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Abstract We show that if two aperiodic automorphisms of a separable nuclear unital purely
infinite simple C*-algebra are asymptotically unitarily equivalent, then they are outer
conjugate with respect to an automorphism which is isotopic to the identity automorphism.
Thus, by Kirchberg and Phillips, they have the same KK-class if and only if they are
outer conjugate with respect to an automorphism which is in the KK-class of the identity
automorphism.

1. Introduction
In the theory of operator algebras, the problem of classifying group actions on an algebra
has a long history as well as that of classifying algebras themselves. In the category of
von Neumann algebras, the classification theory of group actions begins with the work
of Dye [9] (for commutative algebras) and of Conné&§ (for non-commutative algebras)
and much progress has been made so far (see, for exa@g)e,Ip the category olC*-
algebras, in contrast, there are still a lot of things which should be done, although some
fruitful results have also been obtained (s&8,[15, 17, 18, 27, 4Xor compact group
actions and se€lp, 12, 14, 19, 20, 29, 31, Bfor discrete group actions). In fact many
of the previous works treat group actions on a firGte-algebra, while the classification
problem of group actions on an infinité*-algebra has not been studied well. In this
paper we study automorphisms of purely infirit&-algebras. Purely infinit€*-algebras
and their automorphisms also have a connection with topological dynamical systems.
For example (irreducible) topological Markov chains induce (simple) purely inf@ite
algebras (called Cuntz—Krieger algebras) as their topological invargjraad then shift-
commuting transformations of Markov chains naturally define automorphisms of induced
C*-algebras43].

Recently, KirchbergZ4] and Phillips B8] classified separable nuclear unital purely
infinite simple C*-algebras using Kasparov's KK-theorpZ. Motivated by their
remarkable success, we classify aperiodic automorphisms of stitlalgebra in terms of
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KK-theory. Our main result says that two automorphisms have the same KK-class if and
only if they are outer conjugate with respect to an automorphism which is in the KK-class
of the identity automorphism.

The contents of this paper are as follows. In §2 we argue a non-commutative Rohlin
property for aperiodic automorphisms of nuclear purely infinite sindgiealgebras. This
property has been known to be very important for the classification of automorphisms of
operator algebras since the above-mentioned work of Connes and has been investigated
by many authorsd, 10, 12, 17, 18, 19, 20, 28, 29, 30, 31, 32, 33, 34, 3%, 3& to
nuclear purely infinite simpl€*-algebras, a Rohlin-type theorem was first established by
Kishimoto [28] for the Cuntz algebra®,, (with n finite) and subsequently by the author
[33 for a certain class of algebras with trivi&l1-groups, which contain®,,. Here
we show the theorem for general nuclear purely infinite sintplealgebras, which was
first noticed by Izumi 21]. In 83 we consider the classification problem of aperiodic
automorphisms of a nuclear purely infinite simglé-algebra, up to outer conjugacy.
When we show the stability of automorphisms from the Rohlin property atdn e
encounter a certain difficulty relating to (almost central) unitary paths in the algebra.
We deal with this problem in Theorem 7, which is the main technical part of this paper.
After that we show outer conjugacy of aperiodic automorphisms which are asymptotically
unitarily equivalent, following the Evans—Kishimoto intertwining argumeérd.[ At the
same time we see that the automorphism constructed there is isotopic to the identity
automorphism of the algebra.

Here is some notation and terminology we use throughout this paper. Lé&uProj
and U(A) denote the set of projections and the set of unitaries of a u@itedlgebra
A, respectively. Let 1 and idy denote the unit and the identity automorphismAf
respectively. Fox, y € A andu € U(A), define[x, y] = xy — yx and Adu(x) = uxu*.

An automorphismx of a unital C*-algebraA is calledinner if « = Adu for some

u € U(A). Ifthere is no such thene is calledouter. Furthermore, itx* is outer for any
nonzero integet theny is calledaperiodic A unital C*-algebraA is calledpurely infinite

if every nonzero hereditarg*-subalgebra ofA contains an infinite projection. We also
use the notation of K-theory and KK-theory for operator algebras without any explanation.
We refer the reader t@] for the details.

2. Rohlin-type theorem

In this section we show a Rohlin-type theorem for automorphisms of nuclear purely infinite
simpleC*-algebras. This theorem (Theorem 1) was proved first by Izumi as an application
of Kishimoto’s method28§] to the result 5, Proposition 3.4]. Subsequently Izumi’s proof

of Lemma 2 was simplified by Kishimoto. By their courtesy we combine their unpublished

arguments here.

THEOREM1. Let A be a separable nuclear unital purely infinite simglé-algebra and
let« be an automorphism of. Then the following conditions are equivalent:

(1) «isaperiodic;
(2) « hasthe Rohlin property, that is for any positive inte@érfinite subse¥ of A and
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e > 0, there exist projectionsy, . .., ep—1, fo, - - ., fu In A such that
M-1 M
St fi=1
i=0 j=0
leix —xeill <&, |fjx —xfjll <e,
lale) —eivill <&,  lla(fj) — fivill <e
fori=0,....M—1,j=0,...,Mandallx € F, whereey and f3;+1 meaneg

and fp, respectively.

It is evident that (2) implies (1). We show the converse in the rest of this section.
The basic idea of the proof comes from the same type of theorem for the Cuntz algebras
0, (with n finite) in [28], but here we employ the method of central sequence algebras
which simplifies the argument a little. Letbe a free ultrafilter oilN (see B0, §3] for the
definition). We refer the reader t@%, Notation 3.1] for our notation regardingcentral
sequence algebras. In particular, fat&algebraA, we denote by, the ultrapower ofA
and by, the natural quotient mapping from the bounded sequence alg&lrh) onto
A,. Itis shown in R5, Proposition 3.4] that for @*-algebraA, as in Theorem 1, the
w-central sequence algeh#d N A,, is unital, purely infinite and simple. Assume that (1)
holds, then we first show that the induced automorphismai A’ N A,, is also aperiodic.

LEMMA 2. o, | (A’ N A,) is aperiodic.

Proof. It is sufficient to show that,, | (A’ N A,) is outer whern is outer. For an outer
automorphismx of A we claim thate,, [ (A’ N A,) # id. By [26, Theorem 2.1 and
Remark 2.2] we have an irreducible representatioaf A such thatr is disjoint from
7 o«. Thatis, if we denote by(r) the central cover of thenc(m)a(c(r)) = 0. Take a
unit vector in the Hilbert space associated with the universal representatidisoth that
c(m)é = &, then|(a(c()) — c())&| = 1. On the other hand, by using, [Lemma 1.1],
we can approximate(:r) strongly by a bounded nét;, | » € A) in A such that

lim |[(c(r) — x3)a —a(c(m@) — xp)| =lim |xpa —ax,|| =0 (a € A).

Therefore, for a sequence, | n € N) in U(A), whose linear span is denseAn we find
A(n) € A (n € N) such that

1 .
||)C)L(n)u,' — uixx(n)|| < ; (l = 1, ey I’l),
(@ (xam)) — X2a))é 1l > %

This means that we have= 7, (x| n € N) € A’ N A, With [l (x) — x| > 3, which
implies thaty,, | (A’N A,) # id. Hence we can conclude the outernessof (A’ N Ay)
following the method in%, Proposition 2.1.2]. Indeed, for any= 7, (y, | n € N) € A,

we findL, € w (n € N) such that

1 1 ,
x5y yalll < o 1Dy, i lll < - (keL,i=1...,n).
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Takek, € L, satisfyingk, < k,+1 and define’ = 7, (xy,) | n € N). Then
I0x", y1 I = lim [[[xak,), yalll =0,
n—-w
Ix", willl = lim [[[x3 ). uilll =0,
n—-w
: 1
llorey (x") — x"|| = J[)nw 1xat) — X0k | = 5-
Sincey is arbitrary, it follows thak, | (A’ N A,) can not be inner. We complete the
proof. |

Combining Lemma 2 with the fact that' N A,, is purely infinite and simple, we can
prove the following two lemmas and conclude Theorem 1 in an analogous manner as in
[28, 33.

LEMMA 3. ForanyK € N, g € Ko(A’ N A,) and nonzero projectiop in A’ N A, there
exists a nonzero projectianin p(A’ N A,) p such that

eak(e)=0 (k=1,...,K),
[e] =g inKo(A'NA,).

Proof. Let K, g and p be given as above. We first claim that, for any- 0, there is a
nonzero projectiom’ € p(A’ N A,,) p satisfying

le'ak ()l <& (k=1,...,K).
Indeed, by the previous lemma artb] Lemma 1.1], we have for arfye Z \ {0}

inf{llga" (@)1l | g € Proj(p(A’ N A,)p) \ {0}} = 0.

Hence we find a nonzero projectien € p(A’ N A,)p such that|eia,(e1)|| < €. Since
A’ N A, is purely infinite simple, we further find a nonzero projectiare e1(A’ N Ay)er
such tha11|e2a§)(e2) | < . Repeating this process we can reach a desired projaction

To show the lemma, letu, | n € N) be a sequence ity (A) whose linear span is
dense inA and letp = 7,(p, | n € N). By a standard argument we may assume that
pn is @ nonzero projection. Using the preceding paragraph, we have a honzero projection
em = Tp(emn |n e N)e A'N A, andL, € o foreachm € N such that

0 _,<4_ emn = Pn,

1
lemna (emn)ll < ~ (k=1...K),

emn, will < — (G = 1,...,m)
m

foralln € L, and thatL,, 2 L,,+1. Define a projectior” = n,,(e), | n € N) by

=

o — €m,n (n €Ly \ Lin+1)
" 0 (n e N\ L1).
Thene” is a nonzero projection id’ N A,, satisfying

'k =0 (k=1,....K).
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SinceA’ N A, is purely infinite simple, we further find a nonzero projection A’ N A,
such that

This completes the proof. |

LEMMA 4. For any M € N there exist nonzero mutually orthogonal projections
eo, ...,eym—1in A’ N A, such that

aple) =e11 (=0,...,M-1),
whereey meansg.

Proof. Temporarily fix a positive integer.. By Lemma 3 we have a nonzero projection
e € A'N A, such that

eaf)(e) =0 (k=1,....,mM),
[e]=0 in Ko(A/ NAy).

Since[a,(e)] = 0, there is a partial isometry € A’ N A, such thatw*w = e and
ww* = a,(e). Definee; j € A’N A, (i, j =0,...,mM) as follows:

o, () ‘ (=)
eij = Vet w2 (w) . .. ah(w) (i > )

ol (wy*a L w) . e tw)t (o< ).

Then we can easily verify thak; ; | i,j = 0,...,mM) is a system of matrix units
satisfying
apeij) =ei+1j+1 (G, j=0,....,mM—1).

Further, definef; € A’N A, (i =0, ..., M — 1) by the formula:

1 m—1
fi=— CitkM,i+IM-
M=o

Then we also verify that

ao(fi) = fixr (=0,....M—-2)

and that
m—1

oo (fu-1) — fo=— Z (ek+1)M.(1+D)M — €kM.1M)
" ki=o

m—1
=— Z(emM,(l+l)M +eq+yMmm — €M — €1m.0)-
mizo
The last formula implies an estimajte., (fx7_1) — foll < 4m~2. Sincem is arbitrary,
we can take desired projectioas(i =0, ..., M — 1) from A’ N A,, as in the proof of the
preceding lemma. m|
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Proof of Theorem 1Let M, F ande be given as in the statement of the theorem. shet
be a positive integer which we make very large later. By Lemma 4 there exist nonzero
mutually orthogonal projections, . .., e,p—1 € A’ N A, such that

ap(e)) =eiy1 (=0,....,mM~-1),

wheree,,,y meanszy. Sete = ?%’1 e;. If e = 1 then we are done, so we assume that

e # 1. Letn be a positive integer which we also make very large later. Using Lemma 3 we
find a nonzero projectioff € eg(A’ N A,)ep such that

fa™Mk(fy=0 (k=1,...,n-1),
[f1=[1—e] inKo(A'NA,).

Thus we have a partial isometoye A’ N A, such thab*v = 1 — ¢ and vv* = f. Define
n—1
w=n"1/2 Z aZ’Mk(v).
k=0

Then we easily verify thab is a partial isometry satisfying
w*w=1—¢, ww* <eg

and that
™™ (w) — wl| = [0~ Y?@"™M" (v) — v)|| < 2072,

Let D be theC*-subalgebra ofi’ N A,, generated by
{w, o (wWw™), ..., aZ}Mﬁl(ww*)},
thenD is isomorphic toM,,, 341 (the (mM + 1)-by-(m M + 1) matrices) with the unit
w*w + ww* + a,(ww®) + - + aZ}Mﬁl(ww*).

Here, by considering the preceding estimate,] D is almost conjugate (i.e. up to
conjugacy, very close in norm) to Al S(mM)) whenn is large enough, wherg(k)
denotes thé-by-k matrix

0 --- 0 1
1 . 0
1 0

Moreover, since the eigenvalues of the above unitary is uniformly distributedA%e&5]),
the above automorphism @&f is almost conjugate (when is large enough) to

Al n1
Ad QX S(M) d RSM +1)
Ak n

https://doi.org/10.1017/50143385700000973 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700000973

Nuclear purely infinite simpl€*-algebras 1755

for somek, ! € Nanda;, n; € C. Therefore, we can take mutually orthogonal projections
fo, ..., fm—1, 8o, - .., gy from D such that

M-1 M
ST i+ g =1b.
i=0 j=0
&
low(fi) — fivrll < >

P
lloew (g) — gj+all < >

(i=0,.., M-1,
(j=0,..., M.

wherefyy = fo, gn+1 = go. Define
m—1

£l =i+ ) (ivm — ™M uw*) (=0,...,M—1).
k=0

Then f/ is also a projection i’ N A, and f§, ..., f},_1. 8o .., gu Satisfy that

M-1 M
2 D 8i=1a
i=0 j=0

lew(f)) = fliall <e (=0,...,M—1),

where f;, = f;. Using a standard method for these projectiond’im A,,, we can find
projections inA, which ensure the Rohlin property @f We complete the proof. O

3. Outer conjugacy

We first state the main theorem in this section. For automorphisared 8 of a unital
C*-algebraA, « is said to beasymptotically unitarily equivalento g if there exists
a continuous mapping from [0, co) into U(A) such thate = lim,_ - Adu(t) o B
(pointwise). « is said to beouter conjugateo g if there exist a unitary: in A and an

automorphisny of A such thatr = Adu oy o oy 2.

THEOREMS. Let A be a separable nuclear unital purely infinite simgl&-algebra and
let « and B8 be aperiodic automorphisms @f. If « is asymptotically unitarily equivalent
to B thena is outer conjugate t@ with respect to an automorphispwhich is isotopic
to the identity automorphisnd, of A. That is, there exists a unitany in A such that
o = Adu oy o B oy~1 and there exists a homotopy consisting of automorphisrds of
betweery andidy.

In order to prove the theorem we shall show a so-called stability of aperiodic
automorphisms (Lemma 8) from the Rohlin property. If we establish Lemma 8 then,
combining the separability of, we can apply the Evans—Kishimoto intertwining argument
([12, Theorem 4.1] or31, Theorem 5.1]) and conclude the theorem. To show the stability
we first discuss a certain property©f-algebras which says that an almost central unitary
path can be replaced by an almost central and rectifiable one of length smaller than a
universal constant without changing its end points. This kind of property is also argued in
[4,11, 3]. Furthermore, in our case the replacement can be done continuously with respect
to a homotopy of such paths. For a rectifiable path a C*-algebra, we denote b (u)
the length ofu. The next lemma is nothing but a slight modification b8[Lemma 5.1].
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LEMMA 6. Let A be a unitalC*-algebra and letB be a unitalC*-subalgebra ofd, which
is isomorphic to the Cuntz algebr@. Then for any unitarieso, u1 € C[0, 1]® (B'NA),
there exists a unitary € C[0, 1]2 ® A such that

v(s, 0) = uo(s), (s, 1) =uils), L(v(s, ") =< 8?”
[lv(s, ), x| < 4ll{us(s), x1ll + Slluols), x1ll
foranyx € B'N A ands, ¢t € [0, 1].
Proof. First fix s € [0, 1]. Following the proof of 16, Lemma 5.1], we find a unitary
vs € C[0, 1] ® A such that
vs(0) =1, (D) =uo(s)uals), L(vs) =< 8%
Ivs (1), x11| < 4[[uo(s) us(s), x1l  (x € B'N A, 1 €[0,1]).

Moreover, examining how to make; in that proof, we can easily check that(z) is
jointly continuous with respect toandz. Setuv(s, t) = ug(s)vs(¢). Thenv has a desired
property. O

Using Lemma 6 and the technique B[ Theorem 3.4], we prove the above-mentioned
property for separable nuclear unital purely infinite simptealgebras.

THEOREM7. Let A be a separable nuclear unital purely infinite simjglé-algebra. For
any finite subsef’ of A ande > 0, there exist a finite subsét of A andé > 0 satisfying
the following condition: for any unitary € C[0, 1]2 ® A with

uCs, ), Il <&
forall s,z € [0, 1] andy € G, there is a unitarw € C[0, 1] ® A such that

v(s,0) =u(s,0), v(s,1) =u(s,1), L(v(s,-)) < bm,
Iv(s, ), x]ll <&
forall s,t € [0,1] andx € F. Furthermore, ifF is empty then it is possible thét is
empty.

Proof. Let ®7° O denote the infinite”*-tensor product of the Cuntz algeb®a,, which
is also isomorphic t@., [25]. For N € N, ®’l" Ox and®%’ O denote theV-times and
the infinite C*-tensor product subalgebras ®f° O, respectively. By 25] we have an

isomorphism
(.¢]
B: <®000>®A—> A.
1

Let F ande be given as in the statement of the theorem, then we may assume that there is
a positive integeiV; such that

N1

B i) € <® Ooo> ®A (xeF).

1
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We setG = F and$ = ¢/27. If u is a unitary inC[O0, 112 ® A, which satisfies the above
condition for thisG and$, then we may further assume that there is a positive int¥ger
such that

N2
B Hu(s, 0) € <® 000) ®A (s,1€[0,1])
1
simply becausg0, 1]2 is compact. SeV = max{ N1, N2} and we take a nonzero projection
ein ®?v°+10<>o satisfying[e] = —[1] in K0(®§’V°+1000). Here we note that
[e®14, B =0, [e®1a,f Huls,1)1 =0 (x€F,s,1el0,1]).

By the continuity ofu, we have a positive integarand a partition0 =)rp < t1 < --- <
th—1 < t,(= 1) of [0,1] such that

(s, 1) — u(s, )| < g (s €[0,1,i=1.....n).

For thisn we have a partial isometry € (®%, 1 Ox) ® M2,41 Such that

2n

w*w =diagl, e, 1,...,¢,1),
2n
ww* =diag1,0,0,...,0,0),
where diagx1, . . ., x¢) stands for the diagonal matrix with the diagonal entrigs . . , x.

Define p by S(e ® 14) andW by (8 ® idy,,,,)(w). Then by an easy computation, we
know W is in the following form:

Wo Wi - Wy,
O --- --- 0
W =
0 .o 0

with
Wi Wa =14 (k=0,...,n), Wi _Wa_1=pk=1...,n),
WEW, =0k #1), WoWg + WaW; + -+ Wa, W3, = 14.
Here we note again that
[Wi,x]=0, [Wi,u(s,t)]=0 (xe€F,s,tel0,1]).

Since[diage, 1)] = 0 in K0(®§>V°+1000), we can find a unital embedding of the Cuntz
algebra0; into

diag(e, 1)M2( & 000) diag(e, 1).

N+1
Note that the last algebra is a unit@-subalgebra of

diagle ® 14, 1)M2((® 000) ® A) diage ® 14, 1)
1
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which is isomorphic (vig8 @ idys,) to
diag(p, 1) M2(A) diag(p, 1).

Henceforth, we have a unital embedding 6k into diagp, 1)M2(A) diag(p, 1).
Moreover, in this embedding the elements

diagxp, x) (x € F), diagu(s,t)p,u(s,t)) (s,t € [0, 1])

commute with the elements if2. Hence, by Lemma 6, we find for eagh=1,...,n a
unitary
v € C[0, 1)? ®@ diag(p, 1) M2(A) diag(p, 1)

such that for each € [0, 1],
(s, 0) = diag(u(s, 0) p, u(s, 0)),  wi(s, 1) = diagu(s, tx) p, u(s, te)),
lI[v (s, 1), diagxp, )11 < 4l[uls, &), x1]| + Sll[u(s, 0), x]||
<%B=2 (xeF)
andL (v (s, -)) = 87/3. Here we define, for each: € [0, 1],
V(s, t) = diagu(s, 0), va(s, 1), ..., v,(s, 1))
which is a unitary of
diagd, p. 1, ..., p, DMo,p1(A) diagd, p, 1, ..., p, 1)
and define(s, 1) = WV (s, 1) W* which is a unitary of
diag1, 0, ..., 0)Mo,41(A)diagl, 0, ..., 0).

In particular, we may regard(s, r) as an element ofi. Then it follows that for each
s €10,1],

2n 2n
v(s,0) = WV (s, OW* = Z Wiu(s, )W} = u(s, 0) Z W Wi = u(s, 0),
i=0 i=0

n
v(s, 1) = WV (s, DW* = u(s, ) WoWy + Zu(s, 1) (War—aWo_1 + Wor W3),
k=1

Iv(s, 1), x1ll = IIWV (s, ) W*, Wdiad(x, xp, x, ..., xp, x) W*]||

=<

(te[0,1],x e F)

wl| ™

andL(v(s, -)) < 8r/3.
In a similar fashion we can apply the above method(g 1) instead ofu(s, 0). Then
we obtain for eacth = 1, ..., n a unitary

v, € C[0, 112 ® diag(1, p)M2(A) diag(1, p)
such that, for each € [0, 1],

v (s, 0) = diagu(s, 1), u(s, 1)p), vi(s, 1) = diagu(s, 1), u(s, tx) p),
I[vi (s, 1), diagx, xp)]ll < 3e  (x € F)
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andL(v, (s, -)) = 87/3. Likewise we define, for eachr € [0, 1],
V/(s, 1) = diagva(s, 1), ..., va(s, 1), u(s, 1),  V'(s, 1) = WV (s, ) W™,

whereW’ indicates

0O .- ... 0
0O ..« ... 0
Wo Wi - Wy

Thenv/(s, t) is a unitary in dia¢02,, 1) M2,+1(A) diag(02,, 1), so we may also regard it
as an element od. We can easily verify that, for eashe [0, 1],

n

V(s D) =) uls, 1) (Wa—2Wi_o + WaraWg_g) + u(s, D (Wau W3,),
k=1

V(s,0) =u(s, 1), [V, 1), x]|| < % (tel[0,1],x € F)
andL(v/(s, -)) < 8w /3. We compare(s, 1) with v'(s, 1);
lu(s, 1) —v'(s, D

n
u(s, OYWoWg + Y uls, i) (W Wi, — War—2Way ) — u(s, Y Wa, W3,

k=1
n—1 s
= Z(M(S, tk—1) —u(s, 1) Wor2Wa 5| < .
=1 3

Accordinglyv(s, 1) is very close ta’ (s, 1), hence we can conneets, 1) to v'(s, 1) by a
unitaryv” € C[0, 112 ® A such that

00" (s, 1), 210 < 2llv(s, D) — v/, DI+ IlvGs, D, x1ll <& (x € F)

andL (v (s, -)) < 2 arcsirfe/6). Joiningv, v” andv’ canonically, we have a desired unitary
of C[0, 1] ® A and complete the proof. m|

Once the above theorem is obtained, the following lemma (which is called the stability
of automorphisms) can be proved in a way that has become staridaihleorem 131,
Proposition 3.4].

LEMMA 8. Let A be a separable nuclear unital purely infinite simgl&-algebra and let
a be an automorphism of. If « is aperiodic therwx has the following property.

For any finite subseF of A ande > O, there exist a finite subsét of A andé > 0
which satisfy the following condition: if is a unitary inC[O, 12 ® A such that

us,00 =u,1) =1, |luts, ), yll <$
forall 5,7 € [0, 1] andy € G, then there exists a unitary < C[0, 1] ® A such that
lu(s, 1) —v()a ()| < e,
v(0) =1, |[v@s),x]ll <e

forall s € C[0, 1] andx € F. Furthermore, ifF is empty then it is possible that is
empty.
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Proof. Let F ande be given as above. We take a sufficiently lalgece N such that

6 /(N — 1) < ¢/2. Temporarily fixe; > 0 (precisely how smak; must be, will become
clear in the course of the proof). Applying Theorem —U‘ﬁ]:o o (F) ande1, we choose

a finite subsetG; of A and§; > O satisfying the conditions stated there. For a unitary
u € C[0, 1)?> ® A we set

WO (s, 1) = {u(s, Do(u(s, 1)) ... o u(s, 1) (k> 1)
B K

(k=0).

Then we can choose a finite subsgtof A ands > 0 such that, for any unitary
u € C[0, 12 ® A satisfying||[u(s, 1), y|| < 8 (s, € [0, 1], y € G), we have

Iu® (s, 1), x|l < min{s1,e1} (5,7 €[0,1],x e GIUF,k=1,...,N +1).

We claim that thes& and§ satisfy the requirement. In order to verify this, lebe a
unitary inC[0, 1]2 ® A such that

u(s,0) =u(0,0) =1, |lu(s,2),yll <8 (s,tel[0,1],ye€G).

By the preceding consideration we can apply Theoremi#¥d andu ¥+, respectively,
and obtain unitaries, w € C[0, 12 ® A such that

v(s,0) =uM(5,0), v(s, 1) =uM(s, 1), |, 1), x]]| < e1,
lvis, 1) —v(s, t)| < 6x|t —t'| (s,t,¢ €[0,1],x € U,]{VZO(xk(F))

and that the similar conditions hold farandu ¥ Y. Sincea has the Rohlin property, we
can choose projectiors, ..., ey—1, fo, ..., fv @sin Theorem 1 which almost commute

with
i—(N-1) i
CE =)
|

w®s, ) k=1,...,N+1, s €[0,1]}

i:O,...,N_17SE[071]}1

andF' up to withine1. Here we define, for eache [0, 1],

N—1 . X
U(s) = E u (s, 1ot~ N-D (v (s, N 1)) e

i=0
N ) ) ] *

+ Zu(-’+1)(s, Dal N <w (s, ﬁ)) fi-
=0

Then we can check thdf (s) is close to a unitary wheWe; is sufficiently small, and
furthermore check thdt (s)a (U (s))* is close tou(s, 1) up to within 6z /(N — 1) + 2Ne;.
Therefore, taking the polar decompositionldfs) (which can be done continuously with
respect to € [0, 1]), we have a desired unitary path. O

Now we show Theorem 5 by applying the Evans—Kishimoto intertwining argument to
our setting as in the proof o8], Theorem 5.1].
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Proof of Theorem 5We fix a countable subsét; | £ > 1} of U(A), whose linear span
is dense iM4, and setB, = {xx | k = 1, ..., n}. Replacing8 by Adu(0) o 8 andu(r) by
u(t)u(0)*, we may assume tha{0) = 1. Lete > 0 be given.

First, we shall construe}, > 0, unitaries:,,, w,, € C[0, 1] ® A, a finite subset,, of A
ands, > 0 foreachm > 1, which satisfy the following conditions.

(L n) llon-1(x) = Adu D @)D o0, r(x)|| < 27" (x € By, 1 = 1).
2.n) llon-1(y) = Adu" V@)D o6, 2(y)| < 27181 (y € Guo1, 1 > 1).
(3,n) o, = lim;_ 00 Adu™ (£)*™ o 5,,_1 (pointwise).
(4, n) u" ™V (t,5)° D = wy, ()un(5)on—2(un(s))* (s € [0, 1]).
(5,n) uy(0) =1, lwp(s) — 1| < 27" (s € [0, 1]).
(6.7) [l[un(s), x1| < 27" (s € [0, 1], x € Fy_2).
(7,n) Foranyu € U(C[0, 12 ® A) with
u(s,00=u@©,0) =1, [[u(s, ), yll <8 (5.1 €[0,1],y € 0,(Gn)),
there exists @ € U(C[0, 1] ® A) such that
lu(s, D)o (v(s)* — 1 <27"Pe,  v(0) =1,

Iv(s), x]|| < 2=+ (s €[0,1],x € Fy).

In the above conditions we dendtel1)” by e(n) and define unitaries™ e C[0,1] ® A
and automorphisms, of A by
u® = u,
M(n) (t)e(nfl) _ u(nfl) (t + tn)e(nfl) . u(nfl)(tn)e(n) (n>1),
o.1=4, oo=a,

on =Adu" V1) " Voo, (n>1),
and set

F_1=0, Fyo=90,
F,=B,U{ui(s) |[k=n,n—-2,...,5s€[0,1]} (n>1),
Go=W, é=1
(In particular,(2, n) is a trivial statement whem = 1, as is(6, n) whenn = 1, 2.) We also
regard all the conditions (excef8, n)) as trivial whernn = 0. Note that(3, 0) denotes the
hypothesis of this theorem.
Letn > 1. Suppose that we have constructgdiy, wi, G, 8¢ for eachk < n — 1.

Then we proceed as follows. Sineg_1 = lim;_oo Adu®D(1)¢"=D 5 5, _» thereis a
t, > 0 such thatl, n) and(2, n) hold. Then by definition,

Ad u(n)(t)e(nfl) o0, = Ad u=D (r + tn)é‘(nfl) 0 0p_2.
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Note that the right-hand term convergesta (ast — oo) from (3, n — 1). This implies
(3, n). By using(2, n — 1) we have that

lon-2(3) — Adu" 2t + t,_1)*" P 0 0, _3(»)| < 21642 (v € Gu2.t > 0).
Thus again by definition,
lon-2(3) — Adu P @)* "2 0 0, _1(»)[| <2782 (y € Gpa.t = 0).
Sinceu™"1(0) = 1, we have
lon—2(y) = Adu D @)* "2 0 5, ()| <842 (v € Gp2,1 = 0).

Hence we can applg7, n — 2) (whenn = 1, 2, which means Lemma 8 in the case when
F,G = @) foru Y (, () ()" D e U(C[0, 1]12® A) and findu,,, w, € U(C[0, 1]® A)
which satisfy(4, n),(5, n) and(6, n). SinceF,, is compact, we can also apply Lemma 8 to
this F,, and 2 "*+2¢, and obtain a finite subsét, of A, §, > 0 satisfying(7, n). We thus
complete the induction.

Secondly, we show outer conjugacy betweeand 8 using the previous paragraph.
From (6,n) (n > 3), we can define automorphismg(s) andy1(s) of A by pointwise
limits

yo(s) = kli_)moo Ad ugk(s)uge—2(s) - - - uz(s),
yi(s) = kli_)moo Ad ugira1(s)uze—1(s) - - us(s)

for eachs € [0, 1]. Sinceuy(0) = 1 (k > 1), bothyo(1) andy1(1) are isotopic to id. On
the other hand, by a direct computation it is verified that

o2 = Ad wy o Ad(uok (Dug—2(1) - - - u2(1)) o o o Ad(uor (Duk—2(1) - - - u2(1))*
where

why = war(1) - Adugk (1) (wak—2(1)) - Ad(uar (Dugk—2(1) (wak—a(l)) - - -
oo Aduar (Dugk—2(1) - - - ua(1)) (wa(1)).

From (5, n), (w),) converges uniformly to a unitarfo € A with ||Wo — 1|| < . Hence
(o) converges pointwise to an automorphism Welo yo(1) o o o yo(1)~L. Similarly
(o2¢+1) converges pointwise to an automorphismWgdo y1(1) o B o y1(1)~1 for some
unitary Wi € A with | W1 — 1] < e. From(1, 2k + 1) and(1, 2k) we have

logk (x) — oarr1 ()| < 27 F Ve (x € Byta),

loz—1(x) — ok(x)| < 27 %e  (x € Ba).
Therefore, we conclude that
Ad Wo o yo(l)oaoyo() ™t =AdWioy1(1) o Boyr(D) L

We have thus proved the theorem. m|
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Combining Theorem 5 and the classification theory due to Phillips, we reach our
classification theorem of aperiodic automorphisms of a nuclear purely infinite sa¥iple
algebra.

THEOREMY. Let A be a separable nuclear unital purely infinite simylé-algebra and
let « and 8 be aperiodic automorphisms df. Then the following three conditions are
equivalent:
(1) [ol=I[Blin KK(A, A);
(2) «is asymptotically unitarily equivalent t6;
(3) « is outer conjugate t@ with respect to an automorphismwhich is homotopic to
the identity automorphism of.
Moreover, under the same assumption the following three conditions are also equivalent to

each other:
(1) there exists an invertible elemente K K (A, A) such thatia] = 5 - [8]-n~* and
[1al-n =1[1al;

(2) there exist a continuous mappingrom [0, co) into U (A) and an automorphism
of A such thatr = lim,_.o Adu(r) o y o B o y ~ pointwise;
(3) «is outer conjugate t¢.

Proof. The equivalence between (1) and (2) follows from the results of Philgs [
Lemma 1.3.3, Theorems 4.1.3 and 4.1.4]. It is also shown that (3) implies (1). Theorem 5
says that (2) implies (3). Similarly one verifies the equivalence amdhg?) and (3) by

using B8, Corollary 4.2.2]. m|

Remark 10(i) It is known that any pair(Go, G1) of countable abelian groups can
be described by Ko(A), K1(A)) of a separable nuclear unital purely infinite simple
C*-algebraA [38, Theorem 4.2.5] and that any (unit-preserving) invertible element of
KK(A, A) can be lifted to an automorphism df [38, Corollary 4.2.2]. Hence there
exist two aperiodic automorphisms of some separable nuclear unital purely infinite simple
C*-algebraA, which induce two different elements & K (A, A) but the same element
of KL(A, A) [39 by using the universal coefficient theoreml]. This means that
outer conjugacy of aperiodic automorphisms is not in general characterized btheir
elements.

(i) Theorem 9 is still valid for any separable non-unital nuclear purely infinite simple
C*-algebraA, if one removes the conditiofis] - n = [14] from (1) and regards the
unitaries considered there as the elements of the unitizatian of

Finally, we present a corollary which is a direct consequenc2)filheorem 3.14] and
Theorem 9 above. The author thanks Masaki Izumi for pointing out this fact.

COROLLARY 11. Let A be a separable nuclear unital purely infinite simglé-algebra
and lete be an automorphism of. If « is aperiodic therw absorbs any automorphism
B of O, that is, there exist a unitary in O. ® A and an isomorphisny from A onto
Ox ® A such that

BRa=Aduoyoaoy L

https://doi.org/10.1017/50143385700000973 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700000973

1764 H. Nakamura

Proof. Let ¢ be a unital homomorphism from into O, ® A, which is given by
p(a) =1®afora € A. Then by P5, Theorem 3.14] there exists a unital homomorphism
¥ from Oy ® A into A such that

[p o] =[ido,gal INKK(Ox® A, Ox ® A),
[V o] =[ida] in KK(A,A).

By virtue of Phillips’s classification theorem38, Corollary 4.2.2], we have an
isomorphismy from A onto O, ® A such that

[y1=Ip] INKK(Ox®A, A, [y =[] inKK(A, Ox® A).
Accordingly,

- Bal-[y H=l¢l-[B®al-[¥]=[Vo(Ba)og]
=[Yogoal =[al

Therefore, we obtain the result by Theorem 9 and complete the proof. a
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