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ABSTRACT

In this paper we calculate premiums which are based on the minimization of 
the Expected Tail Loss or Conditional Tail Expectation (CTE) of absolute
loss functions. The methodology generalizes well known premium calculation 
procedures and gives sensible results in practical applications. The choice of 
the absolute loss becomes advisable in this context since its CTE is easy to 
calculate and to understand in intuitive terms. The methodology also can be 
applied to the calculation of the VaR and CTE of the loss associated with a 
given premium.
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1. INTRODUCTION

In insurance terminology, a premium is the price of the insurance coverage, 
that is, the payment that policyholders make in order to obtain protection from 
their risks. A premium principle is a rule for assigning premiums to the insur-
ance risks. There are many different premium principles in the literature. The 
study of the properties and justifi cation of the different premium principles is 
a classical issue in actuarial science (see, among many others, Goovaerts et al. 
(1984), Deprez & Gerber (1985), Wang et al. (1997), Kaas et al. (2001), Young 
(2004), Goovaerts et al. (2010)).

Among the large number of methodologies proposed in the literature for 
justifying different premium principles, we want to mention the application to 
this fi eld of the so-called risk measures. In general, a risk measure is a func-
tional assigning a number to each risk, defi ned in accordance with the intuitive 
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principle that the more dangerous the risk, the higher the risk measure must 
be.

General risk measures are becoming more and more important in fi nance 
and insurance, and many classical fi nancial and actuarial problems have been 
revisited taking into consideration modern risk measures beyond the variance. 
Focusing on the actuarial fi eld, we can fi nd applications of risk measures to 
several important issues, such as the problem of optimal reinsurance (see, for 
instance, Cai & Tan (2007), Cai et al. (2008), Balbás et al. (2009), Bernard & 
Tian (2009)), the calculation of capital requirements (Artzner (1999), Wirch & 
Hardy (1999), Panjer (2001), Denault (2001), Laeven & Goovaerts (2004), 
Dhaene et al. (2008), Furman & Zitikis (2008b)) and, of course, the defi nition 
of  new premium principles (Wang (1995, 1996, 2000, 2002), Landsman & 
Sherris (2001), Goovaerts et al. (2003), Tsanakas & Desli (2003), Goovaerts et al. 
(2004b), Furman & Landsman (2006), Furman & Zitikis (2008a), Goovaerts & 
Laeven (2008)).

There are many different types of risk measures, such as coherent measures 
(Artzner et al. (1999)), deviation measures and expectation bounded risk meas-
ures (Rockafellar et al. (2006)), convex measures (Föllmer & Schied (2002)) and 
consistent measures (Goovaerts et al. (2004a)). Perhaps the most infl uential 
approach is the fi rst one. A coherent measure r verifi es the following properties:

Subadditivity: Y Z+ )Y( ) ( )Z#r r r+(

Positive homogeneity: Y )Y( , 0c c c6 2r r= ()

Translation invariance: Y c+ )Y) ,( c c R!r r= +( 6

Monotonicity: )Y( ) ( ), ( )Y Z Z&6# ! #w w w r rW (

(where Y, Z are random variables representing losses and W is their sample space).

Many important risk measures often used in actuarial problems are coherent risk 
measures, such as the Conditional Tail Expectation CTE (also called  Conditional 
Value at Risk: see Rockafellar & Uryasev (2002), Rockafellar et al. (2006)), the 
expectation under distorted probabilities (Goovaerts & Laeven (2008), Wang 
1995, 1996, 2000) (when the distortion function is concave: see Wirch & Hardy 
(1999)) and the spectral risk measures (Acerbi 2002) (when the spectrum veri-
fi es certain reasonable conditions). The famous Value at Risk (VaR) is not 
coherent, because it fails to fi t the subadditivity property (Artzner et al. (1999)).

Let X be an insurance risk, that is, a non-negative random variable repre-
senting the total claim amount of an insurance policy in a given period of time. 
When a risk measure r is used for premium calculation, it is often assumed 
that the premium coincides with the risk measure of X:

 ( )P XX r=  (1)

(Actually, the same assumption is usually made for the calculation of capital 
requirements). The translation invariance property is sometimes used for justifying 

95371_Astin42-1_13_Heras.indd   32695371_Astin42-1_13_Heras.indd   326 5/06/12   13:575/06/12   13:57

https://doi.org/10.2143/AST.42.1.2160745 Published online by Cambridge University Press

https://doi.org/10.2143/AST.42.1.2160745


 CONDITIONAL TAIL EXPECTATION AND PREMIUM CALCULATION 327

the assumption given in (1), because it is easy to prove that the risk measure 
is zero after adding the premium defi ned in (1):

 X( ) ( ) ( ) ( )P P X XX 0r r r r- = - = - =XX

(Remember that our random variables represent losses, so that adding a positive 
amount of money is represented as subtracting that amount from the loss).

According to this model, if  the insurance company charges an insuffi cient 
premium P strictly lower than PX as defi ned in (1), then there still exists a 
remaining risk measured by P( ) 0.2r -X  This is intuitively correct, since 
insuffi cient premiums are associated with the possibility of  high monetary 
losses for the company. On the other hand, the model predicts that if  the 
company charges an excessive premium strictly higher than PX, there should 
not be any risk at all, since P( ) .01r -X  This is not so clear in intuitive 
terms. After all, in this case it is the policyholder who incurs monetary losses. 
Notice also that excessive premiums can lead many policyholders to leave
the company. To sum up, we think that cases of  both charging insuffi cient
(too low) and excessive (too large) premiums are risky practices, and their risk 
measure should be positive. We think that the premium calculation process 
based on risk measures should take into consideration the risk of both under-
estimation and overestimation losses (actually, a similar argument applies for 
the calculation of capital requirements, because its underestimation involves 
solvency problems and its overestimation is also associated with monetary 
losses due to the opportunity cost of the capital).

A possible way for solving this problem could be based on a methodology 
that should take into account both risk measures and loss functions. In order 
to apply this methodology, it is necessary to previously defi ne a loss function 
for measuring the importance of the rating errors. These rating errors appear 
when the premium P does not coincide with the value x of  the random vari-
able X. We will denote by L(P, x) the loss associated with both the premium 
P and the value X  =  x. This loss function assigns a numerical value to each 
possible rating error, representing the loss faced by the insurance company in 
that case. Once this loss function has been defi ned, as a second step, we could 
apply the well known risk measure methodology in order to calculate the 
global risk of the insurance company. Such a procedure, in which the insur-
ance premium is derived by solving a minimization problem, fi ts the two level 
procedure for the evaluation of risk advocated by Goovaerts et al. (2010).

In this article we follow the previous suggestion and we propose that the 
premium should be chosen as the amount minimising the risk of the loss by 
the insurance company. We also offer a methodology for the calculation of 
these optimal premiums in some cases. In Section 2 we defi ne the problem in 
precise mathematical terms and we show that it generalizes other well known 
premium calculation methodologies such as the Bayesian and the usual risk 
measures methodology. In Section 3 we explain a procedure for calculating the 
optimal premium when the risk measure is the important and well known 
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Conditional Tail Expectation, and in Section 4 we obtain the mathematical 
expression of the optimal premium when the loss function is the simple and 
easy to understand absolute loss. In this section we also prove that the premiums 
obtained have reasonable properties, and that the methodology can be applied 
to the calculation of  the VaR and CTE of  the loss for a given premium. 
Finally, Section 5 applies this methodology to a practical example.

2. THE GENERAL FORMULATION OF THE PROBLEM

As we mentioned in the Introduction, we propose calculating the optimal pre-
mium as the amount PX that minimizes the risk measure of the loss function. 
In order to calculate that optimal premium, it is then necessary to previously 
select both a loss function L and a risk measure r. Once they have been cho-
sen, the next step is the minimization of  ( , )( ) .Xr L P  That is, the optimal 
premium is calculated as the amount PX minimizing 

 ,( )Xr L P7 A (2)

It is easy to check that this methodology generalizes both Bayesian and risk 
measure methodologies. 

On the one hand, when the risk measure r is the mathematical expectation 
(which, in fact, is a coherent risk measure), (2) reduces to the following expres-
sion (3): 

 ,( )E XL P6 @ (3)

In this case, the optimal premium is the well known Bayesian premium, defi ned 
as the amount minimizing the expected loss (3). The Bayesian methodology 
for calculating premiums is a classical issue in actuarial science. For example, 
it is worth mentioning Heilmann (1989), who showed that some of the most 
famous premium principles defi ned in the literature (variance premium prin-
ciple, exponential, Esscher, etc.) can be obtained by minimizing the expected 
loss associated with some particular loss functions.

On the other hand, the optimal premium obtained by minimizing (2) 
reduces to (1) when we select the loss function , x( )L PP = x -  (as long as we 
only consider non-negative values of  the risk measure: notice that this loss 
function only takes positive values when the premium P underestimates the 
value X  =  x; in the case of overestimation, the loss is transformed into a gain!). 
In the following sections we will work with a more general loss function con-
sidering both underestimations and overestimations as losses.

As we said in the Introduction, the goal of  this article is to propose a 
methodology for minimizing the expression (2) and to check that the solutions 
obtained have reasonable properties. In fact, we will study an important par-
ticular case of (2), where the loss function is the absolute loss function and the 
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 CONDITIONAL TAIL EXPECTATION AND PREMIUM CALCULATION 329

risk measure is the so-called Conditional Tail Expectation. The proposed 
methodology, however, can also be applied to more general cases.

In the rest of the article we will assume that the total claim amount X is a 
continuous random variable taking non-negative values, and we will denote as 
F(x) and f(x) its distribution function and its density function, respectively.

3. THE CALCULATION OF THE PREMIUM MINIMIZING THE CONDITIONAL

TAIL EXPECTATION OF THE LOSS

As we said before, perhaps the most famous risk measures are the coherent 
measures of risk defi ned in Artzner et al. (1999). The most common choice 
among these coherent measures of risk is, undoubtedly, the Conditional Tail 
Expectation (CTE), also known as Conditional Value at Risk (CVaR), Tail Value 
at Risk (TVaR), Average Value at Risk (AVaR), Expected Tail Loss, etc. The 
defi nitions of these concepts proposed in the literature coincide for continuous 
random variables, although for some discrete random variables there could
be differences among them and in some cases the risk measure may not be 
coherent (Hürlimann (2003)). Nevertheless, Rockafellar & Uryasev (2002) and 
Rockafellar et al. (2006) have proposed general defi nitions according to which 
the risk measure is always coherent and expectation bounded (remember, how-
ever, that we are dealing with continuous random variables in this article). 
CTE is also a member of  other larger families of  risk measures mentioned 
before, since it is a spectral measure in the sense of  Acerbi (2002), it can be 
obtained as a distorted expectation in the sense of  Wang (1995, 1996) (see 
Wirch & Hardy (1999)) and it can also be considered as a weighted premium 
calculation principle in the sense of Furman & Zitikis (2008a). Moreover, it 
shows suitable theoretical properties (such as, for instance, stochastic domi-
nance consistency (Ogryczac & Ruszczynski (2002)), provides information 
about the degree of risk in monetary terms and is well-known and understood 
by many practitioners. For all these reasons, we have chosen CTE as our risk 
measure r: our proposal is to defi ne the risk-adjusted optimal premium as the 
amount P* minimizing the Conditional Tail Expectation of the loss

 ,( ( ))CTE XL P  (4)

In order to rigorously defi ne CTE, it is necessary to defi ne previously another 
well known risk measure, the so-called Value at Risk (VaR). Given a probabil-
ity level ( , )0 1!b , the associated Value at Risk is the lowest amount a 0$  
such that, with probability b, the loss will not exceed a, and the associated 
Conditional Tail Expectation is the conditional expectation of the losses above 
that amount a. 

In our problem, given a probability level ( , )0 1!b , a premium P and a loss 
function L(P, x), VaR is defi ned as 

 /+
a,a( ) ( )PraR P MIN XR! # $ b=bV L P7 A$ .
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And CTE is defi ned as 

 , (f
,

( ) ( ) )CTE P L x x dx1
1

( ) (L x VaR P
b=

-b

bP )$

P#

(see Rockafellar & Uryasev (2000, 2002) and Rockafellar et al. (2006). We must 
remind ourselves yet again that we are dealing with the continuous case).

Given the probability level ( , )0 1!b  and the loss function, we defi ne the 
optimal risk-adjusted premium as the amount bP*  minimizing the Conditional 
Tail Expectation of the loss, ( ) .CTE Pb  This seems to be a very diffi cult prob-
lem to solve, but Rockafellar & Uryasev (2000) have developed optimization 
techniques for the calculation of  VaR and CTE that can be easily translated 
to our problem (these techniques have also been extended to discrete random 
variables in Rockafellar & Uryasev (2002)). In fact, Theorem 1 of Rockafellar & 
Uryasev (2000) implies that, given the premium P, ( )CTE Pb  can be calculated 
as the minimum value of the following convex and continuously differentiable 
function of the parameter a:

 , a fa a( ) ( ) (U x1
1

0
b= +

-
-

3
+

P )L x dx7 A#  (4)

(where , ,- =ax x( ( a) )L P L P -
+

6 @  if  , x( a)L P $  and , =ax( )L P 0-
+

6 @  if  
, x( a)L P 1 ). And the optimal solution a, if  it is a strict (or single) solution, 

coincides with the Value at Risk ( )VaR Pb .
Moreover, if  we consider the previous function as a function V of  the two 

variables P and a, 

 ,, a fa a ( ) (( ) xV 1
1

0
b= +

-
-

3
+

P P )L x dx7 A#  (5)

then Theorem 2 of Rockafellar and Uryasev (2000) shows that V is a convex 
and continuously differentiable function with regard to both variables and that 
the minimization of this function produces a pair b , ba( )P* *  such that bP*  minimizes 

( )CTE Pb  and ba* , if  unique, gives the corresponding b( ) .VaR Pb
*

When the selected risk measure is the Conditional Tail Expectation, it is 
not necessary to take into consideration sophisticated loss functions in order 
to obtain reasonable results. In the next section we will solve this optimiza-
tion problem when the loss function is the simple absolute loss function, 

, xx =( )L P -P , and we will obtain premiums with reasonable properties
(a similar solution was obtained by Laeven & Goovaerts (2004) in the context 
of optimal levels of solvency capital). Nevertheless, the methodology that we 
propose is suitable for any arbitrary loss function.
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4. THE CALCULATION OF THE PREMIUM MINIMIZING THE CONDITIONAL TAIL 
EXPECTATION OF THE ABSOLUTE LOSS

The absolute loss is not used in Bayesian premium calculation models since it 
gives rise to a premium which is the median of  the loss distribution (see 
Lemaire & Vandermeulen (1983)), and this is by no means admissible (unfor-
tunately real claims distributions are asymmetric, therefore their medians are 
below their means and as a consequence insurance companies will have sol-
vency problems if  they use the absolute loss for Bayesian premium calculation, 
because they will lose money on average). Nevertheless, this objection may be 
overcome if  we consider risk-adjusted premiums calculated according to our 
methodology with a high probability level b, as we will see below. In fact, as 
b increases, the risk adjusted premium will eventually exceed the net premium, 
and therefore the absolute loss may become attractive because it provides sen-
sible risk adjusted premiums. Moreover, the absolute loss is easy to understand 
since, after all, it measures the loss in monetary units (remember, however, that 
it is not only concerned with the insurance company’s loss, when P  1  x, but 
also with the loss of the policyholders, when P  2  x: therefore it measures a 
kind of “social loss”). Of course, the selection of this loss function can also 
be criticized. For example, in a real problem the cost associated with over-
estimations could be different from the cost of underestimations. This could 
happen in the premium calculation problem, when the loss of the insurance 
company by charging insuffi cient (too low) premiums does not coincide with 
the loss of the policyholders when the company charges excessive (too high) 
premiums. This could also happen in the calculation of capital requirements, 
when the cost of insolvency associated with underestimations of the capital 
does not coincide with the opportunity cost associated with its overestimation. 
Moreover, in real problems the loss could be nonlinear when the size of the 
estimation error is high, due to liquidity problems. In this article we will 
implicitly assume, therefore, that the size of the possible estimation errors is 
not very large, so that liquidity premiums are not required. In this section we 
will fi rst study the symmetric case, when the loss function is the absolute value 
of  the estimation error, and after that we will also study the more general 
asymmetric case.

Theorem 1. If  , xx =( )L P -P , then b , ba( )P* *  minimize the function V if  and 
only if  they are solutions of the following system of equations (6):

 
a

a

( )

( )

F P

F P

2
1

2
1

b

b

- =
-

=+
+

 (6)

(remember that F is the distribution function of the random variable X ).
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Proof:

We have to minimize the function

 x a, fa a( ) (V 1
1

0
b= +

-
- -

3
+P )x dxP7 A#

or, equivalently, 

 a( )P x- -a( )x P- -, ( ) ( )f x f xa a( )V dx dx1
1

aa x Px P
b= +

-
12 + -

P +< F##

Let us study the integrals inside the brackets:

a( ( )P x- -a)x P- -

xf xf

( ) ( )f x f x

a a a a( ) ( ) (1 ( )) ( ) ( ) ( )

dx dx

x dx F F x dx

aa

aa

x Px P

x Px P

=

= - + - + + - - =

12

12

-+

-+

P P P P -

+ ##

##

(defi ning (( ) ),S x F x1= -  and integrating by parts)

 

a a a a a a

a a

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

S S x dx S F

F F x dx S x dx F x dx

a

a

a

a

P

P

P

P

00

+ + + - + + + - - -

- - - + = +

=
3

3

+

-

+

-

P P P P P P

P P

#

###

Therefore the function V becomes

 , ( ) ( )F x dx S x dxa a( )V 1
1

a

a

P

P

0
b= +

-

3

+

-

P +> H##

Taking the partial derivatives with respect to P and a,

 
a a

a a
a

( ) ( )

( ) ( ) 0

0P
V F S

V F S

1
1

1 1
12

2
b

b

2

2

=
-

- - +

= -
-

- + =+

=P P

P P

6

6

@

@

we obtain: 

 
a

a

( )

( )

F

F

2
1

2
1

b

b

- =
-

=+
+

P

P
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q.e.d.

Since the optimal solutions depend on both the probability level b and the 
random variable X, we should denote them as ,X b, ,Xa( ) .P b

* *  In order to simplify 
the notation, we will omit to mention X or b when the context is clear enough.

Remark 1: The solution of the system of equations (6) shows a reasonable 
behaviour: bP*  approaches the median when 0"b , and also bP " 3*  when 

1"b . As a consequence, if  we take b suffi ciently large then we will obtain a 
risk loaded premium, since the optimal premium bP*  will eventually become 
higher than the net premium.

Remark 2: If  it is possible to fi nd the inverse function F 1-  of  the distribution 
function F, then system (6) can be easily solved:

 
b

ba

P F F

F F

2
1

2
1

2
1

2
1

2
1

2
1

1 1

1 1

b b

b b

=
+

+

=
+

-

-

-

*

*

- -

- -

d d

d d

n n

n n

=

=

G

G

 (7)

For example, if  X is an exponential random variable with parameter a 02  and 
distribution function

 
-

( )
,

0, 0
F x

e x

x

1 0a
x

1

$

=
-

*

Then we obtain that 

 
b

b

+

+
a

log log

log log

P a

a

2 2
1

2
1

2 2
1

2
1

b b

b b

= - +
-

= -
-

*

*

d d

d d

n n

n n

=

=

G

G

Remark 3: The optimal premiums obtained as solutions of system (6) have 
good properties, as shown below. Notice that the properties of no unjustifi ed 
risk loading, no rip-off, translation and scale invariance, and subadditivity, 
hold for arbitrary coherent risk measures, not only for CTE.

No unjustifi ed risk loading: If  the random variable X always takes a constant 
value ( ( ) , ),c X c 0$ !w w W= 6  then the optimal premium also takes that value 

X = c( )*P .
This is evident, since only in this case does the risk measure take its lowest 

value, .0r =
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No rip-off: If  ( ) ,c#w W,X !w6  then X .c#
*P

Suppose that X .c2*P  Then X X( )X w ( )wX ! W( ),c w- -= +* * ,P P 6c -  and 
by the translation invariance property of the risk measures we have X Xr - =*P^ h  

X XX X Xc c 2r r r- + -+ =* *P P- - -c c c^^ ^ ^ ^hh h h h but this contradicts 
the hypothesis that X

*P  minimizes (2).

Translation invariance: If  the risk X increases by a fi xed amount c, then the 
premium also increases by that fi xed amount XX c+( .c= +* * )P P

Since (( ) ),F x F x cX c X= -+  if  X, Xa( )* *P  is the solution of  system (6), then 
X Xa( , )c+* *P  is the optimal solution of the new system 

 
a

a

X c

X c

+

+

( )

( )

F

F

2
1

2
1

b

b

- =
-

=+
+

P

P

This property also holds for any coherent risk measure r, as long as Problem (2) 
has unique solutions. This is a consequence of the following inequalities: 

X X

,c-X c X c X c

X c

+ + +

+

,c-

,c+

X

, ,

,

L X c X c X

L X c c X c

L L

L L#

# #r

r

r r

r r

+ +

+ - = +

* * *

* * *=

P P P

P P P

=^ ^ ^

^ ^ ^

h h h

h h h

6 6 6

6 6 6

@ @ @

@ @ @

Scale invariance: XXl l=* *P P

Since ( ) ,F x FX X
x

=l l^ h  if  X, Xa( )* *P  is the solution of system (6), then X , Xla( )l * *P  
is the optimal solution of the new system 

 
a

a

( )

( )

F

F

2
1

2
1

X

X

b

b

- =
-

=+
+

l

l

P

P

As in the previous case, it is also possible to generalize this property for any 
coherent risk measure:
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Monotonicity: YX( )Y w ,( )X # ! #w w W * *6 P P&

Let us assume the existence of the inverse distribution functions. Then we have 
that
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( Y( ) )Y xw X, F ( (( ) ,x# # b b( ) ) ),X x F F 1
Y X

1
& &6! #w w bW F6 6- -

Hence we have, according to the fi rst formula of (7), that YX .#
* *P P

Subadditivity: The global risk decreases when we add different risks.

The subadditivity and monotonicity properties of the coherent risk measures 
guarantee that

Y Y Y

Y Y

X X

X X Y
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Y

X+ P

X X

Y+X Y r+ ( )L L# #

# #

r r

r r r

= + - +

- + - - + -

* * * * *

* * * *

XP P X P P+
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^ ^ ^

hh hh h

h h h

Remark 4: Instead of calculating the optimal premium that guarantees the 
minimum risk, we can take the premium as given, and then calculate the risk 
we run in such a situation. In order to do that, we have to remember that, 
given the premium P, ( )CTE Pb  can be calculated as the minimum value of 
the function a( )U  given in (4). Moreover, according to Rockafellar & Uryasev 
(2000), the optimal solution a*  minimizing a( )U  coincides with the Value at 
Risk ( )PVaRb . Following similar arguments to those applied in the proof of 
Theorem 1, we can then conclude that ( )PVaRb  can be calculated as the solu-
tion a*  of the equation (8):

 a a( ) ( )F F b+ - - =P P  (8)

Remark 5: So far we have assumed a loss function which is symmetric around 
the premium. For the reasons commented before, this may be an unacceptable 
assumption in many real cases. In fact, the methodology also works when we 
take into consideration asymmetric loss functions assigning different weights 
to underestimations and overestimations of the losses. Consider, for example, 
the following asymmetric loss function:

 ,
P

x
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( ),
L P

P x

P x

1

2

2
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w

w
=

-

-x

P
*

( , 01 2w 2w  are the different weights associated with overestimations and 
underestimations, respectively). In this case, it is easy to modify the proof of 
Theorem 1 in order to show that the new optimal solution b b,( )* *P a  coincides 
with the solution of the following system of equations:

 

b

b
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F P

F P

1 1 2

2 2

1 2

2
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 (9)
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Moreover, in this case the equivalent of Equation (8) is the next one:

 a aF P F P
12w w b- =+ -c cm m  (10)

The properties of the optimal premiums obtained from System (9) are similar 
to those obtained in the symmetric case: no unjustifi ed risk loading, no rip-off, 
translation and scale invariance, subadditivity and monotonicity. Again, the 
fi rst fi ve properties hold for any arbitrary coherent risk measure, not only 
CTE. Also, if  it is possible to fi nd the inverse function F 1-  of  the distribution 
function F, then System (9) can be easily solved:
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For example, when X is an exponential random variable with parameter a 0,2
we have:
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It may be interesting to note that, in the extreme cases when one of the weights 
is zero, we obtain extreme solutions. If, for example, the weights are ,12w =  

,01 "w  then bP " 3*  (which is sensible, because if  the insurance company is 
not worried at all about the overestimation errors, it is rational to charge very 
high premiums). Of course, in the opposite case when , ,1 01 2 "w w=  then 

b .P 0"
*  As we commented before, in real problems the insurance company 

should choose positive values of the weights, corresponding to the different 
valuations of under and overestimation errors. 

5. EXEMPLIFICATION

In this section we will perform some numerical calculations, applying our 
results to a real world example. For that purpose we will consider a structure 
function which has been useful in motor insurance (see Panjer & Willmot 
(1992) pp. 301, 322). X stands here for a random variable distributed by means 
of an inverse Gaussian distribution with density

 q q( , , ,f
x

e x 0 0 0
( )q

x

x
2
1

2

2

2 2 2
p

m= -
m

m-

3)x
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The mean and variance of this random variable are , qm m3

, respectively, and the 
parameters are m  =  0.15514, q  =  0.15582. The net premium coincides with the 
mathematical expectation (0.1554, in this case). Assuming some reasonable 
(close to 1) values for b, we can calculate the optimal values of bP*  (and the 
corresponding ba* ) following (6). Table 1 summarizes these results. Notice that 
the premiums obtained are greater than the net premium. Notice also that 
their values are lower than the premiums calculated applying the usual CTE 
criterion (which are shown in the last column). For example, the premium 
minimizing the CTE of the loss when b  =  0.9 is 0.24069, whereas CTE(X ) for 
the same value of b is 0.51875.

TABLE 1

SUMMARY OF THE OPTIMAL bP*  AND THE CORRESPONDING Ra bV  VALUES FOR DIFFERENT b ’S.
THE FOURTH COLUMN SHOWS THE OPTIMAL VALUES OF THE OBJECTIVE FUNCTION.

( )CTE Xb  IS GIVEN FOR COMPARISON. 

b Pb
* ab

* CTEb (L(X, Pb
*)) CTEb (X )

0.9 0.24069 0.21204 0.31518 0.51875

0.925 0.26612 0.23994 0.34515 0.57328

0.95 0.30373 0.28041 0.38838 0.65291

0.975 0.37213 0.35251 0.46472 0.79574

In the next two tables we change the formulation of the problem. Instead of 
calculating the optimal premium that minimizes the risk measure of the loss, 
we now suppose that the premium P is given (it may be due to market forces) 
and we calculate the associated values of ,(( ))VaR P Xb L  and ,(( )),P XCTEb L
following the instructions given in remark 4. We will represent the premiums 
with the help of a security loading q, so that q(1 ) ( )P E X= + . Tables 2 and 3 
summarize the numerical results. For example, a security loading of  30%
(q = 0.3) gives a premium P = 0.201682 and the corresponding values for VaR 
and CTE when b = 0.9 are 0.178438 and 0.32438, respectively. The results in 
Table 2 can also be used to approximate the premium that minimizes VaR. If, 
for example, b = 0.9, then the third column of Table 2 shows that the premium 
with minimum VaR is (close to) 0.178411 (or, equivalently, the security loading 
is approximately 15%). For the same reasons, the last three columns of Table 2 
show that the optimal loadings are (close to) 30%, 45% and 90% when b = 
0.925, 0.95 and 0.975, respectively (of course, we can obtain more accurate 
approximations by considering a thinner mesh for the security loading).
A similar analysis can be made in Table 3 in relation to CTE. For example, 
when b = 0.9 the third column shows that the premium that minimizes CTE 
is close to 0.248224. Of course, this analysis is redundant, since we already 
know how to calculate the exact premiums minimizing the CTE (Table 1 shows 
that the optimal premium in this case is 0.24069).
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In Tables 4, 5 and 6 we illustrate numerically the case of an asymmetric loss 
function. We still work with the same example, but this time the loss function 
assigns different weights to the underestimations and overestimations of the 
value of  the random variable. Following the notation given in remark 5, we 
consider an asymmetric loss function with weights 1, 2= .1 2w =w  Table 4 

TABLE 2

X,( ( ))VaRb L P  FOR GIVEN PREMIUMS P EXPRESSED BY MEANS OF A SECURITY LOADING q.
THE NET PREMIUM IS EQUAL TO 0.15514. 

q P
b

0.9 0.925 0.95 0.975

0 0.15514 0.177084 0.225655 0.297603 0.429012

0.15 0.178411 0.162251 0.202384 0.274332 0.405741

0.3 0.201682 0.178438 0.18675 0.251061 0.38247

0.45 0.224953 0.198046 0.203592 0.22779 0.359199

0.6 0.248224 0.218872 0.223706 0.231066 0.335928

0.9 0.294766 0.262365 0.266697 0.272046 0.289388

1.05 0.318037 0.284654 0.288878 0.293916 0.302393

1.2 0.341308 0.307173 0.311326 0.316174 0.323394

1.35 0.364579 0.329862 0.333965 0.338688 0.345301

1.5 0.38785 0.352678 0.356747 0.361383 0.367636

1.65 0.411121 0.375592 0.379635 0.384209 0.390228

TABLE 3

X,( ( ))CTEb L P  FOR GIVEN PREMIUMS P EXPRESSED BY MEANS OF A SECURITY LOADING q.

q P
b

0.9 0.925 0.95 0.975

0 0.15514 0.363615 0.418144 0.497777 0.6406

0.15 0.178411 0.340671 0.394873 0.474506 0.617329

0.3 0.201682 0.32438 0.371856 0.451235 0.594058

0.45 0.224953 0.316558 0.355192 0.427964 0.570787

0.6 0.248224 0.315474 0.346899 0.406873 0.547516

0.75 0.271495 0.319622 0.345302 0.394123 0.524245

0.9 0.294766 0.327825 0.34894 0.388792 0.500974

1.05 0.318037 0.339176 0.35666 0.389343 0.481206

1.2 0.341308 0.352981 0.36757 0.394523 0.469666

1.35 0.364579 0.368706 0.380982 0.403347 0.464997

1.5 0.38785 0.385942 0.396362 0.415045 0.465825

1.65 0.411121 0.40437 0.413299 0.42902 0.471032
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shows the new optimal values of bP*  (and the corresponding b
*a ) calculated 

according to (9). Notice that we are now giving more importance to the 
 overestimation errors than to the underestimations. The consequence is that 
we obtain larger premiums in Table 4 than in Table 1. The interpretation of 
Tables 5 and 6 is similar to that of Tables 2 and 3. For example, a security 
loading of  30% (q  =  0.3) gives the premium P  =  0.201682 and the corre-
sponding values for VaR and CTE when b = 0.9 are 0.261084 and 0.634146, 
respectively (these values are bigger than those obtained in Tables 2 and 3,
for the reason already explained). Again, Table 5 can be used to approximate 
the value of the premium that minimizes VaR (and also Table 6 can be used 
to do the same job in relation to CTE). If, for example, b = 0.9, then the third 
column of Table 5 shows that the premium with minimum VaR is (close to) 
0.224953 (or, equivalently, the security loading is approximately 45%).

TABLE 4

SUMMARY OF OPTIMAL bP*  AND b
*a  VALUES FOR DIFFERENT b ’S, TAKING WEIGHTS 1, 2= .1 2w =w

THE FOURTH COLUMN SHOWS THE OPTIMAL VALUES OF THE OBJECTIVE FUNCTION.
( )CTE Xb  IS GIVEN FOR COMPARISON. 

b Pb
* ab

* CTEb (L(X, Pb
*)) CTEb (X )

0.9 0.36281 0.33119 0.47403 0.51875
0.925 0.39898 0.37033 0.51546 0.57328
0.95 0.45198 0.42670 0.57494 0.65291
0.975 0.54729 0.52629 0.67942 0.79574

TABLE 5

OPTIMAL X,( ( ))VaRb L P  FOR GIVEN PREMIUMS P EXPRESSED BY MEANS OF A SECURITY LOADING q,
WHEN THE LOSS FUNCTION IS ASYMMETRIC WITH WEIGHTS 1, 2= .1 2w =w

q P
b

0.9 0.925 0.95 0.975

0 0.15514 0.354168 0.451309 0.595205 0.858024

0.15 0.178411 0.307626 0.404767 0.548663 0.811482

0.3 0.201682 0.261084 0.358225 0.502121 0.76494

0.45 0.224953 0.215136 0.311683 0.455579 0.718398

0.6 0.248224 0.22735 0.265141 0.409037 0.671856

0.75 0.271495 0.246774 0.254059 0.362495 0.625314

0.9 0.294766 0.267499 0.273145 0.315953 0.578772

1.05 0.318037 0.288901 0.293925 0.302315 0.53223

1.2 0.341308 0.310737 0.315433 0.32197 0.485688

1.35 0.364579 0.33288 0.337376 0.343172 0.439146

1.5 0.38785 0.355248 0.359613 0.365001 0.392604
1.65 0.411121 0.377789 0.382062 0.387193 0.396399
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6. CONCLUSIONS

It is well known that a great deal of research has been carried out recently on 
the subject of  risk measurement in both fi nancial and actuarial contexts.
In this paper we have shown that modern risk measures such as VaR and CTE 
can help us to deal with an important actuarial issue, the problem of premium 
calculation. It is possible to fi nd applications of VaR and CTE to premium 
calculation in the literature, where the premium is calculated as the VaR or 
CTE of the random variable representing the total claim amount, for a given 
probability level. We suggest an alternative two-step methodology for obtaining 
the premium. The fi rst step is to select a loss function representing the loss 
associated with underestimations and overestimations of the total claim amount. 
In the second step the premium is calculated as the amount minimizing the 
risk measure of that loss. We have shown in this paper that it is easy to calculate 
premiums that minimize the CTE of simple loss functions such as the absolute 
loss. Besides, these premiums verify reasonable properties. We also consider asym-
metric loss functions where the loss associated with underestimations of the true 
claim amount is different from the loss associated with overestimations. We also 
show a procedure for calculating the VaR and CTE of the loss when the premium 
is considered as given, maybe due to market forces. Finally, this procedure can help 
us to approximate the value of the premium that minimizes the VaR of the loss.

This methodology can be applied to other loss functions different from
the absolute loss, although in these cases it may be necessary to rely on more 
complex numerical calculations. 

TABLE 6

OPTIMAL X,( ( ))CTEb L P  FOR GIVEN PREMIUMS P EXPRESSED BY MEANS OF A SECURITY LOADING q,
WHEN THE LOSS FUNCTION IS ASYMMETRIC WITH WEIGHTS 1, 2= .1 2w =w  

q P
b

0.9 0.925 0.95 0.975

0 0.15514 0.72723 0.836288 0.995554 1.2812

0.15 0.178411 0.680688 0.789746 0.949012 1.234658

0.3 0.201682 0.634146 0.743204 0.90247 1.188116

0.45 0.224953 0.587606 0.696662 0.855928 1.141574

0.6 0.248224 0.546633 0.65012 0.809386 1.095032

0.75 0.271495 0.516691 0.605588 0.762844 1.04849

0.9 0.294766 0.496006 0.571291 0.716302 1.001948

1.05 0.318037 0.482888 0.546747 0.671387 0.955406

1.2 0.341308 0.475944 0.530255 0.636175 0.908864

1.35 0.364579 0.474051 0.520379 0.610524 0.862322

1.5 0.38785 0.476304 0.515946 0.592834 0.81578

1.65 0.411121 0.481971 0.516001 0.581743 0.772552

95371_Astin42-1_13_Heras.indd   34095371_Astin42-1_13_Heras.indd   340 5/06/12   13:575/06/12   13:57

https://doi.org/10.2143/AST.42.1.2160745 Published online by Cambridge University Press

https://doi.org/10.2143/AST.42.1.2160745


 CONDITIONAL TAIL EXPECTATION AND PREMIUM CALCULATION 341

REFERENCES

ACERBI, C. (2002) Spectral Measures of Risk: A Coherent Representation of Subjective Risk 
Aversion, Journal of Banking and Finance 26(7), 1505-1518.

ARTZNER, P. (1999) Application of Coherent Risk Measures to Capital Requirements in Insurance, 
North American Actuarial Journal 3, 11-25.

ARTZNER, P., DELBAEN, F., EBER, J.M. and HEATH, D. (1999) Coherent Measures of Risk, Math-
ematical Finance 9(3), 203-228.

BALBÁS, A., BALBÁS, B. and HERAS, A. (2009) Optimal Reinsurance with General Risk Measures, 
Insurance: Mathematics and Economics 44, 374-384.

BERNARD, C. and TIAN, W. (2009) Optimal Reinsurance Arrangements under Tail Risk Measures, 
Journal of Risk and Insurance 76(3), 709-725.

CAI, J. and TAN, K. (2007) Optimal Retention for a Stop Loss Reinsurance under the VaR and 
CTE Risk Measures, ASTIN Bulletin 37(1), 93-112.

CAI, J., TAN, K., WENG, C. and ZHANG, Y. (2008) Optimal Reinsurance under VaR and CTE 
Risk Measures, Insurance: Mathematics and Economics 43, 185-196.

DENAULT, M. (2001) Coherent Allocation of Risk Capital, Journal of Risk 4, 7-21.
DEPREZ, O. and GERBER, U. (1985) On Convex Principles of Premium Calculation, Insurance: 

Mathematics and Economics 4, 179-189.
DHAENE, J., HENRARD, L., LANDSMAN, Z., VANDENDORPE, A. and VANDUFFEL, S. (2008) Some 

results on the CTE-based Capital Allocation Rule, Insurance: Mathematics and Economics 
42, 855-863.

FÖLLMER, H. and SCHIED, A. (2002) Convex Measures of Risk and Trading Constraints, Finance 
and Stochastics 6(4), 429-447.

FURMAN, E. and LANDSMAN, Z. (2006) On Some Risk-Adjusted Tail-Based Premium Calculation 
Principles, Journal of Actuarial Practice 13, 175-191.

FURMAN, E. and ZITIKIS, R. (2008a) Weighted Premium Calculation Principles, Insurance: Math-
ematics and Economics 42, 459-465.

FURMAN, E. and ZITIKIS, R. (2008b) Weighted Risk Capital Allocations, Insurance: Mathematics 
and Economics 43, 263-269.

GOOVAERTS, M., ETIENNE, F., DE VYLDER, C. and HAEZENDONK, J. (1984) Insurance Premiums, 
North-Holland Publishing, Amsterdam.

GOOVAERTS, M., KAAS, R., DHAENE, J. and TANG, Q. (2003) A Unifi ed Approach to Generate 
Risk Measures, ASTIN Bulletin 33(2), 173-191.

GOOVAERTS, M., KAAS, R., DHAENE, J. and TANG, Q. (2004a) A New Class of Consistent Risk 
Measures, Insurance: Mathematics and Economics 34, 505-516.

GOOVAERTS, M., KAAS, R., LAEVEN, R. and TANG, Q. (2004b) A Comonotonic Image of Inde-
pendence for Additive Risk Measures, Insurance: Mathematics and Economics 35, 581-594.

GOOVAERTS, M. and LAEVEN, R. (2008) Actuarial Risk Measures for Financial Derivative Pricing, 
Insurance: Mathematics and Economics 42, 540-547.

GOOVAERTS, M., KAAS, R. and LAEVEN, R. (2010) Decision Principles Derived from Risk Measures, 
Insurance: Mathematics and Economics 47, 294-302.

HEILMANN, W. (1989) Decision Theoretic Foundations of Credibility Theory, Insurance: Math-
ematics and Economics 8, 77-95.

HÜRLIMANN, W. (2003) Conditional Value-at-Risk Bounds for Compound Poisson Risks and a 
Normal Approximation, Journal of Applied Mathematics 3, 141-153.

KAAS, R., GOOVAERTS, M., DHAENE, J. and DENUIT, M. (2001) Modern Actuarial Risk Theory, 
Kluwer Academic Publishers, Dordrecht.

LAEVEN, R. and GOOVAERTS, M. (2004) An Optimization Approach to the Dynamic Allocation 
of Economic Capital, Insurance: Mathematics and Economics 35, 299-319. 

LANDSMAN, Z. and SHERRIS, M. (2001) Risk Measures and Insurance Premium Principles, Insur-
ance: Mathematics and Economics 29, 103-115.

LEMAIRE, J. and VANDERMEULEN, E. (1983) Une propieté du principe de l’espérance mathéma-
tique, Bulletin Trimestriel de l’Institut des Actuaires Français, 5-14.

OGRYCZAC, W. and RUSZCZYNSKI, A. (2002) Dual Stochastic Dominance and Related Mean Risk 
Models, SIAM Journal on Optimization 13, 60-78.

95371_Astin42-1_13_Heras.indd   34195371_Astin42-1_13_Heras.indd   341 5/06/12   13:575/06/12   13:57

https://doi.org/10.2143/AST.42.1.2160745 Published online by Cambridge University Press

https://doi.org/10.2143/AST.42.1.2160745


342 A. HERAS, B. BALBÁS AND J.L. VILAR

PANJER, H. (2001) Measurement of Risk, Solvency Requirements and Allocation of Capital within 
Financial Conglomerates, Institute of Insurance and Pension Research Report 01-15, Uni-
versity of Waterloo, Waterloo.

PANJER, H. and WILMOTT, G.E. (1992) Insurance Risk Models, Society of Actuaries.
ROCKAFELLAR, R. and URYASEV, S. (2000) Optimization of Conditional Value at Risk, Journal 

of Risk 2, 21-41.
ROCKAFELLAR, R. and URYASEV, S. (2002) Conditional Value at Risk for General Loss Distribu-

tions, Journal of Banking and Finance 26, 1443-1471.
ROCKAFELLAR, R., URYASEV, S. and ZABARANKIN, M. (2006) Generalized Deviations in Risk 

Analysis, Finance & Stochastics 10, 51-74.
TSANAKAS, A. and DESLI, E. (2003) Risk Measures and Theories of Choice, British Actuarial 

Journal 9, 959-991.
WANG, S. (1995) Insurance Pricing and Increased Limits Ratemaking by Proportional Hazards 

Transform, Insurance: Mathematics and Economics 17(1), 43-54.
WANG, S. (1996) Premium Calculation by Transforming the Premium Layer Density, ASTIN 

Bulletin 26(1), 71-92.
WANG, S. (2000) A Class of Distortion Operators for Pricing Financial and Insurance Risks, 

Journal of Risk and Insurance 67(1), 15-36.
WANG, S. (2002) A Universal Framework for Pricing Financial and Insurance Risks, ASTIN 

Bulletin 32(2), 213-234.
WANG, S., YOUNG, V. and PANJER, H. (1997) Axiomatic Characterization of Insurance Prices, 

Insurance: Mathematics and Economics 21(2), 173-183.
WIRCH, J. and HARDY, M. (1999) A Synthesis of Risk Measures for Capital Adequacy, Insurance: 

Mathematics and Economics 25(3), 337-347.
YOUNG, V. (2004) Premium Principles, in Teugels and Sundt (editors), Encyclopedia of Actuarial 

Science, John Wiley and Sons, England, Vol. 3, 1322-1331.

ANTONIO HERAS (corresponding author)
Departamento de Economía Financiera y Contabilidad I
(Economía Financiera y Actuarial)
Facultad de Ciencias Económicas, Universidad Complutense de Madrid,
(Campus de Somosaguas), 28223 Pozuelo de Alarcón,
Madrid (Spain)
E-Mail: aheras@ccee.ucm.es

BEATRIZ BALBÁS

Departamento de Análisis Económico y Finanzas
Universidad de Castilla – La Mancha
Talavera, Toledo (Spain)
E-Mail: beatriz.balbas@uclm.es

JOSÉ LUIS VILAR

Departamento de Economía Financiera y Contabilidad 1
(Economía Financiera y Actuarial)
Universidad Complutense de Madrid
Madrid (Spain)
and
Actuaris Ibérica
E-Mail: jlvilarz@ccee.ucm.es

95371_Astin42-1_13_Heras.indd   34295371_Astin42-1_13_Heras.indd   342 5/06/12   13:575/06/12   13:57

https://doi.org/10.2143/AST.42.1.2160745 Published online by Cambridge University Press

https://doi.org/10.2143/AST.42.1.2160745

