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Abstract

This paper studies the compact p∞-Selmer Iwasawa module X (E/F∞) of an elliptic
curve E over a False Tate curve extension F∞, where E is defined over Q, having multi-
plicative reduction at the odd prime p. We investigate the p∞-Selmer rank of E over inter-
mediate fields and give the best lower bound of its growth under certain parity assumption
on X (E/F∞), assuming this Iwasawa module satisfies the MH (G)-Conjecture proposed by
Coates–Fukaya–Kato–Sujatha–Venjakob.

Introduction

Throughout, p will denote an odd prime number and μpn the group of all pn-power roots
of unity. Let m > 1 be an integer which is p-power free and consider the False Tate curve
tower

Q ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ Fn+1 ⊂ · · · ⊂ F∞

where Fn
def= Q(μpn , pn√m) and F∞

def= ⋃
n�1 Fn . Let E be an elliptic curve defined over Q.

We shall be concerned in this paper with proving parallel results to those given in [1], but
with the hypothesis given there, that E has good ordinary reduction at p, replaced by the
assumption that E has multiplicative reduction at p. This change of hypothesis leads to some
interesting variants of the results of [1], for example see Theorem1·8 and Theorem1·11 in
this paper. In the last section, we discuss a number of numerical examples to illustrate our
general theorems.

1. Notations and theorems
p a rational odd prime;
m a positive integer greater than 1, with prime decomposition

m = ∏
i qri

i ;
r the positive integer ordp(m p−1 − 1) − 1, for non-amenable pair (p, m);
Kn Q(μpn );
K K1;
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Ln Q( pn√m);
Fn the composite of Kn and Ln;
χn a character of Gal(Fn/Kn) of exact order pn;
ρχn I nd Kn

Q χn , the induced representation of χn to Gal(Fn/Q);
P(n)(or P(n),i ) a prime of Ln above p;
P(n)(or P(n),i ) a prime of Fn above p;
K∞ the union

⋃
n�1 Kn;

L∞ the union
⋃

n�1 Ln;
F∞ the union

⋃
n�1 Fn;

G the Galois group of F∞ over Q;
H the closed subgroup of G which fixes Qcyc;
HF the closed subgroup of G which fixes Fcyc, for F a subfield of F∞;
�F Gal(Fcyc/F);
E an elliptic curve defined over Q;
Sp the set {p};
Sram the set {prime divisors of m} = {q ′

i s};
Sbad the set of primes at where E has bad reduction;
Sgood the set of primes at where E has good reduction;
Smulti the set of primes at where E has multiplicative reduction;
S the union Sp � Sram � Sbad ;
S∞ the set consists of the Archimedean place of Q;
Ss the set of primes of K at where E has split multiplicative reduction;
Sns the set of primes of K at where E has non-split multiplicative reduction;
S∗(F) the set of primes of F above S∗ for any algebraic field F

and ∗ being any subscript of S above, K ⊂ F when ∗ = ns or s;
QS the maximal extension of Q which is unramified outside S � S∞;
GS(F) the Galois group Gal(QS/F) for any subfield F ⊂ QS;
X (E/F) the Pontryagin dual of Selp(E/F), the classical p∞-Selmer group

of E over a subfield F of F∞;
sE/F the Zp-rank of X (E/F) for [F : Q] finite;
M(p) the submodule of M consisting of all elements of p-power order;
Y (E/F) X (E/F)

/
X (E/F)(p);

w(E) the root number of E ;
w(E, ρ) the twisted root number of E by an orthogonal Galois

representation ρ.

Definition 1·1. For a p-adic Lie group G, we denote the Iwasawa algebra of G by

�(G)
def= lim←− Zp[G/U]

where the inverse limit is taken for U runs over all open normal subgroup of G.

Assume from now on that the integer m > 1 is p-power free.

Definition 1·2 (Hypothesis A).
We say the triple (E, p, m) satisfies Hypothesis A if the elliptic curve E is defined over
Q, having multiplicative (split or non-split) reduction at p, and semi-stable reductions at all
primes qi dividing m.
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Definition 1·3. Let

δp
def=

{
1, if E has split multiplicative reduction at p;
0, if E has non-split multiplicative reduction at p.

(1·1)

Definition 1·4. Let ρ be an irreducible Q̄p-Artin representation which factors through
Gal(F/Q) for F a finite Galois extension of Q. Let sE,ρ denote the number of copies of ρ

occurring in the representation X (E/F) ⊗Zp Q̄p.

CONJECTURE 1·5 (Parity Conjecture). Let E be an elliptic curve defined over Q. For any
absolutely irreducible orthogonal Artin representation ρ of Gal(Q̄/Q), we have

w(E, ρ) = (−1)sE,ρ . (1·2)

Definition 1·6. Let MH (G) denote the category of all finitely generated �(G)-modules
M , such that the quotient M/M(p) is finitely generated over �(H).

CONJECTURE 1·7 (MH (G)-Conjecture [2]). Under Hypothesis A, X (E/F∞) belongs to
the category MH (G).

We can define the following invariants under the assumption that MH (G)-Conjecture is
valid:

τ the �(HK )-rank of Y (E/F∞);
λF the λ�(�F )-invariant of X (E/Fcyc), for F any subfield of F∞

with [F : Q] finite;
λn the value λLn .

In this paper, I will prove the Parity Conjecture for an infinite number of ρ’s under the
Hypothesis A and the assumption of MH (G)-Conjecture.

THEOREM 1·8. Assume Hypothesis A and the MH (G)-Conjecture. Then for all abso-
lutely irreducible self-dual Artin representations ρ of G = Gal(F∞/Q) with dimension
greater than 1, we have

w(E, ρ) = (−1)sE,ρ . (1·3)

Remark 1·9. In fact, any such ρ as described in the statement of this theorem is iso-
morphic to the induction to Q of some cyclic character χn of Gal(Fn/Kn) of exact order pn

for some n � 1. Namely,

ρ �ρχn . (1·4)

Moreover, these ρχn are all orthogonal.

Example. Let E be the elliptic curve with Cremona symbol 57b1, which has Weierstrass
equation given by

y2 + xy + y = x3 − 7x + 5.

Since E has split multiplicative reduction at 3, non-split multiplicative reduction at 19 and
good reductions elsewhere, the triple (57b1, 3, m) satisfies Hypothesis A for every cubic free
integer m > 1. We can compute the twisted root number w(E, ρχn ) using V. Dokchitser’s
formula (3·1) in Lemma 3·1. For instance, taking m = 19, we get w(E, ρχ1) = 1 and
w(E, ρχn ) = −1 for all n � 2; taking m = 3, we get w(E, ρχn ) = −1 for all n � 1.
One may deduce immediately from Theorem 1·8 that the non-negative integer sE,ρχn

is odd
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and hence positive for all n � 2 when m = 19, or for all n � 1 when m = 3. Assuming
the finiteness of Tate-Shafarevich groups, the positivity of sE,ρχn

implies the existence of an
extra rational point of E of infinite order, passing from over Ln−1 to Ln . Indeed, for example
when m = 3 and n = 1, we have

P = (− 3
√

3
2 − 3

√
3 + 1,

3
√

3 + 2) ∈ E(Q(
3
√

3))

which is of infinite order. We will see a few more numerical examples in Section 7.

I shall prove Theorem 1·8 separately in the case where p is a prime of non-split multi-
plicative reduction and in the case where p is a prime of split multiplicative reduction. In
the non-split multiplicative case, the proof is very similar to the case where p is a prime of
good ordinary reduction, which has been proved in [1]. It is slightly complicated in the split
multiplicative case. I shall give the proof separately in the cases defined below.

Definition 1·10. We say the pair (p, m) is amenable if either p | m or p ‖ m p−1 − 1.
We call the pair non-amenable otherwise, and denote by r > 0 the positive integer such that
pr+1 ‖ m p−1 − 1.

THEOREM 1·11. Assume Hypothesis A and the MH (G)-Conjecture. Then when τ is odd,
(i) when E has non-split multiplicative reduction at p, we have

sE/Ln � n + sE/Q for all n � 1; (1·5)

sE/Fn � pn − 1 + sE/K for all n � 1; (1·6)

(ii) when E has split multiplicative reduction at p,
(a) for amenable pair (p, m), we have

sE/Ln � n + sE/Q for all n � 1; (1·7)

sE/Fn � pn − 1 + sE/K for all n � 1; (1·8)

(b) for non-amenable pair (p, m), we have

sE/Lr+k � k + sE/Lr for all k � 1; (1·9)

sE/Fr+k � pr (pk − 1) + sE/Lr Kr+1 for all k � 1. (1·10)

Moreover, when τ = 1, then all the equalities in these six inequalities hold.

2. Decompositions of p in the subfields of F∞
This section is irrelevant to elliptic curves. Throughout this section, we fix an odd prime

p and always assume m > 1 being a p-power free integer.

LEMMA 2·1. For each n � 1, there exists an positive integer m ′
n, with either p � m ′

n or
p ‖ m ′

n such that

Q( pn√
m) = Q( pn

√
m ′

n).

Proof. This is trivial except for the case where ordp(m) � 2. Since ordp(m) is coprime
to p by assumption, there exist integers tn and sn such that ordp(m)tn + pnsn = 1. Let
m ′

n = mtn · p pnsn . It is easy to verify the following two relations

pn
√

m ′
n = psn · ( pn√

m)tn ∈ Q( pn√
m)
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pn√

m = msn p−sn ·ordp(m)( pn
√

m ′
n)

ordp(m) ∈ Q( pn
√

m ′
n)

and obviously ordp(m ′
n) = ordp(m)tn + pnsn = 1.

2·1. Over Ln.

LEMMA 2·2. We have:

(i) if the pair (p, m) is amenable, then for all n � 1

pOLn = P
pn

(n); f (P(n)/p) = 1; (2·1)

(ii) if the pair (p, m) is non-amenable and pr+1 ‖ m p−1 − 1, then:

(a) for 1 � n � r ,

pOLn = P(n),0P
p−1
(n),1P

p(p−1)

(n),2 · · ·Ppn−1(p−1)

(n),n ; f (P(n),i/p) = 1, (2·2)

for 0 � i � n;

(b) for n > r ,

pOLn = (
P(n),0P

p−1
(n),1P

p(p−1)

(n),2 · · ·Ppr−1(p−1)

(n),r

)pn−r ; f (P(n),i/p) = 1, (2·3)

for 0 � i � r .

Proof.

(i) When p | m, we have seen that Ln = Q(
pn√

m ′) for some m ′ such that p ‖ m ′ by
Lemma 2·1. Hence this statement is precisely [14, theorem 2 (a)].
It is proven in [15, theorem 5·4] that for any integer r � 0,

m ∈ Qpr

p ⇔ pr+1 | m p−1 − 1. (2·4)

When p ‖ m p−1 − 1, r = 0 and the statement is proven in [14, theorem 5].
(ii) (a) This is proven in [14, theorem 2 (b)].

(b) This is proven in [14, theorem 5].

PROPOSITION 2·3. Suppose the pair (p, m) is non-amenable. Then, we have:

P(n),0OLn+1 =
{

P
p
(n+1),0, r � n, (2·5a)

P(n+1),0P
p−1
(n+1),1, 0 � n < r; (2·5b)

and

P(n),iOLn+1 =
{

P
p
(n+1),i , 1 � i � r � n, (2·6a)

P
p
(n+1),i+1, 1 � i � n < r . (2·6b)

Proof. This is immediate by tower law and multiplicative law on the ramification degrees.
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2·2. Over Fn.

PROPOSITION 2·4. We have:
(i) when (p, m) is amenable, then

pOFn = P p2n−1(p−1)

(n) ; (2·7)

(ii) when (p, m) is non-amenable, then

pOFn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

pr∏
i=1

P p2n−r−1(p−1)

(n),i , r < n, (2·8a)

pn∏
i=1

P pn−1(p−1)

(n),i , 0 � n � r . (2·8b)

Proof. See the proof in [15, theorem 5·2 and lemma 6·1]

2·3. Over Fcyc
n .

Definition 2·5. For any subfield F of F∞, denote by Sp(F) the set of primes of F lying
over prime p.

LEMMA 2·6. When (p, m) is non-amenable, for r < n < N, we have

#Sp(KN Ln) = pr . (2·9)

Proof. The completion of KN at its only prime above p is Qp(ζpN ). The minimal polyno-
mial of pn√m over KN is X pn − m, which has factorization in Qp(ζpN ) as follows:

X pn − m = (X pn−r
)pr − bpr =

pr∏
i=1

(
X pn−r − ζ i

pr b
)
, (2·10)

for some b ∈ Qp \ Qp
p such that bpr = m. Applying [11, theorem 9·1], I claim the irreducib-

ility of (X pn−r − ζ i
pr b) in Qp(ζpN )[X ] by showing that ζ i

pr b � Qp(ζpN )p for all 1 � i � pr .
Since ζ i

pr ∈ Qp(ζpN )p, it is sufficient to show that b � Qp(ζpN )p. Suppose, on the contrary,

that b ∈ Qp(ζpN )p, then we have Qp(
p
√

b) ⊂ Qp(ζpN ) which implies Qp(ζp,
p
√

b) ⊂ Qp(ζpN )

and hence Qp(ζp,
p
√

b) is an abelian extension over Qp. By [13, theorem 2], b ∈ Qp
p which

contradicts the value of r .

PROPOSITION 2·7. We have:
(i) when (p, m) is amenable, then,

#Sp(Fcyc
n ) = 1, n � 0; (2·11)

(ii) when (p, m) is non-amenable, then,

(a) for 0 � n � r , there are pn many primes of Fcyc
n lying above p, we denote this

fact by

#Sp(Fcyc
n ) = pn, (2·12)

moreover, they all have inertia degree equal to 1;
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(b) for n > r , there are pr many primes of Fcyc
n lying above p, they all have inertia

degree equal to 1.

Proof.

(i) This is trivial from Proposition 2·4, which implies that

#Sp(F∞) = 1. (2·13)

(ii) (a) The statement is well known when n = 0.
Assume that the statement is true for all n with 0 � n � k < r , by (2·8b),

pk+1 = #Sp(Fk+1) � #Sp

(
Fcyc

k+1

)
. (2·14)

On the other hand, since Fcyc
k+1/Fcyc

k is an extension of degree p, we have

#Sp

(
Fcyc

k+1

)
� p · Sp

(
Fcyc

k

) = pk+1 (2·15)

by inductive assumption. Therefore, we have

#Sp

(
Fcyc

k+1

) = pk+1 (2·16)

and every prime in Sp(Fcyc
k ) splits completely over Fcyc

k+1 and by inductive
assumption and tower law on the inertia degree, every prime in Sp(Fcyc

k+1) has
inertia degree equals to 1. Hence we proved the statement by induction on n.

(b) For r < n, this statement is immediate from Lemma 2·6. Indeed, suppose
#Sp(Fcyc

n ) > #Sp(Fn), then #Sp(Kn+1 Ln) > #Sp(Fn), since Kn+1 Ln is the
fixed field of the maximal non-trivial open subgroup of Gal(Fcyc

n /Fn).

2·4. Over Lcyc
n .

Definition 2·8. For Galois extensions J0 ⊂ J1 ⊂ J2 and a prime P0 of J0, let e(Ji/Jj , P0)

denote the relative ramification degree e(Pi/Jj ), where Pi is any prime of Ji above P0 over
Jj . These values e(Pi/Jj ) are defined without the Galois assumption, but are equal when
the extensions are Galois.

PROPOSITION 2·9. We have:
(i) when (p, m) is amenable, then

#Sp

(
Lcyc

n

) = 1, n � 0; (2·17)

(ii) when (p, m) is non-amenable, then

#Sp

(
Lcyc

n

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 +
r−1∑
i=0

pi , r < n, (2·18a)

1 +
n−1∑
i=0

pi , 1 � n � r , (2·18b)

1, n = 0. (2·18c)

Proof.

(i) Trivial as above.
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(ii) The case when n = 0 is well known.
For 1 � n � r and all 0 � i � n, we have, by tower law,

e(Fn/Ln, P(n),i) = e(Fn/Q, p)

e(P(n),i/Q)
= pn−1(p − 1)

e(P(n),i/Q)

(2·19)
=

{
pn−1(p − 1), for i = 0,

pn−i , for 1 � i � n.

On the other hand, with

e(Fn/Ln, P(n),i) = e(Fn/K1 Ln, P(n),i ) · e(K1Ln/Ln, P(n),i ), (2·20)

e(Fn/K1Ln, P(n),i ) | [Fn : K1Ln] = pn−1, (2·21)

e(K1Ln/Ln, P(n),i) | [K1Ln : Ln] = p − 1, (2·22)

since (p, p − 1) = 1, we have:

e(K1Ln/Ln, P(n),i ) =
{

p − 1, for i = 0, (2·23a)

1, for 1 � i � n; (2·23b)

e(Fn/K1Ln, P(n),i ) =
{

pn−1, for i = 0, (2·24a)

pn−i , for 1 � i � n. (2·24b)

With Fcyc
n being Galois over Ln , we may assume that there are di many primes above

each prime of Lcyc
n above P(n),i for all 0 � i � n. From the above, as Fcyc

n =
Lcyc

n · K1 Ln we have,

di = p − 1 1 � i � n. (2·25)

Since Gal(Lcyc
n /Ln) � Zp, suppose that there are pai many primes of Lcyc

n lying
above P(n),i for all 0 � i � n. We have

#Sp

(
Fcyc

n

) = pn =
n∑

i=0

di pai = d0 pa0 + (p − 1)

n∑
i=1

pai . (2·26)

As Fcyc
n /Lcyc

n is Galois of degree p−1, clearly d0 | p−1 and hence we deduce d0 | pn

from (2·26). Conclusively, d0 = 1. Alternatively, since P(n),0 is totally ramified over
Fn and #Sp(Fcyc

n ) = #Sp(Fn), there is a unique prime of Fcyc
n lying above P(n),0, that

is d0 · pa0 = 1. This implies that d0 = 1 and pa0 = 1

#Sp

(
Lcyc

n

) = pa0 +
n∑

i=1

pai = pa0 + #Sp

(
Fcyc

n

) − pa0

p − 1

= pa0 ·
(

1 +
n−a0−1∑

i=0

pi

)
(2·27)

= 1 +
n−1∑
i=0

pi .

For r < n, the proof is similar except that there are r + 1 many primes of Ln above
p, labeled as P(n),i for 0 � i � r . The equations (2·19) till (2·25) still hold, with
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1 � i � n replaced by 1 � i � r . With #Sp(Fcyc
n ) = #Sp(Fn) = pr still holds for

r < n, again we get d0 = 1 and pa0 = 1, where pa0 denotes the number of primes
of Lcyc

n above P(n),0 and d0 denotes the number of primes of Fcyc
n above each of the

primes of Lcyc
n above P(n),0. Hence we get

#Sp

(
Lcyc

n

) = pa0 +
n∑

i=1

pai = pa0 + #Sp(Fcyc
n ) − d0 pa0

p − 1

= pa0 ·
(

1 +
r−a0−1∑

i=0

pi

)
(2·28)

= 1 +
r−1∑
i=0

pi .

3. Root numbers computations

We use a slightly simplified formula of the following result of V. Dokchitser:

LEMMA 3·1 (V. Dokchitser Formula [5]). Let E be an elliptic curve defined over Q, and
ρ an Artin representation which is self-dual. Let Sadd and Smulti be the set of rational primes
at where E has additive reduction and multiplicative reduction respectively. If ρ is unrami-
fied at all places of Sadd , then

w(E, ρ) = w(E)dimρ · (−1)dimρ− ·
∏

p∈Smulti

sdimρ−dimρ I p

p · det (
p|ρ Ip)

(3·1)·
∏

p∈Sadd

det (
p|ρ)Np(E)

where ρ− denotes the eigenspace of ρ(τ) of eigenvalue -1, where τ is the complex conjug-
ation, and the conductor of E has prime factorization

∏
p pNp(E). Here 
p is an geometric

Frobenius element, Ip is the corresponding inertia subgroup and

sp =
{

−1 if E has split multiplicative reduction at p,

1 if E has non-split multiplicative reduction at p.

This enables us to prove:

PROPOSITION 3·2. Under Hypothesis A,
(i) when E has non-split multiplicative reduction at p, we have

w(E, ρχn )

w(E, ρK )
=

∏
qi�p∈Smulti

(
qi

p

)
; (3·2)

(ii) when E has split multiplicative reduction at p,

(a) when (p, m) is amenable, we have

w(E, ρχn )

w(E, ρK )
= (−1) ·

∏
qi�p∈Smulti

(
qi

p

)
; (3·3)
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(b) when (p, m) is non-amenable, we have

w(E, ρχn )

w(E, ρK )
=

∏
qi�p∈Smulti

(
qi

p

)
×

{−1, for r < n; (3·4a)

1, for 1 � n � r . (3·4b)

Proof. By Hypothesis A, both ρχn and ρK are unramified at all places of Sadd , so the
Proposition follows from computing the quotient w(E, ρχn )/w(E, ρK ) using the Dokchitser
formula. Elementary computations shows

dimρK
mod2≡ dimρχn

mod2≡ 0,

dimρ−
K

mod2≡ dimρ−
χn

mod2≡ 1

2
(p − 1),

det
(

q |ρ Iq

K

) =
⎧⎨
⎩

(
q

p

)
, when q � p, (3·5a)

1, when q = p, (3·5b)

det
(

q |ρ Iq

χn

) =

⎧⎪⎪⎨
⎪⎪⎩

(
q

p

)
, when q � p, q � m, (3·6a)

1, when q � p, q | m, (3·6b)

1, when q = p. (3·6c)

For q ∈ Sadd , q � p, qi by Hypothesis A. From the above, we have

det (
q |ρK ) = det (
q |ρχn ) =
(

q

p

)
,

and hence, we have simplified the quotient as

w(E, ρχn )

w(E, ρK )
=

∏
q∈Smulti

sdimρ
Iq
χn

q · det
(

q |ρ Iq

χn

)
s

dimρ
Iq
K

q · det
(

q |ρ Iq

K

)
=

∏
q∈Smulti

sdimρ
Iq
χn

q

s
dimρ

Iq
K

q

·
∏

qi�p∈Smulti

(
qi

p

)
(3·7)

= sβn
p ·

∏
qi�p∈Smulti

(
qi

p

)
,

where

βn
def=

{
0 mod 2, for 1 � n � r when (p, m) is non-amenable;

1 mod 2, otherwise.
(3·8)

The final equality in (3·7) is due to the following computations:

dimρ
Iq

K
mod2≡

{
1, when q = p, (3·9a)

0, otherwise; (3·9b)

dimρ Iq
χn

mod2≡
{

1, when q = p, (p, m) is non-amenable, 1 � n � r, (3·10a)

0, otherwise. (3·10b)

The statement of this Proposition is immediate from (3·7) and (3·8).
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4. Homological ranks of Y (E/F∞)

Recall that H
def= Gal(F∞/Qcyc) � Z×

p , is a p-adic Lie group without p-torsion, hence
�(H) has finite global homological dimension.

Definition 4·1. For a finitely generated �(H)-module M , let

· · · −→ Pj+1 −→ Pj −→ Pj−1 −→ · · · −→ P0 −→ M −→ 0 (4·1)

be a finite projective resolution of M . We denote by

[M] def=
∑
i�0

(−1)i [Pi ] (4·2)

a well-defined element in K0(�(H)), which is independent of the choice of projective res-
olution.

Definition 4·2. For any number field L ⊂ F∞ with [L : Q] < ∞. Let hL be the group
homomorphism

hL : K0

(
�(H)

) −→ Z (4·3)

defined by

[M] �→
∑
i�0

(−1)i rankZp Hi(HL , M) (4·4)

for M any finitely generated �(H)-module, and being extended to the Grothendieck group
linearly.

Remark 4·3. Under MH (G)-Conjecture, Definition 4·1 well-defines for Y (E/F∞)
def=

X (E/F∞)/X (E/F∞)(p) an element [Y (E/F∞)] ∈ K0

(
�(H)

)
. The value hL([M]) is

called the homological rank of M in [9], and the author proves hK ([M]) = rank�(HK )M
for any finitely generated �(HK )-module M . In particular, τ = hK ([Y (E/F∞)]).

LEMMA 4·4. Under Hypothesis A, assuming the validity of MH (G)-Conjecture, then for
n � 0, we have

hLn ([Y (E/F∞)]) =
∑
i�0

(−1)i rankZp(Hi (HK , Y (E/F∞))(1)) + τ · pn − 1

p − 1
. (4·5)

Proof. See the proof of [1, proposition 4·1].

5. Fundamental diagram

Using the notations introduced in Section 1, before assuming any hypothesis, we have the
following:

Definition 5·1. Fix a subfield L ⊂ F∞ with [L : Q] < ∞. By fundamental diagram for
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L , we mean the following commutative diagram with exact rows:

H 2(HL, E p∞(F∞))�⏐⏐
0 −−−−→ Selp(E/F∞)HL −−−−→ H 1(GS(F∞), E p∞)HL

λ
HL
F∞−−−−→ ⊕uL∈S(Lcyc) JuL (F∞)HL�⏐⏐rLcyc

�⏐⏐resLcyc ⊕uL ∈S(Lcyc )huL

�⏐⏐
0 −−−−→ Selp(E/Lcyc) −−−−→ H 1(GS(Lcyc), E p∞)

λLcyc−−−−→ ⊕uL∈S(Lcyc) JuL (Lcyc)�⏐⏐
H 1(HL, E p∞(F∞)).

(5·1)
The vertical upward sequence is the inflation-restriction exact sequence. Here uL denotes a
place of Lcyc, huL is the corresponding restriction map from

JuL (Lcyc)
def= H 1

(
Lcyc

uL
, E(Lcyc

uL )
)

p∞ (5·2)

to

JuL (F∞)
def= lim

−→
[L ′ :Lcyc]<∞

L ′⊂F∞

⊕
w′|uL

H 1
(
L ′

w′, E(L ′
w′)

)
p∞, (5·3)

where the limit is taken via restriction map.

From now on, we assume MH (G)-Conjecture under Hypothesis A and work on the fun-
damental diagram.

LEMMA 5·2. The validity of MH (G)-Conjecture implies that for all subfield L ⊂ F∞
with [L : Q] < ∞, the homomorphism λLcyc is surjective, and

H 2(GS(Lcyc), E p∞) = 0. (5·4)

Proof. Firstly, MH (G)-Conjecture implies that X (E/Lcyc) is �(�L)-torsion. Secondly,
E p∞(Lcyc) is finite due to Ribet [12, theorem 1·1]. This lemma follows from [8, theorem 7·2].

LEMMA 5·3. ( Hachimori–Venjakob [8, lemma 3·3]).
For all subfield L ⊂ F∞ with [L : Q] < ∞, we have

corankZp H 1(HL , E p∞(F∞)) = 0. (5·5)

LEMMA 5·4. The validity of MH (G)-Conjecture implies that for all subfield L ⊂ F∞
with [L : Q] < ∞, we have:

H1

(
HL , X (E/F∞)

) = 0; (5·6)

Hi

(
HL , Y (E/F∞)

) = 0, f or i � 1; (5·7)

rankZp H0

(
HL , Y (E/F∞)

) = λ�(�L ) H0

(
HL , X (E/F∞)

)
. (5·8)
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Proof. From the first row of the fundamental diagram (5·1), we obtain an exact sequence

0 −→ Selp(E/F∞)HL −→ H 1(GS(F∞), E p∞)HL −→ (I mλF∞)HL

−→ H 1(HL , Selp(E/F∞)) −→ H 1(HL , H 1(GS(F∞), E p∞)). (5·9)

Hence, (5·6) holds if

H 1(HL , H 1(GS(F∞), E p∞)) = 0, (5·10)

and H 1(GS(F∞), E p∞)HL −→ (I mλF∞)HL is surjective. Since HL has p-cohomological
dimension 1, we have

H 3(HL, E p∞(F∞)) = 0 (5·11)

and

coker

( ⊕
uL∈S(Lcyc)

huL

)
= 0. (5·12)

By Lemma 5·2, we deduce (5·10) by the exactness of the Hochschild–Serre spectral se-
quence

H 2(GS(Lcyc), E p∞) −→ H 1(HL , H 1(GS(F∞), E p∞)) −→ H 3(HL , E p∞(F∞)) (5·13)

and the surjectivity of λ
HL
F∞ by the commutativity of the fundamental diagram (5·1). The

latter implies that H 1(GS(F∞), E p∞)HL −→ (I mλF∞)HL coincides with λ
HL
F∞ , which is a

surjection, hence proved (5·6).
Trivially, Hi (HL, Y (E/F∞)) = 0 for i � 2. To observe the case when i = 1, take the

HL -homology of the canonical short exact sequence of �(HL)-modules

0 −→ X (E/F∞)(p) −→ X (E/F∞) −→ Y (E/F∞) −→ 0. (5·14)

It yields an exact sequence of �(�L)-modules

0 = H1(HL, X (E/F∞)) −→ H1(HL , Y (E/F∞)) −→ H0(HL , X (E/F∞)(p))

−→ H0(HL , X (E/F∞)) −→ H0(HL , Y (E/F∞)) −→ 0. (5·15)

In fact, each term in this exact sequence is �(�L)-torsion. Indeed, the validity of MH (G)-
Conjecture implies that Selp(E/Lcyc) is a finitely generated �(�L)-cotorsion module, which
implies that H0(HL, X (E/F∞)) is �(�L)-torsion, hence so is H0(HL , Y (E/F∞)). On the
other hand, X (E/F∞)(p) is annihilated by some power of p, and hence the homological
group Hi(HL , X (E/F∞)(p)) will be annihilated by this power of p, for each i � 0. In
particular, they are �(�L)-torsion, with trivial λ�(�L )-invariants and so is the submodule
H1(HL , Y (E/F∞)). Moreover, since multiplying by p, (and hence by any power of p) is
injective in Y (E/F∞), the induced multiplying by p in H1(HL, Y (E/F∞)) is again injective,
(so is the multiplying by a power of p map). Hence, H1(HL , Y (E/F∞)) = 0 since it injects
into a module which is annihilated by some power of p, hence proved (5·7).

Since the λ�(�L )-invariant is additive in exact sequences and it coincides the Zp-rank upon
finitely generated Zp-modules, (5·8) follows from taking λ�(�L )-invariant along the long
exact sequence (5·15) above.

LEMMA 5·5. For uL � Sram(Lcyc) � Sp(Lcyc), we have

ker(huL ) = 0. (5·16)
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For uL ∈ Sp(Lcyc), we have

corankZp ker(uL) = δp. (5·17)

Proof. The first statement is trivial as the kernel of huL is a cohomology group of the relev-
ant decomposition subgroup of uL over F∞, but this decomposition subgroup is trivial since
uL is unramified over F∞. The second statement is a consequence of [3, proposition 4·3] and
Greenberg [6, section 3].

LEMMA 5·6. Under Hypothesis A, assuming the validity of MH (G)-Conjecture, then for
any number field L ⊂ F∞ with [L : Q] < ∞, we have

hL([Y (E/F∞)]) = λL +
∑

uL

corankZp

(
ker(huL )

) + δp · #Sp(Lcyc) (5·18)

where the uL runs over all places of Sram(Lcyc) − Sp(Lcyc) in the sum.

Proof. By Lemma 5·4, hL([Y (E/F∞)]) = λ�(�L ) H0

(
HL , X (E/F∞)

)
. By Lemma 5·2 and

Snake Lemma, Lemma 5·3 implies that

corankZp ker(rLcyc) = 0, (5·19)

corankZp coker(rLcyc) = corankZp ker

( ⊕
uL∈S(Lcyc)

huL

)
. (5·20)

Therefore, (5·18) follows plainly from Lemma 5·5.

Specifying Lemma 5·6 with L = K , L = Ln , and L = Fn , we have the following three
propositions.

PROPOSITION 5·7. Under Hypothesis A, assuming the validity of MH (G)-Conjecture,
then we have

τ = λK +
∑
uK

corankZp(ker(huK )) + δp (5·21)

where uK runs over all places of Sram(K cyc) − Sp(K cyc) in the sum.

LEMMA 5·8. Assuming Hypothesis A, we have:

corankZp(ker(huK )) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, when uK � Sram(K cyc) � Sp(K cyc);
0, when uK ∈ Sram(K cyc) � Sgood(K cyc) − Sp(K cyc)

with E(K cyc
uK

)p∞ = 0;
2, when uK ∈ Sram(K cyc) � Sgood(K cyc) − Sp(K cyc)

with E(K cyc
uK

)p∞ � 0;
0, when uK ∈ Sram(K cyc) � Sns(K cyc) − Sp(K cyc);
1, when uK ∈ Sram(K cyc) � Ss(K cyc) − Sp(K cyc);
δp, when uK ∈ Sp(K cyc).

Proof. The first and last line are repeated statements from Lemma 5·5. The proof of the
rest of the statements can be found in the proof of [8, lemma 3·4], in the case when p � 5.
The same proof carries over to our case under Hypothesis A without failure as even when
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p = 3, the only primes that can possibly ramify in F∞/K cyc are those lying above Sram and
Sp, which are all of semistable reduction type for E . Therefore, the reduction types of these
primes do not change from over K to over F∞.

PROPOSITION 5·9. Under Hypothesis A, assuming the validity of MH (G)-Conjecture,
then for n � 0, we have

hLn ([Yp(E/F∞)]) = λn +
∑

un

rankZp

(
Tp(E)Jun

) + δp · #Sp(Lcyc
n ) (5·22)

where un runs over all places of Sram(Lcyc
n ) − Sp(Lcyc

n ) in the sum, Jun denotes the absolute
Galois group of Lcyc

n,un
. Moreover, for each un ∈ Sram(Lcyc

n ) − Sp(Lcyc
n ), the value

rankZp

(
Tp(E)Jun

)
is dependent only on the rational prime qi lying below un, and independent on n.

PROPOSITION 5·10. Under Hypothesis A, assuming the validity of MH (G)-Conjecture,
then for n � 1, we have

τ · pn = λFn +
∑
uFn

corankZp

(
ker(huFn

)
) + δp · #Sp(Fcyc

n ) (5·23)

where uFn runs over all places of Sram(Fcyc
n ) − Sp(Fcyc

n ) in the sum.

Proof. The only extra statement here is hFn ([Yp(E/F∞)]) = hK ([Yp(E/F∞)])· pn , which
is due to the fact that [�(HK ) : �(HFn )] = pn .

LEMMA 5·11. Assuming Hypothesis A. For each n � 1, we have:

corankZp(ker(huFn
)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, when uFn � Sram(Fn
cyc) � Sp(Fn

cyc);
0, when uFn ∈ Sram(Fn

cyc) � Sgood(Fn
cyc) − Sp(Fn

cyc)

with E(Fn
cyc
uFn

)p∞ = 0;
2, when uFn ∈ Sram(Fn

cyc) � Sgood(Fn
cyc) − Sp(Fn

cyc)

with E(Fn
cyc
uFn

)p∞ � 0;
0, when uFn ∈ Sram(Fn

cyc) � Sns(Fn
cyc) − Sp(Fn

cyc);
1, when uFn ∈ Sram(Fn

cyc) � Ss(Fn
cyc) − Sp(Fn

cyc);
δp, when uFn ∈ Sp(Fn

cyc).

Proof. This is essentially the same proof as in Lemma 5·8, since K ⊂ Fn .

PROPOSITION 5·12. Under Hypothesis A, assuming MH (G)-Conjecture is valid:
(i) when E has non-split multiplicative reduction at p, we have

λn − λn−1 = τpn−1, for all n � 1; (5·24)

(ii) when E has split multiplicative reduction at p,
(a) if (p, m) is amenable, we have

λn − λn−1 = τpn−1, for all n � 1, (5·25)

(b) if (p, m) is non-amenable, we have:

λn − λn−1 =
{

τpn−1, r < n; (5·26a)

(τ − 1)pn−1, 1 � n � r . (5·26b)
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Proof. For n � 1, from Proposition 5·9, we have

hLn ([Yp(E/F∞)])−hLn−1([Yp(E/F∞)]) = λn−λn−1+δp ·(#Sp

(
Lcyc

n

)−#Sp(Lcyc
n−1)), (5·27)

from Lemma 4·4, we get

hLn ([Yp(E/F∞)]) − hLn−1([Yp(E/F∞)]) = τ · pn − pn−1

p − 1
= τ · pn−1. (5·28)

Therefore,

λn − λn−1 = τ · pn−1 − δp · (
#Sp

(
Lcyc

n

) − #Sp(Lcyc
n−1)

)
. (5·29)

From Proposition 2·9, we conclude that:

#Sp(Lcyc
n ) − #Sp(Lcyc

n−1) =
{

pn−1, non-amenable (p, m), 1 � n � r ;

0, otherwise,
(5·30)

and thus the Proposition follows.

6. Proof of the Theorems

We still need several lemmas before we can prove Theorem 1·8 and Theorem 1·11.

LEMMA 6·1 (T,V. Dokchitser [4, theorem 1·2]).
Let E be an elliptic curve defined over Q, and p be any odd prime. For F any finite abelian
extension of Q, we have

w(E/F) = (−1)sE/F . (6·1)

LEMMA 6·2 (Greenberg–Guo [6, proposition 3·10], [7, section 5]).
Let E be an elliptic curve defined over a number field F, and fix an odd prime p. If
X (E/Fcyc) is �(�F)-torsion, then we have

sE/F
mod 2≡ λF . (6·2)

Remark 6·3. Under Hypothesis A, for any subfield F of F∞ with [F : Q] finite, the valid-
ity of MH (G)-Conjecture implies that X (E/Fcyc) is �(�F)-torsion, hence the hypothesis
in Greenberg-Guo is satisfied for these subfields F .

LEMMA 6·4. Assume the notations declared in Section 1. For n � 1, we have

sE/Ln = sE/Ln−1 + sE,ρχn
. (6·3)

Proof. By definition, ρχn factors through Gal(Fn/Q) and up to isomorphism, it is the only
irreducible representation of Gal(Fn/Q) which does not factor through the Galois group
Gal(Kn Ln−1/Q). So we have

X (E/Fn) ⊗Zp Q̄p = X (E/Kn Ln−1) ⊗Zp Q̄p ⊕ (ρχn )
sE,ρχn . (6·4)

The statement is immediate from this by counting the dimensions of the Gal(Fn/Ln)-
invariants and the fact that (ρχn )

Gal(Fn/Ln) is one dimensional.
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Proof of Theorem 1·8. For any n � 1, we have

sE,ρχn
= sE/Ln − sE/Ln−1 by Lemma 6·4
mod2≡ λn − λn−1 by Lemma 6·2
mod2≡ τ − δp · (#Sp(Lcyc

n ) − #Sp(Lcyc
n−1)) by (5·29).

On the other hand, we compute the parity of τ via (5·21), we have

λK
mod2≡ sE/K (6·5)

by Lemma 6·2, and∑
uK ∈Sram (K∞)−Sp(K∞)

corankZp

(
ker(huK )

) mod2≡ #
(
Sram(K∞) � Ss(K∞) − Sp(K∞)

)
by Lemma 5·8. Conclusively, we have

(−1)sE,ρχn = (−1)sE/K (−1)#(Sram (K∞)�Ss (K∞)−Sp(K∞))(−1)δp ·(#Sp(Lcyc
n )−#Sp(Lcyc

n−1)−1)

= w(E/K ) ·
∏

qi�p∈Smulti

(
qi

p

)
· s

(#Sp(Lcyc
n )−#Sp(Lcyc

n−1)−1)
p

= w(E, ρχn ) · sβn
p · s

(#Sp(Lcyc
n )−#Sp(Lcyc

n−1)−1)
p by (3·7)

= w(E, ρχn ),

because

βn + #Sp

(
Lcyc

n

) − #Sp(Lcyc
n−1))

mod2≡ 1 (6·6)

by (5·30) and (3·8).

COROLLARY 6·5. Under Hypothesis A, assuming MH (G)-Conjecture is valid:
(i) when E has non-split multiplicative reduction at p, we have

sE,ρχn

mod2≡ τ, for all n � 1; (6·7)

(ii) when E has split multiplicative reduction at p;
(a) if (p, m) is amenable, we have

sE,ρχn

mod2≡ τ, for all n � 1; (6·8)

(b) if (p, m) is non-amenable, we have

sE,ρχn

mod2≡
{

τ, r < n, (6·9a)

(τ − 1), 1 � n � r . (6·9b)

Proof. This is immediate from Lemma 6·1, 6·2, 6·4 and Proposition 5·12, since p is odd.

Proof of Theorem 1·11. When τ is odd, in the case when E has non-split multiplicative
reduction at p, by Proposition 5·12 and Lemma 6·2,

sE/Ln − sE/Ln−1

mod2≡ 1 (6·10)

holds for all n � 1, since p is an odd prime. Thus,

sE/Q < sE/L1 < sE/L2 < · · · (6·11)
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which implies the inequality (1·5). When E has split multiplicative reduction at p, the same
argument leads to inequality (1·7) in the case when (p, m) is amenable; while in the non-
amenable case, (6·10) holds for n > r due to Proposition 5·12, hence we have strict growth
from the r -th level

sE/Lr < sE/Lr+1 < sE/Lr+2 · · · (6·12)

which implies the inequality (1·9).
When E has non-split multiplicative reduction at p, from (6·11) and (6·3) of Lemma 6·4,
we conclude that

sE,ρχn
� 1 (6·13)

holds for all n � 1. Therefore, we deduce from (6·4) of Lemma 6·4 that

sE/Fn = sE/Kn Ln−1 + pn−1(p − 1) · sE,ρχn

� sE/Kn Ln−1 + pn−1(p − 1) (6·14)

� sE/Fn−1 + pn−1(p − 1)

for all n � 1. Applying the inequality (6·14) recursively for all n � 1, we obtain

sE/Fn � pn−1(p − 1) + pn−2(p − 1) + · · · + p1(p − 1) + sE/F1 (6·15)
� pn − 1 + sE/K ,

and hence have proved inequality (1·6). When E has split multiplicative reduction at p, the
same argument leads to the same inequality (1·8) in the case when (p, m) is amenable; while
in the non-amenable case, inequalities (6·13) and (6·14) hold for n > r . Let n = r + k and
applying inequality (6·14) recursively for all k � 1, we obtain

sE/Fr+k � pr [pk−1(p − 1) + pk−2(p − 1) + · · · + p1(p − 1)] + sE/Fr+1 (6·16)
� pr (pk − 1) + sE/Kr+1 Lr ,

and hence have proved inequality (1·10).
We now show that these lower bounds are upper bounds too when τ = 1. From (5·23) of
Proposition 5·10, we have

sE/Fn � λFn = pn · τ −
⎛
⎝∑

uFn

corankZp(ker(huFn
)) + δp · #Sp

(
Fcyc

n

)⎞⎠ (6·17)

where uFn runs over all places of Sram(Fcyc
n ) − Sp(Fcyc

n ) in the sum. It is obvious from
K ⊂ F1 ⊂ F2 ⊂ · · · , Lemma 5·8 and Lemma 5·11 that∑

uK

corankZp

(
ker(huK )

)
�

∑
uF1

corankZp

(
ker(huF1

)
)

�
∑
uF2

corankZp

(
ker(huF2

)
)

� · · ·
(6·18)

hence, when E has non-split multiplicative reduction at p, δp = 0, the right-hand side of
(6·17) is further upper-bounded by

pn −
∑
uK

corankZp

(
ker(huK )

) = pn − 1 + λK = pn − 1 + sE/K (6·19)

where the first equality is due to Proposition 5·7; the second equality λK = sE/K is due to

the fact that τ = 1 implies λK = 0 or 1, and by Lemma 6·2, λK
mod2≡ sE/K . When E has split
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multiplicative reduction at p, δp = 1. In the case when (p, m) is amenable, by Proposition
2·7, we have

#Sp

(
Fcyc

n

) = 1 = #Sp(K cyc) (6·20)

for all n � 1. Hence the right-hand side of (6·17) is further upper-bounded by

pn −
∑
uK

corankZp

(
ker(huK )

) − δp = pn − 1 + λK = pn − 1 + sE/K (6·21)

by the same reasons. In fact, in this case, we can deduce further from Proposition 5·7 that∑
uK

corankZp

(
ker(huK )

) = λK = sE/K = 0. (6·22)

In the case when (p, m) is non-amenable, by Proposition 2·7, we have

#Sp

(
Fcyc

r+k

) = #Sp

(
Fcyc

r

) = pr (6·23)

for all k � 1. Let n = r + k, the right-hand side of (6·17) is further upper-bounded by

pr+k −
∑
uFr

corankZp

(
ker(huFr

)
) − δp · #Sp

(
Fcyc

r

) = pr+k − pr · τ + λFr

= pr (pk − 1)

The first equation is due to Proposition 5·10 when n = r . In fact, in this case, we can deduce
from the same proposition that∑

uFr

corankZp

(
ker(huFr

)
) = λFr = 0. (6·24)

So in particular sE/Kr+1 Lr = 0, and hence proved the statement.
Lastly, since the equalities of (1·6), (1·8) and (1·10) hold, all the equalities in (6·14), (6·15)
and (6·16) must hold in the respective cases, and in particular:

(i) when E has non-split multiplicative reduction at p, we have

sE,ρχn
= 1, for all n � 1; (6·25)

(ii) when E has split multiplicative reduction at p:
(a) if (p, m) is amenable, we have

sE,ρχn
= 1, for all n � 1; (6·26)

(b) if (p, m) is non-amenable, we have

sE,ρχn
= 1, for all n > r. (6·27)

Hence, the equalities of (1·5), (1·7) and (1·9) hold, by Lemma 6·4.

7. Numerical examples

By Theorem 1·11 in the case of τ = 1, assuming the finiteness of the Shafarevich group
over number field Q(θ), where θ

def= p
√

m, we should obtain an extra Mordell–Weil rank over
Q(θ) than over Q. Table 1 below provides several examples of triples (E, p, m) satisfying
Hypothesis A with rankZ E(Q) = 0. Computations by Magma predicts (this computation
involves the formula given in [10, theorem 1] and conjectural order of the Shafarevich group
of E over K via BSD Conjecture by computing the Hasse-Weil L-function over K at 1)
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Table 1. Examples (E, p, m) with τ = 1, rankZ E(Q) = 0 and rankZ(E(Q(θ))) = 1, with
p is a non-split multiplicative prime for E, or (p, m) is amenable (abbreviated by AM) when
p is a split multiplicative prime for E.

(E, p, m) δp Weierstrass equa-
tion of E

E(Q) E(Q(θ)) P = (x, y) ∈ E(Q(θ)) H(P)

(15a1, 3, 5) 0 y2+xy+y = x3+
x2 − 10x − 10

C2 ⊕ C4 C2 ⊕ C4 ⊕ Z

(
− 30

121
θ2 − 200

121
θ + 38

121
,

− 1325

1331
θ2 + 4275

1331
θ

− 1387

1331

)

1.5723

(33a1, 3, 11) 0 y2 + xy = x3 +
x2 − 11x

C2 ⊕ C2 C2 ⊕ C2 ⊕ Z

(
− 27

25
θ2 + 108

25
θ + 143

25
,

− 216

125
θ2 + 2214

125
θ

− 506

125

)

1.3937

(42a1, 3, 2) 0 y2+xy+y = x3+
x2 − 4x + 5

C8 C8 ⊕ Z (−θ2 − 1, θ2 + 2θ − 1) 0.8162

(150c1, 3, 2) 0 y2+xy+y = x3+
x2 + 37x + 281

C4 C4 ⊕ Z (2θ2 −4θ −1, 6θ2 +8θ −6) 1.0902

(21a1, 3, 3) 1, AM y2 + xy = x3 −
4x − 1

C2 ⊕ C4 C2 ⊕ C4 ⊕ Z

(
− 3

4
θ2 − 1

4
, − 3

8
θ2

+ 9

8
θ − 1

)
0.8934

(21a1, 3, 7) 1, AM y2 + xy = x3 −
4x − 1

C2 ⊕ C4 C2 ⊕ C4 ⊕ Z

(
−θ2 + 3

4
θ + 3

4
, − 7

8
θ2

+ 29

8
θ − 3

2

)
2.0767

(30a1, 3, 3) 1, AM y2+xy+y = x3+
x + 2

C6 C6 ⊕ Z (2θ2 − 3, −6θ + 10) 0.4708

(57b1, 3, 3) 1, AM y2+xy+y = x3−
7x + 5

C2 ⊕ C2 C2 ⊕ C2 ⊕ Z (−θ2 − θ + 1, θ + 2) 0.9280

(30a1, 5, 3) 0 y2+xy+y = x3+
x + 2

C6 C6 ⊕ Z (2θ4 −2θ3 +2θ2 −3, 4θ4 −
6θ2 + 12θ − 14)

0.5750

(70a1, 5, 2) 0 y2+xy+y = x3−
x2 + 2x − 3

C4 C4 ⊕ Z (4θ4 − 2θ3 + θ2 + 2θ − 5,

−3θ4 − 6θ3 + 17θ2

− 20θ + 17)

1.5505

the finiteness of X (E/K cyc) and hence τ = 1 by (5·21) in all these examples. We con-
clude the structure of E(Q(θ)), by finding a rational point of infinite order P ∈ E(Q(θ))

(computations by Pari/gp), with H(P) denotes the height of the point P . We indeed see
rankZ(E(Q(θ))) = 1 as predicted in these examples.

Example 1. Here is an example of an elliptic curve with split multiplicative reduction at
p with non-amenable pair (p, m), and with τ = 1. Let E be the elliptic curve with Cremona
symbol 57b1, which has Weierstrass equation given by

y2 + xy + y = x3 − 7x + 5. (7·1)

We see in Table 1 that E has split multiplicative reduction at p = 3, furthermore it has non-
split multiplicative reduction at prime 19. Let m = 19, then the pair (3, 19) is non-amenable
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with r = 1. Since 19 splits in Q(μ3), E has non-split multiplicative reduction at the primes
of Q(μ3) above 19. From the table above, we have seen that X (E/K cyc) is finite. Hence,
we conclude from (5·21) again that τ = δ3 = 1. According to the statement of Theorem
1·11, one cannot ensure any growth of the Z3-Selmer rank from over Q to over Q(

3
√

19),
but can ensure the growth of this rank from over Q(

3
√

19) to Q(
9
√

19) to be exactly 1. The
RankBound command in Magma gives

rankZ E(Q(
3
√

19)) � 0 (7·2)

rankZ E(Q(
32√

19)) � 3. (7·3)

Assuming the finiteness of the 3-primary part of the Shafarevich group of an elliptic curve
over a number field, then the Mordell–Weil rank of this elliptic curve over this number field
coincides with the Z3-Selmer rank over this number field. These two upperbounds of the
Mordell–Weil ranks given by Magma simply justify the fact that when the elliptic curve has
split multiplicative reduction at p and (p, m) is non-amenable, even if τ = 1, one can wait
until n > r to possibly gain an extra Mordell–Weil rank along the non-Galois tower {Ln}.

Example 2. Here is another example of split multiplicative reduction at p with non-
amenable pair (p, m), but with even τ . Let E be the elliptic curve with Cremona symbol
210a1, which has Weierstrass equation given by

y2 + xy = x3 − 41x − 39. (7·4)

The elliptic curve E has split multiplicative reduction at primes 2, 3, 7 and non-split mul-
tiplicative reduction at 5. Let p = 3 and m = 35. The pair (3, 35) is non-amenable with
r = 1. Since 5 is inert and 7 splits over Q(μ3), there are three primes of Q(μ3) dividing
m = 35, and E has split multiplicative reduction over all these primes. Computations by
Magma again predicts the finiteness of X (E/K cyc). Hence, we conclude from (5·21) again
that τ = 0 + 3 + δ3 = 4. By Magma, we obtain that

E(Q) = E(Q)tors = E(Q(
3
√

35))tors �C6. (7·5)

Assuming the finiteness of the 3-primary part of the Shafarevich group of E over number
fields, Corollary 6·5 and Lemma 6·4 suggest an odd growth of Mordell–Weil rank of E from
over Q to over Q(

3
√

35). Indeed, the Magma command RankBound gives an upperbound

rankZ E(Q(
3
√

35)) � 1. (7·6)

On the other hand, computations by Pari/gp provides

P = (2 3
√

35 − 12, 4(
3
√

35)2 − 6 3
√

35 − 15) ∈ E(Q(
3
√

35)) (7·7)

which is a point of infinite order of height ≈ 0.6153. Hence, we have

E(Q(
3
√

35))�C6 ⊕ Z. (7·8)
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