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In this paper we present a result of existence of in¯nitely many arbitrarily small
positive solutions to the following Dirichlet problem involving the p-Laplacian,

¡¢ pu = ¶ f (x; u) in « ;

u = 0 on @« ;

where « 2 RN is a bounded open set with su± ciently smooth boundary @« , p > 1,
¶ > 0, and f : « £ R ! R is a Carath¶eodory function satisfying the following
condition: there exists ¹t > 0 such that

sup
t2[0;·t ]

f(¢; t) 2 L 1 (« ):

Precisely, our result ensures the existence of a sequence of a.e. positive weak solutions
to the above problem, converging to zero in L 1 ( « ).

1. Introduction

In this paper, we consider the problem

¡ ¢pu = ¶ f(x; u) in « ;

u = 0 on @« ;

)

(P ¶ )

where « 2 RN is a bounded open set with su¯ ciently smooth boundary @« ,
p > 1, ¢p is the p-Laplacian operator, that is, ¢pu = div(jrujp¡2ru), ¶ > 0,
f : « £ R ! R is a Carath́eodory function and there exists ·t > 0 such that

sup
t2 [0;·t ]

f (¢; t) 2 L 1 ( « ): (1.1)

Precisely, we are interested in the existence of a sequence of a.e. positive weak
solutions of (P ¶ ) converging to zero in L 1 ( « ).

A weak solution (P¶ ) is any u 2 W 1;p
0 ( « ) \ L 1 ( « ) such that

Z

«

jrujp¡2rurv dx ¡ ¶

Z

«

f (x; u(x))v(x) dx = 0

for each v 2 W 1;p
0 ( « ). Then, for some ¼ > 0, our solutions belong to C1+ ¼ ( ·« ), as

can be proved by standard regularity arguments.
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If u is a weak solution of (P¶ ), we say that u is a.e. positive if m(fx 2 « : u(x) 6
0g) = 0, where m(¢) is the Lebesgue measure.

The existence of in nitely many solutions for problem (P ¶ ) has been widely inves-
tigated. The most classical results on this topic are essentially based on Ljusternik{
Schnirelman theory. In them, the key role is played by the oddness of the non-
linearity. Moreover, in order to check the Palais{Smale condition (or some of its
variants), one assumes certain conditions that do not allow an oscillating behaviour
of the nonlinearity. We refer, for instance, to [1,2] as a typical paper of this kind,
among the most recent ones.

Multiplicity results for problem (P¶ ), when f (x; ¢) has an oscillating behaviour,
are certainly more rare. In this connection, we refer to [6] and [10], where the authors
obtain the existence of an unbounded sequence of weak solutions for problem (P ¶ )
(see also [4, 5]). The existence of in nitely many small solutions to (P¶ ) has been
studied in [7] by Omari and Zanolin, who proved that if

lim inf
t! 0+

F (t)

tp
= 0 and lim sup

t ! 0+

F (t)

tp
= +1; (1.2)

where F (t) =
R t

0
f (s) ds, then, for every ¶ > 0, problem (P ¶ ) has a sequence fung

of non-zero non-negative weak solutions, satisfying max ·« un ! 0 as n ! +1.
Our main theorem is theorem 2.1, in x 2. Here, we state a particular version of

it, when f is independent of x.

Theorem 1.1. Suppose that the function f : R ! R is continuous and satis¯es the
following conditions.

(i0) lim sup
t! 0+

F (t)

tp
= +1, lim inf

t ! 0+

F (t)

tp
> ¡ 1.

(ii00) For every n 2 N, there exist ¹ n; ¹ 0
n 2 R, with 0 6 ¹ n < ¹ 0

n and limn ! + 1 ¹ 0
n = 0,

such that Z ¹ n

0

f (s) ds = sup
t2 [0;¹ 0

n ]

Z t

0

f (s) ds:

Then, for every ¶ > 0, problem (P ¶ ) admits a sequence fung of a.e. positive weak
solutions strongly convergent to zero and such that

lim
n! + 1

max
·«

un = 0:

Clearly, theorem 1.1 is a remarkable improvement of the above-mentioned result
by Omari and Zanolin. Indeed, not only is the condition lim inft ! 0+ (F (t)=tp) = 0
replaced by lim inft! 0+ (F (t)=tp) > ¡ 1, but the solutions we  nd are also a.e.
positive rather than simply non-zero and non-negative.

The proof of theorem 2.1 is based on the general approach proposed in [8]. More
precisely, we  nd weak solutions for (P ¶ ) that are local minima of the underly-
ing energy functional. The technique used to obtain such local minima has been
suggested us by the papers of Saint Raymond [10] and Ricceri [9].

This paper is divided into three sections, including this introduction. In the sec-
ond section we state and prove our result, then the third section is dedicated to the
careful study of the conditions of theorem 2.1 with respect to (1.2).
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2. Main result

Theorem 2.1. Suppose that the function f satis¯es the following conditions.

(i) For every n 2 N, there exist ¹ n; ¹ 0
n 2 R, with 0 6 ¹ n < ¹ 0

n and limn ! + 1 ¹ 0
n = 0,

such that, for a.e. x 2 « ,
Z ¹ n

0

f(x; s) ds = sup
t 2 [¹ n ;¹ 0

n]

Z t

0

f(x; s) ds:

(ii) There exists a non-empty open set D ³ « , a constant M > 0 and a sequence
ftngn 2 N » R + n f0g, with limn! + 1 tn = 0, such that

lim
n ! + 1

ess infx 2 D

R tn

0
f(x; s) ds

tp
n

= +1

and

ess inf
x2 D

µ
inf

t 2 [0;tn ]

Z t

0

f (x; s) ds

¶
> ¡ M ess inf

x 2 D

µZ tn

0

f(x; s) ds

¶
:

Then, for every ¶ > 0, problem (P ¶ ) admits a sequence fung of a.e. positive weak
solutions strongly convergent to zero and such that limn! + 1 max ·« un = 0.

Proof. We choose q 2 ]p ¡ 1; ((p ¡ 1)N + p)=(N ¡ p)[ if p < N ; in other cases it is
enough to choose q > p ¡ 1. From (1.1), it follows that there exist a > 0 and ·t > 0
such that, for every 0 6 t 6 ·t and a.e. x 2 « , one has

jf (x; t)j 6 a:

Moreover, conditions (i) and (ii) imply that, for a.e. x 2 « ,

f(x; 0) = 0:

Without loss of generality, we suppose that, for every n 2 N, maxf¹ 0
n; tng 6 ·t. Let

¶ > 0, then we de ne g : « £ R ! R as follows:

g(x; t) =

8
><

>:

f(x; ·t) if t > ·t;

f(x; t) if 0 6 t 6 ·t;

0 if t < 0:

Whence, for a.e. x 2 « and t 2 R, it turns out that

jg(x; t)j 6 a: (2.1)

Now we consider the following problem:

¡ ¢pu = ¶ g(x; u) in « ;

u = 0 on @« :

)

(P ¶ ;g)

The weak solutions of (P ¶ ;g) are the critical points of the functional

© · (u) = ·

Z

«

jrujp dx ¡
Z

«

µZ u(x)

0

g(x; t) dt

¶
dx; (u 2 W 1;p

0 ( « ))
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where · = 1=p¶ . Owing to (2.1) and the compact embedding of W 1;p
0 ( « ) into

Lq + 1( « ) (respectively, into C0( ·« ), if p > N ), © · is well de ned, weakly sequentially
lower semicontinuous and Gâteaux di¬erentiable in W 1;p

0 ( « ).
Fixing n 2 N, we set

En = fu 2 W 1;p
0 ( « ) : 0 6 u(x) 6 ¹ 0

n a.e. in « g:

Since this set is closed and convex, it is weakly closed. For each u 2 En, one has

© · (u) > ¡ am( « ) ¹ 0
n:

Whence © · is lower bounded in En, so we set ¬ n = infEn © · . For every k 2 N,
there exists vk 2 En such that

¬ n 6 © · (vk) < ¬ n +
1

k
;

then it follows that
Z

«

jrvkjp dx =
1

·

µZ

«

µZ vk (x)

0

g(x; t) dt

¶
dx + © · (vk)

¶

6 1

·

µZ

«

µZ vk (x)

0

a dt

¶
dx + ¬ n +

1

k

¶

6 1

·
(am( « ) ¹ 0

n + ¬ n + 1):

Then fvkg is norm bounded in W 1;p
0 ( « ). This implies that there exists a subse-

quence fvkm g, weakly convergent to un 2 En, being En weakly closed. At this
point, we exploit the weak sequentially lower semicontinuity of © · and obtain that
© · (un) = ¬ n.

We prove that un(x) 2 ]0; ¹ n] a.e. in « .
Set

h(t) =

8
><

>:

¹ n if t > ¹ n;

t if 0 < t 6 ¹ n;

0 if t 6 0:

Then we de ne T : W 1;p
0 ( « ) ! W 1;p

0 ( « ) as follows:

T u(x) = h(u(x)) for every u 2 W 1;p
0 ( « ) and x 2 « :

The operator T is continuous in W 1;p
0 ( « ) (see [3]). Moreover, for every u 2 W 1;p

0 ( « ),
T u 2 En.

We put v ¤ = T un and X = fx 2 « : un(x) =2 ]0; ¹ n]g. Then, for a.e. x 2 X, one
has

¹ n < un(x) 6 ¹ 0
n or un(x) = 0:

However, Z un(x)

0

g(x; t) dt 6
Z v¤(x)

0

g(x; t) dt

and jrv ¤ j = 0.
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Whence

© · (v ¤ ) ¡ © · (un) = ·

Z

«

(jrv ¤ jp ¡ jrunjp) dx ¡
Z

«

µZ v¤(x)

un(x)

g(x; t) dt

¶
dx

= ¡ ·

Z

X

jrunjp dx ¡
Z

X

µZ v¤(x)

un(x)

g(x; t) dt

¶
dx

6 ¡ ·

Z

X

jrunjp dx:

Since v ¤ 2 En, it follows that © · (v ¤ ) ¡ © · (un) > 0. Then
Z

X

jrunj dx = 0:

Whence

kv ¤ ¡ unkp =

Z

«

jrv ¤ ¡ runjp dx =

Z

X

jrunjp dx = 0;

which means that un(x) = v ¤ (x) 2 ]0; ¹ n] a.e. in « .
Let u 2 W 1;p

0 ( « ), T be the operator de ned above and let

X = fx 2 « : u(x) =2 ]0; ¹ n]g:

We have that if x 2 « n X , then

Z u(x)

T u(x)

g(x; t) dt = 0:

Furthermore, if x 2 X , then one has the following cases.

(a) If u(x) 6 0, then

Z u(x)

T u(x)

g(x; t) dt =

Z u(x)

0

g(x; t) dt = 0:

(b) If ¹ n < u(x) 6 ¹ 0
n, then Z u(x)

T u(x)

g(x; t) dt 6 0:

(c) If u(x) > ¹ 0
n, then

Z u(x)

T u(x)

g(x; t) dt =

Z u(x)

¹ n

g(x; t) dt 6
Z u(x)

¹ n

a dt = a(u(x) ¡ ¹ n):

Since the constant

C = sup
¹ > ¹ 0

n

a( ¹ ¡ ¹ n)

( ¹ ¡ ¹ n)q + 1

is  nite, we have, for a.e. x 2 « ,

Z u(x)

T u(x)

g(x; t) dt 6 C ju(x) ¡ T u(x)jq + 1;
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then Z

«

µZ u(x)

T u(x)

g(x; t) dt

¶
dx 6 C® q + 1ku ¡ T ukq + 1;

where

® = sup
u 2 W

1;p
0 ( « )nf0g

(
R

«
jujq + 1 dx)1=(q + 1)

kuk :

Whence, one has

© · (u) ¡ © · (T u) = ·

Z

«

(jrujp ¡ jr(T u)jp) dx ¡
Z

«

µZ u(x)

T u(x)

g(x; t) dt

¶
dx

= ·

Z

X

jrujp dx ¡
Z

«

µZ u(x)

T u(x)

g(x; t) dt

¶
dx

= ·

Z

«

jru ¡ r(T u)jp dx ¡
Z

«

µZ u(x)

T u(x)

g(x; t) dt

¶
dx

> · ku ¡ T ukp ¡ C® q + 1ku ¡ T ukq + 1:

Since T u 2 En, it follows that © · (T u) > © · (un). Then we have

© · (u) > © · (un) + ku ¡ T ukp( · ¡ C® q + 1ku ¡ T ukq + 1¡p):

Since T is continuous and q + 1 ¡ p > 0, there exists  > 0 such that, for every
u 2 W 1;p

0 ( « ) with

ku ¡ unk <  ; ku ¡ T ukq + 1¡p 6 ·

2C® q + 1
:

Then, if ku ¡ unk <  , one has

© · (u) > © · (un) + 1
2 · ku ¡ T ukp > © · (un);

that is, un is a local minimum of © · .
For every n 2 N and u 2 En, we have that

© · (u) > ¡ am( « ) ¹ 0
n:

Then, since ¡ am( « ) ¹ 0
n 6 ¬ n 6 0, it follows that

lim
n! + 1

¬ n = 0:

From un 2 En and ¬ n = © · (un), it follows that

Z

«

jrunjp dx =
1

·

µZ

«

µZ un(x)

0

g(x; t) dt

¶
dx + © · (un)

¶

=
1

·

µZ

«

µZ un(x)

0

g(x; t) dt

¶
dx + ¬ n

¶

6 1

·
(am( « ) ¹ 0

n + ¬ n):
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Then

lim
n ! + 1

Z

«

jrunjp dx = 0:

We now prove that, for every n 2 N, ¬ n < 0. To prove this,  x n 2 N, a compact
set K » D with m(K) = (M + 1)m(D n K) and a function v 2 W 1;p

0 ( « ) such that

v(x) = 1 if x 2 K;

0 6 v(x) 6 1 if x 2 D n K;

v(x) = 0 if x 2 « n D:

By the former condition of (ii), there exists ·k 2 N such that tk 6 ¹ 0
n and

ess inf
x2 D

Z tk

0

g(x; t) dt > ·
(M + 1)kvkp

m(K)
tp
k

for every k 2 N with k > ·k. Then, taking into account the latter condition of (ii),
for every k > ·k, one has

¡
R

« (
R tkv(x)

0 g(x; t) dt) dxR
«

jtkrvjp dx

=
¡

R
K

(
R tk

0
g(x; t) dt) dx ¡

R
DnK

(
R tkv(x)

0
g(x; t) dt) dx

tp
kkvkp

6

¡
R

K(ess infx 2 D

R tk

0 g(x; t) dt) dx

¡
R

DnK(ess infx 2 D inft 2 [0;tk ]

R t

0 g(x; s) ds) dx

tp
kkvkp

6
¡

R
K(ess infx 2 D

R tk

0 g(x; t) dt) dx + M
R

DnK(ess infx 2 D

R tk

0 g(x; t) dt) dx

tp
kkvkp

=
¡ (1=(M + 1))m(K) ess infx2 D

R tk

0
g(x; t) dt

tp
kkvkp

< ¡ · :

Whence tkv 2 En and © · (tkv) < 0, which implies ¬ n < 0.
So there exists a subsequence of un of pairwise distinct elements. Such a subse-

quence is a sequence of weak solutions for (P ¶ ;g). On the other hand, we have

0 = ess inf
x 2 «

un(x) < ess sup x 2 « un(x) 6 ·t

for every n 2 N. Then it is a sequence of weak solutions for (P ¶ ).

3. Some consequences

Here we give the proof of the theorem 1.1 stated in the introduction.

Proof of theorem 1.1. It is enough to show that (i0) implies (ii). By the former
condition of (i0), there exists a sequence of positive numbers ftng, converging to
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zero, such that

lim
n! + 1

F (tn)

tp
n

! +1:

By the latter condition of (i0), there exist M; ¯ > 0 such that

F (t) > ¡ Mtp

for every t 2 ]0; ¯ ]. Whence there exists ¸ 2 N such that, for every n > ¸ , one has
tn 6 ¯ and F (tn) > tp

n. It turns out that, for n > ¸ ,

inf
t2 [0;tn]

F (t) > ¡ MF (tn):

Then the thesis follows.

Now we give an example of an application of theorem 2.1, when both condi-
tions (i0) and (1.2) are not satis ed.

Example 3.1. Let us consider, for every ¶ > 0, the following Dirichlet problem,

¡ ¢u = ¶ f(u) in « ;

u = 0 on @« ;

where f : R ! R is de ned by

f(t) =

(
9t1=2 sin(1=t1=3) ¡ 2t1=6 cos(1=t1=3) if t > 0;

0 if t 6 0:

Thus we have, for every t 2 R,

F (t) =

Z t

0

f (s) ds =

(
6t3=2 sin(1=t1=3) if t > 0;

0 if t 6 0:

Condition (i) is satis ed. To prove that (ii) holds, let

tn =
8

º 3(1 + 4n)3

for every n 2 N. Then

lim
n ! + 1

F (tn)

t2
n

= lim
n! + 1

6p
tn

= +1:

Moreover, we have
inf

t2 [0;tn ]
F (t) > ¡ F (tn):

Then the latter condition of (ii) is also satis ed for M = 1. Whence theorem 2.1
ensures the existence of a sequence of a.e. positive and pairwise distinct solutions
to the problem that converges to zero. We note that

lim inf
t ! 0+

F (t)

t2
= ¡ 1;

hence (i0) and (1.2) are not satis ed.
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