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Abstract. We show that if two aperiodic automorphisms of a separable nuclear unital purely
infinite simpleC∗-algebra are asymptotically unitarily equivalent, then they are outer
conjugate with respect to an automorphism which is isotopic to the identity automorphism.
Thus, by Kirchberg and Phillips, they have the same KK-class if and only if they are
outer conjugate with respect to an automorphism which is in the KK-class of the identity
automorphism.

1. Introduction
In the theory of operator algebras, the problem of classifying group actions on an algebra
has a long history as well as that of classifying algebras themselves. In the category of
von Neumann algebras, the classification theory of group actions begins with the work
of Dye [9] (for commutative algebras) and of Connes [5] (for non-commutative algebras)
and much progress has been made so far (see, for example, [23]). In the category ofC∗-
algebras, in contrast, there are still a lot of things which should be done, although some
fruitful results have also been obtained (see [13, 15, 17, 18, 27, 42] for compact group
actions and see [10, 12, 14, 19, 20, 29, 31, 32] for discrete group actions). In fact many
of the previous works treat group actions on a finiteC∗-algebra, while the classification
problem of group actions on an infiniteC∗-algebra has not been studied well. In this
paper we study automorphisms of purely infiniteC∗-algebras. Purely infiniteC∗-algebras
and their automorphisms also have a connection with topological dynamical systems.
For example (irreducible) topological Markov chains induce (simple) purely infiniteC∗-
algebras (called Cuntz–Krieger algebras) as their topological invariants [8] and then shift-
commuting transformations of Markov chains naturally define automorphisms of induced
C∗-algebras [43].

Recently, Kirchberg [24] and Phillips [38] classified separable nuclear unital purely
infinite simple C∗-algebras using Kasparov’s KK-theory [22]. Motivated by their
remarkable success, we classify aperiodic automorphisms of such aC∗-algebra in terms of
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KK-theory. Our main result says that two automorphisms have the same KK-class if and
only if they are outer conjugate with respect to an automorphism which is in the KK-class
of the identity automorphism.

The contents of this paper are as follows. In §2 we argue a non-commutative Rohlin
property for aperiodic automorphisms of nuclear purely infinite simpleC∗-algebras. This
property has been known to be very important for the classification of automorphisms of
operator algebras since the above-mentioned work of Connes and has been investigated
by many authors [3, 10, 12, 17, 18, 19, 20, 28, 29, 30, 31, 32, 33, 34, 35, 39]. As to
nuclear purely infinite simpleC∗-algebras, a Rohlin-type theorem was first established by
Kishimoto [28] for the Cuntz algebrasOn (with n finite) and subsequently by the author
[33] for a certain class of algebras with trivialK1-groups, which containsO∞. Here
we show the theorem for general nuclear purely infinite simpleC∗-algebras, which was
first noticed by Izumi [21]. In §3 we consider the classification problem of aperiodic
automorphisms of a nuclear purely infinite simpleC∗-algebra, up to outer conjugacy.
When we show the stability of automorphisms from the Rohlin property as in [19], we
encounter a certain difficulty relating to (almost central) unitary paths in the algebra.
We deal with this problem in Theorem 7, which is the main technical part of this paper.
After that we show outer conjugacy of aperiodic automorphisms which are asymptotically
unitarily equivalent, following the Evans–Kishimoto intertwining argument [12]. At the
same time we see that the automorphism constructed there is isotopic to the identity
automorphism of the algebra.

Here is some notation and terminology we use throughout this paper. Let Proj(A)

andU(A) denote the set of projections and the set of unitaries of a unitalC∗-algebra
A, respectively. Let 1A and idA denote the unit and the identity automorphism ofA,
respectively. Forx, y ∈ A andu ∈ U(A), define[x, y] = xy − yx and Adu(x) = uxu∗.
An automorphismα of a unitalC∗-algebraA is called inner if α = Adu for some
u ∈ U(A). If there is no suchu thenα is calledouter. Furthermore, ifαk is outer for any
nonzero integerk thenα is calledaperiodic. A unitalC∗-algebraA is calledpurely infinite
if every nonzero hereditaryC∗-subalgebra ofA contains an infinite projection. We also
use the notation of K-theory and KK-theory for operator algebras without any explanation.
We refer the reader to [2] for the details.

2. Rohlin-type theorem

In this section we show a Rohlin-type theorem for automorphisms of nuclear purely infinite
simpleC∗-algebras. This theorem (Theorem 1) was proved first by Izumi as an application
of Kishimoto’s method [28] to the result [25, Proposition 3.4]. Subsequently Izumi’s proof
of Lemma 2 was simplified by Kishimoto. By their courtesy we combine their unpublished
arguments here.

THEOREM 1. LetA be a separable nuclear unital purely infinite simpleC∗-algebra and
let α be an automorphism ofA. Then the following conditions are equivalent:

(1) α is aperiodic;
(2) α has the Rohlin property, that is for any positive integerM, finite subsetF ofA and
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ε > 0, there exist projectionse0, . . . , eM−1, f0, . . . , fM in A such that

M−1∑
i=0

ei +
M∑
j=0

fj = 1,

‖eix − xei‖ < ε, ‖fj x − xfj‖ < ε,
‖α(ei)− ei+1‖ < ε, ‖α(fj )− fj+1‖ < ε

for i = 0, . . . ,M − 1, j = 0, . . . ,M and all x ∈ F , whereeM andfM+1 meane0

andf0, respectively.

It is evident that (2) implies (1). We show the converse in the rest of this section.
The basic idea of the proof comes from the same type of theorem for the Cuntz algebras
On (with n finite) in [28], but here we employ the method of central sequence algebras
which simplifies the argument a little. Letω be a free ultrafilter onN (see [40, §3] for the
definition). We refer the reader to [25, Notation 3.1] for our notation regardingω-central
sequence algebras. In particular, for aC∗-algebraA, we denote byAω the ultrapower ofA
and byπω the natural quotient mapping from the bounded sequence algebra`∞(A) onto
Aω. It is shown in [25, Proposition 3.4] that for aC∗-algebraA, as in Theorem 1, the
ω-central sequence algebraA′ ∩ Aω is unital, purely infinite and simple. Assume that (1)
holds, then we first show that the induced automorphism ofα onA′ ∩Aω is also aperiodic.

LEMMA 2. αω � (A′ ∩ Aω) is aperiodic.

Proof. It is sufficient to show thatαω � (A′ ∩ Aω) is outer whenα is outer. For an outer
automorphismα of A we claim thatαω � (A′ ∩ Aω) 6= id. By [26, Theorem 2.1 and
Remark 2.2] we have an irreducible representationπ of A such thatπ is disjoint from
π ◦ α. That is, if we denote byc(π) the central cover ofπ thenc(π)α(c(π)) = 0. Take a
unit vectorξ in the Hilbert space associated with the universal representation ofA such that
c(π)ξ = ξ , then‖(α(c(π)) − c(π))ξ‖ = 1. On the other hand, by using [1, Lemma 1.1],
we can approximatec(π) strongly by a bounded net(xλ | λ ∈ 3) in A such that

lim ‖(c(π)− xλ)a − a(c(π)− xλ)‖ = lim ‖xλa − axλ‖ = 0 (a ∈ A).
Therefore, for a sequence(un | n ∈ N) in U(A), whose linear span is dense inA, we find
λ(n) ∈ 3 (n ∈ N) such that

‖xλ(n)ui − uixλ(n)‖ < 1

n
(i = 1, . . . , n),

‖(α(xλ(n))− xλ(n))ξ‖ > 1
2.

This means that we havex = πω(xλ(n) | n ∈ N) ∈ A′ ∩Aω with ‖αω(x)− x‖ ≥ 1
2, which

implies thatαω � (A′ ∩Aω) 6= id. Hence we can conclude the outerness ofαω � (A′ ∩Aω)
following the method in [5, Proposition 2.1.2]. Indeed, for anyy = πω(yn | n ∈ N) ∈ Aω,
we findLn ∈ ω (n ∈ N) such that

‖[xλ(k), yn]‖ < 1

n
, ‖[xλ(k), ui]‖ < 1

n
(k ∈ Ln, i = 1, . . . , n).
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Takekn ∈ Ln satisfyingkn < kn+1 and definex ′ = πω(xλ(kn) | n ∈ N). Then

‖[x ′, y] ‖ = lim
n→ω

‖[xλ(kn), yn]‖ = 0,

‖[x ′, ui ]‖ = lim
n→ω

‖[xλ(kn), ui]‖ = 0,

‖αω(x ′)− x ′‖ = lim
n→ω

‖xλ(kn) − xλ(kn)‖ ≥ 1
2.

Sincey is arbitrary, it follows thatαω � (A′ ∩ Aω) can not be inner. We complete the
proof. 2

Combining Lemma 2 with the fact thatA′ ∩ Aω is purely infinite and simple, we can
prove the following two lemmas and conclude Theorem 1 in an analogous manner as in
[28, 33].

LEMMA 3. For anyK ∈ N, g ∈ K0(A
′ ∩Aω) and nonzero projectionp in A′ ∩Aω, there

exists a nonzero projectione in p(A′ ∩ Aω)p such that

eαkω(e) = 0 (k = 1, . . . ,K),

[e] = g in K0(A
′ ∩ Aω).

Proof. Let K, g andp be given as above. We first claim that, for anyε > 0, there is a
nonzero projectione′ ∈ p(A′ ∩ Aω)p satisfying

‖e′αkω(e′)‖ < ε (k = 1, . . . ,K).

Indeed, by the previous lemma and [26, Lemma 1.1], we have for anyk ∈ Z \ {0}
inf{‖qαωk(q)‖ | q ∈ Proj(p(A′ ∩ Aω)p) \ {0}} = 0.

Hence we find a nonzero projectione1 ∈ p(A′ ∩ Aω)p such that‖e1αω(e1)‖ < ε. Since
A′ ∩Aω is purely infinite simple, we further find a nonzero projectione2 ∈ e1(A

′ ∩Aω)e1

such that‖e2α
2
ω(e2)‖ < ε. Repeating this process we can reach a desired projectione′.

To show the lemma, let(un | n ∈ N) be a sequence inU(A) whose linear span is
dense inA and letp = πω(pn | n ∈ N). By a standard argument we may assume that
pn is a nonzero projection. Using the preceding paragraph, we have a nonzero projection
em = πω(em,n | n ∈ N) ∈ A′ ∩ Aω andLm ∈ ω for eachm ∈ N such that

0 � em,n ≤ pn,

‖em,nαk(em,n)‖ < 1

m
(k = 1, . . . ,K),

‖[em,n, ui ]‖ < 1

m
(i = 1, . . . ,m)

for all n ∈ Lm and thatLm ) Lm+1. Define a projectione′′ = πω(e
′′
n | n ∈ N) by

e′′n =
{
em,n (n ∈ Lm \ Lm+1)

0 (n ∈ N \ L1).

Thene′′ is a nonzero projection inA′ ∩Aω satisfying

e′′αkω(e′′) = 0 (k = 1, . . . ,K).
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SinceA′ ∩ Aω is purely infinite simple, we further find a nonzero projectione in A′ ∩ Aω
such that

e ≤ e′′, [e] = g.

This completes the proof. 2

LEMMA 4. For any M ∈ N there exist nonzero mutually orthogonal projections
e0, . . . , eM−1 in A′ ∩ Aω such that

αω(ei) = ei+1 (i = 0, . . . ,M − 1),

whereeM meanse0.

Proof. Temporarily fix a positive integerm. By Lemma 3 we have a nonzero projection
e ∈ A′ ∩ Aω such that

eαkω(e) = 0 (k = 1, . . . ,mM),

[e] = 0 inK0(A
′ ∩ Aω).

Since[αω(e)] = 0, there is a partial isometryw ∈ A′ ∩ Aω such thatw∗w = e and
ww∗ = αω(e). Defineei,j ∈ A′ ∩ Aω (i, j = 0, . . . ,mM) as follows:

ei,j =



αiω(e) (i = j)

αi−1
ω (w)αi−2

ω (w) . . . α
j
ω(w) (i > j)

αiω(w)
∗αi+1
ω (w)∗ . . . αj−1

ω (w)∗ (i < j).

Then we can easily verify that(ei,j | i, j = 0, . . . ,mM) is a system of matrix units
satisfying

αω(ei,j ) = ei+1,j+1 (i, j = 0, . . . ,mM − 1).

Further, definefi ∈ A′ ∩ Aω (i = 0, . . . ,M − 1) by the formula:

fi = 1

m

m−1∑
k,l=0

ei+kM,i+lM .

Then we also verify that

αω(fi) = fi+1 (i = 0, . . . ,M − 2)

and that

αω(fM−1)− f0 = 1

m

m−1∑
k,l=0

(e(k+1)M,(l+1)M − ekM,lM)

= 1

m

m−1∑
l=0

(emM,(l+1)M + e(l+1)M,mM − e0,lM − elM,0).

The last formula implies an estimate‖αω(fM−1) − f0‖ ≤ 4m−1/2. Sincem is arbitrary,
we can take desired projectionsei (i = 0, . . . ,M − 1) fromA′ ∩Aω as in the proof of the
preceding lemma. 2
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Proof of Theorem 1.LetM,F andε be given as in the statement of the theorem. Letm

be a positive integer which we make very large later. By Lemma 4 there exist nonzero
mutually orthogonal projectionse0, . . . , emM−1 ∈ A′ ∩ Aω such that

αω(ei) = ei+1 (i = 0, . . . ,mM − 1),

whereemM meanse0. Sete = ∑mM−1
i=0 ei . If e = 1 then we are done, so we assume that

e 6= 1. Letn be a positive integer which we also make very large later. Using Lemma 3 we
find a nonzero projectionf ∈ e0(A

′ ∩Aω)e0 such that

fαmMkω (f ) = 0 (k = 1, . . . , n− 1),

[f ] = [1 − e] in K0(A
′ ∩ Aω).

Thus we have a partial isometryv ∈ A′ ∩Aω such thatv∗v = 1− e and vv∗ = f . Define

w = n−1/2
n−1∑
k=0

αmMkω (v).

Then we easily verify thatw is a partial isometry satisfying

w∗w = 1 − e, ww∗ ≤ e0

and that

‖αmMω (w)− w‖ = ‖n−1/2(αmMnω (v)− v)‖ ≤ 2n−1/2.

LetD be theC∗-subalgebra ofA′ ∩ Aω generated by

{w,αω(ww∗), . . . , αmM−1
ω (ww∗)},

thenD is isomorphic toMmM+1 (the(mM + 1)-by-(mM + 1)matrices) with the unit

w∗w +ww∗ + αω(ww
∗)+ · · · + αmM−1

ω (ww∗).

Here, by considering the preceding estimate,α � D is almost conjugate (i.e. up to
conjugacy, very close in norm) to Ad(1 ⊕ S(mM)) whenn is large enough, whereS(k)
denotes thek-by-k matrix 


0 · · · 0 1

1
. . . 0
. . .

. . .
...

1 0


 .

Moreover, since the eigenvalues of the above unitary is uniformly distributed (see [29, §5]),
the above automorphism ofD is almost conjugate (whenm is large enough) to

Ad






λ1

. . .

λk


 ⊗ S(M)⊕



η1

. . .

ηl


 ⊗ S(M + 1)
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for somek, l ∈ N andλi, ηj ∈ C. Therefore, we can take mutually orthogonal projections
f0, . . . , fM−1, g0, . . . , gM fromD such that

M−1∑
i=0

fi +
M∑
j=0

gj = 1D,

‖αω(fi)− fi+1‖ < ε

2
(i = 0, . . . ,M − 1),

‖αω(gj )− gj+1‖ < ε

2
(j = 0, . . . ,M).

wherefM ≡ f0, gM+1 ≡ g0. Define

f ′
i = fi +

m−1∑
k=0

(ei+Mk − αi+Mkω (ww∗)) (i = 0, . . . ,M − 1).

Thenf ′
i is also a projection inA′ ∩ Aω andf ′

0, . . . , f
′
M−1, g0 . . . , gM satisfy that

M−1∑
i=0

f ′
i +

M∑
j=0

gj = 1A,

‖αω(f ′
i )− f ′

i+1‖ < ε (i = 0, . . . ,M − 1),

wheref ′
M ≡ f ′

0. Using a standard method for these projections inA′ ∩ Aω, we can find
projections inA, which ensure the Rohlin property ofα. We complete the proof. 2

3. Outer conjugacy
We first state the main theorem in this section. For automorphismsα andβ of a unital
C∗-algebraA, α is said to beasymptotically unitarily equivalentto β if there exists
a continuous mappingu from [0,∞) into U(A) such thatα = limt→∞ Adu(t) ◦ β
(pointwise). α is said to beouter conjugateto β if there exist a unitaryu in A and an
automorphismγ of A such thatα = Adu ◦ γ ◦ β ◦ γ−1.

THEOREM 5. LetA be a separable nuclear unital purely infinite simpleC∗-algebra and
let α andβ be aperiodic automorphisms ofA. If α is asymptotically unitarily equivalent
to β thenα is outer conjugate toβ with respect to an automorphismγ which is isotopic
to the identity automorphismidA of A. That is, there exists a unitaryu in A such that
α = Ad u ◦ γ ◦ β ◦ γ−1 and there exists a homotopy consisting of automorphisms ofA

betweenγ and idA.

In order to prove the theorem we shall show a so-called stability of aperiodic
automorphisms (Lemma 8) from the Rohlin property. If we establish Lemma 8 then,
combining the separability ofA, we can apply the Evans–Kishimoto intertwining argument
([12, Theorem 4.1] or [31, Theorem 5.1]) and conclude the theorem. To show the stability
we first discuss a certain property ofC∗-algebras which says that an almost central unitary
path can be replaced by an almost central and rectifiable one of length smaller than a
universal constant without changing its end points. This kind of property is also argued in
[4, 11, 31]. Furthermore, in our case the replacement can be done continuously with respect
to a homotopy of such paths. For a rectifiable pathu in aC∗-algebra, we denote byL(u)
the length ofu. The next lemma is nothing but a slight modification of [16, Lemma 5.1].
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LEMMA 6. LetA be a unitalC∗-algebra and letB be a unitalC∗-subalgebra ofA, which
is isomorphic to the Cuntz algebraO2. Then for any unitariesu0, u1 ∈ C[0,1]⊗(B ′ ∩A),
there exists a unitaryv ∈ C[0,1]2 ⊗A such that

v(s,0) = u0(s), v(s,1) = u1(s), L(v(s, ·)) ≤ 8π

3
,

‖[v(s, t), x]‖ ≤ 4‖[u1(s), x]‖ + 5‖[u0(s), x]‖
for anyx ∈ B ′ ∩ A ands, t ∈ [0,1].
Proof. First fix s ∈ [0,1]. Following the proof of [16, Lemma 5.1], we find a unitary
vs ∈ C[0,1] ⊗ A such that

vs(0) = 1, vs(1) = u0(s)
∗u1(s), L(vs) ≤ 8π

3
,

‖[vs(t), x]‖ ≤ 4‖[u0(s)
∗u1(s), x]‖ (x ∈ B ′ ∩ A, t ∈ [0,1]).

Moreover, examining how to makevs in that proof, we can easily check thatvs(t) is
jointly continuous with respect tos andt . Setv(s, t) = u0(s)vs(t). Thenv has a desired
property. 2

Using Lemma 6 and the technique in [37, Theorem 3.4], we prove the above-mentioned
property for separable nuclear unital purely infinite simpleC∗-algebras.

THEOREM 7. LetA be a separable nuclear unital purely infinite simpleC∗-algebra. For
any finite subsetF ofA andε > 0, there exist a finite subsetG ofA andδ > 0 satisfying
the following condition: for any unitaryu ∈ C[0,1]2 ⊗ A with

‖[u(s, t), y]‖ < δ

for all s, t ∈ [0,1] andy ∈ G, there is a unitaryv ∈ C[0,1]2 ⊗ A such that

v(s,0) = u(s,0), v(s,1) = u(s,1), L(v(s, ·)) < 6π,

‖[v(s, t), x]‖ < ε

for all s, t ∈ [0,1] andx ∈ F . Furthermore, ifF is empty then it is possible thatG is
empty.

Proof. Let ⊗∞
1 O∞ denote the infiniteC∗-tensor product of the Cuntz algebraO∞, which

is also isomorphic toO∞ [25]. ForN ∈ N, ⊗N
1 O∞ and⊗∞

N O∞ denote theN-times and
the infiniteC∗-tensor product subalgebras of⊗∞

1 O∞, respectively. By [25] we have an
isomorphism

β :
( ∞⊗

1

O∞
)

⊗ A −→ A.

Let F andε be given as in the statement of the theorem, then we may assume that there is
a positive integerN1 such that

β−1(x) ∈
( N1⊗

1

O∞
)

⊗ A (x ∈ F).

https://doi.org/10.1017/S0143385700000973 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700000973


Nuclear purely infinite simpleC∗-algebras 1757

We setG = F andδ = ε/27. If u is a unitary inC[0,1]2 ⊗ A, which satisfies the above
condition for thisG andδ, then we may further assume that there is a positive integerN2

such that

β−1(u(s, t)) ∈
( N2⊗

1

O∞
)

⊗ A (s, t ∈ [0,1])

simply because[0,1]2 is compact. SetN = max{N1, N2} and we take a nonzero projection
e in ⊗∞

N+1O∞ satisfying[e] = −[1] in K0(⊗∞
N+1O∞). Here we note that

[e⊗ 1A, β
−1(x)] = 0, [e ⊗ 1A, β

−1(u(s, t))] = 0 (x ∈ F, s, t ∈ [0,1]).
By the continuity ofu, we have a positive integern and a partition(0 =)t0 < t1 < · · · <
tn−1 < tn(= 1) of [0,1] such that

‖u(s, ti )− u(s, ti−1)‖ < ε

3
(s ∈ [0,1], i = 1, . . . , n).

For thisn we have a partial isometryw ∈ (⊗∞
N+1O∞)⊗M2n+1 such that

w∗w = diag(1,

2n︷ ︸︸ ︷
e,1, . . . , e,1),

ww∗ = diag(1,

2n︷ ︸︸ ︷
0,0, . . . ,0,0),

where diag(x1, . . . , xk) stands for the diagonal matrix with the diagonal entriesx1, . . . , xk.
Definep by β(e ⊗ 1A) andW by (β ⊗ idM2n+1)(w). Then by an easy computation, we
knowW is in the following form:

W =



W0 W1 · · · W2n

0 · · · · · · 0
...

...

0 · · · · · · 0




with

W∗
2kW2k = 1A (k = 0, . . . , n), W∗

2k−1W2k−1 = p (k = 1, . . . , n),

W∗
k Wl = 0 (k 6= l), W0W

∗
0 +W1W

∗
1 + · · · +W2nW

∗
2n = 1A.

Here we note again that

[Wi, x] = 0, [Wi, u(s, t)] = 0 (x ∈ F, s, t ∈ [0,1]).
Since[diag(e,1)] = 0 in K0(⊗∞

N+1O∞), we can find a unital embedding of the Cuntz
algebraO2 into

diag(e,1)M2

( ∞⊗
N+1

O∞
)

diag(e,1).

Note that the last algebra is a unitalC∗-subalgebra of

diag(e ⊗ 1A,1)M2

(( ∞⊗
1

O∞
)

⊗ A

)
diag(e ⊗ 1A,1)
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which is isomorphic (viaβ ⊗ idM2) to

diag(p,1)M2(A) diag(p,1).

Henceforth, we have a unital embedding ofO2 into diag(p,1)M2(A) diag(p,1).
Moreover, in this embedding the elements

diag(xp, x) (x ∈ F), diag(u(s, t)p, u(s, t)) (s, t ∈ [0,1])
commute with the elements inO2. Hence, by Lemma 6, we find for eachk = 1, . . . , n a
unitary

vk ∈ C[0,1]2 ⊗ diag(p,1)M2(A) diag(p,1)

such that for eachs ∈ [0,1],
vk(s,0) = diag(u(s,0)p, u(s,0)), vk(s,1) = diag(u(s, tk)p, u(s, tk)),

‖[vk(s, t),diag(xp, x)]‖ ≤ 4‖[u(s, tk), x]‖ + 5‖[u(s,0), x]‖
≤ 9δ = 1

3ε (x ∈ F)
andL(vk(s, ·)) = 8π/3. Here we define, for eachs, t ∈ [0,1],

V (s, t) = diag(u(s,0), v1(s, t), . . . , vn(s, t))

which is a unitary of

diag(1, p,1, . . . , p,1)M2n+1(A) diag(1, p,1, . . . , p,1)

and definev(s, t) = WV (s, t)W∗ which is a unitary of

diag(1,0, . . . ,0)M2n+1(A) diag(1,0, . . . ,0).

In particular, we may regardv(s, t) as an element ofA. Then it follows that for each
s ∈ [0,1],

v(s,0) = WV (s,0)W∗ =
2n∑
i=0

Wiu(s,0)W∗
i = u(s,0)

2n∑
i=0

WiW
∗
i = u(s,0),

v(s,1) = WV (s,1)W∗ = u(s,0)W0W
∗
0 +

n∑
k=1

u(s, tk)(W2k−1W
∗
2k−1 +W2kW

∗
2k),

‖[v(s, t), x]‖ = ‖[WV (s, t)W∗,W diag(x, xp, x, . . . , xp, x)W∗]‖
≤ ε

3
(t ∈ [0,1], x ∈ F)

andL(v(s, ·)) ≤ 8π/3.
In a similar fashion we can apply the above method tou(s,1) instead ofu(s,0). Then

we obtain for eachk = 1, . . . , n a unitary

v′
k ∈ C[0,1]2 ⊗ diag(1, p)M2(A) diag(1, p)

such that, for eachs ∈ [0,1],
v′
k(s,0) = diag(u(s,1), u(s,1)p), v′

k(s,1) = diag(u(s, tk), u(s, tk)p),

‖[v′
k(s, t),diag(x, xp)]‖ ≤ 1

3ε (x ∈ F)
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andL(v′
k(s, ·)) = 8π/3. Likewise we define, for eachs, t ∈ [0,1],
V ′(s, t) = diag(v1(s, t), . . . , vn(s, t), u(s,1)), v′(s, t) = W ′V (s, t)W ′∗,

whereW ′ indicates 


0 · · · · · · 0
...

...

0 · · · · · · 0
W0 W1 · · · W2n


 .

Thenv′(s, t) is a unitary in diag(02n,1)M2n+1(A) diag(02n,1), so we may also regard it
as an element ofA. We can easily verify that, for eachs ∈ [0,1],

v′(s,1) =
n∑
k=1

u(s, tk)(W2k−2W
∗
2k−2 +W2k−1W

∗
2k−1)+ u(s,1)(W2nW

∗
2n),

v′(s,0) = u(s,1), ‖[v′(s, t), x]‖ ≤ ε

3
(t ∈ [0,1], x ∈ F)

andL(v′(s, ·)) ≤ 8π/3. We comparev(s,1) with v′(s,1);

‖v(s,1) − v′(s,1)‖

=
∥∥∥∥ u(s,0)W0W

∗
0 +

n∑
k=1

u(s, tk)(W2kW
∗
2k −W2k−2W

∗
2k−2)− u(s,1)W2nW

∗
2n

∥∥∥∥
=

∥∥∥∥ n−1∑
k=1

(u(s, tk−1)− u(s, tk))W2k−2W
∗
2k−2

∥∥∥∥ ≤ ε

3
.

Accordinglyv(s,1) is very close tov′(s,1), hence we can connectv(s,1) to v′(s,1) by a
unitaryv′′ ∈ C[0,1]2 ⊗ A such that

‖[v′′(s, t), x]‖ ≤ 2‖v(s,1) − v′(s,1)‖ + ‖[v(s,1), x]‖ ≤ ε (x ∈ F)
andL(v′′(s, ·)) ≤ 2 arcsin(ε/6). Joiningv, v′′ andv′ canonically, we have a desired unitary
of C[0,1]2 ⊗ A and complete the proof. 2

Once the above theorem is obtained, the following lemma (which is called the stability
of automorphisms) can be proved in a way that has become standard [19, Theorem 1,31,
Proposition 3.4].

LEMMA 8. LetA be a separable nuclear unital purely infinite simpleC∗-algebra and let
α be an automorphism ofA. If α is aperiodic thenα has the following property.

For any finite subsetF of A and ε > 0, there exist a finite subsetG of A andδ > 0
which satisfy the following condition: ifu is a unitary inC[0,1]2 ⊗ A such that

u(s,0) = u(0, t) = 1, ‖[u(s, t), y]‖ < δ

for all s, t ∈ [0,1] andy ∈ G, then there exists a unitaryv ∈ C[0,1] ⊗ A such that

‖u(s,1)− v(s)α(v(s))∗‖ < ε,

v(0) = 1, ‖[v(s), x]‖ < ε

for all s ∈ C[0,1] and x ∈ F . Furthermore, ifF is empty then it is possible thatG is
empty.
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Proof. Let F and ε be given as above. We take a sufficiently largeN ∈ N such that
6π/(N − 1) < ε/2. Temporarily fixε1 > 0 (precisely how smallε1 must be, will become
clear in the course of the proof). Applying Theorem 7 to

⋃N
k=0 α

k(F ) andε1, we choose
a finite subsetG1 of A andδ1 > 0 satisfying the conditions stated there. For a unitary
u ∈ C[0,1]2 ⊗ A we set

u(k)(s, t) =
{
u(s, t)α(u(s, t)) . . . αk−1(u(s, t)) (k ≥ 1)

1 (k = 0).

Then we can choose a finite subsetG of A and δ > 0 such that, for any unitary
u ∈ C[0,1]2 ⊗ A satisfying‖[u(s, t), y]‖ < δ (s, t ∈ [0,1], y ∈ G), we have

‖[u(k)(s, t), x]‖ < min{δ1, ε1} (s, t ∈ [0,1], x ∈ G1 ∪ F, k = 1, . . . , N + 1).

We claim that theseG andδ satisfy the requirement. In order to verify this, letu be a
unitary inC[0,1]2 ⊗ A such that

u(s,0) = u(0, t) = 1, ‖[u(s, t), y]‖ < δ (s, t ∈ [0,1], y ∈ G).
By the preceding consideration we can apply Theorem 7 tou(N) andu(N+1), respectively,
and obtain unitariesv,w ∈ C[0,1]2 ⊗ A such that

v(s,0) = u(N)(s,0), v(s,1) = u(N)(s,1), ‖[v(s, t), x]‖ < ε1,

‖v(s, t) − v(s, t ′)‖ < 6π |t − t ′| (s, t, t ′ ∈ [0,1], x ∈ ∪Nk=0α
k(F ))

and that the similar conditions hold forw andu(N+1). Sinceα has the Rohlin property, we
can choose projectionse0, . . . , eN−1, f0, . . . , fN as in Theorem 1 which almost commute
with {

αi−(N−1)
(
v

(
s,

i

N − 1

)) ∣∣∣∣ i = 0, . . . , N − 1, s ∈ [0,1]
}
,{

αj−N
(
w

(
s,
j

N

)) ∣∣∣∣ j = 0, . . . , N, s ∈ [0,1]
}
,

{u(k)(s,1) | k = 1, . . . , N + 1, s ∈ [0,1]}
andF up to withinε1. Here we define, for eachs ∈ [0,1],

U(s) =
N−1∑
i=0

u(i+1)(s,1)αi−(N−1)
(
v

(
s,

i

N − 1

))∗
ei

+
N∑
j=0

u(j+1)(s,1)αj−N
(
w

(
s,
j

N

))∗
fj .

Then we can check thatU(s) is close to a unitary whenNε1 is sufficiently small, and
furthermore check thatU(s)α(U(s))∗ is close tou(s,1) up to within 6π/(N − 1)+ 2Nε1.
Therefore, taking the polar decomposition ofU(s) (which can be done continuously with
respect tos ∈ [0,1]), we have a desired unitary path. 2

Now we show Theorem 5 by applying the Evans–Kishimoto intertwining argument to
our setting as in the proof of [31, Theorem 5.1].
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Proof of Theorem 5.We fix a countable subset{xk | k ≥ 1} of U(A), whose linear span
is dense inA, and setBn = {xk | k = 1, . . . , n}. Replacingβ by Adu(0) ◦ β andu(t) by
u(t)u(0)∗, we may assume thatu(0) = 1. Letε > 0 be given.

First, we shall constructtn > 0, unitariesun,wn ∈ C[0,1] ⊗A, a finite subsetGn of A
andδn > 0 for eachn ≥ 1, which satisfy the following conditions.

(1, n) ‖σn−1(x)− Ad u(n−1)(t)ε(n−1) ◦ σn−2(x)‖ < 2−nε (x ∈ Bn, t ≥ tn).

(2, n) ‖σn−1(y)− Ad u(n−1)(t)ε(n−1) ◦ σn−2(y)‖ < 2−1δn−1 (y ∈ Gn−1, t ≥ tn).

(3, n) σn = limt→∞ Adu(n)(t)ε(n) ◦ σn−1 (pointwise).

(4, n) u(n−1)(tns)
ε(n−1) = wn(s)un(s)σn−2(un(s))

∗ (s ∈ [0,1]).
(5, n) un(0) = 1, ‖wn(s)− 1‖ < 2−nε (s ∈ [0,1]).
(6, n) ‖[un(s), x]‖ < 2−nε (s ∈ [0,1], x ∈ Fn−2).

(7, n) For anyu ∈ U(C[0,1]2 ⊗ A) with

u(s,0) = u(0, t) = 1, ‖[u(s, t), y]‖ < δn (s, t ∈ [0,1], y ∈ σn(Gn)),
there exists av ∈ U(C[0,1] ⊗ A) such that

‖u(s,1)v(s)σn(v(s))∗ − 1‖ < 2−(n+2)ε, v(0) = 1,

‖[v(s), x]‖ < 2−(n+2)ε (s ∈ [0,1], x ∈ Fn).

In the above conditions we denote(−1)n by ε(n) and define unitariesu(n) ∈ C[0,1] ⊗ A

and automorphismsσn of A by

u(0) = u,

u(n)(t)ε(n−1) = u(n−1)(t + tn)
ε(n−1) · u(n−1)(tn)

ε(n) (n ≥ 1),

σ−1 = β, σ0 = α,

σn = Adu(n−1)(tn)
ε(n−1) ◦ σn−2 (n ≥ 1),

and set

F−1 = ∅, F0 = ∅,
Fn = Bn ∪ {uk(s) | k = n, n − 2, . . . , s ∈ [0,1]} (n ≥ 1),

G0 = ∅, δ0 = 1.

(In particular,(2, n) is a trivial statement whenn = 1, as is(6, n) whenn = 1,2.) We also
regard all the conditions (except(3, n)) as trivial whenn = 0. Note that(3,0) denotes the
hypothesis of this theorem.

Let n ≥ 1. Suppose that we have constructedtk, uk,wk,Gk, δk for eachk ≤ n − 1.
Then we proceed as follows. Sinceσn−1 = limt→∞ Adu(n−1)(t)ε(n−1) ◦ σn−2, there is a
tn > 0 such that(1, n) and(2, n) hold. Then by definition,

Adu(n)(t)ε(n−1) ◦ σn = Adu(n−1)(t + tn)
ε(n−1) ◦ σn−2.
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Note that the right-hand term converges toσn−1 (ast → ∞) from (3, n− 1). This implies
(3, n). By using(2, n− 1) we have that

‖σn−2(y)− Adu(n−2)(t + tn−1)
ε(n−2) ◦ σn−3(y)‖ < 2−1δn−2 (y ∈ Gn−2, t ≥ 0).

Thus again by definition,

‖σn−2(y)− Adu(n−1)(t)ε(n−2) ◦ σn−1(y)‖ < 2−1δn−2 (y ∈ Gn−2, t ≥ 0).

Sinceu(n−1)(0) = 1, we have

‖σn−2(y)− Adu(n−1)(t)ε(n−2) ◦ σn−2(y)‖ < δn−2 (y ∈ Gn−2, t ≥ 0).

Hence we can apply(7, n − 2) (whenn = 1,2, which means Lemma 8 in the case when
F,G = ∅) for u(n−1)(tn(·)(·))ε(n−1) ∈ U(C[0,1]2⊗A) and findun,wn ∈ U(C[0,1]⊗A)
which satisfy(4, n),(5, n) and(6, n). SinceFn is compact, we can also apply Lemma 8 to
thisFn and 2−(n+2)ε, and obtain a finite subsetGn of A, δn > 0 satisfying(7, n). We thus
complete the induction.

Secondly, we show outer conjugacy betweenα andβ using the previous paragraph.
From (6, n) (n ≥ 3), we can define automorphismsγ0(s) andγ1(s) of A by pointwise
limits

γ0(s) = lim
k→∞ Adu2k(s)u2k−2(s) · · ·u2(s),

γ1(s) = lim
k→∞ Adu2k+1(s)u2k−1(s) · · ·u1(s)

for eachs ∈ [0,1]. Sinceuk(0) = 1 (k ≥ 1), bothγ0(1) andγ1(1) are isotopic to idA. On
the other hand, by a direct computation it is verified that

σ2k = Adw′
2k ◦ Ad(u2k(1)u2k−2(1) · · ·u2(1)) ◦ α ◦ Ad(u2k(1)u2k−2(1) · · ·u2(1))∗

where

w′
2k ≡ w2k(1) · Adu2k(1)(w2k−2(1)) · Ad(u2k(1)u2k−2(1))(w2k−4(1)) · · · ·

· · · · Ad(u2k(1)u2k−2(1) · · ·u4(1))(w2(1)).

From(5, n), (w′
2k) converges uniformly to a unitaryW0 ∈ A with ‖W0 − 1‖ < ε. Hence

(σ2k) converges pointwise to an automorphism AdW0 ◦ γ0(1) ◦ α ◦ γ0(1)−1. Similarly
(σ2k+1) converges pointwise to an automorphism AdW1 ◦ γ1(1) ◦ β ◦ γ1(1)−1 for some
unitaryW1 ∈ A with ‖W1 − 1‖ < ε. From(1,2k + 1) and(1,2k) we have

‖σ2k(x)− σ2k+1(x)‖ < 2−(2k+1)ε (x ∈ B2k+1),

‖σ2k−1(x)− σ2k(x)‖ < 2−2kε (x ∈ B2k).

Therefore, we conclude that

AdW0 ◦ γ0(1) ◦ α ◦ γ0(1)−1 = AdW1 ◦ γ1(1) ◦ β ◦ γ1(1)−1.

We have thus proved the theorem. 2
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Combining Theorem 5 and the classification theory due to Phillips, we reach our
classification theorem of aperiodic automorphisms of a nuclear purely infinite simpleC∗-
algebra.

THEOREM 9. LetA be a separable nuclear unital purely infinite simpleC∗-algebra and
let α andβ be aperiodic automorphisms ofA. Then the following three conditions are
equivalent:

(1) [α] = [β] in KK(A,A);
(2) α is asymptotically unitarily equivalent toβ;
(3) α is outer conjugate toβ with respect to an automorphismγ which is homotopic to

the identity automorphism ofA.

Moreover, under the same assumption the following three conditions are also equivalent to
each other:

(1′) there exists an invertible elementη ∈ KK(A,A) such that[α] = η · [β] · η−1 and
[1A] · η = [1A];

(2′) there exist a continuous mappingu from [0,∞) intoU(A) and an automorphismγ
ofA such thatα = limt→∞ Adu(t) ◦ γ ◦ β ◦ γ−1 pointwise;

(3′) α is outer conjugate toβ.

Proof. The equivalence between (1) and (2) follows from the results of Phillips [38,
Lemma 1.3.3, Theorems 4.1.3 and 4.1.4]. It is also shown that (3) implies (1). Theorem 5
says that (2) implies (3). Similarly one verifies the equivalence among (1′), (2′) and (3′) by
using [38, Corollary 4.2.2]. 2

Remark 10.(i) It is known that any pair(G0,G1) of countable abelian groups can
be described by(K0(A),K1(A)) of a separable nuclear unital purely infinite simple
C∗-algebraA [38, Theorem 4.2.5] and that any (unit-preserving) invertible element of
KK(A,A) can be lifted to an automorphism ofA [38, Corollary 4.2.2]. Hence there
exist two aperiodic automorphisms of some separable nuclear unital purely infinite simple
C∗-algebraA, which induce two different elements ofKK(A,A) but the same element
of KL(A,A) [39] by using the universal coefficient theorem [41]. This means that
outer conjugacy of aperiodic automorphisms is not in general characterized by theirKL

elements.

(ii) Theorem 9 is still valid for any separable non-unital nuclear purely infinite simple
C∗-algebraA, if one removes the condition[1A] · η = [1A] from (1′) and regards the
unitaries considered there as the elements of the unitization ofA.

Finally, we present a corollary which is a direct consequence of [25, Theorem 3.14] and
Theorem 9 above. The author thanks Masaki Izumi for pointing out this fact.

COROLLARY 11. LetA be a separable nuclear unital purely infinite simpleC∗-algebra
and letα be an automorphism ofA. If α is aperiodic thenα absorbs any automorphism
β ofO∞, that is, there exist a unitaryu in O∞ ⊗ A and an isomorphismγ fromA onto
O∞ ⊗A such that

β ⊗ α = Adu ◦ γ ◦ α ◦ γ−1.
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Proof. Let ϕ be a unital homomorphism fromA into O∞ ⊗ A, which is given by
ϕ(a) = 1⊗ a for a ∈ A. Then by [25, Theorem 3.14] there exists a unital homomorphism
ψ fromO∞ ⊗ A intoA such that

[ϕ ◦ ψ] = [idO∞⊗A] in KK(O∞ ⊗ A,O∞ ⊗ A),

[ψ ◦ ϕ] = [idA] in KK(A,A).

By virtue of Phillips’s classification theorem [38, Corollary 4.2.2], we have an
isomorphismγ fromA ontoO∞ ⊗ A such that

[γ ] = [ϕ] in KK(O∞ ⊗ A,A), [γ−1] = [ψ] in KK(A,O∞ ⊗ A).

Accordingly,

[γ ] · [β ⊗ α] · [γ−1] = [ϕ] · [β ⊗ α] · [ψ] = [ψ ◦ (β ⊗ α) ◦ ϕ]
= [ψ ◦ ϕ ◦ α] = [α].

Therefore, we obtain the result by Theorem 9 and complete the proof. 2
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