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This paper introduces and studies a categorical analogue of the familiar monoid semiring

construction. By introducing an axiomatisation of summation that unifies notions of

summation from algebraic program semantics with various notions of summation from the

theory of analysis, we demonstrate that the monoid semiring construction generalises to

cases where both the monoid and the semiring are categories. This construction has many

interesting and natural categorical properties, and natural computational interpretations.

1. Introduction

The monoid semiring construction – in particular, the special case of the group ring

construction – is one of the most familiar and useful algebraic constructions. This paper

places this construction within a significantly more general categorical setting, where

the monoid is generalised to a category (with a suitable smallness condition) and the

semiring is replaced by a category equipped with a suitable notion of partial summation

on hom-sets.

1.1. Cauchy products and monoid semirings

In the formal theory of power series, an infinite power series over some complex variable

z, given as P = α0 + α1z + α2z
2 + · · · , may be treated as simply a function P : � → �.

Given another formal power series Q : N → C over the same variable, their convolution,

or Cauchy product, is the formal power series (Q ∗ P ) : N → C given by

(Q ∗ P )(n) =
∑
n=y+x

q(y)p(x).

A formal power series P : � → � converges absolutely within the unit disk {‖z‖ � 1}
when the sum

∑
n∈N

P (n) converges absolutely, and it is a straightforward result of analysis

(Titchmarsh 1983) that the Cauchy product of two formal power series that converge

† This work was carried out whilst the author was supported by the Sixth EU Framework Program for Research

and Technical Development, under the QICS project. It is one of three papers (with Hines (2008a; 2008b))

following on from work presented as an invited talk at the Mathematical Foundations of Program Semantics

Conference, New Orleans in 2007.
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absolutely within the unit disk itself converges absolutely within the unit disk (and much

more general conditions may also lead to convergence – see Titchmarsh (1983)).

When restricting formal power series to the case where only a finite number of

coefficients are non-zero (that is, polynomials in some complex variable z), convergence

is guaranteed not only within the unit disk, but for all z ∈ C. Algebraically, this naturally

generalises to the familiar theory of monoid semirings (Golan 1999).

Definition 1.1 (monoid semirings). Let (M, ·) be a monoid and (R,×,+, 1R, 0R) be a unital

semiring. The monoid semiring R[M] is the unital semiring whose elements are functions

η : M → R such that ‖{m : η(m) �= 0}m∈M‖ < ∞. The multiplication and addition in this

semiring are given by

(η × μ)(m) =
∑
m=qp

η(q)μ(p)

(η + μ)(m) = η(m) + μ(m).

The additive identity is the function 0(m) = 0R ∀m ∈ M, and the multiplicative identity is

the function

1(m) =

{
1R m = 1M
0R otherwise.

When (M, ·) is a group, R[M] is called the group semiring; similarly, when R is a ring,

R[M] is called the monoid (or group) ring.

This paper generalises the above construction of monoid semirings in two ways:

— The finite sums of a semiring are replaced by a more general axiomatic summation of

(possibly infinite) indexed families.

— The monoids (M, ·) and (R,×) are replaced by categories. Thus, the unital ring R is

replaced by a category with some appropriate notion of summation on homsets.

2. An axiomatic notion of summation

For the programme outlined above, we replace semirings with categories equipped with

a partial summation on hom-sets. The overall intention of this paper is to provide a

categorical analogue of the monoid semiring construction that generalises the usual theory,

but is also applicable to categories used in algebraic program semantics. As discussed in

Appendix A, the axiomatisations of summation commonly used within algebraic program

semantics have properties that rule out various analytic notions of summation, such as

absolute convergence of real or complex sums.

We therefore introduce a very general axiomatisation of summation that includes, as

special cases, various notions of summation from both theoretical computer science (in

particular, algebraic program semantics) and analysis. By comparison with the other

notions of summation discussed in Appendix A, this is a very weak axiomatisation – in

particular, the expressive power we require comes from both the axioms we now present,

and the axioms for the interaction of summation and composition given in Section 3.
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Definition 2.1 (partial commutative monoids (PCMs)). Given sets M and I , an I-indexed

family of elements of M is defined to be a function x : I → M. For simplicity, we denote

this by {xi}i∈I . Throughout this paper, we restrict ourselves to countable (that is, either

finite or denumerably infinite) indexing sets, and hence countably indexed families.

A partial commutative monoid or PCM is a non-empty set M together with a partial

function Σ from indexed families of M to elements of M. An indexed family of elements

of M is said to be summable when it is in the domain of Σ, and summation is required

to satisfy the following two axioms:

— Unary sum axiom: Any family {xi}i∈I , where I = {i′} is a singleton set, is summable,

and
∑

i∈I xi = xi′ .

— Weak partition-associativity axiom: Let {xi}i∈I be a summable family and {Ij}j∈J be a

countable partition† of I . Then {xi}i∈Ij is summable for every j ∈ J , as is {
∑

i∈Ij xi}j∈J ,
and

∑
i∈I

xi =
∑
j∈J

⎛
⎝∑

i∈Ij

xi

⎞
⎠.

Given a summable family x = {xi}i∈I , we may write Σ(x) (unambiguously) as
∑

i∈I xi.

In particular, if I = {1, . . . , n}, we write Σ(x) = x1 + x2 + x3 + · · · + xn, and if I = N,

Σ(x) = x1 + x2 + x3 + · · · . Notice that, by weak partition-associativity, we may equate

different partitions of a summable family x, for example:

x1 + x2 + x3 + · · · = x1 + (x2 + x3 + · · · + xn + · · · )
= (x1 + x2) + (x3 + x4) + · · · + (xn + xn+1) + · · ·
= (x1 + x3 + x5 + · · · ) + (x2 + x4 + x6 + · · · ).

Remark 2.2 (WPA axiom). The above weak partition-associativity axiom is clearly a

weakening of the usual partition-associativity axiom from algebraic program semantics

(Manes and Arbib 1986; Haghverdi 2000), where the two-sided implication is weakened

to a one-sided version (see Appendix A for more details). However, in this weakened form

it is also familiar from traditional analysis. For example, Hille (1982, page 108) states and

proves the following property of absolute convergence of real numbers:

‘An absolutely convergent series may be split into mutually exclusive subseries, finite or infinite

in number. The sum of these subseries is equal to the sum of the original series.’

(Note that the prior assumption of an absolutely convergent series in this quotation means

that this statement is not equivalent to the usual partition-associativity axiom described

in Definition A.1). In Appendix A, we give various examples of PCMs from both analysis

and algebraic program semantics, and compare this formalism to other axiomatisations

of summation used in various fields.

We will first demonstrate that the indexed summation of a PCM is invariant under

isomorphism of indexing sets.

† Following Manes and Arbib (1986), we also allow countably many Ij to be empty.
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Proposition 2.3. Let x : I → M and y : J → M be countably indexed families and let

ϕ : I → J be a bijection satisfying yoϕ = x. Then Σ(y) is defined exactly when Σ(x) is

defined, in which case they are equal.

Proof. For arbitrary i ∈ I , the set Ji = {ϕ(i)} is a singleton, and hence, by the unary

sum axiom, is summable. As indexing families are countable, {Ji | i ∈ I} is a countable

partition of J . Let us now assume that {yj}j∈J is summable. We deduce that:∑
j∈J

yj =
∑
i∈I

∑
j∈Ji

yj (weak partition-associativity)

=
∑
i∈I

yϕ(i) (definition and unary sum axiom)

=
∑
i∈I

xi. (definition)

Alternatively, if we assume that {yj}j∈J is not summable, the assumption that {xi}i∈I
is summable will (by interchanging the roles of x and y in the above argument) imply

the summability of {yj}j∈J , which gives a contradiction. Therefore, {yj}j∈J is summable

exactly when {xi}i∈I is summable, in which case their sums are equal.

Note the similarity of this notion with either the permutation-independence of absolute

convergence of real sums (Definition A.3) or the notion of unconditional convergence of

sums in Banach space (Definition A.6).

The following basic properties of PCMs will be used throughout.

Proposition 2.4. Let (M,Σ) be a PCM. Then

(1) Summable subfamilies: Let {xi}i∈I be a summable family of M. Then any subfamily

{xi}i∈K , where K ⊆ I , is also summable.

(2) Existence of zero: The empty set is summable, and x+ {} = x = {} + x for all x ∈ M.

Hence it is a zero for M, and we write 0 =
∑

{}.
(3) Sums of zeros: For any index set I , let 0I : I → M denote the constantly zero family

(so 0I (i) = 0, for all i ∈ I). Then 0I is summable, and ΣI0I = 0. More generally, for

any element x ∈ M, x+ 0 + 0 + 0 + · · · = x (where 0 + 0 + · · · denotes (the sum of)

either a finite or infinite sequence of 0’s).

Proof. The proofs of (1) and (2) are based on very similar proofs (for the special case

of partially additive monoids – see Appendix A) presented in Manes and Arbib (1986).

(1) (Summable subfamilies) Any subset K ⊆ I defines a partition of I , namely {K, I\K}.
By weak partition-associativity,

∑
i∈K xi exists.

(2) (Existence of zero) As M is by definition non-empty, the unary sum axiom implies

that the set of summable families is also non-empty. The empty family is a subfamily

of any summable family. Hence, letting K = � in the partition above, we see that

the empty family {} is summable. It is then immediate that
∑

{} = 0 is a zero for the

summation operation, and 0 + x = x = x+ 0 exists for arbitrary x ∈ M.

https://doi.org/10.1017/S0960129512000059 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000059


A categorical analogue of the monoid semiring construction 59

(3) (Sums of zeros) We pick any partition of I whose first cell is I itself, and the

remaining cells are empty (the number of empty cells is either finite or infinite,

depending on whether we want a finite or infinite sum of 0’s). For example, we write

I = I1 � (�n>1In), where I1 = I , Ii = �, if i > 1. If x = {xi}i∈I is an I-indexed

summable family, then, by weak partition-associativity, we have∑
i∈I

xi =
∑
i∈I1

xi +
∑
n>1

(
∑
i∈In

xi)

=
∑
i∈I1

xi + 0 + 0 + · · · .

We now pick a singleton family {x}, so Σ(x) = x, and the result follows.

We now define homomorphisms of PCMs, and show that the class of all PCMs, together

with this notion of homomorphism, forms a category.

Definition 2.5 (PCM homomorphisms and the category of PCMs). A homomorphism of

PCMs is a function f : (M,Σ) → (N,Σ′) satisfying the following natural property:

Given a summable family {mi}i∈I of (M,Σ), we have {f(mi)}i∈I is a summable family

of (N,Σ′), and f (Σi∈Imi) = Σ′
i∈If(mi).

Proposition 2.6. The class of all PCMs, together with the above notion of homomorphism,

forms a category, which we denote by PCM.

Proof. First note that for a PCM (M,ΣM), the identity function 1M : M → M is a

PCM homomorphism. We next consider PCM homomorphisms

f : (A,ΣA) → (B,ΣB)

g : (B,ΣB) → (C,ΣC ),

together with a summable family {ai}i∈I of A. Then the function gf : A → C satisfies

g
(
f

(
ΣAi∈Iai

))
= g

(
ΣBi∈If(ai)

)
= ΣCi∈Igf(ai).

(Note that these sums are required to exist, by the definition of PCM homomorphism.)

Thus gf is a PCM homomorphism from (A,ΣA) to (C,ΣC ). Finally, associativity of

composition follows from the associativity of composition for functions.

Examples of PCMs are given in Appendix A. For the program outlined in Section 1, we

now require categories whose hom-sets are PCMs, together with a specified interaction

between summation and composition.

3. Categories with a notion of summation on hom-sets

We now introduce a certain class of categories whose hom-sets are PCMs, together with

axioms for the interaction of summation and composition.
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Definition 3.1 (PCM-categories). We define a PCM-category to be a locally small†

category C, together with, for all X,Y ∈ Ob(C), a partial function Σ(X,Y ) from countably

indexed families over C(X,Y ) to C(X,Y ) (we will often omit the superscript when it is

clear from the context).

This class of partial functions is required to satisfy the following axioms:

(1) PCM-structure on hom-sets:
(
C(X,Y ),Σ(X,Y )

)
is a PCM, for all X,Y ∈ Ob(C).

(2) Strong distributivity: Given summable families

{fi ∈ C(X,Y )}i∈I
{gj ∈ C(Y ,Z)}j∈J ,

we have

{gjfi ∈ C(X,Z)}(j,i)∈J×I

is a summable family satisfying

(X,Z)∑
(j,i)∈J×I

gjfi =

⎛
⎝(Y ,Z)∑

j∈J
gj

⎞
⎠ (

(X,Y )∑
i∈I

fi

)

We consider examples of PCM-categories in Appendix A, and properties of PCM-

categories in Section 3.1.

Remark 3.2 (PCM-categories and categorical enrichment). A very natural question at

this point is to ask whether a ‘PCM-category’ is a category enriched over some suitable

(monoidal, or closed) category of PCMs – see Section 10 for details.

3.1. Properties of PCM-categories

As may be expected, the strong distributivity property, together with the unary sum axiom,

implies the usual left- and right-distributivity laws.

Proposition 3.3. Let
(
C,Σ( , )

)
be a PCM category and {gi ∈ C(Y ,Z)}i∈I be a summable

family. Then, for all arrows f ∈ C(X,Y ) and h ∈ C(Z,T ), we have

{hgi ∈ C(Y ,T )}i∈I
{gif ∈ C(X,Z)}i∈I

are summable families, and

h

(∑
i∈I

gi

)
=

∑
i∈I

(hgi)

(∑
i∈I

gi

)
f =

∑
i∈I

(gif).

† That is, we allow for a proper class of objects, but require that all homsets are indeed sets.
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Proof. Consider the index set A = {a′}, and the indexed family {ha}a∈A given by ha′ = h.

By the unitary sum axiom h =
∑

a∈A ha, so

h
∑
i∈I

gi =

(∑
a∈A

ha

)⎛
⎝∑

j∈J
gj

⎞
⎠.

By strong distributivity,

(∑
a∈A

ha

)⎛
⎝∑

j∈J
gj

⎞
⎠ =

∑
(a,j)∈A×J

hagj .

As A is a single element set, A× J ∼= J , and ha = h. Therefore, by Proposition 2.3,

h
∑
j∈J

gj =
∑
j∈J

hgj .

The proof for the opposite distributive law is almost identical.

Corollary 3.4. Every PCM-category has zero arrows.

Proof. Let (C,Σ( , )) be a PCM-category. For all X,Y ∈ Ob(C), we define 0XY to be

the sum of the empty set {}XY ⊆ C(X,Y ). Then, by the above distributive laws, for

all f ∈ C(Y ,Z), we have f0XY = f(
∑

{}XY ), so f0XY = (
∑

{}XZ ) = 0XZ . Similarly,

0XY g = 0WY for all g ∈ C(W,X).

Remark 3.5 (the usual treatment of distributivity). The usual approach in algebraic

program semantics is to take the above left- and right-distributivity laws as axiomatic,

and use the (much stronger) notion of summation to prove an analogue of strong

distributivity. This is described in Appendix A. We do not take this approach because the

axiomatisation of summation it requires is too strong – it imposes the positivity property

that x + y = 0 ⇒ x = 0 = y. Were we to have taken this approach, it would have

meant ruling out many of the motivating examples for the Cauchy product construction,

including group rings and convergent polynomials over real and complex variables.

Instead, as we demonstrate by example in Appendix A, neither the PCM axiomatisation

nor strong distributivity implies the positivity property.

We now consider some implications of strong distributivity.

Proposition 3.6. Let
(
C,Σ( , )

)
be a PCM-cat, and

{gj ∈ C(Y ,Z)}j∈J
{fi ∈ C(X,Y )}i∈I
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be summable families. Then

∑
j∈J

(∑
i∈I

gjfi

)

∑
i∈I

⎛
⎝∑

j∈J
gjfi

⎞
⎠

are both defined, and

∑
i∈I

⎛
⎝∑

j∈J
gjfi

⎞
⎠ =

∑
(i,j)∈I×J

gjfi =
∑
j∈J

(∑
i∈I

gjfi

)
.

Proof. By the strong distributivity property, the family {gjfi ∈ C(X,Z)}(j,i)∈J×I is

summable. Now consider the partition of J × I given by {{(j, i)}j∈J}i∈I . By the weak

partition-associativity axiom, for arbitrary fixed i ∈ I , the family {gjfi}j∈J is summable,

as is {
∑

j∈J gjfi}i∈I , and

∑
i∈I

⎛
⎝∑

j∈J
gjfi

⎞
⎠ =

∑
(i,j)∈I×J

gjfi.

The dual identity ∑
j∈J

(∑
i∈I

gjfi

)
=

∑
(i,j)∈I×J

gjfi

follows by partitioning J × I as {{(j, i)}i∈I}j∈J , and therefore

∑
i∈I

⎛
⎝∑

j∈J
gjfi

⎞
⎠ =

∑
(i,j)∈I×J

gjfi =
∑
j∈J

(∑
i∈I

gjfi

)
.

Proposition 3.7. Let
(
C,Σ( , )

)
be a PCM-category and {si ∈ C(X,X)}i∈I be a summable

family. Then for all n > 0, the family

{sin sin−1
. . . si2si1 ∈ C(X,X)}(in,...i1)∈In

is summable, as are all its subfamilies.

Proof. The proof is by induction. The result is trivially true for n = 1. Now assume it

holds for some k > 0. Then by strong distributivity,

{sisik . . . si1 ∈ C(X,X)}(i,(ik ,...i1))∈I×Ik

is also summable, and our result follows by induction. Finally, we complete the proof by

recalling the summable subfamilies property (Proposition 2.4).

Corollary 3.8. Let
(
C,Σ( , )

)
be a PCM-category and F = {fi ∈ C(X,X)}i∈I be a summable

family containing the identity. Then:
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(1) Arbitrary finite subsets of the submonoid of C(X,X) generated by F are summable.

(2) Let F ′ denote the indexed subfamily given by removing all occurrences of 1X from

F . When there exists some word w in the subsemigroup generated by F ′ satisfying

w = 1X , we have:

(a) The sum
∑M

i=1 1X exists, for all M ∈ N.

(b) For all f ∈ C(X,Y ) and g ∈ C(W,X), the sums

M∑
i=1

f ∈ C(X,Y )

M∑
i=1

g ∈ C(W,X)

exist, for all M ∈ N.

Proof.

(1) Consider a finite subset T ⊆ F∗ ⊆ C(X,X), where F∗ denotes the free monoid on

F . As T is finite, there exists some K ∈ N such that each t ∈ T may be written as

a distinct word of no more than K members of F . However, since F contains the

identity, each word of T may be written as a distinct word of exactly K members

of {fi}i∈I . Thus, the result follows by Proposition 3.7 above and the summable

subfamilies property (Proposition 2.4).

(2) We now assume the additional condition on F given above:

(a) We write w = 1X as a word of K elements of F ′. Then, by Proposition 3.7, the

family

{1K(M−N)
X w1KNX }N=1..M

is summable. However,

1K(M−N)
X w1KNX = 1X

for all N = 1..M. Therefore
M∑
N=1

1X

exists, as does

M ′∑
N=1

1X

for all 0 < M ′ < M by the summable subfamilies property (Proposition 2.4).

(b) By distributivity (Proposition 3.3), {f1X ∈ C(X,Y )}i=1..M exists, so
∑M

i=1 f exists.

The proof for arbitrary g ∈ C(W,X) is similar.

3.2. The category of PCM-categories

The class of all PCM-categories is itself a category.
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Definition 3.9 (PCM-functors and the category CatΣ). Given PCM-categories C,D, we

say that a functor Γ : C → D is a PCM-functor when:

— Given a summable family {fi ∈ C(X,Y )}i∈I , we have {Γ(fi) ∈ D(Γ(X),Γ(Y ))} is a

summable family, and

Γ

(∑
i∈I

fi

)
=

∑
i∈I

Γ(fi).

We denote the category of all PCM-categories and PCM-functors by CatΣ.

Proposition 3.10. CatΣ is well defined.

Proof. First note that identity functors on PCM-categories are trivially PCM-functors.

To prove compositionality, consider two PCM-functors

Γ ∈ CatΣ(C,D)

Δ ∈ CatΣ(D,E).

By definition, for any summable family {fi ∈ C(X,Y )}i∈I , the family

{Γ(fi) ∈ D(Γ(X),Γ(Y ))}i∈I

is summable, as is

{ΔΓ(fi) ∈ E(ΔΓ(X),ΔΓ(Y ))}i∈I .

Then, also by the definition of PCM-functors,

Δ

(
Γ

(∑
i∈I

fi

))
= Δ

(∑
i∈I

Γ(fi)

)
=

∑
i∈I

ΔΓ(fi),

so ΔΓ is also a PCM-functor. Finally, associativity follows from the usual associative

property for functors, so CatΣ is well defined.

We also have finite products of PCM-categories.

Proposition 3.11. The category CatΣ has finite products.

Proof. Consider C,D ∈ Ob(CatΣ). We define their product C×D in a similar way to the

usual product of categories: objects are pairs (A,X), where A ∈ Ob(C) and X ∈ Ob(D).

The homset (C × D)((A,X), (B, Y )) is exactly the Cartesian product C(A,B) × D(X,Y ),

with the usual component-wise composition.

We still need to consider summation on homsets. The projections π1 : C × D → C and

π2 : C × D → D are defined exactly as in the usual product of categories. For non-empty

I , a family {fi ∈ (C × D)((A,X), (B, Y ))}i∈I is summable exactly when

{π1(fi) ∈ C(A,B)}i∈I
{π2(fi) ∈ D(X,Y )}i∈I
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are summable, in which case,

∑
i∈I

fi =

(∑
i∈I

π1(fi) ,
∑
i∈I

π2(fi)

)
∈ (C × D)((A,X), (B, Y )).

When I is empty, we simply take
∑

i∈I fi = (0AB, 0XY ).

We now demonstrate that this definition satisfies the required universal property for

a categorical product. Given PCM-functors Γ1 ∈ CatΣ(X,C) and Γ2 ∈ CatΣ(X,D), we

define 〈Γ1,Γ2〉 : X → C × D by:

— On objects:

〈Γ1,Γ2〉(R) = (Γ1(R),Γ2(R))

for all R ∈ Ob(X).

— On arrows:

〈Γ1,Γ2〉(f) = (Γ1(f),Γ2(f)) ∈ (C × D)((Γ1(R),Γ2(R)), (Γ1(S),Γ2(S))

for all f ∈ X(R, S).

The functoriality of 〈Γ1,Γ2〉 is immediate. To demonstrate that it is also a PCM-functor,

consider a summable family {fi ∈ X(R, S)}i∈I . Then

{〈Γ1,Γ2〉(fi)}i∈I = {(Γ1(fi),Γ2(fi))}i∈I ,

which is summable by the definition of summability in C × D. By the definition of

summation in C × D,

∑
i∈I

〈Γ1,Γ2〉(fi) =

(∑
i∈I

Γ1(fi) ,
∑
i∈I

Γ2(fi)

)
,

so 〈Γ1,Γ2〉 is also a PCM-functor. Finally, by the usual theory of product categories, the

following diagram commutes:

X
Γ1

����
��

��
��

�
Γ2

����
��

��
��

�

〈Γ1 ,Γ2〉
��

C C × Dπ1

��
π2

�� D

4. The categorical Cauchy product

We are now in a position to introduce a categorical analogue of the monoid semiring

construction of Definition 1.1. In honour of the original axiomatisation of such products

in the theory of formal power series, we refer to this as the (categorical) Cauchy product†.

However, we first require the following preliminary definition.

† Some new terminology is certainly needed. Starting from the theory of monoid semirings, we will replace

both monoids and semirings with categories. However, we wish to avoid replacing the term ‘monoid-semiring’

by ‘category-category’.
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Definition 4.1 (locally countable categories). We say that a category D is locally countable

when for all U,V ∈ Ob(D), the homset D(U,V ) is a countable set. We denote the full

subcategory of Cat, whose objects are locally countable categories, by cCat.

Definition 4.2. Given a PCM-category C ∈ Ob(CatΣ) and a locally countable category

D ∈ Ob(cCat), we define their Cauchy product C[D] ∈ Ob(CatΣ) as follows:

— Objects: Ob(C[D]) = Ob(C) × Ob(D).

— Arrows: The homset C[D]((X,U), (Y , V )) consists of all functions

f : D(U,V ) → C(X,Y )

such that {f(a) ∈ C(X,Y )}a∈D(U,V ) is a summable family.

— Composition: Given

g ∈ C[D]((Y , V ), (Z,W ))

f ∈ C[D]((X,U), (Y , V ))

as functions

f : D(U,V ) → C(X,Y )

g : D(V ,W ) → C(Y ,Z),

we have gf ∈ C[D]((X,U), (Z,W )) is the function from D(U,W ) to C(X,Z) given by

gf(c) =
∑

{(b,a):c=ba}⊆D(V ,W )×D(U,V )

g(b)f(a).

For clarity, we will often use the shorthand notation

gf(c) =
∑
c=ba

g(b)f(a).

— Summation: An indexed family {fi ∈ C[D]((X,U), (Y , V ))}i∈I is summable exactly

when

{fi(h) ∈ C(X,Y )}(i,h)∈I×D(U,V ) is summable in C,
in which case (∑

i∈I
fi

)
(h)

def.
=

∑
i∈I

fi(h) ∈ C(X,Y ).

Terminology 4.3 In the above definition of the Cauchy product C[D], we refer to the

PCM-category C ∈ Ob(CatΣ) as the base category and the locally countable category

D ∈ Ob(cCat) as the index category.

We will now prove that the above construction is well defined.

Theorem 4.4. The Cauchy product C[D] defined above is a PCM-category.

Proof. We first show that C[D] is a category, and then consider the indexed summation

on homsets.
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We demonstrate that the composition of C[D] is well defined, associative, and has

identities:

(1) Composition is well defined: We assume arrows

g ∈ C[D]((Y , V ), (Z,W ))

f ∈ C[D]((X,U), (Y , V ))

that is, functions

f : D(U,V ) → C(X,Y )

g : D(V ,W ) → C(Y ,Z)

where

{f(a) ∈ C(X,Y )}a∈D(U,V )

{g(b) ∈ C(Y ,Z)}b∈D(V ,W )

are summable. So we need to show that (gf)(c) ∈ C(X,Z) exists for all c ∈ D(U,W ),

and that {
gf(c) =

∑
c=ba

g(b)f(a)

}
c∈C(X,Z)

is also a summable family. By definition,∑
a∈D(U,V )

f(a) ∈ C(X,Y )

exists, as does ∑
b∈D(V ,W )

g(b) ∈ C(Y ,Z).

The strong distributivity property thus implies the summability of the indexed family

P = {g(b)f(a)}(b,a)∈D(V ,W )×D(U,V )

together with the identity⎛
⎝ ∑
b∈D(V ,W )

g(b)

⎞
⎠

⎛
⎝ ∑
a∈D(U,V )

f(a)

⎞
⎠ =

∑
(P ) .

Given some arbitrary c ∈ D(U,W ), consider the (possibly empty) subfamily of Pc
of P given by {g(b)f(a)}ba=c. This is a subfamily of P , and thus, by the subfamilies

property of Proposition 2.4, it is itself a summable family. Therefore, (gf)(c) ∈ C(X,Z)

is well defined for all c ∈ D(U,W ).

Finally, consider the family {Pc}c∈D(U,W ). Observe that for distinct x �= y ∈ D(U,W ),

the intersection of Px and Py is empty. Thus, {Pc}c∈D(U,W ) is a partition of the

summable family P and, by the weak partition-associativity axiom, is itself a

summable family satisfying∑
c∈D(U,W )

Pc =
∑

(b,a)∈D(V ,W )×D(U,V )

g(b)f(a).
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(2) Associativity of composition: Consider arrows

h ∈ C[D]((Z,W ), (T , P ))

g ∈ C[D]((Y , V ), (Z,W ))

f ∈ C[D]((X,U), (Y , V )).

By definition,

(hg)(r) =
∑

{(q,p):r=qp}⊆D(W,P )×D(V ,W )

h(q)g(p)

and, similarly,

(gf)(c) =
∑

{(b,a):c=ba}⊆D(V ,W )×D(U,V )

g(b)f(a).

Therefore, for all γ ∈ D(U,P ),

(h(gf)) (γ) =
∑

{(β,α):γ=βα}⊆D(W,P )×D(U,W )

h(β) (gf) (α),

which, by definition of the composite gf ∈ C[D]((X,U), (Z,W )), is given by

(h(gf)) (γ) =
∑

{(β,α):γ=βα}⊆D(W,P )×D(U,W )

h(β)

⎛
⎝ ∑

{(b,a):α=ba}⊆D(V ,W )×D(U,V )

g(b)f(a)

⎞
⎠.

By distributivity (Proposition 3.3), we may write this as

(h(gf)) (γ) =
∑

{(β,α):γ=βα}⊆D(W,P )×D(U,W )

⎛
⎝ ∑

{(b,a):α=ba}⊆D(V ,W )×D(U,V )

h(β)g(b)f(a)

⎞
⎠.

Conversely, ((hg)f) ∈ C[D]((X,U), (T , P )) is given by

((hg)f)(ν) =
∑

{(μ,λ):ν=μλ}⊆D(V ,P )×D(U,V )

(hg)(μ)f(λ)

for all ν ∈ D(U,P ), which, by definition of the composite hg ∈ C[D]((Y , V ), (T , P )),

is given by

((hg)f)(ν) =
∑

{(μ,λ):ν=μλ}⊆D(V ,P )×D(U,V )

⎛
⎝ ∑

{(c,b):μ=cb}⊆D(W,P )×D(V ,W )

h(c)g(b)

⎞
⎠ f(λ).

Again by distributivity (Proposition 3.3), this may be written as

((hg)f)(ν) =
∑

{(μ,λ):ν=μλ}⊆D(V ,P )×D(U,V )

⎛
⎝ ∑

{(c,b):μ=cb}⊆D(W,P )×D(V ,W )

h(c)g(b)f(λ)

⎞
⎠.
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Now observe that, by the definition of the arrows of C[D], the families

{h(c) ∈ C(Z,T )}c∈D(W,P )

{g(b) ∈ C(Y ,Z)}b∈D(V ,W )

{f(a) ∈ C((X,Y )}a∈D(U,V )

are all summable. Therefore, by the strong distributivity property, the family

{h(c)g(b)f(a)}(c,b,a)∈D(W,P )×D(V ,W )×D(U,V )

is summable. Given arbitrary d ∈ D(U,P ), let Qd be the subfamily of the above

indexing set given by

Qd = {(c, b, a) : d = cba} ⊆ D(W,P ) × D(V ,W ) × D(U,V ),

which, by the summable subfamilies property, is summable. By the weak partition-

associativity axiom, we may partition
∑

Qd
h(c)g(b)f(a) in two distinct ways – by

relabelling indices, these may be seen to correspond to ((hg)f)(d) and (h(gf))(d).

Hence ((hg)f)(d) = (h(gf))(d) for all d ∈ D(U,P ), so

(hg)f = h(gf) ∈ C[D]((X,U), (T , P )),

as required.

(3) Identity arrows: We begin by recalling the existence of zero elements in a PCM from

Proposition 2.4, and the proof that PCM-categories have zero arrows in Corollary 3.4.

At an object (X,U) ∈ Ob(C[D]), the identity arrow is given by 1(X,U) as follows:

1(X,U)(r) =

{
1X ∈ C(X,X) r = 1U ∈ D(U,U)

0X otherwise.

From the definition of composition and Proposition 2.4, for all

g ∈ C[D]((X,U), (Y , V ))

f ∈ C[D]((W,T ), (X,U)),

we have (
g1(X,U)

)
(s) = g(s) ∀s ∈ D(U,V )(

1(X,U)f
)
(r) = f(r) ∀r ∈ D(T ,U).

Thus 1(X,U) ∈ C[D]((X,U), (X,U)) is the identity, as required.

We now just need to show that C[D] is not only a category, but a PCM-category:

(1) Hom-sets are PCMs: Given objects (X,U), (Y , V ) ∈ Ob(C[D]), we will show that the

summation given in Definition 4.2 above gives a PCM structure to C[D]((X,U), (Y , V )).

— Unary sum axiom: Consider an indexed family

{fi ∈ C[D]((X,U), (Y , V ))}i∈{i′} where fi′ = f.

We first demonstrate that {fi(a) ∈ C(X,Y )}(i,a)∈{i′}×D(U,V ) is summable in C. As

{i′} is a single-element set, {i′}×D(U,V ) ∼= D, and (trivially) fi = f, for all i ∈ {i′}.
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Therefore, by Proposition 2.3, the summability of {fi(a) ∈ C(X,Y )}(i,a)∈{i′}×D(U,V )

is equivalent to the summability of {f(a) ∈ C(X,Y )}a∈D(U,V ), and this is summable

by the definition of arrows in C[D]. Thus, singleton families are summable in

C[D]((X,U), (Y , V )). Finally, by the definition of the summation of C[D] and the

unary sum axiom for the PCM
(
C(X,Y ),ΣX,Y

)
,

⎛
⎝∑
i∈{i′}

fi

⎞
⎠ (a) =

∑
i∈{i′}

fi(a) = f(a),

and, therefore,
∑

i∈{i′} fi = f ∈ C[D]((X,U), (Y , V )).

— Weak partition-associativity: Consider a summable family

{fi ∈ C[D]((X,U), (Y , V ))}i∈I ,

and let {Ij}j∈J be a partition of I . By the definition of summability in C[D],

the family {fi(a) ∈ C(X,Y )}(i,a)∈I×D(U,V ) is summable in C. Now consider the

family {fi′ (a) ∈ C(X,Y )}(i′ ,a)∈Ij×D(U,V ). This is a subfamily of a summable family

of C(X,Y ) and thus, by the summable subfamilies property (Proposition 2.4), it

is itself a summable family. Therefore, by the definition of summability in C[D],

the family {fi′ ∈ C[D]((X,U), (Y , V ))}i∈I ′ is summable.

Similarly, to show that
∑

j∈J(
∑

i′∈Ij fi′ ) is summable in C[D]((X,U), (Y , V )), we

note that ⎧⎨
⎩

∑
i′∈Ij

fi′ (a) ∈ C(X,Y )

⎫⎬
⎭

(j,a)∈J×D(U,V )

is summable by the weak partition-associativity axiom applied to the PCM(
C(X,Y ),ΣX,Y

)
, and (again, by WPA),

⎛
⎝∑

j∈J

(∑
i′∈IJ

fi′

)⎞
⎠ (a) =

(∑
i∈I

fi

)
(a) ∈ C(X,Y )

for all a ∈ D(U,V ), and thus⎛
⎝∑

j∈J

(∑
i′∈IJ

fi′

)⎞
⎠ =

(∑
i∈I

fi

)
∈ C[D]((X,U), (Y , V )).

Hence, the summation on C[D]((X,U), (Y , V )) satisfies weak partition-associativity.

(2) Strong Distributive Law: Consider summable families of C[D]

{fi ∈ C[D]((X,U), (Y , V ))}i∈I
{gj ∈ C[D]((Y , V ), (Z,W ))}j∈J .
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Summability of these families is equivalent to the summability of the following

families in C:

{fi(a) ∈ C(X,Y )}(i,a)∈I×D(U,V )

{gj(b) ∈ C(Y ,Z)}(j,b)∈J×D(V ,W ).

By the strong distributivity law for C, the following family is therefore summable:

{gj(b)fi(a) ∈ C(X,Z)}(j,b,i,a)∈J×D(V ,W )×I×D(U,V ).

For all c ∈ D(U,W ), consider the (possibly empty) subset

Pc = {(j, b, i, a) : c = ba} ⊆ J × D(V ,W ) × I × D(U,V ).

Note that Pc ∩ Pc′ = �, for all c �= c′, and⋃
c∈D(U,W )

Pc = J × D(V ,W ) × I × D(U,V ),

giving a D(U,W )-indexed partition of the summable family

{gj(b)fi(a) ∈ C(X,Z)}(j,b,i,a)∈J×D(V ,W )×I×D(U,V ).

Thus, by the weak partition-associativity property of (C(X,Z),ΣX,Y ), the family

{gj(b)fi(a) ∈ C(X,Z) : ba = c}(j,c,i)∈J×D(U,W )×I

is summable, demonstrating that {gjfi ∈ C[D]((X,U), (Y , V ))}(j,i)∈J×I is summable in

C[D], as required.

For all c ∈ D(U,W ), the identity⎛
⎝∑

j∈J
gj

⎞
⎠ (∑

i∈I
fi

)
(c) =

⎛
⎝ ∑

(j,i)∈J×I
gjfi

⎞
⎠ (c) ∈ C(X,Z)

is then immediate from the existence of both sides of this equation, and the strong

distributivity law for C, so⎛
⎝∑

j∈J
gj

⎞
⎠ (∑

i∈I
fi

)
=

⎛
⎝ ∑

(j,i)∈J×I
gjfi

⎞
⎠ ∈ C[D]((X,U), (Z,W )),

as required.

4.1. The Cauchy product as a bifunctor

Theorem 4.5. The Cauchy product of Definition 4.2 defines a bifunctor

( )[ ] : CatΣ × cCat → CatΣ.

That is:

(1) Given D ∈ Ob(cCat), we have ( )[D] : CatΣ → CatΣ is a functor.

(2) Given C ∈ Ob(CatΣ), we have C[ ] : cCat → CatΣ is a functor.
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Proof.

(1) We first demonstrate that for arbitrary D ∈ cCat, the map ( )[D] : CatΣ → CatΣ
defines a functor:

— On objects: Given a PCM-category C ∈ Ob(CatΣ), we have C[D] ∈ Ob(CatΣ) is

as defined in Definition 4.2.

— On arrows: Given Γ ∈ CatΣ(C,E), we define the functor

(Γ[D]) ∈ CatΣ(C[D],E[D])

as follows:

– On objects: For all (X,U) ∈ Ob(C[D]), we define (Γ[D]) (X,U) = (Γ(X), U).

– On arrows: Given an arbitrary arrow f ∈ C[D]((X,U), (Y , V )), we define

(Γ[D]) (f) ∈ E[D]((Γ(X), U), (Γ(Y ), V ))

by

(Γ[D]) (f)(r) = Γ(f(r)) ∈ E(Γ(X),Γ(Y ))

for all r ∈ D(U,V ). It is immediate that this is well defined as an arrow in

E[D]((Γ(X), U), (Γ(Y ), V ))

since, as Γ is a PCM-functor (that is, an arrow of CatΣ(C,E)), we have∑
r∈D(U,V )

f(r) exists ⇒
∑

r∈D(U,V )

Γ(f(r)) exists.

To prove compositionality, consider

f ∈ C[D]((X,U), (Y , V ))

g ∈ C[D]((Y , V ), (Z,W )).

By the definition of composition,

gf(c) =
∑
c=ba

g(b)f(a)

for all c ∈ D(U,W ). However, by the definition of the functor (Γ[D]),

((Γ[D]) (g) (Γ[D]) (f)) (c) =
∑
c=ba

Γ(g(b))Γ(f(a)).

By the functoriality of Γ,

((Γ[D]) (g) (Γ[D]) (f)) (c) =
∑
c=ba

Γ(g(b)f(a)),

and, as Γ is a PCM-functor,

((Γ[D]) (g) (Γ[D]) (f)) (c) = Γ

(∑
c=ba

g(b)f(a)

)
= (Γ[D]) (gf)(c).
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Finally, given another functor Δ ∈ CatΣ(E,F), we have

– On objects:

(Δ[D]) (Γ[D]) (X,U) = (ΔΓ(X), U) = ((ΔΓ)[D]) (X,U).

– On arrows: Given f ∈ C[D]((X,U), (Y , V )), we have

(Δ[D]) (Γ[D]) (f)(r) = Δ(Γ(f))(r) = (ΔΓ(f))(r) = ((ΔΓ)[D]) (f)(r).

(2) We will now demonstrate that for arbitrary C ∈ CatΣ, the map C[ ] : cCat → CatΣ
is also functorial:

— On objects: Given arbitrary D ∈ Ob(cCat), we have C[D] is given by Defini-

tion 4.2.

— On arrows: Given a functor Λ ∈ cCat(D,H), we define

C[Λ] ∈ CatΣ(C[D],C[H])

by:

– On objects: C[Λ](X,U) = (X,Λ(U)).

– On arrows: Given f ∈ C[D]((X,U), (Y , V )), we define

(C[Λ]) (f) ∈ C[H]((X,Λ(U)), (Y ,Λ(V )))

by

(C[Λ]) (f)(x) =
∑
x=Λ(a)

f(a) ∈ C(X,Y )

for all x ∈ H(Λ(U),Λ(V )). This sum is well defined, since {f(a)}a∈D(U,V ) is

a summable family. Also, note that {x = Γ(a)}x∈H(Γ(U),Γ(V )) is a partition of

D(U,V ), and thus, by the weak partition-associativity axiom,

{(C[Λ]) (f)(x)}x∈H(Λ(U),Λ(V ))

is summable, so

(C[Λ]) (f) ∈ C[H]((X,Λ(U)), (Y ,Λ(V )))

is well defined.

To prove compositionality, consider

f ∈ C[D]((X,U), (Y , V ))

g ∈ C[D]((Y , V ), (Z,W )).

By the definition of composition, gf(c) =
∑

c=ba g(b)f(a) for all c ∈ D(U,W ),

so

(C(Λ)(gf)) (z) =
∑
z=Λ(c)

(gf)(c)

for all z ∈ H(Λ(U),Λ(W )).
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Now note that, for all

y ∈ H(Λ(V ),Λ(W ))

x ∈ H(Λ(U),Λ(V )),

we have

(C(Λ)(g)) (y) =
∑
y=Λ(b)

g(b)

(C(Λ)(f)) (x) =
∑
x=Λ(a)

f(c),

so, by the strong distributive law for PCM-categories, and the functoriality

of Λ,

(C(Λ)(g)) (C(Λ)(f)) (z) =
∑
z=Λ(c)

(gf)(c) = (C(Λ)(gf)) (z) ∈ C(X,Z).

Finally, given another functor Ω ∈ cCat(H,K), we have:

— On objects:

(C[Ω]) (C[Λ]) (X,U) = (X,ΩΛ(U)) = (C[ΩΛ]) (X,U).

— On arrows: Given f ∈ C[D]((X,U), (Y , V )), we have

(C[Ω]) (C[Λ]) (f)(p) =
∑

p=Ω(x) , x=Λ(a)

f(a) =
∑

p=ΩΛ(a)

f(a) = (C[ΩΛ]) (f)(p)

for all p ∈ K(ΩΛ(U),ΩΛ(V )).

Remark 4.6 (is the Cauchy product a monoidal tensor?). Since the Cauchy product is a

bifunctor CatΣ × cCat → CatΣ, it is natural to wonder whether, when restricted to locally

countable PCM-categories, it is in fact a monoidal tensor. It is also easy to show that

this is not the case: consider three locally countable PCM-categories, C,D,E ∈ Ob(CatΣ),

and denote their (object-indexed families of) summations by ΣC( , ), ΣD( , ) and ΣE( , ),

respectively. Then it is immediate that the structure of C[D[E]] depends on the family of

summations ΣD( , ) on the homsets of D, whereas the structure of (C[D])[E] is independent

of ΣD( , ). Therefore, in general, (C[D])[E] cannot be equal to C[D[E]], even up to a

canonical isomorphism.

Rather, as we will now demonstrate, there exist embeddings of C into C[D] indexed by

objects of D, together with embeddings of D into C[D] indexed by objects of C, and an

embedding of the product C × D into C[D]. The embeddings of C into C[D] also have a

common left-inverse, giving an indexed family of retractions.

5. Embedding the base category into a Cauchy product

We now give an embedding of the base category C into the Cauchy product C[D], and

show that C is a retract of C[D].

We first exhibit a forgetful functor from C[D] to C.
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Definition 5.1. Given D ∈ Ob(cCat) and C ∈ Ob(CatΣ), we define σC,D : C[D] → C by:

— On objects: σC,D(X,U) = X, for all (X,U) ∈ Ob(C[D]).

— On arrows: Given h ∈ C[D]((X,U), (Y , V )), we have

σC,D(h) =
∑

a∈D(U,V )

h(a) ∈ C(X,Y ).

Proposition 5.2. σC,D : C[D] → C as given above is a PCM-functor.

Proof. First note that, by the definition of arrows in C[D], the family {h(a)}a∈D(U,V ) is

summable for all h ∈ C[D]((X,U), (Y , V )), so

σC,D(h) =
∑

a∈D(U,V )

h(a) ∈ C(X,Y )

is well defined.

To prove functoriality, consider k ∈ C[D]((Y , V ), (Z,W )). We have

σ(k)σ(h) =

⎛
⎝ ∑
b∈D(V ,W )

k(b)

⎞
⎠

⎛
⎝ ∑
a∈D(U,V )

h(a)

⎞
⎠ .

By the strong distributivity property,

σ(k)σ(h) =
∑

(b,a)∈D(V ,W )×D(U,V )

k(b)h(a).

Conversely, kh ∈ C[D]((X,U)(Z,W )) is defined by

(kh)(c) =
∑
c=ba

k(b)h(a)

for all c ∈ D(U,W ).

Now note that {(kh)(c)}c∈D(U,W ) is a summable family, and by weak partition-

associativity,

σ(kh) =
∑
c=ba

k(b)h(a) =
∑

(b,a)∈D(V ,W )×D(U,V )

k(b)h(a) = σ(k)σ(h).

So σ : C[D] → C preserves composition. The proof that it also preserves identities follows

from the formula for identities in PCM-categories given in Theorem 4.4:

1(X,U)(r) =

{
1X ∈ C(X,X) r = 1U ∈ D(U,U)

0X otherwise.

It is immediate that σ(1(X,U)) = 1X ∈ C(X,X).

Now consider a summable family {fi ∈ C[D]((X,U), (Y , V ))}i∈I . By the definition of

summation in C[D], the family {fi(a) ∈ C(X,Y )}(i,a)∈I×D(U,V ) is summable in C, and, again

by definition, (∑
i∈I

fi

)
(a) =

∑
i∈I

fi(a) ∈ C(X,Y ).
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Thus, by weak partition-associativity and Proposition 2.3,

∑
i∈I

σ(fi) =
∑
i∈I

⎛
⎝ ∑
a∈D(U,V )

f(a)

⎞
⎠ =

∑
a∈D(U,V )

(∑
i∈I

fi(a)

)
= σ

(∑
i∈I

fi

)
.

Therefore, σ : C[D] → C is a PCM-functor.

We will now exhibit a family of embeddings of C into C[D], indexed by objects of D.

Definition 5.3. Let D be an arbitrary category and C be a PCM-category. For all U ∈
Ob(D), we define ηC,U : C → C[D] by:

— On objects: ηC,U(X) = (X,U), for all X ∈ Ob(C).

— On arrows: Given h ∈ C(X,Y ), we have ηC,U(h) ∈ C[D]((X,U), (Y ,U)) is the function

ηC,U(h) : D(U,U) → C(X,Y ) given by

(
ηC,U(h)

)
(a) =

{
h a = 1U
0XY a �= 1U.

We will now prove that these maps are injective PCM-functors.

Proposition 5.4. For all U ∈ Ob(D), the map ηC,U : C → C[D] defined above is an injective

PCM-functor.

Proof. Given h ∈ C(X,Y ), we know ηU(h) is trivially well defined as an arrow of

C[D]((X,U), (Y ,U)) since
∑

a∈D(U,U) h(a) = h by Proposition 2.4. Now consider k ∈
C(Y ,Z). By the definition of composition in C[D],(

ηC,U(k)
) (
ηC,U(h)

)
(c) =

∑
c=ba

(
ηC,U(k)

)
(b)

(
ηC,U(h)

)
(a).

However, (
ηC,U(k)

)
(b)

(
ηC,U(h)

)
(a) =

{
kh b = a = 1U
0XY otherwise,

so (
ηC,U(k)

) (
ηC,U(h)

)
(c) =

{
kh c = 1U
0XY c �= 1U,

giving ηC,U(k)ηC,U(h) = ηC,U(kh) as required. It is immediate from the definition that

ηC,U(1X) = 1(X,U) ∈ C[D]((X,U), (X,U))

for all X ∈ Ob(C).

For the summation, consider a summable family {fi ∈ C(X,Y )}i∈I . By the definition of

summability in C[D], the family {ηC,U(fi) ∈ C[D]}i∈I is also summable, and

∑
i∈I

ηC,U(fi) = ηC,U

(∑
i∈I

fi

)
.

The injectivity of ηC,U : C → C[U] on objects is immediate. To demonstrate the

injectivity on arrows, consider f, f′ ∈ C(X,Y ) satisfying ηC,U(f) = ηC,U(f′). Then, for all
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a ∈ D(U,U),

ηC,U(f)(a) = ηC,U(f′)(a).

Taking a = 1U , gives f = f′, as required.

We therefore have a family of injective PCM-functors from C to C[D] indexed by the

objects of D.

Proposition 5.5. Let D be an arbitrary category and C be a PCM-category. Then there

exists a family of retractions from C to C[D], indexed by objects of D.

Proof. For arbitrary U ∈ Ob(D), we will demonstrate that σC,DηC,U = IdC:

— On objects:

σC,DηC,U(X) = σC,D(X,U) = X

— On arrows: Given f ∈ C(X,Y ), we have

σC,D(ηC,U(f)) =
∑

a∈D(U,U)

(ηC,U(f))

where

ηC,U(f)(a) =

{
f a = 1U
0XY otherwise.

So, by Proposition 2.4, σC,D(ηC,U(f)) = f ∈ C(X,Y ).

Thus σC,D : C[D] → C is left-inverse to all ηC,U : C → C[D], so C is a retract of C[D],

with retractions indexed by U ∈ Ob(D).

6. Embedding the index category into a Cauchy product

In a similar way to the way in which there exists an (object-indexed) family of embeddings

of the base category into a Cauchy product, we will now exhibit a family of embeddings of

the index category into a Cauchy product, which is indexed by objects of the base

category.

Definition 6.1. Let D be an arbitrary category and C be a PCM-category. For all X ∈
Ob(C), we define the functor γX,D : D → C[D] by:

— On objects: γX,D(U) = (X,U), for all U ∈ Ob(D),

— On arrows: Given h ∈ D(U,V ), we have γX,D(h) ∈ C[D]((X,U), (X,V )) is defined by

γX,D(h)(a) =

{
1X a = h

0X otherwise.

Proposition 6.2. γX,D : D → C[D] as defined above is an injective functor for all X ∈
Ob(C).

Proof. By Proposition 2.4, it is immediate that for all h ∈ D(U,V ), the family

{γX,D(h)(a) ∈ C(X,X)}a∈D(U,V ) is summable, and hence γX,D(h) is an arrow of
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C[D]((X,U), (X,V )). To demonstrate functoriality, consider k ∈ D(U,V ). Then(
γX,D(k)γX,D(h)

)
(c) =

∑
c=ba

γX,D(k)(b)γX,D(h)(a).

However,

γX(k)(b)

{
1X b = k

0XX otherwise

γX(h)(a)

{
1X a = h

0XX otherwise.

Therefore,

(γX(k)γX(h)) (c) =

{
1X c = kh

0XX otherwise,

so γX,D(k)γ(X,D)(h) = γX,D(kh). The proof that γX,D also preserves identities is trivial.

To demonstrate injectivity, consider h, h′ ∈ D(U,V ). Then

γX(h)(a)

{
1X a = h

0XX otherwise

γX(h′)(a)

{
1X a = h′

0XX otherwise,

which are identical exactly when h = h′.

We therefore have a family of injective functors from D to C[D] indexed by objects of C.

7. Embedding the product of base and index into the Cauchy product

As well as the above embeddings of the base and index categories into the Cauchy product,

there is a straightforward embedding of the product of the base and index categories into

the Cauchy product.

Definition 7.1. Given a PCM-Category C and a locally small category D, we define the

functor†

( � ) : C × D → C[D]

as follows:

— Objects: Given X ∈ Ob(C) and U ∈ Ob(D), we have X � U = (X,U) ∈ Ob(C[D]).

— Arrows: Given f ∈ C(X,Y ) and g ∈ D(U,V ), we have f � g ∈ C[D]((X,U), (Y , V )) is

the function

(f � g)(h) =

{
f g = h

0X,Y otherwise.

† Note that this is simply a functor, rather than a PCM-functor, since the product category C × D is not a

PCM-category. However, the construction relies on the assumption that C is indeed a PCM-category.
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It is immediate that the family {(f � g)(h)}h∈D(U,V ) is summable, so this is indeed an

arrow of C[D].

Lemma 1. The operation ( � ) : C × D → C[D] is indeed a functor.

Proof.

— Compositionality: Consider the arrows

f ∈ C(X,Y )

f′ ∈ C(Y ,Z)

g ∈ D(U,V )

g′ ∈ D(V ,W ).

By definition, f′f � g′g ∈ C[D]((X,U), (Z,W )) is given by the function

(f′f � g′g)(k) =

{
f′f k = g′g

0X,Z otherwise.

Similarly, the arrows

f � g ∈ C[D]((X,U), (Y , V ))

f′ � g′ ∈ C[D]((Y , V ), (Z,W ))

are, by definition, the functions

(f � g)(h) =

{
f h = g

0X,Y otherwise

(f′ � g′)(j) =

{
f′ j = g′

0Y ,Z otherwise.

Then, by the definition of composition in C[D],(
(f′ � g′)(f � g)

)
(k) =

∑
k=jh

(f′ � g′)(j)(f � g)(h).

From the definitions of f′ � g′ and f � g, we see that

∑
k=jh

(f′ � g′)(j)(f � g)(h) =

{
f′f k = g′g

0X,Z otherwise.

Hence, ((f′ � g′)(f � g))(k) = (f′f � g′g)(k), as required.

— Identities: By definition, 1X � 1U ∈ C[D]((X,U), (X,U)) is the function

(1X � 1U)(h) =

{
1X h = 1U
0XX otherwise,

which, from Theorem 4.4, is precisely 1(X,U) ∈ C[D]((X,U), (X,U)).

Corollary 7.2. The functor ( � ) : C × D → C[D] is an embedding of C × D into C[D].
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Fig. 1. The universal property for monoid semirings

Proof. By definition, X �U
def
= (X,U), so ( � ) is bijective on objects. To see injectivity

on arrows, recall that

(f � g), (h � k) ∈ C[D]((X,U), (Y , V ))

are functions from D(U,V ) to C(X,Y ) given in Definition 7.1. From this definition, these

are identical exactly when f = h and g = k, and hence are equal in C × D – that is,

f � g = h � k ⇔ f × g = h× k,

which completes the proof

8. Universal properties and the Cauchy product

The functors ηC,U : C → C[D] and γX,D : D → C[D] are clearly (object-indexed) categor-

ical analogues of the usual augmentation and inclusion maps used in the demonstration of

the universal property of the monoid semiring construction (see Steinberger (1993) for a

good exposition, albeit in the special case of monoid rings). It is natural to wonder whether

an analogous property holds for the categorical Cauchy product. In this section we give

an exposition of the usual universal property of monoid semirings, and demonstrate that a

straightforward generalisation to the Cauchy product is not possible, except in the trivial

one-object case. The computational significance of this is discussed, and we consider the

additional structure that would be required in order to have a suitable universal property

in the full multi-object case.

8.1. The universal property of monoid semirings

The universal property of monoid semirings is a canonical example of a universal property

(see, for example, Steinberger (1993)).

Theorem 8.1. Let (M, ·) be a monoid, and (A,×,+, 1A, 0A) and (B,×B, 1B, 0B) be unital

semirings. Also, let f : A → B be a unital semiring homomorphism and g : (M, ·) →
(B,×B) be a monoid homomorphism. Finally, let η : A → A[M] and γ : M → A[M] be

the usual augmentation and inclusion maps. Then there exists a unique unital semiring

homomorphism h : A[M] → B such that the diagram of Figure 1 commutes.

Proof. Given α : M → A, an element of A[M], we define the semiring homomorphism

h : A[M] → B by

h(α) =
∑
m∈M

f(α(m))g(m).
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Fig. 2. A canonical example of the universal arrow

The proof that this is a unique unital semiring homomorphism that makes the above

diagram commute is then straightforward, and may be found in many algebra texts (for

example, Steinberger (1993)).

Remark 8.2 (interpretation). The usual interpretation of the above universal property is

that the unique unital semiring homomorphism making the diagram of Figure 1 commute

describes the computational process of instantiating a free variable. In order to provide

motivation for this interpretation, we will describe a simple example.

Consider the monoid Zp = {0, 1, . . . , p− 1} for some prime p, together with the semiring

of natural numbers N. The members of the monoid semiring N[Zp] are often written as

‘polynomials’ in some formal variable z, so the function f : Zp → N would be written as

f(0)z0 + f(1)z1 + f(2)z2 + · · · + f(p− 1)zp−1

with the understanding that multiplication of this formal variable is defined by zazb =

za+b (mod p). Using this polynomial formalism, the augmentation η : N → N[Zp] and

inclusion γ : Zp → N[Zp] are given by

η(n) = nz0

γ(r) = zr.

We will now consider the usual semiring homomorphism ι : N → C given by the

canonical inclusion, together with the monoid homomorphism χs : Zp → C defined by

χs(a) = e2πi
as
p for some fixed s �= 0 ∈ N.

The universal property of the monoid semiring construction tells us that there is a

unique induced universal map sub : N[Zp] → C that makes the diagram of Figure 2

commute. From the prescription given in the proof of Theorem 8.1, it is immediate that

the action of the universal arrow is given by

f(0)z0 + f(1)z1 + f(2)z2 + · · · + f(p− 1)zp−1

�

sub

��

f(0) + f(1)e2πi
s
p + f(2)e2πi

2s
p + · · · + f(p− 1)e2πi

(p−1)s
p

(note that we elide the inclusion homomorphism ι : N → C, for clarity). Thus, the induced

universal map is simply interpreted as substituting a concrete value for the formal

variable z.

An immediate question is whether such a property also exists for the categorical Cauchy

product? That is, given a PCM-functor Γ ∈ CatΣ(C,E) together with D ∈ Ob(cCat)
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Fig. 3. Can such a universal family of functors exist?

and a functor Δ ∈ Cat(D,E), does there exist an object-indexed family of functors

ΥX,U ∈ CatΣ(C[D],E) making the diagram of Figure 3 commute for arbitrary choice of

X ∈ Ob(C) and U ∈ Ob(D)?

However, it is straightforward to see simply from the fact that the categorical version is

in the multiple-object setting that such a universal property can only ever hold in a very

restricted setting, as the following result demonstrates.

Proposition 8.3. We assume the existence of an object-indexed family of functors ΥX,U :

C[D] → E making the diagram of Figure 3 commute for all X ∈ Ob(C) and U ∈ Ob(D).

Then Γ(X) = Δ(U) for all X ∈ Ob(C) and U ∈ Ob(D).

Proof. We fix some arbitrary X ∈ Ob(C) and Y ∈ Ob(D) such that the following

diagram commutes:

C
ηC,U ��

Γ
		��

��
��

��
� C[D]

ΥX,U

��

D
γX,D��

Δ
����

��
��

��
�

E
Then for all P ∈ Ob(C),

ηC,U(P ) = (P ,U) ∈ Ob(C[D])

by the definition of ηC,U , and by the commutativity of the above diagram, ΥX,UηC,U =

Γ. Therefore, ΥX,U(P ,U) = Γ(P ). Similarly, γX,D(Q) = (X,Q) for all Q ∈ Ob(D), so

ΥX,U(X,Q) = Δ(Q), since ΥX,UγX,D = Δ. Combining these, we see that

ΥX,U(X,U) = Γ(X) = Δ(U).

Finally, X and U were chosen arbitrarily, so Γ(X) = Δ(U) for all X ∈ Ob(C) and

U ∈ Ob(D).

Remark 8.4 (the multi-object case, and universal arrows). A simple corollary of the above

proof is that when such a universal family of functors exists, Γ : C → E and Δ : D → E
map all objects of C and D to the same object of E (it is then straightforward, though

deeply uninteresting, to demonstrate that in the restricted case where the target in the

diagram of Figure 3 is a one-object PCM category, we do indeed have a universal property

that is a direct generalisation of that of Theorem 8.1). Note also that the above proof

is based entirely on how such a universal family of functors might act on the objects of

these categories. Therefore, it does not depend on any subtlety about the precise notion

of summation used, or even on the definition of composition; rather, it fails on the simple

fact that E has more than one object.
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From an algebraic point of view, this appears to be a serious drawback – indeed,

it is not uncommon to define the monoid semiring construction simply in terms of the

existence of a suitable universal arrow. However, from a more computational point of

view, it appears reasonable: from the interpretation given in Remark 8.2, we should think

of the construction of a universal arrow as substituting values for variables. When we

consider the multi-object setting, the multiplicity of objects gives distinct types for both

variables and values. The interpretation of Proposition 8.3 is then that, when we try to

substitute values for variables, we must do so in a context where all types agree. From a

computational, rather than algebraic, point of view this is to be expected!

However, this does not mean that no suitable universal property may exist. The key

question is simply which object of E is the appropriate target of ΥX,U? Let us now assume

that the PCM-category E also has a monoidal tensor ( ⊗ ) that is required to satisfy some

universal property for bilinearity, which is analogous to either that of the usual tensor

product of Hilbert spaces or the constructions of Bahamonde (1985) for Partially Additive

Monoids. In this case, the natural candidate must be the object Γ(X) ⊗ Δ(U) ∈ Ob(E).

It therefore seems that questions of universal properties must await a theory of monoidal

PCM-categories. As we demonstrate in Section 10, such a theory would be key to many

reasonable generalisations and applications, both algebraic and computational.

9. Conclusions

We have demonstrated that the monoid-semiring construction can be placed within a

significantly more general categorical and multi-object setting. So that this more general

theory may be equally applicable in both ‘analytic’ and ‘algebraic’ settings, this was done

using an axiomatisation of summation that unifies notions from analysis with notions

from algebraic program semantics.

10. Future directions

As well as the program outlined above, work continues in several related directions:

— Categorical enrichment: A natural question arising from this paper is whether the

notion of a ‘PCM-category’ is in fact an example of categorical enrichment (as in

Kelly (1982)) over the category PCM? Enrichment requires either a monoidal, or

a closed (or monoidal closed) structure. It has recently been demonstrated by the

author and P. Scott (Ottawa) that PCM is a closed category in the sense of Laplaza

(1977), and a monoidal tensor adjoint to the closed structure has been given explicitly

by T. Porter (Wales). This monoidal tensor appears to exhibit a universal property

for a suitable notion of bilinear maps of PCMs (these are similar to the constructions

of Bahamonde (1985) for Partially Additive Monoids). It is expected that a category

enriched over this monoidal closed category is exactly a ‘PCM-category’, as defined in

Definition 3.1. This is the subject of ongoing work.

— The Cauchy product and monoidal structures: Although we have demonstrated that

the Cauchy product is a bifunctor with interesting embedding properties, we have not

yet considered the case where either the base category or the index category (or both)
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have a monoidal tensor. This requires studying the monoidal structure of PCM (as

above) in order to describe what it means for a PCM-category to have a monoidal

tensor. This is undoubtedly an interesting route to explore, and is also important for

the applications to semantics described below.

— PCM-categories, algebraic program semantics and axiomatisations of summation: From

the start, the notion of a PCM-category was intended as a unification of the forms

of summation used in algebraic program semantics with more analytic notions of

summation used in Hilbert and Banach spaces. A very natural question is therefore

how much of the traditional theory may be carried through to this more general

setting, and whether such constructions as the Elgot dagger or (presumably partial)

particle-style categorical traces may be defined†. Again, the absolute starting point for

this is the definition of suitable monoidal tensors, and their interaction with notions

of summation.

Note that all the above future directions depend on a detailed study of monoidal tensors

and closed structures in both PCM and members of CatΣ. Thus, it appears that pursuing

such questions as pure theory may be the most profitable route!

Appendix A. PCMs and PCM-categories

We consider various examples of both PCMs and PCM-categories, as defined in Defini-

tions 2.1 and 3.1, respectively. We also draw some comparisons with other axiomatisations

of summation from the field of algebraic program semantics.

A.1. Examples of PCMs from algebraic program semantics

Both Σ-monoids, and partially additive monoids, as introduced in Manes and Benson (1985)

and Manes and Arbib (1986) and used in Haghverdi (2000), Abramsky et al. (2002) and

Haghverdi and Scott (2006), may be given as special cases of PCMs.

Definition A.1 (Σ-monoids, Partially additive monoids). A PCM (M,Σ) is called a Σ-

monoid when it satisfies the following additional axiom:

— The (full) partition-associativity axiom: Let {xi}i∈I be a countably indexed family and

{Ij}j∈J be a countable partition of I . Then {xi}i∈I is summable if and only if {xi}i∈Ij
is summable for every j ∈ J , and {

∑
i∈Ij xi}j∈J is summable, in which case

∑
i∈I

xi =
∑
j∈J

⎛
⎝∑

i∈Ij

xi

⎞
⎠.

† As supporting evidence that this is possible, see Hines and Scott (2012) and Hines (2010), where partial

categorical traces based on notions of summation that do not satisfy positivity (but do, however, satisfy

the PCM axioms) are used both to model quantum-optics thought experiments and to construct concrete

quantum circuits.
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Note that this is a special case of the weak partition-associativity axiom, but with a two-way

rather than a one-way implication.

A Σ-monoid is called a Partially Additive Monoid (PAM) when it satisfies the following

additional axiom:

— The limit axiom: If {xi}i∈I is a countably indexed family where{xi}i∈F is summable

for every finite F ⊆ I , then {xi}i∈I is summable.

The following are Partially Additive Monoids, and are therefore examples of PCMs:

— Partial functions, with the usual summation: An indexed family of partial functions

{fi : X → Y }i∈I is summable exactly when dom(fi) ∩ dom(fj) = � for all i �= j. The

sum is given by (∑
i∈I

fi

)
(x) =

{
fi(x) x ∈ dom(fi)

undefined otherwise.

— Relations, with set-theoretic union: Any indexed family of relations {Ri : X → Y }i∈I
is summable, and the sum is simply set-theoretic union.

— Partial injective functions: The following distinct summations both give a PAM

structure to hom-sets of partial injective functions:

– The disjointness summation: An indexed family of partial functions {fi : X → Y }i∈I
is disjointness-summable exactly when dom(fi)∩dom(fj) = � for all i �= j. The sum

is given by

(∑
i∈I

fi

)
(x) =

{
fi(x) x ∈ dom(fi)

undefined otherwise.

– The overlap summation: An indexed family of partial functions {fi : X → Y }i∈I
is overlap-summable exactly when x ∈ dom(fi) ∩ dom(fj) ⇒ fi(x) = fj(x), for all

i, j ∈ I . The sum is as given above.

The following example is not a partially additive monoid, but is a Σ-monoid, and thus

also an example of a PCM:

— Absolute convergence on positive cones: See Selinger (2004) for categories of positive

cones, and summation based on the usual summation of positive elements in finite-

dimensional vector space.

Given our stated aim of unifying notions of summation from both analysis and algebraic

program semantics, both Σ-monoids and Partially Additive Monoids have undesirable

properties for our purposes. The limit axiom is clearly undesirable for any example based

on real or complex numbers: all finite families of complex numbers are summable, but

the same is certainly not true (as the limit axiom would imply) for arbitrary countably

infinite families.

The full partition-associativity axiom is also undesirable for slightly more subtle reasons,

as the following proposition (taken from Manes and Arbib (1986)) demonstrates.

Proposition A.2. Let (M,Σ) be a Σ-monoid and X = {xi}i∈I be a summable family of M

satisfying
∑

i∈I xi = 0. Then xi = 0 for all i ∈ I .
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Proof. For some i ∈ I , we define Y = {xj}j �=i∈I , so xi +
∑
Y = 0 =

∑
Y + xi by weak

partition-associativity. Then, by the full partition-associativity axiom,

xi = xi + 0 + 0 + 0 + · · · (by Proposition 2.4)

= xi +
(∑

Y + xi

)
+

(∑
Y + xi

)
+

(∑
Y + xi

)
+ · · ·

(by full partition-associativity)

=
(
xi +

∑
Y

)
+

(
xi +

∑
Y

)
+

(
xi +

∑
Y

)
+ · · ·

= 0 + 0 + · · · = 0. (by Proposition 2.4)

Hence xi = 0, but since i was chosen arbitrarily, we have xk = 0 for all k ∈ I .

A.2. Positivity, computation and the PCM axioms

From a certain point of view, positivity seems to be a natural property of the notions of

summation used in theoretical computer science. Taking the ‘sum’ of a family of arrows

in a category is often interpreted in a very domain-theoretic manner as looking at the

total information provided by all these arrows. The challenge to this intuition comes from

the field of quantum computation, where summing amplitudes leads to both constructive

and destructive interference effects. For example, Deutsch et al. (1999) says:

‘Amplitudes are complex numbers and may cancel each other, which is referred to as destructive

interference, or enhance each other, referred to as constructive interference. The basic idea of

quantum computation is to use quantum interference to amplify the correct outcomes and to

suppress the incorrect outcomes of computations.’

From this point of view, at least, enforcing positivity in models of quantum computation

would seem to rule out the phenomena that distinguish quantum computation. A good

example is provided by the quantum Fourier transform†, which is based on group

homomorphisms χ : Zn → Hilb(H,H) satisfying
∑n−1

j=0 χ(j) = 0H . Clearly, assuming

positivity will only allow for the trivial homomorphism.

Finally, see Hines (2010) for an application of category theory to quantum circuits

that relies on both summing linear maps and composition based on convolved (that is,

Cauchy) products.

A.3. Non-positive examples of PCMs

The proof of positivity for Sigma monoids given in Proposition A.2 does not apply to

general PCMs, as it depends on the two-way implication in the (full) partition-associativity

axiom. We will give various examples of PCMs that need not be either Partial Additive

Monoids or Sigma-monoids. Many of these are based on the theory of Cauchy sequences

(Hobson 1957; Titchmarsh 1983), and various analytic notions of summability, such as

absolute convergence of real or complex sums.

† Quantum Fourier transforms are required in, for example, Shor’s algorithm (Shor 1999) and quantum

period-finding generally (Nielsen and Chuang 2000).
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Definition A.3. Let
∑∞

j=0 aj be a formal (that is, not necessarily convergent) series of real

numbers. The nth partial sum is defined by An =
∑n

j=0 aj . When limn→∞(An) exists, the

infinite series is said to converge. Note that convergence is permutation-dependent. Let∑∞
j=0 aj and

∑∞
k=0 bk , be series satisfying bk = aσ(j) for some permutation σ : N → N.

Then the convergence of
∑∞

j=0 aj is not enough to guarantee the convergence of
∑∞

k=0 bk .

A convergent series
∑∞

j=0 aj is said to converge absolutely when it satisfies the additional

property that the non-negative series
∑∞

j=0 |aj | is convergent. Alternatively, a convergent

series
∑∞

j=0 aj is said to be permutation-independent when
∑∞

i=0 aσ(i) converges for arbitrary

permutations σ : N → N.

The following result is straightforward.

Lemma 2. The real line, with summation defined by convergence, is not a PCM.

Proof. From Proposition 2.3, summation in a PCM must satisfy permutation

independence.

A standard result of analysis is that for real and complex numbers, absolute convergence

is equivalent to permutation-independence†. Real numbers with summation defined by

absolute convergence thus provides our first example of a PCM not satisfying the positivity

property.

Proposition A.4. The real number line R, together with summation defined by absolute

convergence, satisfies the axioms for a PCM.

Proof. It is trivial that the unary sum axiom is satisfied. To see that the weak partition-

associativity axiom is also satisfied, see Hille (1982, page 108) – this reference is also cited

in Remark 2.2 of this paper. See also Kadets and Kadets (1991, Theorem 8, page 84).

The following corollary is then immediate.

Corollary A.5. The complex plane C, together with the summation defined by absolute

convergence, satisfies the PCM axioms.

The above results may be extended to finite-dimensional Hilbert and Banach spaces,

with no substantial obstacles. However, it is more satisfactory to consider summation in

the general setting, and restrict to these examples as special cases. As a preliminary, we

need some additional analytic notions of summation. The following definition is taken

from Day (1973).

Definition A.6. Let X be an arbitrary Banach space. A series
∑∞

i=0 xi is said to converge

absolutely when
∑∞

i=0 ‖xi‖ < ∞. Alternatively, is is said to converge unconditionally when

the series
∑∞

j=0 xσ(j) converges for arbitrary permutations σ : N → N. (Unconditional

summability can simply be thought of as permutation-independent convergence, but in

† We emphasise that this is specific to the real and complex planes, and finite-dimensional spaces, but in more

general settings, absolute convergence and permutation-independence are distinct concepts. In particular,

infinite-dimensional Banach spaces or abstract topological groups provide counterexamples, as discussed

after Definition A.6.
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a more general setting.) It is standard that for any unconditionally convergent series, all

rearrangements have the same sum; also, every subseries of an unconditionally convergent

series is itself unconditionally convergent (Thorpe 1968).

Theorem A.7. In an arbitrary Banach space, absolute convergence implies unconditional

convergence, but the converse is not generally true. However, in finite-dimensional Banach

spaces, absolute convergence and unconditional convergence are equivalent.

Proof. This is a standard result of analysis – see, for example, Kadets and Kadets (1991,

Theorem 1.3.3).

Definition A.8. Let X be an arbitrary Banach space. A series
∑∞

i=0 ai is subseries convergent

when the partial sums An =
∑n

j=0 α(j)aj form a Cauchy sequence for arbitrary choice of

α : N → {0, 1}. Subseries convergence is often defined informally as ‘each subseries of∑∞
i=0 ai converges’.

In Banach spaces, subseries convergence provides a nice characterisation of unconditional

convergence, as the following classic theorem demonstrates.

Proposition A.9. Let X be an arbitrary Banach space. A series
∑∞

i=0 xi is unconditionally

convergent if and only if it is subseries convergent.

Proof. This is a corollary of the classic result of Orlicz (1933). See Day (1973) for a

textbook proof (in English), and Lahiri and Das (2002) for a nice elementary proof.

Note that the above result depends on the sequential completeness of Banach spaces,

and thus in more general settings, subseries-convergence and unconditional convergence

are not equivalent concepts. In particular, conditions equivalent to subseries convergence

were introduced in Gelfand (1938) as ‘strong unconditional convergence’†.

Corollary A.10. Absolutely convergent series in finite-dimensional Banach spaces are

subseries-convergent.

Proof. This follows from Theorem A.7.

As may be expected, subseries-convergent series satisfy the weak partition-associativity

axiom. To prove this, we first need some unsurprising technical results.

Definition A.11. Let
∑∞

j=0 yj be an infinite series and
∑α

i=0 xi be a finite or infinite series

in some Banach space X. We say that
∑∞

j=0 yj is a 0-padding of
∑α

i=0 xi when there exists

some injection η : {0, . . . α} → N such that for all j ∈ N,

yj =

{
x(i) j = η(i)

0 otherwise.

† See McArthur (1961) for many conditions equivalent to subseries-convergence, including the definitions of

Gelfand (1938).
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Lemma 3. Let
∑α

i=0 xi be a finite or countably infinite subseries-summable series in some

Banach space X, and
∑∞

j=0 yj be a zero-padding of
∑∞

i=0 xi. Then
∑∞

j=0 yj is subseries

convergent and
∑∞

j=0 yj =
∑α

i=0 xi.

Proof. We assume that
∑∞

i=0 xi is an infinite series, since otherwise the result is trivial.

Consider arbitrary β : N → {0, 1}, along with the sum
∑∞

j=0 β(j)yj , and let η : N → N be

the embedding satisfying

yj =

{
x(i) j = η(i)

0 otherwise.

Then, since the partial sums {
∑n

i=0 xi}n∈N form a Cauchy sequence, so do the partial sums

{
∑m

j=0 yj}m∈N. Thus, as β : N → {0, 1} was chosen arbitrarily, we deduce that
∑∞

j=0 yj is

subseries convergent, as required. The equivalence of the two sums is then immediate.

This technical lemma then allows us to appeal to some standard results to demonstrate

that subseries-convergent series in Banach spaces satisfy the weak partition-associativity

axiom.

Theorem A.12. Let
∑∞

i=0 xi be a subseries-convergent series in an arbitrary Banach space

X, and let {Ij}j∈J be a countable partition of I . Then {xi}i∈Ij is subseries-convergent, as

is {
∑

i∈Ij xi}j∈J , and
∑

i∈I xi =
∑

j∈J(
∑

i∈Ij xi).

Proof. This result is proved for partitions into countably infinite sets in Thorpe (1968,

Lemma 2). The case where certain of these partitions are finite appears to be implicitly

assumed in Thorpe (1968) – for a formal justification, we may consider zero-padding

the original sequence to replace finite subsums by infinite sums with a finite number of

non-zero summands, and appealing to Lemma 3.

We may now list a number of PCMs that do not, or are not required to, satisfy the

positivity condition.

(1) Absolute convergence of real or complex numbers: Absolute convergence of countable

sums in the real or complex plane is a motivating example for the theory of PCMs

and PCM-categories. It arises as a special case of absolute convergence in finite-

dimensional Hilbert spaces, as below.

(2) Absolute convergence in finite-dimensional Hilbert spaces: All finitely indexed families

are summable, with the usual summation. A countably indexed family {ψi}i∈N is

summable exactly when the sequence {
∑n

i=1 ‖ψi‖}n∈N is a Cauchy sequence.

(3) Subseries-summable summation in arbitrary Banach spaces: All finitely indexed families

are summable, with the usual summation. A countably indexed family {bi}i∈N is

summable exactly when the series
∑∞

i=0 bi is subseries-summable in the sense of

Definition A.8, in which case the sum is the limit of the Cauchy sequence {
∑n

i=1 bi}n∈N.

(4) The unit ball summation in finite-dimensional Banach spaces: Let B be a finite-

dimensional Banach space, and denote the unit ball by Ball(B) = {b ∈ B : ‖b‖ � 1}.
An indexed family {bi}i∈I is summable exactly when

∑
i∈I ‖bi‖ � 1, in which case its

sum is the usual Banach space summation.
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(5) Any abelian monoid: Given an abelian monoid (M,+, 0M), the following are distinct

PCM-structures:

— The finite families summation: An indexed set {mi}i∈I is summable exactly when

the subfamily of non-zero elements {mj}j∈J⊆I is a finite family. The sum is defined

by

∑
i∈I

mi =

⎧⎨
⎩

∑
j∈J mj J �= {}

0M otherwise,

where the finitary sum on the right-hand side is the usual sum of the abelian

group.

— The K-bounded summation: This is as above, but where the summable families

are those with at most K non-zero elements.

It is almost immediate from the commutativity and associativity of composition in

M that these both satisfy the PCM axioms.

(6) Any abelian group: These can be considered with either of the above, the finite

families summation or K-bounded summation, as a special case of the abelian

monoid examples.

A.4. Examples of PCM-categories

A PCM-category is defined in Definition 3.1 to be a category C where each hom-set

has a specified PCM structure, together with the strong distributivity axiom that connects

composition and summation. This states that, given summable families {gj ∈ C(Y ,Z)}j∈I
and {fi ∈ C(X,Y )}i∈I , we have {gjfi ∈ C(X,Z)}(j,i)∈C(X,Z) is summable and⎛

⎝∑
j∈J

gj

⎞
⎠ (∑

i∈I
fi

)
=

∑
(j,i)∈J×I

gjfi.

— The real or complex numbers, with multiplication and absolute convergence: Given two

absolutely convergent sums of real or complex numbers,
∑

i∈I ri and
∑

j∈J sj , we have,

by the definition of absolute convergence, that
∑

(i,j)∈I×J risj exists and(∑
i∈I

ri

)⎛
⎝∑

j∈J
sj

⎞
⎠ =

∑
(i,j)∈I×J

risj .

Therefore, (R,×) or (C,×), with this indexed summation, is a one-object PCM-category.

— Linear maps on finite-dimensional Hilbert space, with composition and uniform conver-

gence: This follows similarly to the above examples. Note that the hom-set of maps

between two finite-dimensional Hilbert spaces is itself a finite-dimensional Hilbert

space, and the distinct notions of convergence with respect to various operator norms

all coincide in the finite-dimensional case. The strong distributivity property is a classic

result of analysis (see, for example Swartz (1992) for a general setting).

— Any ring, with the finite families summation: Let (R,×,+) be a ring. Then (R,×) is a

monoid, and thus a one-object category. Its unique homset (that is, the elements of
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R) is an abelian monoid, (R,+). Hence we may take the the finite families summation

Σ<∞ of Section A.3 to get the PCM (R,Σ<∞). Given two summable families {sj}j∈J
and {ri}i∈I , the family {sjri}(j,i)∈J×I has a finite number of non-zero elements, and

hence is summable. Given the summability of the required families, the identity⎛
⎝∑

j∈I
sj

⎞
⎠ (∑

i∈I
ri

)
=

∑
(j,i)∈J×I

sjri

is then straightforward from the definition of summation in terms of the addition in

the ring (R,×,+).

Note that just because the homsets of a category are PCMs does not necessarily mean we

have a PCM-category – we also need the strong distributivity condition of Definition 3.1.

For example, consider a unital ring (R,×,+, 1, 0). The multiplicative monoid (R,×, 1) is

trivially a one-object category, and as demonstrated in Section A.3, we may give the

additive abelian monoid (R,+, 0) a PCM structure using the K-bounded summations

Σ�K where a family is summable exactly when it has no more than K non-zero elements.

However, for K > 1, the K-bounded summation does not in general make (R,×,Σ�K ) a

one-object PCM category. Let us assume that R has no zero-divisors, and consider two

summable families containing K non-zero elements {sj}j∈J and {ri}i∈I . Then the strong

distributivity law does not hold, since {sjri}(j,i)∈J×I is not a summable family as it contains

K2 > K non-zero elements.

We now demonstrate that there is a whole class of examples to be found within the

field of algebraic program semantics. The proofs that these are PCM-categories arises

from the following straightforward result.

Proposition A.13. Let C be a category, together with for all X,Y ∈ Ob(C), a function

Σ(X,Y ) from indexed families over C(X,Y ) to C(X,Y ) such that:

(1)
(
C(X,Y ),Σ(X,Y )

)
is a PCM satisfying the additional full partition-associativity axiom

of Definition A.1.

(2) The usual left and right distributivity conditions are satisfied: that is, if we are given

a summable family {gi ∈ C(B,C)}i∈I and arbitrary f ∈ C(A,B) and h ∈ C(C,D), then

the families {hgi ∈ C(B,D)}i∈I and {gif ∈ C(A,C)}i∈I are summable and

h

(∑
i∈I

gi

)
=

∑
i∈I

(hgi)

(∑
i∈I

gi

)
f =

∑
i∈I

(gif).

Then
(
C,Σ( , )

)
satisfies the strong distributivity condition of Definition 3.1, and thus is a

PCM-category.
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Proof. We write

f =
∑
i∈I

fi

g =
∑
j∈J

gj .

Then, by left-distributivity and the existence of
∑

i∈I fi, we deduce

gf =
∑
i∈I

gfi.

However, g =
∑

j∈J gj , so, by full partition-associativity,

gf =
∑
i∈I

⎛
⎝∑

j∈J
gjfi

⎞
⎠.

Using the right distributivity law and full partition-associativity,

gf =
∑
j∈J

(∑
i∈I

gjfi

)
.

Again by full partition-associativity and Proposition 2.3, we may replace the doubly

indexed sum by a single indexed sum, giving

gf =
∑

(j,i)∈J×I
gjfi,

and thus

gf =

⎛
⎝∑

j∈J
gj

⎞
⎠ (∑

i∈I
fi

)
=

∑
(j,i)∈J×I

gjfi.

Therefore C satisfies strong distributivity, as required.

Note that the converse is not true: weak partition-associativity together with the strong

distributivity law does not, in general, imply the full partition-associativity axiom. This is

clear from the failure of positivity in many of the examples given.

Corollary A.14. The Partially Additive Categories (PACs) of Manes and Arbib (1986)

are PCM-categories, as are the Unique Decomposition Categories (UDCs) of Haghverdi

(2000), Abramsky et al. (2002) and Haghverdi and Scott (2006).
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