(M,U]u))
S(M, UM)[K:U] L HomS(M7UM) (S(Ma UM)[K:U]v S(M’ UM))

and

B, a Homgar,v,,) (Bu, S(M,Unr))
Z‘ET THO]’H(]‘-,S(M,U]W))
S(M, Upp )V —2 > Homg s,y (S(M, Upr) KU S(M, Uny))
are commutative where @ is the obvious isomorphism

& : S(M, Unn) ™V 25 Homg ar 0, (S(M, Unr) HU) S(M, Uny)),
(Ph)r — [(@C)k = volg(U) ™+ Y grx ¢;€:|'
keEK/U
This establishes our first claim. For our assertion we now have to construct in a second
step a natural isomorphism of (S(G,U),S(M, Upys))-bimodules
By, = B

As a general observation we first of all point out that the whole discussion in §4, being
based solely on the spectral properties of the element v, in S(G, U), is left-right symmet-
ric, i.e. the consideration of the right multiplication operator R, : S(G,U) BiZN S(G,U)
leads to corresponding results. In particular, parallel to Theorem 4.18 we have the iso-
morphism of (S(G,U),S* (M, Uy))-bimodules

S(G,U) % e = S(G,U) &+ (a4 S(M, Uny).
If we apply this observation to P instead of P we obtain the chain of natural isomorphisms

Bf; = Homg vy (Bu, S(G,U))
= Homg(q,v)(S(M, Unr) @s- (1,0, S(G,U), S(G, U))
= HomS(G U) (6 * S(G? U)v S(Ga U))

S(G,U) x¢
NS(G U) @s-(m,up) S(M,Unp)
EBU7
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where € € S(G,U) is an appropriate idempotent and where the last isomorphism is a
variant of Proposition 4.2. At first this is only a (S(G,U),S™ (M, Uy))-bimodule iso-
morphism. But by Theorem 4.18, both By, and BY; are projective left S(G, U)-modules
of rank one. Hence the above composed isomorphism is continuous and even a home-
omorphism. Since the right S(M, Uy )-action on both modules is continuous and since
S (M, UM)[gﬁ;ll] is dense in S(M, Uyps) by Lemma 4.3 the isomorphism necessarily also
is S(M, Upr)-equivariant. O

We point out that the above proof shows that the isomorphism in Lemma 5.4 is the
unique isomorphism of left S(G, U)-modules which maps the element w;; € B} given by
the section in the P-version of Theorem 4.18 to 7, € Homg(ar,u,,)(Bu, S(M, Unr)).

.. .. el
Theorem 5.5. The functor rap is right adjoint to Indp.
Proof. For any F in M'(M) and any V in M*(G) we have to establish a natural

isomorphism
Homg ) (Ind%(E), V) = Homs () (B, 5(V)).

Because of

Homs () (Indg (E), V) = lim Homs (g vy (Ind5 (£)7, V)
U

and

HomS(M) (E, TE,P(V)) = @ HomS(M,UM) (EUM 5 ’I’tGJs(V)UM)
U

we may do this by finding natural isomorphisms on each U-level in a compatible way.
Since the functor Indg visibly commutes with filtered inductive limits we may assume in
addition that E is a finitely generated S(M)-module. This means that E lies in Mg, (M)
provided U is small enough which we will assume in the following. Using Proposition 2.4,
Lemma 4.1, and Lemma 5.4 in lines 2, 3 and 4, respectively, we compute

Homg (g, (Ind%(E)Y, V)
= Homg (¢, vy (Homgas,v,,) (Bu, EUmy v
= Homg vy (Homs (a0, (Bu, S(M, Unr)) ®s(a,va) B, VY)
= Homs(c,v)(Bf; @sar,v,) B, VY).

Since By, by Theorem 4.18, is projective of rank one as an S(G, U)-module we have the
canonical isomorphism

By ®s(c,v) - = Homgc,v) (B, )
of functors from M(S(G,U)) to M(S(M,Ux)). It follows that the functor By ®s(q,u) -

has the left adjoint functor By, ®s(ar,v,,) - Using also Proposition 3.3 we therefore may
continue our computation by

Homg g, (Ind%(E)Y, VY) = Homs (a0, (EV™, By ®@s(c,0) VY)

= Homg(ar,v,) (E”M, 1 p(V)7M).
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If now U’ C U is another compact open subgroup with the same properties as U then,
leaving the details of the computation to the reader, we observe the following compati-
bilities along the above chain of identifications. The inclusion map

md$(E)Y C IndG(E)Y

corresponds to the composed map

Homgs(ar,v,,) (B, EUn)

Hom(BU,C)J/
Homs(r,v,,) (Bu, EVM) —— Homg(ar,uy,) (Burev, BVM)
lHomceu,E”’M)
Homs(xr,y,) (Bor, EVM)

where the horizontal identity in the middle comes from Lemma 3.6. Viewed as

Homs(ar,0,,) (Bu, S(M, Unr)) @s(ar,v4) BY
Homgs(ar,uy,) (Bur, S(M,Ujy)) @,y EVM

this latter composite map is the tensor product of the inclusion on the second factor
and the unique S(G,U)-module homomorphism on the first factor which maps 77;5 to
GUF;,EUM = emr?j,. It corresponds to the tensor product map

Bl ®s(u,uy) BV = Bl @sanu,) BV

with the inclusion on the second factor and the unique S(G, U)-module homomorphism
on the first factor which maps w;; to eywy. €y, = eywy,. It remains to see that the
diagram

I’IOH’IS(G’U/)(B_’lk]/7 VU/) é BU’ ®S(G,U’) VU/ - th;’l—j,(V)UM

| -

Homg g,y By, VY) <—— Bu ®s(c,u) VY — Ttg,p(V)UM

is commutative where the left vertical arrow is the map induced by the above map
B, — B{;,. The horizontal composite arrow is given by

Homg g, (Bir, VY) — Té,p(V)UM,

A — image of A(wy)
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and similarly for U’. The commutativity we are looking for reduces therefore to the
identity

image of (ey * A(wy;/)) = €v,, * (image of A(wy;,))
for any A € Homg(q,u) (B, VU'). For this it suffices that A(wy;,) is Uy-invariant, hence

that w;;, is Uy-invariant. The latter is shown in [Bus, §3.6, Lemma 5] (applied to
V =8(G/U")). O

Corollary 5.6. The functor Ind$ : M!(M) — M?!(G) respects projective objects.

Proof. Respecting projective objects is a formal consequence of having an exact right
adjoint. 0

It is an immediate consequence of Lemma 4.1 that the functor rg p respects finite
generation. A variant of this fact is a formal consequence of the above theorem.

Corollary 5.7. The functors Ind% : M!(M) — M'(G) and ¢ p respect objects of
finite presentation.

Proof. We recall that an object X in an abelian category with exact inductive limits
X is called of finite presentation if the functor Homy (X, ) commutes with inductive
limits. Any functor which has a right adjoint which itself also has a right adjoint and
therefore commutes with inductive limits respects objects of finite presentation. As a
consequence of Proposition 3.1 and Theorem 5.5 the two functors in the assertion have
this property. ([

For any V in M(G) we denote, as usual, by V the smooth dual of V, ie. V =
@U Homc (VY,C). Due to the anti-involution of the algebra S(G) induced by g +— g1,
if V lies in M*(G) then so does V in a natural way.

Proposition 5.8. For any V in M'(G) we have a natural isomorphism

re,p(V)™ =Zrg p(V)
in M'(M).

Proof. Using Proposition 3.3, Theorem 4.18 and the notation and results established in
the course of the proof of Lemma 5.4 we compute

(thyp(V)UM)N = Homc(By ®s(a,v) VY, C)
= Homg ¢, (Bu, Home(VY, C))
=~ Homc(VY, C) ®s(c,r) Homs (v (Bu, S(G, U))
=VY ®s(.0) By

= VY @s(o.v) By
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as right S(M, Upr)-modules. Rewriting this, by using the anti-involution g — ¢~!, in
terms of left modules gives the natural isomorphism

(re,p(V)"M)™ 2 By @50y VY 2 v, p (V).

The assertion follows by passing to the direct limit with respect to U; the necessary
compatibilities are seen as in the proof of Theorem 5.5. O
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