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Ship waves on uniform shear current at finite
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We present a comprehensive theory for linear gravity-driven ship waves in the
presence of a shear current with uniform vorticity, including the effects of finite
water depth. The wave resistance in the presence of shear current is calculated for
the first time, containing in general a non-zero lateral component. While formally
apparently a straightforward extension of existing deep water theory, the introduction
of finite water depth is physically non-trivial, since the surface waves are now affected
by a subtle interplay of the effects of the current and the sea bed. This becomes
particularly pronounced when considering the phenomenon of critical velocity, the
velocity at which transversely propagating waves become unable to keep up with the
moving source. The phenomenon is well known for shallow water, and was recently
shown to exist also in deep water in the presence of a shear current (Ellingsen,
J. Fluid Mech., vol. 742, 2014, R2). We derive the exact criterion for criticality as a
function of an intrinsic shear Froude number S

√
b/g (S is uniform vorticity, b size of

source), the water depth and the angle between the shear current and the ship’s motion.
Formulae for both the normal and lateral wave resistance forces are derived, and we
analyse their dependence on the source velocity (or Froude number Fr) for different
amounts of shear and different directions of motion. The effect of the shear current is
to increase wave resistance for upstream ship motion and decrease it for downstream
motion. Also the value of Fr at which R is maximal is lowered for upstream and
increased for downstream directions of ship motion. For oblique angles between ship
motion and current there is a lateral wave resistance component which can amount
to 10–20 % of the normal wave resistance for side-on shear and S

√
b/g of order

unity. The theory is fully laid out and far-field contributions are carefully separated
off by means of Cauchy’s integral theorem, exposing potential pitfalls associated with
a slightly different method (Sokhotsky–Plemelj) used in several previous works.

Key words: shear waves, surface gravity waves, waves/free-surface flows

1. Introduction
Recent times have seen a resurgence of interest in ship waves, the phenomenon

whose theory was pioneered by Lord Kelvin well over a century ago (Thomson 1887).
A topic of particular interest recently has been the angle formed by a ship’s waves.
Famously, in deep waters the gravity-driven waves behind a ship were shown by
Kelvin to lie within a sector of half-angle ΦK = 19◦28′, regardless of the ship’s size,
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shape and velocity. Rabaud & Moisy (2013) remarked, however, that images of ship
wakes indicate the wake angle narrowing with increasing Froude number Fr=V/

√
gb,

V being the ship’s velocity and b its size. The issue was soon resolved by Darmon,
Benzaquen & Raphaël (2014) and Noblesse et al. (2014) who demonstrated that
while Kelvin’s result remains true, the angle at which the waves’ amplitude is
greatest is smaller than Kelvin’s angle, and decreases with increasing Fr, making
the wake appear narrower. The phenomenon was in fact observed and analysed
already several decades ago (Munk, Scully-Power & Zachariasen 1987; Brown et al.
1989; Reed & Milgram 2002), and a number of authors have further elucidated this
question recently (e.g. Benzaquen, Darmon & Raphaël 2014; Moisy & Rabaud 2014;
Pethiyagoda, McCue & Moroney 2014, 2015; He et al. 2015; Zhu et al. 2015). In
particular it has been shown that interference effects between waves generated at the
bow and the stern determine the scaling of the apparent angle with Fr (Noblesse
et al. 2014; Zhang et al. 2015; Zhu et al. 2015).

Although a large literature exists on waves on shear currents in two dimensions,
or when the shear is horizontal (cf. e.g. Peregrine 1976; Bühler 2009; Ellingsen
& Brevik 2014, and references therein), previous knowledge of waves on vertically
sheared currents in three dimensions is very scarce and limited to a few scattered
references (e.g. Craik 1968; Johnson 1990; McHugh 1994). However, it was recently
demonstrated that, when viscosity is neglected, a general solution to linear wave
problems exists when a shear current with uniform vorticity is present, and the
solution was used to solve the problems of ship waves (Ellingsen 2014b), oscillating
point source (Ellingsen & Tyvand 2016) and initial value problems (Ellingsen 2014a;
Li & Ellingsen 2015). The presence of a shear current was found to influence the
waves behind a ship profoundly. A ship travelling against the shear current (seen
from a coordinate system where the unperturbed water surface is at rest) produces
longer transverse wavelengths, and its wake is broader than Kelvin’s angle ΦK , and
vice versa for a ship travelling with the current. When the shear current makes an
angle β other than 0 or π with the ship’s line of motion, the wake is found to be
asymmetrical, its angular extent being greater than ΦK on one side and smaller on
the other. Moreover it was shown that, except at β =π, there exists a critical velocity
at which the Kelvin wake angle reaches a total angle of 180◦, beyond which the
ship moves too fast for the transverse part of the ship waves to keep up, thus being
unable to contribute to a stationary wake.

Waves carry momentum, so a moving wave source must feel a resistance force equal
to the rate at which impulse is imparted to the waves which are created. This wave
resistance force typically accounts for more than 30 % of the fuel consumption of
large sea-going vessels (Faltinsen 2005). Knowing that the train of waves is affected
by the presence of a subsurface shear current, it seems likely that also the wave
resistance will be affected by the current, a notion which we confirm and quantify
herein. In particular, when the ship’s line of motion is not parallel with the current the
ship waves are asymmetrical, and the wave resistance also obtains a lateral component
which, our calculations indicate, can amount to a significant percentage of the normal
resistance force.

We present in the current paper a reasonably complete theory of linear ship waves
in the presence of uniform vorticity when also the water is assumed to have a finite,
constant depth h. The geometry is shown in figure 1. While accounting for the finite
depth is a straightforward extension of the formal derivation of general results, the
physical implications are highly non-trivial, and introduce a subtle interplay between
the effects of the shear current and the sea bed upon the surface elevation. We
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FIGURE 1. (Colour online) The geometry considered: a boat (modelled as a pressure
disturbance) travelling at velocity V making an angle β with an underlying shear current
of uniform vorticity. The undisturbed surface is chosen to be at rest with respect to the
coordinate system.

begin by laying out the theory in its general form and pay particular attention to the
separation into near field and far field by careful use of the Cauchy integral theorem.
The resulting far-field expression for the surface elevation differs slightly from that
obtained by an alternative procedure (the Sokhotsky–Plemelj formula) used repeatedly
in the literature, and we explain why the latter procedure is in fact potentially
treacherous when employed, as here, in the context of the radiation condition.

We thereupon discuss in detail the phenomenon of critical velocity, which can occur
whenever the dispersion relation makes the phase velocity bounded for all wavelengths
in at least certain directions. Ship waves are termed supercritical when, for wave
components in a finite sector of propagation directions, the ship’s velocity is greater
than the maximum phase velocity measured along the direction of motion, in which
case transverse waves will vanish from the ship wake completely. We derive explicit
conditions for criticality and the critical velocity as a function of vorticity S, depth
and the angle β.

Numerical evaluations of ship waves are thereafter carried out with particular
emphasis on the transition between critical and non-critical waves; when the water
depth is finite, increasing the shear can result in a transition both from subcritical
to supercritical (as reported by Ellingsen 2014b), or in certain cases, also from
supercritical to subcritical. We finally calculate the wave resistance on the model
‘ship’, both the standard resistance force to the forward motion and the lateral force
resulting from asymmetric wave making. While a realistic wave resistance calculation
for a real vessel must take account of the actual hull shape, which is beyond our
present scope, the calculations show trends which are likely to hold in general. Firstly,
that wave resistance is increased when the ship motion has an upstream component
(as seen from the system where the undisturbed surface is at rest), and decreased for
downstream ship motion. Secondly, the Froude number at which the wave resistance
is maximal is lowered for upstream and increased for downstream ship velocity.

2. Mathematical model and general solution
This section lays out the mathematical theory. The mathematical model and its

general solution for wave pattern and wave resistance are derived in §§ 2.1 and 2.2
with (2.8), (2.12) and (2.14) as final results. A discussion of the dispersion relation
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ensues in § 2.3, whereupon far-field expressions are derived in § 2.4. It was seen
as necessary to recount the careful extraction of the far-field waves in some detail
herein, in order to highlight pitfalls and rectify errors associated with cavalier use of
a related method used in recent literature. The final expression, (4.1), is found only
after also taking on board lessons from § 3.

2.1. General solution
For fully three-dimensional flow in the presence of vorticity, potential theory is not an
option, so to solve the flow problem we must turn to the Euler equations, describing
inviscid flow. The flow is assumed to be incompressible. We write the full velocity
and pressure field on the form

v = (U(z)+ û, v̂, ŵ); P=−ρgz+ p̂; U(z)= Sz. (2.1a,b)

Here U(z) is the basic shear current of constant vorticity S > 0, and the hatted
quantities are perturbations due to the waves. We shall assume all perturbations to be
small, and work to linear order in these quantities. We have assumed the surface of
the water to be at rest with respect to the coordinate system in order that results can
be immediately compared to previous work: this is easily generalised by an overall
Galilean coordinate transformation.

The wave source (‘ship’) is modelled as a superimposed localised pressure p̂ext of
constant shape and strength, travelling with velocity V which makes an angle β with
the x axis, and hence the shear flow. The situation is sketched in figure 1. We consider
only stationary solutions as seen from the boat, hence all physical quantities will
depend on surface position x = (x, y) and time t only through the combination ξ =
x − V t. Such a stationary wake may be interpreted as a continuous series of ring
waves emitted by the travelling source, and all our results might instead be derived
based on such a formalism (Li & Ellingsen 2016).

The flow is a solution to the Euler equation

∂tv + (v · ∇)v =−∇(P/ρ + gz) (2.2)

which we linearize with respect to perturbations. We use a Fourier decomposition of
perturbation quantities into plane waves according to

[û, v̂, ŵ, p̂](ξ , z)=
∫

d2k
(2π)2

[u, v,w, p](k, z)eik·ξ . (2.3)

Following Ellingsen (2014b), we can eliminate u, v and p to find a simple Rayleigh
equation (the inviscid form of the Orr–Sommerfeldt equation) for w alone, w′′ = k2w.
Solving this subject to the boundary condition that w(k,−h)= 0 (no vertical velocity
at the bottom), we find the solution to the full flow field as follows

u(k, z)= iA(k)

[
kx cosh k(z+ h)+ Sk2

y sinh k(z+ h)

k(kxU − k · V)

]
, (2.4a)

v(k, z)= iA(k)
[

ky cosh k(z+ h)− Skxky sinh k(z+ h)
k(kxU − k · V)

]
, (2.4b)

w(k, z)= kA(k) sinh k(z+ h), (2.4c)

p(k, z)=−iA(k)
[
(kxU − k · V) cosh k(z+ h)− Skx

k
sinh k(z+ h)

]
. (2.4d)
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Here, A(k) is an unknown coefficient. These solutions are the ship wave equivalents of
the general solutions reported by Ellingsen (2014a). Note that the motion introduced
by this wave solution is itself rotational since it shifts and twists the vortex lines of
the background flow, unlike any wave motion described by potential theory (Ellingsen
2016).

Let the surface elevation (relative to its equilibrium state) be ζ (ξ) and the external
pressure be p̂ext(ξ), and let their Fourier transforms in the manner of (2.3), be B(k)
and pext(k), respectively. We can now write down the linearized kinematic boundary
condition (stating that a particle on the surface stays on the surface)

kA(k) sinh kh=−i(k · V)B(k) (2.5)

(note that U(0)= 0 by choice), and dynamic boundary condition (stating that normal
stress, as given by the pressure through Euler equation, is continuous at the surface),

iA(k)
[

k · V cosh kh+ Skx

k
sinh kh

]
− gB(k)= pext(k)/ρ. (2.6)

Eliminating A(k), we find B(k) which we integrate over the k plane to find ζ . One
now encounters the same difficulty always encountered when considering waves
in quasi-stationary or quasi-periodic wave systems, namely that the integral is
indeterminate due to poles on the axes of integration. The criterion that our system,
while being a stationary description, still knows the difference between past and future,
must be imposed through a radiation condition. We use the procedure employed, e.g.
by Lighthill (1978, § 3.9), presuming that the external pressure has been turned on
very slowly since t=−∞

p̂ext→ pextekVεt, ε = 0+, (2.7)

where ε is defined to be dimensionless for convenience. The same slow temporal
behaviour will affect all perturbation quantities, hence throughout our analysis this
transition amounts to the replacement rule k · V→ k · V + ikVε. The tiny addition to
the ship’s ‘frequency’, k ·V , can be neglected except where it moves the pole slightly
off the integration path, to complex values of k.

The resulting expression for the surface elevation is now well defined and reads

ζ (ξ)=− 1
ρ

lim
ε→0+

∫
d2k
(2π)2

kpext(k)eik·ξ

gk− (k · V)2 coth kh− (k · V)(Skx/k)− iεΦ(k)
, (2.8)

Φ(k)= kV[2(k · V) coth kh+ Skx/k]. (2.9)

This result accords perfectly with that of Havelock (1922) when S = 0. It is quite
possible to use this expression directly for numerical purposes, keeping ε small but
finite, as was done by Moisy & Rabaud (2014). The effect of ε is to attenuate
the waves slightly away from the boat. In § 2.4 we shall apply the Cauchy integral
theorem as well as path of steepest descent techniques to obtain an expression for
the far field only.
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2.1.1. Gaussian pressure source
For definiteness, let us use the same Gaussian pressure source as used by Ellingsen

(2014a,b) and also by Darmon et al. (2014):

p̂ext(ξ)= p0e−(πξ/b)
2; pext(k)= b2p0

π
e−(kb/2π)2 . (2.10a,b)

As pointed out by He et al. (2015), such a model of a ship will not give a completely
realistic scaling of the ‘apparent wake angle’, the angle of maximum wave amplitude,
for large Froude numbers, but this is not a point of focus in the present effort. It does,
however, have the virtue of describing the size of the ‘ship’ by a single parameter b,
which in the presence of both shear and finite depth is seen as a great advantage for
maintaining a manageable parameter space.

It is well known, and recently shown explicitly for a model like ours with an
anisotropic Gaussian external pressure ‘ship’ model (Benzaquen et al. 2014), that
the wave resistance depends on the shape of the ‘ship’. Thus our wave resistance
calculations in the following must be understood as a demonstration of the theory,
while quantitatively accurate wave resistance calculation requires using a source p̂ext
in (2.12) which approximates a particular hull shape. Such calculation is beyond the
scope of the present effort. Note, however, that our formalism facilitates the use of
more realistic models should quantitative results be needed in specific cases.

2.2. Wave resistance
The theory for wave resistance on a travelling pressure disturbance was laid out long
ago in a series of papers by Havelock (1917, 1919, 1922). This and other analytical
models, as well as experimental results available at the time, were famously reviewed
by Wehausen (1973). The effect of elongation of an ellipsoidal Gaussian pressure
distribution was recently investigated by Benzaquen et al. (2014). The effect of shear
upon wave resistance has never been considered before to our knowledge.

Havelock’s idea for calculation of wave resistance was to identify it as the
horizontal component of the applied pressure force acting on the surface, in the
direction of ship motion whereby the wave resistance may be found by an integral
over the whole water surface:

R=
∫

d2ξ p̂ext(ξ)(V−1V · ∇ξ )ζ (ξ), (2.11)

where ∇ξ = (∂/∂ξx, ∂/∂ξy). Inserting (2.8), we recognise the complex conjugate of pext
and find

R=− i
ρV

lim
ε→0+

∫
d2k
(2π)2

k(k · V)|pext(k)|2
gk− (k · V)2 coth kh− (k · V)(Skx/k)− iεΦ(k)

. (2.12)

The limiting expression in deep water is again given by letting coth kh→ 1.
As shown by Ellingsen (2014b) the presence of a shear current beneath the boat

will result in an asymmetric wake when the angle β is not 0 or π. This, in turn, will
give a lateral force on the wave source, normal to the direction of motion. In a slight
misuse of terminology we term it the ‘lateral wave resistance’ R⊥, and it is found in
analogous fashion

R⊥ =
∫

d2ξ p̂ext(ξ)[V−1(ez × V) · ∇ξ ]ζ (ξ). (2.13)
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A positive value of R⊥ means a lateral force directed towards the right (starboard)
with respect to the ship’s direction of motion. As for R we find

R⊥ =− i
ρV

lim
ε→0+

∫
d2k
(2π)2

k[(ez × V) · k]|pext(k)|2
gk− (k · V)2 coth kh− (k · V)(Skx/k)− iεΦ(k)

. (2.14)

2.3. Dispersion relation
Much of the physics of any wave problem may be discerned from analysis of
the dispersion relation. As discussed in Ellingsen (2014b) (and numerous previous
expositions without shear current present), the pole in the integrand of (2.8) – that
is, the zero of the denominator – corresponds to values of k which simultaneously
satisfy the dispersion relation and the condition of stationariness,

k · V = kc(k) (2.15)

ensuring wave crests which look stationary as seen from the moving source. c(k) is
the phase velocity of a plane wave with wave vector k.

Letting the denominator of (2.8) (say) equal zero and solving with respect to k · V
immediately gives two solutions for the phase velocity,

k · V = kc±(k)=±
√

gk tanh kh+ ( 1
2 S cos θ tanh kh

)2 − 1
2 S cos θ tanh kh, (2.16)

where k= (k cos θ, k sin θ). As discussed by Ellingsen (2014a), to each wave vector
k there are two associated phase velocities. One of these phase velocities is positive,
the other negative, and given the sign of k · V , the appropriate solution is chosen.

For later reference let us denote the angle between k and V as γ = θ − β, so that

k · V = kV cos γ . (2.17)

The constituents of the Fourier integral are plane waves with ‘frequency’ k ·V which
is negative when |γ | > π/2, and a wave of negative frequency and wave vector k
has phase velocity in the direction of −k. Thus the integral in (2.8) (say) obtains two
identical pole contributions, one from a wave of phase velocity c+ whose wave vector
has a forward component (k ·V > 0) and one of phase velocity c− whose wave vector
has a rearward component (k ·V < 0). Both of these plane waves appear stationary as
seen by the ship and give identical contributions.

While the coordinate system defined in figure 1 is easiest for the sake of the
preceding derivations, for further analysis we shall want to use a polar system
relative to the ship’s motion, in the manner of Ellingsen (2014b). We define

φβ = φ − β. (2.18)

Using γ and φβ instead of θ and φ corresponds to rotating the coordinate system
so that the boat moves along a new x axis while the current, in general, does not.
Definitions of the various angles used in the analysis are summarised in figure 2.

2.3.1. Length scales and limiting cases
Three length scales are involved in the model: b (size of source), h (depth) and

a length associated with the shear, lS = g/S2. Known limiting cases are obtained if
one of the length scales is much greater than the smaller of the other two. When
lS�min(h, b), the effect of shear becomes negligible, waves are the same for all β,
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(a) (b)

FIGURE 2. (Colour online) Definitions of the different angles used in the analysis.

and the well-known expressions of Havelock (1908) are regained. Likewise, when
h� min(lS, b), the deep water case considered by Ellingsen (2014b) is found, and
the simplest case b� h, lS is detailed in Darmon et al. (2014), being the deep water
case with no shear.

The most pertinent physical insights are obtained when these length scales are
compared to typical wavelengths in different parts of the wake, as obtained from
stationary phase arguments. Once typical values of k and θ in some part of the
wake (transverse or diverging waves), limiting cases can be analysed using the
dispersion relation (2.16), which reveals that the effect of shear is weak provided
δ ≡ tanh kh/(klS)� 1. In this case

c±(k)= c0(k)
(
±1− 1

2

√
δ cos θ ± 1

8δ cos2 θ + · · ·
)

(2.19)

with c0(k) = √(g/k) tanh kh. We see that for the effect of shear upon a wave k to
be small, it is sufficient that |√δ cos θ | � 1. There are thus two cases in which
shear is rendered unimportant even though klS is not large: if θ is close to ±π/2
(propagation normal to the shear current), or if kh� 1 (shallow water waves). The
relative unimportance of shear for shallow water waves was shown for ring waves by
Ellingsen (2014a).

2.4. Near-field and far-field contributions
We wish now to extract the far-field contribution to the ship waves. The analysis
is carried out in a detailed and careful manner, thereby exposing weaknesses in a
more cavalier method used in the recent literature, including Darmon et al. (2014)
and Ellingsen (2014b). In order not to clutter the reading overly with mathematics,
some calculations are found in appendices.

We will re-write the expression for the surface elevation (2.8) with a Gaussian
disturbance in a different form which is suitable for further analysis. First, let us write
the integral over k in polar form with dimensionless quantities,

ζ (X)= bp0

4π3ρV2

∫ π

−π

dγ
cos2 γ

lim
ε→0+

I(γ ) (2.20a)

I(γ )=
∫ ∞

0
dKK

eE(K,γ ) tanh KH
Γ (K, γ )+ iεΨ (K, γ )

≡
∫ ∞

0
dKf (K, γ ) (2.20b)
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where we have defined

K = bk, X = ξ/b, H = h/b. (2.21a−c)

and the functions (for frequent reference below)

E(K, γ )=−K2/4π2 + iKX cos(γ − φβ), (2.22a)

Γ (K, γ )=K − fs(γ )

Fr2 cos2 γ
tanh KH, (2.22b)

Ψ (K, γ )= 2K
cos γ

+ Frs

Fr2

cos(γ + β)
cos2 γ

tanh KH, (2.22c)

fs(γ )= 1− Frs cos γ cos(γ + β). (2.22d)

Our system is described by four non-dimensional parameters: Fr, Frs, Frh and β,
where the three Froude numbers are

Fr= V√
gb
; Frs = VS

g
; Frh = V√

gh
. (2.23a−c)

Here Fr is based on the size of the source (the ship), Frs is based on a ‘shear depth’
g/S2 which is half the depth at which the dynamic and hydrostatic pressure of the
shear flow are equal, and Frh is based on the finite water depth.

We will consider the integral I(γ ) by forming a closed contour in the complex K
plane. The contour is formed of the positive real K axis (the original integration path)
and closed either in the upper or lower plane, depending on the exponent function
E(K, γ ) so that the resulting path gives a finite and well defined integral. To wit we
shall choose the path of steepest descent (cf. e.g. Bender & Orszag 1991, § 6.6),

Ks.d.(K, γ )=K + 2π2iX cos(γ − φβ). (2.24)

This path is parallel to the real K axis and lies either above or below the latter
depending on the sign of cos(γ −φβ). We connect it to the original path of integration
while noticing that Γ (K, γ ) has a series of zeros along the imaginary axis which
we wish to avoid, and therefore choose the connection path (arbitrarily) at 45◦ to the
real axis. The path is closed at infinity where the integrand is exponentially zero. The
closed path of integration, Λ, is shown in figure 3.

Now we define K0(γ ) as the (real) value of K for which Γ (K, γ ) has a zero, i.e.
it is implicitly defined by

K0 − fs(γ )

Fr2 cos2 γ
tanh K0H = 0. (2.25)

Only in the deep water limit H→∞ is the expression for K0 explicit. For a given set
of parameters, it is not certain that a positive solution of (2.25) exists. Note that the
trivial solution K0= 0 is not a pole of the integrand since it is cancelled by a factor K
in the numerator. The existence or non-existence of a positive solution K0(γ ) is related
to the question of a critical velocity, and is discussed in § 3. There, an approximate,
explicit solution for K0(γ ) is also given.

Importantly, when K0 is inserted for K, the exponent function E(K0, γ ) does not
depend on the source size b, i.e. on the Froude number Fr. This is important because

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

20
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.20


548 Y. Li and S. Å. Ellingsen

Connection

Con
ne

cti
on

Po
le

s 
al

on
g 

im
ag

in
ar

y 
ax

is

Steepest descent

Steepest descent

(a) (b)

FIGURE 3. (Colour online) Contours of integration: the original integration path along
the positive real K axis is closed with a steepest descent path and a connection path at
an angle with both axes. The position of the pole is indicated, its position relative to
the real K axis depending on the sign of the function F(K0, γ ). (a) cos(γ − φβ) > 0,
(b) cos(γ − φβ) < 0.

the pole at K = K0 gives far-field waves (to be shown below), and the exponent
function E(K0, γ ) is what determines the width of the Kelvin wake. Hence, just as was
for deep water (Ellingsen 2014b) (and is well-known to be the case without shear),
the source Froude number has no influence on the Kelvin angle, although it strongly
affects the apparent wake angle at which the waves have the largest amplitude (see,
e.g. Darmon et al. 2014; Noblesse et al. 2014).

We now proceed to solve the contour integral I(γ ). We show in § A.2 that the
integrals Is.d. and Iconn. make up the near field of the wake, i.e. a surface deformation
following the source which falls off quickly as X increases. The all-important far field
of the wave pattern is given by the contribution from the pole, provided it is found
inside the contour. This should be no surprise, since exactly this decomposition has
been reported numerous times in the literature (e.g. Lighthill 1978) for ship waves as
well as other wave systems.

Evaluating the contribution from the pole (details may be found in § A.1) we obtain
the following expression for the far field of the wave pattern

ζf .f . = − ip0

2π2ρg

∫ π

−π

dγΘ(K0)Θ[−cos(γ − φβ) cos γ ]Sg [cos γ ]

× K0eE(K0) tanh K0H
Fr2 cos2 γ −Hfs(γ )sech2K0H

. (2.26)

Here Θ is the Heaviside step function.
Crucially, once the far field is identified as the contribution to I(γ ) from the pole, it

implies that a wave of propagation direction γ contributes to the far field in the real
space direction φ if and only if the pole where Γ + iεΨ = 0 lies inside the contour
Λ. Much of the below analysis rests upon this insight, and we shall see that the two
different ways in which the pole can fall outside the contour, corresponding to the
two Heaviside functions in (2.26), each have their different physical interpretations.
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FIGURE 4. (Colour online) Illustration of wake waves calculated using the expressions for
(a) the full expression in (2.8), (b) the far-field expression in (2.26), and (c) only the near
field. In (a–c) Fr = Frs = 0.8, Frh = 0 and β = π/2. Arrows indicate direction of shear
flow as defined in figure 1.

The separation into near field and far field are shown in figure 4. One may note
that the far field as calculated with the Cauchy integral theorem gives a butterfly
like surface deformation near the source, which is particularly visible with strong
side-on shear such as shown in figure 4. The artefact is not a worry since the far-field
expression is only accurate far from the source.

The requirement that the pole most lie inside the closed contour in order to
contribute led to the Heaviside factor Θ[−cos(γ − φβ) cos γ ] in (2.26). A careful
inspection of the angles involved reveals that this factor restricts the contribution to
the far field to including only the partial waves whose direction of propagation has
a positive component towards the ship. In other words, the waves in the far field
always follow the ship and are not allowed to run ahead of it. This accords well with
what one must expect, but we note that arguments based on the group velocity, say,
would be complicated since in the presence of shear the phase and group velocities
do not in general have the same direction.

The radiation condition used here automatically allows for the perhaps surprising
result that with side-on shear near the critical velocity, waves can in fact be seen
in front of the moving ship on one side (see § 4 and Ellingsen (2014b)). This is
not in violation of the radiation condition because these waves have been sufficiently
refracted by the shear to still be able to follow the moving source according to the
above definition.

Note finally that, beyond being a generalization, the far-field expression in (2.26) in
fact differs slightly from those reported in Ellingsen (2014b), Darmon et al. (2014),
Benzaquen et al. (2014). In these references the Sokhotsky–Plemelj formula was used
to extract the far-field contribution from an expression similar, but not identical, to
(2.8). We explain in appendix B why the use of this theorem is treacherous; it yields
a far-field expression which but for a factor 2 is identical to ours in the limit X→∞
behind the ship, but which contains a spurious wake also in front of the ship which
is equal but of opposite sign. Clearly such a far field does not satisfy the radiation
condition at positions within the spurious Kelvin wedge in front of the ship, the reason
for which appendix B elucidates. When Sokhotsky–Plemelj is used, the spurious wake
must be manually removed from the far-field expression, for instance by simply not
plotting it. This is easy and clear cut in deep waters with no shear current, when the
wave train is famously contained within a Kelvin wedge with half-angle 19◦28′, but
not so straightforward when the wake angle grows large or even extends beyond 90◦.
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Moreover, Ellingsen (2014b) and Darmon et al. (2014) perform integration over γ
only from −π/2 to π/2, resulting in a further factor 2 difference and a far-field
expression which is an overall factor 4 smaller than our (2.26). This does not affect
any of the main conclusions in these references.

3. Critical velocity
In this section we discuss the phenomenon of critical velocity, and derive the

criterion for criticality, (3.8), when both shear and finite depth are present.
The phenomenon of critical velocity is known previously both for ship waves in

shallow water (Havelock 1908) and in shear current (Ellingsen 2014b). In physical
terms, when the ship’s speed exceeds a certain critical velocity, transverse-propagating
waves (i.e. the part of the ship waves whose direction of propagation k is close to
parallel with V , found directly behind the ship in a wedge including φβ = π) are
unable to keep up with the source and cannot contribute to a stationary wake as seen
by the moving source. We will show that the criterion that K0(γ ) must exist for waves
contributing to the far field is exactly the criterion which ensures that transverse plane
wave components are excluded at supercritical velocities.

Below we will derive the following explicit expression for the critical Froude
number and velocity,

Frcrit = Vcrit√
gb
=
√

Fr2
Sb + 1/H − FrSb cos β

1/H + Fr2
Sb sin2 β

, (3.1)

where the intrinsic Froude number (based on the velocity Sb and the source size b)
is

FrSb = Sb
2
√

gb
= S

2

√
b
g
. (3.2)

While it is true that the amplitude of the transverse waves in the wake decreases as
the ship’s velocity (hence Fr) increases, and they gradually vanish from sight (Darmon
et al. 2014), the vanishing of transverse waves is not the only, or even the most,
striking phenomenon associated with the critical velocity. As V approaches the critical,
the total Kelvin wake angle reaches π in a sharp peak at this velocity, as will be duly
discussed in the following. The phenomenon cannot be observed in deep, still waters
since it is caused by the fact that phase velocity is limited: In shallow waters, the
phase velocity cannot exceed

√
gh, and in a shear current c(k) is limited above by

g/S cos θ when θ > 0 (propagation against the shear) as may be deduced from (2.16).
As argued, the value of the wavenumber which satisfies both the dispersion relation

and the condition that the wave front appears stationary as seen from the boat is
K0(γ ), solving (2.25). Only such a plane wave can contribute to the ship wave pattern
in the far field. It is useful to write (2.25) in the form

f (~)≡ ~ − B(γ ) tanh ~ = 0 (3.3)

with ~ = K0H and B(γ )= fs(γ )/(Fr2
h cos2 γ ). For any real B(γ ) the function f (~) is

smooth, positive as ~→∞ and is zero at ~= 0, hence it follows that f (~) has a zero
at some positive γ if and only if f ′(0) < 0, that is, if B> 1. Thus the criterion for a
positive solution K0(γ ) > 0 to exist for some value of γ is that B(γ ) > 1, which can
be written

1− Frs cos γ cos(γ + β)− Fr2
h cos2 γ > 0. (3.4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

20
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.20


Ship waves on uniform shear current 551

An approximate solution to (3.3) for ~ as a function of γ expressed as a functional
of B(γ ) may be found by matching the asymptotic behaviours at B→∞ and B→ 1,

~app = B(γ )− 1+
√

1− B(γ )−3. (3.5)

The approximation remains better than approximately 8 % accurate for all B> 1, and
is 1 % accurate or better for B & 2.

3.1. Condition of criticality
We will now derive and discuss the critical velocity in the present case in which both
finite depth (parameterised though Frh) and shear current (parameterised through Frs)
are present. Either of the two on its own will give rise to a finite critical velocity, and
combining the two naturally yields a critical velocity which depends on both Frh and
Frs, as well as the angle β between ship motion and shear current.

We shall describe a situation given by parameter triplet Frh, Frs, β as supercritical
if a finite sector of γ values exists wherein the criterion (3.4) is false. It is slightly
easier mathematically to work with the rearranged condition, equivalent to (3.4),

1− Frs cos γ cos(γ + β)
cos2 γ

> Fr2
h (3.6)

(we presume cos γ 6= 0). The situation is supercritical if

min
γ

{
1− Frs cos γ cos(γ + β)

cos2 γ

}
< Fr2

h, (3.7)

where the notation means the minimum of the left-hand side with respect to γ is taken.
The minimum is found at tan γ =−(Frs sinβ)/2, which we reinsert and conclude that
the situation is supercritical if

Frs(cos β + 1
4 Frs sin2 β)+ Fr2

h > 1. (3.8)

The sub and supercritical regions of the Frs–Frh parameter plane are shown in figure 5
for some values of β.

Inserting the definitions of Frs and Frh, (3.8) can be solved with respect to V to
obtain the critical velocity given in (3.1). The known limits when S = 0 (no shear
current) when Vcrit=√gh (Havelock 1908), and as h→∞ when Vcrit= S/g cos2(β/2)
(Ellingsen 2014b), are regained. The latter limit may be seen easily if one notes that
(3.8) can instead be written

Fr2
h

1+ Frs sin2(β/2)
+ Frs cos2(β/2) > 1. (3.9)

We plot Frcrit in figure 7.

4. Wave patterns and Kelvin angles under different conditions
In this section we present numerical evaluation of wave patterns and Kelvin angles

(total angular extent of the wake) in different parts of the parameter space spanned
by parameters Fr, Frs, Frh and β.
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FIGURE 5. (Colour online) Critical lines as function of Frs and Frh for different values
of β. The shaded regions below the critical lines are subcritical.
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FIGURE 6. (Colour online) Kelvin angles for constant Frs = 0.5 (a), constant Fr2
h = 0.75

(b) and constant Fr2
h = 1.25 (c). The case Frs = 0 is also shown in (a) for comparison.

See also figure 8.
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FIGURE 7. Frcrit as a function of h and FrSb for different values of β. (a) β = 0;
(b) β =π/4; (c) β =π/2; (d) β = 3π/4; (e) β =π.

Combining what has been found so far, the far field of the surface elevation can be
written

ζf .f . = p0

2π2ρg

∫ π

−π

dγΘ[1− Frs cos γ cos(γ + β)− Fr2
h cos2 γ ]Sg [cos γ ]

×Θ[−cos(γ − φβ) cos γ ]K0e−(K0/2π)2 sin[K0X cos(γ − φβ)] tanh K0H
Fr2 cos2 γ −Hfs(γ )sech2K0H

, (4.1)

where we have now taken the real part. Significant contributions to the far field are
only obtained for values of φβ where the argument of the sine,

f1(γ )=K0(γ )X cos(γ − φβ) (4.2)

has a stationary point for a value of γ in the integration range, that is, where
∂γ f1(γ ) = 0. The Kelvin angle as defined in Darmon et al. (2014) and Ellingsen
(2014b) is the largest value of |π − φb| for which a stationary point exists; in the
presence of a shear current the Kelvin angle is in general different on either side of
the wake.

Unlike the cases considered in these references, we do not now have an explicit
expression for K0(γ ) or its derivative, so the Kelvin angle must be found numerically
by first calculating the value of φβ,stat(γ ) at which a stationary point exists for a given
value of γ and then finding the extrema of π− φβ,stat(γ ) in the range of γ (see also
Ellingsen 2014b, for details and illustration).

The Kelvin angles for different values of parameters Frs and Fr2
h are shown in

figures 6 and 8. As is clear to see, the Kelvin angles on both sides of the wake
show sharp maxima on the critical curves in the Frs–Fr2

h plane which we plotted in
figure 5. Exactly as for deep waters, the Kelvin angle is not influenced by Fr. A
very pronounced effect is, however, that as Fr exceeds 1 the wake appears to grow
narrower with increasing Fr because the largest wave amplitudes are found at wake
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angles smaller than the Kelvin angle with an apparent angle decreasing as Fr−1 for
the Gaussian source as discussed in the Introduction. When Fr is large, neither the
presence of a shear current (Ellingsen 2014b) nor finite depth (Zhu et al. 2015) have
more than a modest effect on the apparent wake angle, however, and considering
the already large parameter space of our model we shall not focus on the effects of
varying Fr in the present effort.

The effect of varying depth on the ship waves is illustrated in figure 9 where the
wave field is shown for different values of Fr2

h when Fr and Frs are held constant at
moderate values. The values of H for each row (a–l) are ∞, 1.6, 0.8 and 0.53. As the
depth decreases the waves for β = 0 (upstream) and β = π/2 (side-on) both become
supercritical, with transverse waves disappearing. The presence of the sea bed is felt
most strongly for upstream ship motion (β = 0), whereas for downstream ship motion
(β=π) the effect of finite depth only becomes noticeable for the largest Frh, when the
wake goes from being made up purely of transverse waves to also showing diverging
contributions as well as a wider Kelvin angle. The waves following the downstream-
going source are helped along by the current, shortening the wavelength required for
transverse waves’ velocity to equal that of the source. A plane wave is affected by
the sea floor only if depth is less than roughly half a wavelength, and due to the
shortened wavelength, at β = π the sea bed only begins to be felt at values of Fr2

h
which are supercritical in the absence of shear.

That a shear current can cause transition from subcritical to supercritical waves
when the shear S is increased was already shown by Ellingsen (2014b). However,
as figure 5 shows, at finite depth it is also possible to effect the opposite transition
by increasing the shear. We illustrate this in figure 10. Figure 10(a–f ), the normal
transition is seen from sub to supercritical when S is increased with other quantities
constant (in non-dimensional terms, Frs is increased with constant Frh and Fr). Here
the direction of motion is β = π/2 and H ≈ 0.31, and Fr = 0.5. Now changing the
direction of travel and water depth slightly, to β = 3π/4 and H = 0.21 at the same
source velocity (same Fr), creates the opposite situation; now the waves go from
supercritical to subcritical as the shear is increased through the same values. It is
possible in the latter situation for the waves to become supercritical once more for
even higher Frs, but the required values of Frs for the second transition (5.4 in this
example) are so large as to seem unrealistic in practice.

The phenomenon may be understood in terms of dispersion of the waves
propagating in the direction of ship motion, i.e. transverse waves, since criticality
is the transverse waves becoming too slow to keep up with the source. The effect
of finite depth is to limit the phase velocity to values 6

√
gh isotropically, while

the subsurface shear current will advance waves going downstream (as seen from
the system where the surface is at rest) and retard upstream-propagating waves.
Figure 10(g–l), transverse waves which would otherwise be too slow to contribute to
the stationary wake are helped along by the subsurface current, rendering the situation
subcritical again when the shear is increased.

5. Wave resistance

We present in this section, for the first time, numerical evaluation and discussion of
the wave resistance on a moving pressure source in the presence of shear. We illustrate
and discuss the interplay shear and finite depth affect the wave resistance. Calculations
of the lateral wave ‘resistance’, present for β 6=0,π, are reported here for the first time
to our knowledge.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

20
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.20


556 Y. Li and S. Å. Ellingsen

–2–4–6–8–10 0 –2–4–6–8–10 0 –2–4–6–8–10 0

–2–4–6–8–10 0 –2–4–6–8–10 0 –2–4–6–8–10 0

–2–4–6–8–10 0 –2–4–6–8–10 0 –2–4–6–8–10 0

–2–4–6–8–10 0 –2–4–6–8–10 0 –2–4–6–8–10 0

–5

–3

–1

1

3

5

–5

–3

–1

1

3

5

–5

–3

–1

1

3

5

–5

–3

–1

1

3

5

–5

–3

–1

1

3

5

–5

–3

–1

1

3

5

–5

–3

–1

1

3

5

–5

–3

–1

1

3

5

–5

–3

–1

1

3

5

–5

–3

–1

1

3

5

–5

–3

–1

1

3

5

–5

–3

–1

1

3

5(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

(k) (l)( j)

FIGURE 9. (Colour online) Wave patterns evaluated from the far-field expression (4.1), for
different water depths and angles β of ship motion relative to the shear current (a,d,g,j)
β = 0, (b,e,h,k) β = φ/2, (c, f,i,l) β = φ. Length scales are in units of 2πbFr2. In all
graphs, Fr = 0.5 and Frs = 0.5. A comparison with figure 5 shows that (g,j) and (k)
show supercritical situations. Arrows indicate direction of shear flow in the system where
the surface is at rest (see figure 1). (a–c) Fr2

h = 0; (d–f ) Fr2
h = 0.4; (g–i) Fr2

h = 0.8;
( j–l) Fr2

h = 1.2.
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FIGURE 10. (Colour online) Increasing the shear S (and therefore Frs) can cause transition
from subcritical to supercritical situation (a–f ) or from supercritical to subcritical (g–l)
depending on the value of Frh and β. In deep waters (Frh= 0) only the former transition
is possible. In all graphs Fr= 0.8. Arrows indicate direction of shear flow in the system
where the surface is at rest (see figure 1): (a) Frs = 0; (b) Frs = 0.5; (c) Frs = 0.75; (d)
Frs=1.0; (e) Frs=1.25; ( f ) Frs=1.5; (g) Frs=0; (h) Frs=0.5; (i) Frs=075; ( j) Frs=1.0,
(k) Frs = 1.25; (l) Frs = 1.5; (a–f ) Fr2

h = 0.8, β = π/2: subcritical to supercritical when
Frs increases, (g–l) Fr2

h = 1.2, β = 3π/4: supercritical to subcritical when Frs increases.
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Pole slightly
above real axis

FIGURE 11. (Colour online) Contour considered for the calculation of wave resistance.

In the same vein as (2.20) we can write (2.12) with pressure (2.10) as

R= bp2
0

4π4ρgFr2

∫ π

−π

dγ
cos γ

lim
ε→0+

J(γ ), (5.1a)

J(γ )= i
∫ ∞

0
dK

K2e−2(K/2π)2 tanh KH
Γ (K, γ )+ iεΨ (K, γ )

≡
∫ ∞

0
dKg(K). (5.1b)

Just as for the integral (2.20), provided a solution K0(γ ) in (2.25) exists, there is a
simple pole which, through the introduction of ε, has been moved slightly off the real
K axis to a position which is slightly above the axis if cos γ < 0 and slightly below
it if cos γ > 0 (see the discussion in § 2.4).

Consider now the case where the pole lies above the axis, and regard the closed
contour in the complex K plane shown in figure 11. The contour consists of the real
K axis (the original integration path giving J(γ )) and a horizontal path parallel with
the real axis but just far enough above to enclose the pole into the contour. While
the quantity R is real by construction, a finite value of ε introduces a small imaginary
part which vanishes as ε→ 0, so we treat J(γ ) as complex. Now note that because
the imaginary unit i enters only as a prefactor and in front of ε, the integral along
the upper horizontal path (towards the left) equals J∗(γ ) (complex conjugate) plus a
correction of order ε. Hence we have by the Cauchy integral theorem that∮

dKg(K)= 2πi Res
K=K0

g(K)= J(γ )+ J∗(γ )= 2 Re{J(γ )} ε→0−→ 2J(γ ). (5.2)

If the pole is below the axis instead, the argument remains the same while closing
the path in the lower half-plane, producing the opposite sign because the pole is now
encircled in the negative sense, and we obtain all together

R
R0
= 1

2Fr2

∫ π

−π

dγ
| cos γ |

K2
0e−K2

0/2π2 tanh K0H
Γ ′(K0, γ )

Θ[ fs(γ )− Fr2
h cos2 γ ], (5.3)

where R0 = bp2
0/(2π3ρg), and the Θ function again ensures inclusion only of γ for

which K0(γ ) exists ( fs(γ ) was defined in (2.22d)). For comparison with Benzaquen
et al. (2014) we plot the quantity R/R0 which corresponds to the function f in their
equation (18). (Our result is a factor 2 greater than that of Benzaquen et al. (2014)
for comparable parameters; the latter reference seems to lose this factor somewhere
between their equations (16) and (18).) The same result could be obtained by
bypassing the pole on the real axis with a small semicircle, above or below as
appropriate.
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Hence the wave resistance is given by the pole at K0 only, which is in fact
physically obvious: only waves which satisfy the dispersion relation K = K0(γ ) are
allowed to propagate towards infinity and thereby remove energy from the source by
way of wave resistance.

In his classical analysis nearly a century ago, Havelock (1922) showed that for an
axisymmetric pressure travelling in water of finite depth so that H was of order 1,
the wave resistance showed a clear peak at a velocity just below the critical velocity√

gh, and decreased rapidly for velocities higher than this. We observe the same
trend at shallow and intermediate depth also in the presence of shear, while for H & 1
the critical Froude number becomes of little consequence to the wave resistance.
Wave resistance is calculated for three different depth (H = 0.1, 0.5 and ∞) and
shown in figure 12 for different directions of motion and increasing values of shear,
parameterised through FrSb defined in (3.2).

The importance of the critical velocity to wave resistance in shallow water, but not
in deep water, can be understood from considerations of dispersion. In deep water
there is strong dispersion which causes a gradual transition from a wake dominated
by transverse waves propagating along the direction of ship motion, to diverging
waves propagating almost normal to the direction of motion. Since wave resistance
equals the rate at which forward momentum is imparted to the waves, transverse
waves must contribute more to wave resistance than a diverging wave of the same
absolute momentum but directed almost normal to the ship’s motion. For this reason
deep water wave resistance naturally peaks at a value of Fr corresponding to the
increasing importance of diverging waves. If the critical velocity occurs for a value
of Fr where transverse waves are still strongly present, however, wave resistance
experiences a sudden drop near the critical value because transverse waves vanish.
This occurs in shallow water, shown in figure 12(a), and could also occur for very
strong shear.

In general the effect of shear upon wave resistance is twofold: to shift the velocity
of maximum resistance, and to modify the value of the maximum resistance. For
motion against the direction of shear (β = 0) the peak resistance is higher and is
found at smaller values of Fr compared to zero shear, while for the source moving
with the shear (β = π) the peak is lower and shifted to higher Fr. In all cases the
wave resistance for side-on shear (β =π/2) is very close to that found without shear
current. All shear effects are stronger for higher values of FrSb as can be expected.
The effect of shear is most dramatic in shallow water, where wave resistance has a
sharp peak near the critical Froude number. For vessels operating in the shallows at
Froude numbers near the critical, inclusion of the effect of shear seems to be crucial
for a realistic calculation of wave resistance.

Firstly, the velocity at which wave resistance peaks is lower for upstream ship
motion. In fact, inspection reveals that also other effects of increasing velocity, such
as the transition from transverse to diverging wave dominated patterns, occur at lower
Fr for upstream ship motion (β ∼ 0) than for downstream (β ∼ π). Because waves
with an upstream propagation component are retarded by the subsurface shear flow,
an upstream-going ship has, in a rough sense, a higher effective velocity as far as
the waves are concerned, and effects of increasing velocity are thus shifted to lower
values of Fr. The opposite is the case for downstream motion.

To understand why wave resistance has a higher peak for upstream motion than
for downstream, it may be most instructive to consider the directional dependence of
group velocity in the presence of shear, discussed in detail by Ellingsen (2014a). First,
notice that wave resistance peaks at a value of Fr where the waves are dominated
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FIGURE 12. (Colour online) Wave resistance at depth H = 0.1 (a,b), 0.5 (c,d) and ∞
(e, f ) for FrSb = 0.25 (a,c,e) and 0.5 (b,d, f ). The vertical lines show the critical Froude
numbers as given in (3.1).

by transverse waves, i.e. waves propagating approximately in direction β. Ship waves
have phase velocity which equals the ship velocity along the line of motion, and
since gravity waves have a group velocity smaller than their phase velocity, the
waves, after being generated (at the bow, say) are left behind as the boat moves
forward. A wave can contribute to wave resistance only while it remains in the near
field: once left behind its influence is no longer felt by the ship. As discussed by
Ellingsen (2014a) (and illustrated in the context of ring waves), waves travelling
upstream have weakened dispersion, and the shear makes the group velocity approach
the phase velocity. The time the wave spends in the ship’s near zone is proportional to
the difference between group and phase velocity, hence the wave travelling upstream
will remain in the ship’s near zone for a longer time, increasing the effect on wave
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FIGURE 13. (Colour online) Lateral ‘wave resistance’ for the same values of H, β and
FrSb as in figure 12 (for β = 0, π the lateral force is zero). The vertical lines show
the critical Froude numbers as given in (3.1). The absolute value of R⊥ is shown; for
0 6 β 6π, R⊥ 6 0. (a) H = 0.1, (b) 0.5, (c) ∞.

resistance. For the same reason, the effects of transient waves created by the source
from manoeuvring, say, can continue to affect the wave resistance for a long time
for upstream motion, but are quickly whisked away for downstream motion (Li &
Ellingsen 2016).

For all wave resistance calculations it must be noted that wave resistance depends
on the shape of the wave source, and the calculations herein, performed for a circular
source, is only an illustration and rough indication of the effect of shear upon the
wave resistance on a particular hull. The methodology can however be applied to more
realistic shapes, at the cost of introducing further parameters.

5.1. Lateral wave ‘resistance’
Now consider the lateral ‘wave resistance’ R⊥ which is calculated exactly like R was
above, using (2.14) while noting that (ez × V) · k= kV sin γ ,

R⊥
R0
= 1

2Fr2

∫ π

−π

dγ
tan γ
|cos γ|

K2
0e−K2

0/2π2 tanh K0H
Γ ′(K0, γ )

Θ[ fs(γ )− Fr2
h cos2 γ ]. (5.4)

The lateral force is plotted in figure 13 for the same values of H as used in figure 12.
Just like the standard wave resistance, the lateral component also tends to pull the
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source in the direction where the wave field is strongest, i.e. downstream (as seen
from the system where the undisturbed water surface is at rest). The lateral force
behaves more or less like the wave resistance as a function of parameters, but is
smaller in magnitude. Its maximum value is when the current is approximately side
on (β ∼ π/2), in which case its value can amount to about 10–20 % of the value of
the corresponding no-shear wave resistance when the shear is strong (FrSb ∼ 1).

6. Further discussion and concluding remarks

We have presented a comprehensive theory for linear ship waves on a shear current
of uniform vorticity, including the effects of finite depth. A finite water depth and non-
zero vorticity each affect the dispersion of the water waves, and the resulting pattern
is governed by the two effects in subtle combination. In particular, the phenomenon of
a critical velocity at which the wake becomes very broad and above which transverse
waves vanish, can be caused by either finite depth or non-zero shear, and in the
presence of both the behaviour is intricate.

We derive an explicit formula for the critical velocity for our system as a function
of two different Froude numbers (with respect to water depth, and an ‘intrinsic
Froude number’) and the angle between current and the source’s line of motion. The
phenomenon may be fully understood in terms of dispersion of the waves propagating
in the direction of ship motion, i.e. transverse waves, since criticality is the transverse
waves becoming too slow to keep up with the source. The effect of finite depth is
to limit the phase velocity to values 6

√
gh isotropically, while the subsurface shear

current will advance waves going downstream (as seen from the system where the
surface is at rest) and retard upstream-propagating waves. While it was previously
shown that increasing the shear strength in deep water could cause transition from sub
to supercritical waves (Ellingsen 2014b), in the presence of finite depth, increasing
shear strength can also cause the opposite transition for mainly downstream ship
motion.

It is a general observation that the presence of a subsurface shear current in a
system where the surface is at rest will tend to alter the ‘effective velocity’ of the ship
(in a rough sense) relative to the water as far as the waves are concerned. While this
notion provides a rough prediction of some qualitative effects of shear upon various
aspects of ship waves in shear conditions, it cannot capture the full picture since
the dispersion properties of waves in the presence of shear have a subtle directional
dependence.

A source generating ship waves will feel a resistance force because waves carry
energy away from the source. In the presence of a shear current there will in general
also be a lateral component to this force, because the wake is asymmetrical about
the ship’s line of motion unless its angle with the shear current is exactly 0 or π.
We derive formulae for both the normal and lateral wave resistance force and analyse
its dependence on the source velocity (or Froude number Fr) for different amounts
of shear and different directions of motion. For a circular source the well-known
dependence of wave resistance R on Froude number is observed – R rises to a
maximum value before falling off again at higher Fr – and the role of the shear
current is twofold. Firstly, the velocity of maximum wave resistance, Frmax, is lowered
for directions moving the source up against the shear, but increased when the motion
has a component downstream with the shear (as seen from a system at which the
surface is at rest). Secondly the maximum wave resistance is increased for directions
against the shear, and decreased for downstream directions.
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The lateral ‘wave resistance’ behaves much the same way as a function of Froude
number, it is maximal when the current is approximately normal to the direction of
motion, and tends to zero for directions directly upstream or downstream.

Appendix A. Details of path integration
In this appendix may be found details of the calculation of path integral I(γ ) from

(2.20)

A.1. Contribution from the pole
The position of the pole in the integrand of I(γ ) is now at Kpole = K0 − iεF(K0, γ )
where

F(K0, γ )= Ψ (K0, γ )

Γ ′(K0, γ )
= 2K0Fr2 cos γ + Frs cos(γ + β) tanh(K0H)

Fr2 cos2 γ − fs(γ )H sech2(K0H)
, (A 1)

where Γ ′(K, γ ) = ∂Γ (K, γ )/∂K. The key property of F(K0, γ ) is its sign, which
determines which side of the real K axis the pole lies. To wit, we note that in order
for the pole to lie inside the contour Λ, F and cos(γ − φβ) must have opposite signs.
It is also necessary that K0(γ ) > 0 as discussed above. If we assume that for some γ
a solution K0(γ ) > 0 exists, we can use definition (2.25) to write

F(K0, γ )= fs(γ )+ 1
Fr2 cos3 γ

2 sinh2 ~

sinh 2~ − 2~
(A 2)

with ~ = K0(γ )H. It follows from the criterion (3.4) that for K0(γ ) > 0 to exist it is
necessary that fs(γ ) > 0. Moreover one easily ascertains that 2 sinh2 ~/(sinh 2~ − 2~)
is a positive function of ~ for all ~ > 0. In other words, Sg [F(K0, γ )] = Sg (cos γ ),
provided K0(γ )> 0 (Sg is the signum function). Hence the pole lies inside the closed
contour provided cos γ and cos(γ −φβ) have opposite signs, i.e. cos γ cos(γ −φβ)< 0.

Hence we may write using the Cauchy integral theorem, noting that the pole is
encircled in the positive sense if cos(γ − φβ) > 0 and vice versa,∮

Λ

dKf (K, γ ) = 2πiΘ(K0)Θ[−cos(γ − φβ) cos γ ]Sg [cos(γ − φβ)] Res
K=Kpole

{f (K)}
= I(γ )− Is.d.(γ )− Iconn.(γ ) (A 3)

or, noting that Sg [cos(γ − φβ)] =−Sg [cos γ ] if the pole contributes,

I(γ )= Is.d.(γ )+ Iconn.(γ )− 2πiΘ(K0)Θ[−cos(γ−φβ) cos γ ]Sg [cos γ ] Res
K=Kpole

{f (K)},
(A 4)

where the Heaviside functions Θ enforce the criteria for the pole being inside the
integral, and the contributions from the parts of the path are

Is.d.(γ )=
∫ ∞
|Ξ |

dKf (K + iΞ, γ ), (A 5)

Iconn.(γ )= (1± i)
∫ |Ξ |

0
dKf [(1± i)K, γ ]. (A 6)

We use the shorthand Ξ = 2π2X cos(γ − φβ), whereby Ks.d. = K + iΞ . The sign to
be taken in (A 6) is the sign of Ξ . Thus, by (A 4) the integral I(γ ) can be written
in terms of a steepest descent integral, a connection path, and possibly the residue of
the pole.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

20
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.20


564 Y. Li and S. Å. Ellingsen

A.2. Asymptotic fall off of path integrals
Consider now large distances X to consider asymptotic behaviour. We presume
therefore in the following that |Ξ |→∞.

Inserting Ks.d., the steepest descent integral becomes (ε is only of interest inasmuch
as it moves the pole off the real K axis, and can be set to zero in the following)

Is.d. = e−Ξ
2/2
∫ ∞
|Ξ |

dK
Ks.d.e−(K/2π)2 tanh(Ks.d.H)

Γ (Ks.d., γ )
. (A 7)

Numerical inspection reveals that the integral in (A 7) is a nearly periodic function of
Ξ with sharp peaks at ΞH = (n+ 1/2)π (n= 1, 2, 3, . . .) and which is everywhere
of order unity. The prefactor exp(−Ξ 2/2) and the fact that the integral starts at the
(already very large) lower limit |Ξ | ensure that the integral is exponentially small as
Ξ→∞.

Next considering Iconn., we write

Iconn. = (1± i)2
∫ |Ξ |

0
dK

Ke−2iK2/(2π)2 tanh(1± i)KH
Γ [(1± i)K] e(iΞ−|Ξ |)K/2π2

. (A 8)

Asymptotic analysis of this integral in itself is straightforward, by noting that its main
contribution comes from small values of K of order 1/Ξ . However, the resulting
expression yields a non-integrable function of γ , so an asymptotic analysis of the
full double integral is necessary. We satisfy ourselves by performing the integral
numerically and find that the contribution to ζ from the connection integral falls off
slightly faster than X−1 as X→∞ (most likely a logarithmic contribution is involved).
The surface deformation in the far field falls off as X−1/2 (e.g. Ellingsen 2014b) as
is required by energy conservation, hence the connection integral is part of the near
field.

We have shown that Is.d. and Iconn. fall off faster than the far field solution when
X→∞. More detailed asymptotic analysis of Is.d. and Iconn. is of course possible, yet
given the complexity of the integrals involved and the fact that our primary interest
is the far field, we shall be content here with this brief treatment.

Appendix B. Note on the use of the Sokhotski–Plemelj theorem

In the literature, the so-called Sokhotski–Plemelj theorem has sometimes been used
in order to extract the far-field contribution to the wave field (Raphaël & de Gennes
1996; Benzaquen et al. 2014; Darmon et al. 2014; Ellingsen 2014b). We show here
that while the correct far field can be obtained this way in parts of the plane (modulo
a prefactor of 2 for the wave amplitude), what is obtained is in fact a combination
of the far field allowed by the radiation condition and the spurious ‘far field’ which
is physically illegal because it corresponds to waves travelling from future to past (or
alternatively: originate at infinity and converge at the source).

Let us consider the surface deformation ζ and consider the case of deep water for
simplicity (the principle is the same for finite water depth), in which case ζ from (2.8)
can be written on the general form

ζ = ζ0

∫ π

−π

dγ lim
ε→0

∫ ∞
0

dk f (k)
k− k0 − iεφ

, (B 1)
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(a) (b) (c) (d )

FIGURE 14. (Colour online) Comparison of wave fields ζ (x) calculated using (a) full
expression from (2.8) with a small, non-zero value of ε, (b) the Sokhotksy–Plemelj
expression ζS–P (with integration range −π<γ <π), (c) our far-field expression ζf .f . from
(4.1), and (d) the combination 2ζS-P − ζf .f .. Parameters are Fr = Frs = 0.8, Frh = 0, and
β =π/2 in (a–d).

where ζ0 is a constant and φ is a function of (k, γ ) which can take either sign. We
now wish to evaluate just the far-field contribution to the k-integral. The procedure of,
e.g. Darmon et al. (2014) is now to use the so-called Sokhotski–Plemelj (SP) theorem
to evaluate the contribution from the simple pole at k = k0, which is then identified
as the far field.

The SP theorem is very simple to derive and results from simply multiplying the
integrand by k− k0+ iεφ in numerator and denominator and splitting into two terms:

lim
ε→0

∫ ∞
0

dk
f (k)

k− k0 − iεφ
= iπ lim

|φ|ε→0

∫ ∞
0

dk
ε|φ|f (k)

π[(k− k0)2 + ε2φ2]Sg (φ)

+ lim
ε→0

∫ ∞
0

dk
(k− k0)

2

(k− k0)2 + ε2φ2

f (k)
k− k0

= iπSg (φ0)f (k0)+P

∫ ∞
0

dk
f (k)

k− k0
, (B 2)

where P denotes the principal value, and φ0 = φ(k0, γ ). The last form is obtained
by noting that ε/π(x2 + ε2)→ δ(x) as ε→ 0+, and recognising a definition of the
principal value. The theorem is of course valid, but the potential danger lies in now
identifying the first term in the last form of (B 2), proportional to f (k0) as the far field,
and the second term as the near field.

We can see this most easily by regarding the term which becomes the δ-function,
purportedly the far-field contribution according to the SP procedure. In a slight change
of notation from the above this term alone can be written

lim
ε→0

∫ ∞
0

dk
iεφf (k)

(k− k0)2 + ε2φ2
= lim

ε→0

∫ ∞
0

dk
1
2

[
f (k)

k− k0 − iεφ
− f (k)

k− k0 + iεφ

]
, (B 3)

where we have expanded in partial fractions. Now comparing with the original, full
expression (B 1) we see that the purported ‘far-field’ solution is in fact half the full
wave field minus half of the wave field obtained from swapping the sign of ε, i.e.
exactly the waves which the radiation condition is supposed to exclude.

Apart from the factor 1/2, the situation is not too serious, because the real wake in
(B 1) lies behind the ship, whereas the spurious ‘wake from the future’ in the second
term of (B 3) lies in front of it. The situation is illustrated in figure 14 Indeed the ‘far-
field’ wave expressions in Darmon et al. (2014), Ellingsen (2014b) give waves also
antisymmetrically in front of the ship which must be manually removed (for example
by simply not plotting them). The procedure employed in our § 2.4, while somewhat
more elaborate, avoids this problem.
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