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Problem Corner
Solutions are invited to the following problems. They should be

addressed to Nick Lord at Tonbridge School, Tonbridge, Kent TN9 UP
(e-mail: njl@tonbridge-school.org) and should arrive not later than 10
December 2011.

Proposals for problems are equally welcome. They should also be sent
to Nick Lord at the above address and should be accompanied by solutions
and any relevant background information.

95.E (Joshua Lam - student at The Leys School, Cambridge)
Given any positive integer k, construct the following number:

S = O· [2k] [3k] [5k] [7k] ... where [m] denotes the decimal representation
of m and, each time, the product is taken between the next prime number
and k. (For example, when k = 2, S = 0-461014 ... by concatenating the
sequence 2 x 2, 3 x 2, 5 x 2, 7 x 2, .... )

For which k is S rational?

95.F (Ovidiu Furdui)
For positive integers m, n, evaluate the double integral

f= f= (e-mx - e-my) (e-nx - e-ny)
---------dx dy.

o 0 (x - y?

95.G (Panagiote Ligouras)
Given a scalene triangle ABC with circumradius Rand inradius r. let

ma, mi; me denote the lengths of its medians, ha, hb, he its altitudes and
la' lb' Ie the lengths of its angle bisectors. Prove that

e (m2 - h2) IJ (m2 _ h2) 13 (m2 _ h2)a a a + b b b + e e e:;;, 4R(R + 4r).
ha(/~ - h~) hb(n - hl) he(/~ - hn '"

95.8 (Alan Wilson)
Prove that the locus of x3 + y + Z3 - 3xyz = 1 in Euclidean 3-space

has the form of a surface of revolution. Show also that the sphere
r + I- + Z2 = R2 (R > 1) intersects the locus x3 + y + Z3 - 3xyz = 1
in precisely two distinct circles of points and determine their radii in terms
of R.
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Solutions and comments on 94.1, 94.J, 94.K, 94.L (November 2010).

94.1 (Michael Fox)
The sides AB and CD of a cyclic quadrilateral ABCD meet at X. Points

E and F satisfy LEBA = LECD = 900 = LFAB = LFDC. P is an
arbitrary point on EF; lines AB and CP intersect at Q, BC and EX intersect at

. AQ BR CS
R and CD and BP mtersect at S. Prove that - x - x - = 1.

QB RC SD

Although a range of methods was employed by solvers, they tended to
. AQ CS.

follow the same strategy: first prove that QB x SD IS constant and then

establish what the constant is. Michel Bataille and Michael Fox, the
proposer whose solution we give below, produced similar synthetic proofs:
Michel used inversion (with pole X and sending A to B) for Step 2.

U

x

w
1. The mediators (perpendicular bisectors) of AB and CD meet at the centre

o of the circle. But each mediator passes through the midpoint of EF,
which therefore is O.

2. Let T = AC (1 BD as shown in the Figure. Rotate 6.AFD through 1800

about 0; then F maps onto E, and the images of A and D are points A'
and IY on the circle. Since AF II BE, the line A'EB is straight. Similarly
IYEC is straight. The hexagon AA' BDIY C is inscribed in the circle, so by
Pascal's theorem the intersections of the pairs of opposite sides,
AA' (1 DIY, A'B (1 IYC and BD (1 CA, are collinear. But these are 0,
E and T; and since 0 E EF it follows that T E EF.

3. Let U = AB (1 CE, V = BC (1 EF and W = CD (1 BE. With
centre C project the range (UBQA) onto EF, i.e. C(UBQA) = (EVPT).
Similarly B(EVPT) = (WCSD). Hence (UBQA) and (WCSD) are

~ as.
projective and have the same cross-ratio. ThUS:' ~ . SO

UB we
AQ CS AU CW
- x - = - x - aconstant.
QB SD UB WD'
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4. Since L UBW = 90° = L U CW, UBCW is cyclic, as is ABCD. Therefore
LBUW = LBCD = LXAD, whence ADII UW. Consequently
AUIDW=XAIXD. Also XAxXB=XDxXC, so XAIXD=XCIXB,
thus AU I DW = XC I XB.

5. The triangles CWE, BUE are similar, hence CWIBU = CEIBE. Putting
. AU CW AU CW XC CE 6.XCE

all this together we have - x - = - x - = - x - = --.
UB WD WD UB BX EB 6.XBE

But these triangles have a common base EX and their heights are in the
. AU CW RC AQ CS RC

rano RC I BR so - x - = - hence - x - = - and finally
, UB WD BR' QB SD BR'

AQ x BR x CS = 1.
QB RC SD

Michel Bataille noted that the proof remains valid, after minor
adjustments, if BC IIAD or AC II BD.

Correct solutions were received from: M. Bataille, S. Dolan, GCHQ Problem Solving Group,
M. A. Hennings, G. Howlett, G. B. Trustrum and the proposer M. Fox.

94.J (Stan Dolan)
Some positive integers can be expressed as the sum and product of the

same three positive rational numbers. For example,

6 = I + 2 + 3 = 1 x 2 x 3,
9 = t + 4 + ~ = 1: x 4 x~,

7 = ~+ ~+ ~ = ~ x ~ x 1,
15 = t +! + 12 = t X! x 12.

(a) Show that 6 is the smallest positive integer with such a decomposition
and find a decomposition for it other than I + 2 + 3.

(b) Does 8 have such a decomposition?

(a) Suppose that n = a + b + e = abc with a, b, e > O.
.. (a + b + e)3 n3

AM-GM inequality, n = abc 0;;;; --- = - so that n
3 27

To generate other decompositions for n = 6, Mark Hennings recast the
search for rational solutions as follows.
Let a = ~ > !. Then b + e = 6 - ~, be = 6a so that
b,e = t(6 - ~± ~";I-12a + 36a2 - 24a3) = t(6 - ~±~) where (a, 13)is
a rational point on the elliptic curve

l = I - 12x + 36x2 - 24x3, (*)
The standard composition rule for rational points on such a curve is
(aJ, 131) * (a2,132) = (a3' 133)where

Then, by the

;;;. V27 > 5.

r I (13, - P2r- - al - a2 - - a, c# a2,i-2a,

24 a, - a2 '
a3

_ ~ (6ar - 6a, + 1r
2 13, '

a, a2·
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The rational points (1,1), (P), (1, 1) are all on (*) and each yields the
6 = I + 2 + 3 = I x 2 x 3 decomposition of 6. Then
(1,1) * (1,1) = (!,!) and e.» * (!, k) = (~, W) which yields
6 = ~ + ~ + ~ = ~ x ~ x ~. Other solutions include

6 = 15123 + 25538 + 20449 = 15123 x 25538
16159 10153 8023 16159 10153

found by Graham Howlett and James Mundie.

20449
x--

8023 '

(b) 8 does not have such a decomposition.
The GCHQ Problem Solving Group found the following neat, direct
argument to show this impossibilty.
Suppose 8 = a + b + C = abc. We assume that each of these
rationals is written in simplest form and with non-negative numerator.
Since their product is even, at least one of a, b, c must have even
numerator; without loss of generality, we can assume that c has this
property. Now

8 = bc(8 - b - c) ~ b2c + b(c2 - 8c) + 8 = O.

For b to be rational, the discriminant of this quadratic must be a
(rational) square. Writing c as die, we have, for some rational r,

r2 = (c2 _ 8C)2- 32c = c4
- 16c3 + 64c2 - 32c

d
4

d
3

d
2

d 2 4 (3 2 2 3)= - - 16- + 64- - 32- ~ r e = d d - 16d e + 64de - 32e .
e4 c3 e2 e

The latter is clearly an integer s9.-uare. Let p be a prime dividing
hcf(d, d3

- 16d2e + 64de2 - 32e3). Then p I 32e3 and since p I d,
p,{ e. Hence p I 32 and therefore p = 2 (we know this case is valid
because d is even). Hence d must be one of two forms: d = 2f2 or
d = 4g2

.

If d = 212 we have that, for some integer ql,

8/ - 64/e + 128/e2 - 32e3

Thus q\ is even, so writing q\ = 2q2, we have

2/ - 16te + 32/e2 - 8e3 = q~.
Thus qz is even and q~ is divisible by 4. Therefore, f is even. Writing
q2 = 2q3 andf = 2h, we have

128h6
- 256h4e + 128h2i - 8e3 = 4q~ ~ 32h6

- 64h4e + 32h2e2- 2e3 = q~.
Thus q3 is even and qj is divisible by 4. Thus 2e3 is divisible by 4,
contradicting the fact that e must be odd.
If d = 4g2 we have that, for some integer q4,

64l - 256le + 256li - 32e3
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Thus q~ is divisible by 32 and q4 must be divisible by 8. Thus 32e3 is
divisible by 64, contradicting the fact that e must be odd.
Thus neither d = 2f2 nor d = 4t is possible and so 8 cannot be
expressed in the form claimed.
Mark Hennings observed that, from a + b + c = abc = 8, we have

(a + b + C)3 = 64abc. Since this equation is homogeneous, we can find
positive integers x, y, z with no common factor such that
(x + y + Z)3 = 64xyz. From this equation, it follows that x, y, z are
pairwise coprime and hence that x = p3, Y = q3, Z = r3 with p, q, r
pairwise coprime positive integers and ~ + q3 + ,.J = 4pqr. The non-
existence of solutions to this Diophantine equation then follows from results
reported in [I].

James Mundie traced the interest in such equations back to the work of
Sylvester, [2]. Graham Howlett speculated that an infinite number of
positive integers have a decomposition of the type sought.

References
1. E. Dofs, Solutions of r + y + Z3 = nxyz, Acta Arithmetica, 73.3

(1995).
2. T. Lavrinenko, Solving an indeterminate third degree equation in

rational numbers, Revue d'Histoire des Mathematiques (2002).

Correct solutions were received from: R. P. C. Forman (part(a)), GCHQ Problem Solving
Group, M. A. Hennings, G. Howlett (part (a», S. N. Maitra (part (a», J. A. Mundie (pan (a»
and the proposer S. Dolan.

94.K (Isaac Sofair)
P is a random point within a plane triangle of sides a, b, c, circumcentre

o and circumradius R. Prove that the mean value of OP2 is
~ - it (a2 + b2 + c2).

Most solvers tackled this popular problem using double integration and
encountered a variety of trigonometrical identities en route, depending on
their choice of axes. Others subsumed the integration into known results on
moments of inertia: of these, the solution which follows, based on Neil
Curwen's, was particularly neat.

A

B c
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Consider the triangle ABC as a lamina of unit mass. Then the mean
value of ot- is the same as 1o, the moment of inertia of the lamina about the
axis through 0 perpendicular to the plane containing the triangle. By the
parallel axis theorem 1o = Ic + OG2 (since triangle ABC has unit mass). In
the Figure, L, M, N are the midpoints of the sides of triangle ABC. The four
smaller triangles are similar to triangle ABC hence, by parallel axes, adding
their moments of inertia about G,

Ie = fgle + [fgle + H~AL)2] + [-Me + H!BM)2] + [fgIe + H~CN)2]

so that

lc = -f; (AL2 + BM2 + CN2) = -% (a2 + b2 + c2)

since, from Apollonius' theorem, AL2 + BM2 + CN2 = i(a2 + b2 + c2).
Also OG2 = If- --1(a2 + b2 + c2). (A ~ick proof uses vectors with
origin 0 and OA = a, etc. with OG = ~(a + b + c). Then
OG2 = !(3If- + 2 La.b) and La2 = L(b - C)2 = 6If- - 2 La.b from
which the result follows on eliminating L a.b.) Finally then,

10 = Ie + OG2 = -Ma2 + b2 + c2) + If-- Ha2 + b2 + c2)

= If-- h(a2 + b2 + c2), as required.

Correct solutions were received from: N. Curwen, S. Dolan, GCHQ Problem Solving Group,
J. P. Green, M. A. Hennings, G. Howlett, S. N. Maitra, D. A. Quadling, N. Routledge, G. B.
Trustrum and the proposer I. Sofair.

94.L (H. A. Shah Ali)
Let Jr be a permutation of {O, 1, ... , n - I}. For k = 0, 1, ... , n - 1 the

k-circulant of tt is the permutation formed by shifting the entries of Jr by k
positions is a fixed direction.
(i) If each of the k-circulants of Jr for k = 0, 1, ... , n - 1 has the same

number of fixed points, A., prove that A. = 1.
(ii) Prove that the case A. = 1 holds only when n is odd and that the total

number of such permutations Jr is ~¢(n), where ¢ is Euler's totient
function.

First, an apology. As many readers quickly noticed, the expression
~¢ (n) in part (ii) is not an exact count, but a lower bound for the number of
equivalence classes under 'circulance' of permutations of the required type.
As ever, though, respondents were undaunted by this and produced some
impressively detailed analyses. I fear that I will not be able to do justice to
them in the following short summary, but I am especially grateful to the
submissions from the GCHQ Problem Solving Group, Mark Hennings and
Norman Routledge: Norman's was notable for the amount he was able to
deduce by hand calculations.

(i) Each ° ( i ( n - 1 is a fixed point for precisely one of the k-circulants
of Jr. Counting all fixed points of all circulants gives nA. = n and A. = 1.
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(ii) If A. = 1,:rr - id must be a permutation (where id denotes the
identity and, here and below, working is done modn). Then

n - I

0= L,:rr(i) - i
i~O

so that 2 I n - I and n is odd.

When n = 3, there are 3 such permutations (~ ~ ~), (~ ~ ~),

(~ ~ ~) corresponding to the 3 circulants of (~ ~ ~). For general odd

n, the permutations sought split into E (n) equivalence classes of size n
under circulance where a representative of each class may be chosen with
n (0) = 0: for brevity we will call these :rr 'suitable'. Thus, for n = 5,
E (3) = 3 with the classes represented by the suitable permutations

(~ ~ ~ ~ ~), (~ ~ ~ ~ ~), (~ ~ ~ ~ ~). In general, E (n)

is odd because the mapping st ~ id - :rr is an involution on the set of
suitable permutations with the single fixed point given by the permutation
:rr(i) = !(n + l)i.

A lower bound for E (n) better than that implied by part (ii) comes from
the observation that, if k and k - I are both coprime to n, then :rr (i) = ki is
a suitable permutation. For odd n ;l: 5, E (n) ;l: 3 since 2, !(n + 1), n - I
are different possible choices for k. For n = pr (p an odd prime), there are
exactly p" - I (p - 2) choices for k so that E {pr} ;l: [f - I (p - 2). But, for
n ;l: 7, this construction does not provide all of the suitable permutations.
Mark Hennings observed that the bulk of the permutations sought in the
problem consist of (n - I)-cycles: counting these would give a route to a
better lower bound.

Finally, direct counting by computer gave the following table of values
of E (n):

1'2n(n - 1)

n 3

1

5

3

7

19

9

225
11

3441

13

79259
15

2424195.E(n)

And this is where we hit the buffers! The E (n)-sequence is number
AD03111 in The On-Line Encyclopedia of Integer Sequences. Our 'suitable
permutations' are there referred to as 'complete mappings of 7Ln' and the
entry cites a number of recent papers in this area, but no definitive formula
for E (n) and only relatively wide asymptotic bounds. There is clearly still
plenty of work to be done!

Correct solutions were received from: S. Dolan, GCHQ Problem Solving Group, M. A.
Hennings, D. A. Quadling, N. Routledge and the proposer H. A. Shah Ali.

N.J.L.
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