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1. Introduction

1.1. Canonical relations

In symplectic geometry, Weinstein [37, 38] has proposed that the ‘correct’ notion of

morphisms between two symplectic manifolds (X, ωX ) and (Y, ωY ) should be Lagrangian

correspondences (also known as canonical relations), i.e. Lagrangian submanifolds of

(X × Y, ωX −ωY ). As one piece of evidence for this claim, it is a well-known fact that a

smooth map X → Y is a symplectomorphism if and only if its graph is a Lagrangian
correspondence. Under certain transversality hypotheses, it is possible to compose

Lagrangian correspondences by taking an intersection, and Weinstein suggested that a

‘category’ of symplectic manifolds and Lagrangian correspondences should in some sense

be a natural domain for geometric quantization. However, in general, it is not possible to

compose Lagrangian correspondences (though see [35] for a way to partially circumvent

this problem in the context of Floer theory).

Poisson geometry can be viewed as a generalization of symplectic geometry, where

we weaken the non-degeneracy condition. In this context, the analogue of Lagrangian

correspondences between Poisson manifolds (X, πX ) and (Y, πY ) is the coisotropic

correspondences, i.e. coisotropic submanifolds of (X × Y, πX −πY ). A map X → Y can be

shown to be a Poisson morphism if and only if its graph is a coisotropic correspondence,

and Weinstein [36] proved that under suitable transversality hypotheses, these too can

be composed by taking intersections.

Symplectic and Poisson structures are also important in algebraic geometry, and here
similar problems arise. Indeed, to define symplectic structures on an algebraic scheme

X , one requires the cotangent sheaf �1
X to be a vector bundle, which means that the

scheme has to be smooth. However, intersections of smooth schemes are not smooth in

general. More generally, we may consider a version of symplectic structures where we

replace the cotangent sheaf �1
X by the cotangent complex LX , in which case we require

the cotangent complex to be perfect. However, we again run into the problem that the

cotangent complexes of intersections of schemes with perfect cotangent complexes are in
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general not themselves perfect. Extra structures on derived Lagrangian intersections of

symplectic schemes have been studied in [5] and on derived coisotropic intersections of

Poisson schemes in [1].

A way to deal with the problem of non-transverse intersections is to work in the setting

of derived algebraic geometry, where derived schemes with perfect cotangent complexes

are stable under intersections. (Foundational references on derived algebraic geometry

include [8, 9, 21, 34].) In this setting, analogues of symplectic and Lagrangian structures

on derived schemes and, more generally, derived Artin stacks, have been introduced

by Pantev, Toën, Vaquié, and Vezzosi [25], while analogues of Poisson and coisotropic

structures were introduced by the same authors together with Calaque [7] (see also [24]).
More precisely, in the derived setting differential forms naturally form a bicomplex, which

allows us to consider shifted versions of all of these structures (so that, for example, an

s-shifted symplectic form gives an equivalence TX ' LX [s] with a shift by some integer

s, instead of an equivalence TX ' LX between the tangent and cotangent complexes of

a derived stack X).

The goal of the present paper is to introduce a notion of (iterated) shifted coisotropic
correspondences between shifted Poisson stacks and construct higher categories whose

objects are shifted Poisson stacks and whose (higher) morphisms are (iterated) shifted

coisotropic correspondences.

1.2. The 1-category of derived Poisson stacks

Before we describe the contents of this paper in more detail, it is helpful to first discuss

the simplest case of our construction, namely the 1-category hCoisCorrs
1 of s-shifted

coisotropic correspondences.

For this, we must first give a brief sketch of the definition of s-shifted Poisson structures

on derived stacks, due to Calaque–Pantev–Toën–Vaquié–Vezzosi [7]. These authors

associate to every derived stack X a certain symmetric monoidal stable ∞-category MX
(thought of as the ∞-category of quasi-coherent complexes on the de Rham stack of X),

contravariantly functorial in X , together with a commutative algebra P∞X ∈MX (which

is only a lax functor of X). (We will review this formalism in more detail in §3.1.) An

s-shifted Poisson structure on X is then defined to be a lift of the commutative algebra

structure on P∞X to a Ps+1-algebra, where Ps+1 is the operad of dg Poisson algebras with

a bracket of degree −s.

Remark 1.2.1. In other words, we can define an ∞-groupoid of s-shifted Poisson

structures on X as the pullback

Pois(X, s) AlgPs+1
(MX )

{P∞X } CAlg(MX ).

Remark 1.2.2. The additivity theorem for Poisson algebras proved by the third

author [32, Theorem 2.22] and, independently, Rozenblyum, says that En-algebras in
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AlgPs (C) are the same thing as Pn+s-algebras in C. Since En-algebras in commutative

algebras are just commutative algebras, we could have equivalently used En-algebras in

Ps−n+1-algebras in MX in our definition of Poisson structures above.

Derived stacks endowed with an s-shifted Poisson structure are the objects of the

category hCoisCorrs
1. Next, to describe its morphisms, we outline the definition of a

coisotropic correspondence between two s-shifted Poisson stacks X and X ′. This is first of

all given by a span X
f
←− Y

g
−→ X ′ of derived stacks. This induces a cospan of commutative

algebras in MY ,

f ∗P∞X → P∞Y ← g∗P∞X ′ .

Since the symmetric monoidal structure on commutative algebras is cocartesian, we can

equivalently view this cospan as giving P∞Y the structure of an ( f ∗P∞X , g∗P∞X ′) bimodule

in CAlg(MY ). A coisotropic correspondence is then a lift of this structure to a bimodule

in the symmetric monoidal ∞-category AlgPs (MY ), where we view the Ps+1-algebra

structures on P∞X and P∞X ′ as associative algebras in Ps-algebras.

Remark 1.2.3. If we have chosen s-shifted Poisson structures for X and X ′, this means

that the ∞-groupoid of compatible coisotropic structures on the span is given by the

pullback

CoisX,X ′( f, g; s) Mod f ∗P∞X ,g
∗P∞X ′

(AlgPs (MY ))

{P∞Y } Mod f ∗P∞X ,g
∗P∞X ′

(CAlg(MY )).

The coisotropic correspondences are the morphisms in the category hCoisCorrs
1 of

s-shifted coisotropic correspondences. To compose two coisotropic correspondences given

by spans

Y Y ′

X X ′ X ′′

we first compose the spans in the usual way, by forming a pullback

Z

Y Y ′

X X ′ X ′′.
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This pullback induces a pushout square in CAlg(MZ ) (see Proposition 3.1.5),

P∞X ′ P∞Y

P∞Y ′ P∞Z ,

i.e. P∞Z ' P∞Y ⊗P∞X ′
P∞Y ′ (where we omit notation for the pullbacks to Z). To compose two

coisotropic correspondences, we take the corresponding relative tensor product of the

bimodules P∞Y and P∞Y ′ in Ps-algebras. This can be interpreted as forming a composite in

the Morita category of algebras and bimodules in AlgPs (MZ ); this has associative algebras

as objects, with morphisms from A to B given by (A, B)-bimodules and composition given

by taking relative tensor products.

To construct the ∞-categorical extension of this category, we need a more structured

way of defining it. For this, we consider a general notion of ‘spans with coefficients’. If

C is an ∞-category with pullbacks, then given a functor F : Cop
→ Cat∞, we can define

an ∞-category Span1(C; F) of spans with coefficients in F such that

• an object of Span1(C; F) is a pair (c ∈ C, x ∈ F(c)),

• a morphism from (c, x) to (c′, x ′) is a span c
f
←− d

g
−→ c′ in C together with a morphism

φ : F( f )(x)→ F(g)(x ′) in F(d),

• given another morphism from (c′, x ′) to (c′′, x ′′) corresponding to a span c′
f ′
←− d ′

g′
−→ c′′

and a morphism ψ : F( f ′)(x ′)→ F(g′)(x ′′), their composite is given by composing the

spans by taking a pullback

e

d d ′

c c′ c′′,

h k

f g f ′ g′

and then composing F(h)(φ) : F( f h)(x)→ F(gh)(x ′) ' F( f ′k)(x ′) with

F(k)(ψ) : F( f ′k)(x ′)→ F(g′k)(x ′′) in F(e).

We can apply this to the functors Ps
1,C1 : dStop

→ Cat given by Ps
1(X) =

alg1(AlgPs (MX )) and C1(X) = alg1(CAlg(MX )), where alg1(C) denotes the Morita

∞-category of a monoidal∞-category C [15]. The forgetful functor from Poisson algebras

to commutative algebras induces a functor

Span1(dSt;Ps
1)→ Span1(dSt;C1).

Moreover, using the section P∞X ∈ CAlg(MX ), we can define a functor Span1(dSt)→

Span1(dSt;C1), which takes X ∈ dSt to (X,P∞X ), and a span X
f
←− Z

g
−→ Y to itself plus P∞Z

viewed as an f ∗P∞X –g∗P∞Y –bimodule. This allows us to define the∞-category CoisCorrs
1
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as the pullback

CoisCorrs
1 Span1(dSt;Ps

1)

Span1(dSt) Span1(dSt;C1).

1.3. Overview of results

In §2.3, we use the higher categories of ‘spans with local systems’ defined in [14]
to construct the ∞-categories Span1(C; F) as well as their higher-dimensional cousins

Spann(C; F), where F is a functor from C to the ∞-category of (∞, n)-categories. We

then want to define the (∞, n)-category CoisCorrs
n as a pullback

CoisCorrs
n Spann(dSt;Ps

n)

Spann(dSt) Spann(dSt;Cn),

where the functors Ps
n,Cn : dStop

→ Cat(∞,n) are given by Ps
n(X) = algn(AlgPs+1−n

(MX ))

and Cn(X) = algn(CAlg(MX )), with algn(C) denoting the Morita (∞, n)-category of

C [15]. However, we need to do some work to construct the functor Spann(dSt)→
Spann(dSt;Cn); for this, we prove two results that may be of independent interest.

Theorem 1.3.1 (See Corollary 2.4.11). Let Catpo
∞ be the subcategory of Cat∞ whose objects

are ∞-categories with pushouts and whose morphisms are functors that preserve these.

Given a functor F : Cop
→ Catpo

∞, we can form the functor Cospann(F) : Cop
→ Cat(∞,n).

There is an equivalence of (∞, n)-categories

Spann(C;Cospann(F)) ' Cospann(F),

where F→ Cop is the cocartesian fibration for F.

Theorem 1.3.2 (See Corollary 2.6.10). Suppose C is an ∞-category with finite colimits.

Then there is an equivalence of (∞, n)-categories

Cospann(C) ' algn(C
q).

Together, these two results lead to a simplified description of Spann(dSt;Cn), which

allows us to prove our main result.

Theorem 1.3.3 (See Theorem 3.3.4). There is a symmetric monoidal (∞, n)-category

CoisCorrs
n whose objects are derived stacks with s-shifted Poisson structures and whose

i-morphisms are i-fold coisotropic correspondences. Assuming all En-algebras are fully

dualizable, all objects of this (∞, n)-category are fully dualizable.

It was recently proved by Gwilliam and Scheimbauer [13] that the Morita

(∞, n)-category has duals; however, they use a geometric model of this (∞, n)-category,

which is not yet known to be equivalent to the algebraic model we use. Assuming this
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comparison (more precisely, see Conjecture 2.5.19), as well as the Cobordism Hypothesis,

we have the following corollary.

Corollary 1.3.4. Every s-shifted derived Poisson stack X determines a framed

n-dimensional extended topological quantum field theory

Bordfr
0,n → CoisCorrs

n .

Note that the (∞, n)-category of s-shifted Lagrangian correspondences Lags
n has

recently been defined in [6].

It is known [7, 27] that s-shifted Poisson structures satisfying a non-degeneracy

condition are equivalent to s-shifted symplectic structures in the sense of [25], and

similarly that non-degenerate coisotropic structures are equivalent to Lagrangian

structures [24, 28]. In §3.4, we explain how we expect these equivalences to generalize to

relate CoisCorrs
n to a symmetric monoidal (∞, n)-category Lags

n of s-shifted symplectic

stacks and iterated Lagrangian correspondences, which is constructed in forthcoming

work of the first author with Calaque and Scheimbauer [6].

2. Categorical preliminaries

In this section, we carry out the preliminary categorical constructions we require. We

begin by briefly reviewing the definitions of (and fixing our notation for) iterated Segal

spaces in §2.1 and then recalling the construction of higher categories of spans from [14]

in §2.2. In §2.3, we use this to introduce higher categories of spans with coefficients in

an (∞, n)-category. For the case of spans with coefficients in cospans, we then provide
a simpler description of this construction in §2.4. In §2.5, we recall the definition of the

higher Morita category of En-algebras from [15], which we use in §2.6 to prove that the

higher category of cospans is a higher Morita category.

2.1. Review of iterated Segal spaces

The goal of this subsection is to provide a brief review of the theory of iterated Segal

spaces, which was introduced by Barwick in [2]; iterated Segal spaces will be our model

for (∞, n)-categories. Our discussion here is mainly intended to fix the notation we use

in the rest of the paper; we refer the reader to [14, §§3, 4, 7, 11] for further details and

motivation.

Definition 2.1.1. We write � for the usual simplex category, with objects the ordered sets

[n] := {0, 1, . . . , n} and order-preserving functions as morphisms. A morphism φ : [n] →
[m] in � is called inert if it is the inclusion of a sub-interval, i.e. if φ(i) = φ(0)+ i for all

i , and active if it preserves the end points, i.e. if φ(0) = 0 and φ(n) = m. We write �int

for the subcategory of � containing only the inert maps.

Notation 2.1.2. For all n, we have maps in �,

σi : [0] → [n], ρi : [1] → [n],

https://doi.org/10.1017/S1474748020000274 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000274


792 R. Haugseng et al.

where σi (0 6 i 6 n) sends 0 to i and ρi (0 < i 6 n) sends 0 and 1 to i − 1 and i ,
respectively.

Definition 2.1.3. Let C be an ∞-category with pullbacks. A category object in C is a

functor X : �op
→ C such that the natural morphisms induced by the maps σi and ρi

Xn → X1×X0 · · · ×X0 X1

are equivalences in C, for all n. We let Cat(C) denote the full subcategory of Fun(�op,C)

spanned by the category objects.

The above definition can be iterated, leading us to the following notion.

Definition 2.1.4. Let C be an ∞-category with pullbacks. A n-uple category object in C

is defined inductively as a category object in the ∞-category of (n− 1)-category objects.

We let Catn(C) denote the ∞-category of n-uple category objects in C, viewed as a

full subcategory of Fun(�n,op,C). If C is the ∞-category S of spaces, we refer to n-uple

category objects as n-uple Segal spaces.

Among the n-uple Segal spaces, we can single out those that describe (∞, n)-categories

by imposing constancy conditions.

Definition 2.1.5. Let C be an ∞-category with pullbacks. A 1-fold Segal object in C is

simply a category object in C. We now say inductively that an n-fold Segal object in C is

an n-uple category object X in C such that

• the restriction X0,•,...,• ∈ Catn−1(C) is constant,

• the restrictions Xk,•,...,• ∈ Catn−1(C) are (n− 1)-fold Segal objects for all k.

We denote by Segn(C) the full subcategory of Catn(C) spanned by n-fold Segal objects.

If C is the ∞-category S of spaces, we refer to n-fold Segal objects as n-fold Segal spaces.

By definition, the category Segn(C) comes equipped with an inclusion functor to

Catn(C).

Proposition 2.1.6. Let C be an ∞-category with pullbacks. The inclusion Segn(C)→

Catn(C) admits a right adjoint, which will be denoted by U n
Seg.

We refer to [14, Proposition 4.12] for a proof. If X is an n-fold Segal object in C, we

refer to U n
Seg X as the underlying n-uple category object of X .

To obtain the correct∞-category of (∞, n)-categories, we must invert the fully faithful

and essentially surjective morphisms. By the results of Rezk [29] in the case n = 1 and

Barwick [2] in general, this localization is given by the full subcategory of complete

objects, defined as follows.
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Definition 2.1.7. Let X be an n-fold Segal space. We inductively say that X is complete

if

• the Segal space X•,0,...,0 is complete in the sense of [29],

• the (n− 1)-fold Segal space X1,•,...,• is complete.

We denote by CSSn(S) the full subcategory of Segn(S) spanned by complete n-fold Segal

spaces.

We also denote CSSn(S) by Cat(∞,n); this ∞-category is equivalent to those of other

descriptions of (∞, n)-categories by [4].

Notation 2.1.8. Let D be an n-fold Segal space, and let x and y be objects of D (i.e.

points of D0,...,0). Then the (n− 1)-fold Segal space D(x, y) of morphisms from x to y is

defined by the pullback square

D(x, y) D1

{(x, y)} D0×D0

of (n− 1)-fold Segal spaces.

Since (complete) n-fold Segal spaces are models for (∞, n)-categories, it is natural to

consider a notion of monoidal structures on these objects.

Definition 2.1.9. Let C be an ∞-category with finite products. An associative monoid in

C is a functor A : �op
→ C such that the natural maps

An → A1× · · ·× A1

are equivalences for all n. We denote by Mon(C) the full subcategory of Fun(�op,C)

spanned by associative monoids. Monoids in the categories Segn(S) or CSSn(S) will be

called monoidal n-fold (complete) Segal spaces.

We can once again iterate the above definition.

Definition 2.1.10. Inductively, a k-uple monoid in C is simply defined to be a (k− 1)-uple

monoid in Mon(C), and we denote by Monk(C) the category of k-uple monoids in C. The
k-uple monoids in Segn(S) or in CSSn(S) are called k-uply monoidal n-fold (complete)

Segal spaces.

Remark 2.1.11. Note that iterating Definition 2.1.9 does not produce any new operation,

but instead adds commutativity constraints on the already existing one. This is

analogous to the Eckmann–Hilton argument and to the Dunn–Lurie additivity (see also

Remark 2.1.13).
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Note that there are natural functors Monk(C)→ Monk−1(C) for all k, which are defined

by sending X ∈ Monk(C) to X1,•,...,• : �n−1,op
→ C.

Definition 2.1.12. The∞-category Mon∞(C) of∞-uple monoids in C is defined to be the

limit of the diagram

· · · → Monk(C)→ Monk−1(C)→ · · · → Mon(C)→ C.

If C is Segn(S) or CSSn(S), elements in Mon∞(C) will be called ∞-uply monoidal n-fold

(complete) Segal spaces.

Remark 2.1.13. k-uply and ∞-uply monoidal (complete) n-fold Segal spaces can be

equivalently described as En-algebras and E∞-algebras, in the sense of [20] (we refer

the reader to [14, Proposition 10.12] for a precise statement). Therefore, k-uply and

∞-uply monoidal (complete) n-fold Segal spaces will be alternatively called Ek-monoidal

and symmetric monoidal (complete) n-fold Segal spaces.

Remark 2.1.14. If D is an n-fold Segal space and x is an object of D, then D(x, x) is
canonically a monoidal (n− 1)-fold Segal space. This construction can be iterated so that

if we have a sequence of (n+ i)-fold Segal spaces Di (0 6 i 6 m) and objects xi in Di
such that Di (xi , xi ) ' Di−1, then D0 is an Em-monoidal n-fold Segal space (where we

may have m = ∞).

We now briefly recall what it means for an (∞, n)-category to have adjoints and duals
(see [18] or [14, §11] for more details).

Definition 2.1.15. Let D be a 2-fold Segal space, and let h2D denote its homotopy

2-category. A 1-morphism in D is an (left or right) adjoint if its image in h2D is one.

We say that D has adjoints for 1-morphisms if every 1-morphism in D is both a left

and a right adjoint. If D is an n-fold Segal space, we similarly say that D has adjoints

for 1-morphisms if its underlying 2-fold Segal space has adjoints for 1-morphisms; by

induction, we then say that D has adjoints for i-morphisms for i > 1 if D(x, y) has

adjoints for (i − 1)-morphisms for all objects x, y. If D has adjoints for i-morphisms for

all 1 6 i < n, we simply say that D has adjoints, while a (k-uply) monoidal n-fold Segal
space has duals if it has adjoints when viewed as an (n+ 1)-fold Segal space.

We need to know that these properties are preserved under pullbacks, which is a

consequence of the following observation.

Proposition 2.1.16. Let

C D1

D2 E
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be a pullback in the ∞-category CSS2(S) of (∞, 2)-categories. Then a morphism in C has

a left (right) adjoint if and only if its images in D1 and D2 have left (right) adjoints.

Proof. Let Adj denote the free adjunction 2-category. This is described explicitly in [30],

where it is proved that an adjunction in an (∞, 2)-category K is equivalent to a functor

Adj→ K, from which it is clear that any functor of (∞, 2)-categories must preserve

adjunctions. It thus suffices to show the ‘if’ direction, which we do for the case of left

adjoints.

Let l : 11
→ Adj denote the inclusion of the 1-morphism that is a left adjoint. By [30,

Theorem 4.4.18], for any (∞, 2)-category K, the fibres of

l∗ : MapCat(∞,2)(Adj,K)→ MapCat(∞,2)(1
1,K)

are either empty or contractible, and a 1-morphism in K is a left adjoint precisely when

the fibre is non-empty. Moreover, our pullback square gives a commutative cube

Map(Adj,C) Map(Adj,D1)

Map(Adj,D2) Map(Adj,E)

Map(11,C) Map(11,D1)

Map(11,D2) Map(11,E),

where the top and bottom faces are pullbacks. Given a 1-morphism f in C, we get a

pullback square of fibres, which shows that if the images of f in D1 and D2 are left

adjoints, then f is a left adjoint.

Since the notions of ‘having duals’ and ‘having adjoints’ are defined in terms of

adjunctions in (∞, 2)-categories, we get the following as an immediate consequence.

Corollary 2.1.17. Let

C D1

D2 E

be a pullback of symmetric monoidal (∞, n)-categories.

(i) If D1 and D2 have adjoints, then C has adjoints.

(ii) If D1 and D2 have duals, then C has duals.

Remark 2.1.18. In the case of duals for objects, this is also a consequence of [20,

Proposition 4.6.1.11].

2.2. Review of higher categories of spans

In this subsection, we will review the definition of higher categories of iterated spans

from [14].
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Definition 2.2.1. We write �n for the partially ordered set of pairs (i, j) with 0 6 i 6
j 6 n, with (i, j) 6 (i ′, j ′) if i 6 i ′ and j ′ 6 j . A map φ : [n] → [m] in � determines a

functor �n
→ �m taking (i, j) to (φ(i), φ( j)), yielding a functor �• : �→ Cat. We write

�i1,...,in := �i1 × · · ·×�in , which gives functors �•,...,• : �n
→ Cat. We let �̂n

→ �n,op

denote the cartesian fibration for this functor.

Definition 2.2.2. If C is an ∞-category, we let SPAN
+
(C)→ �n,op be the cocartesian

fibration for the functor Fun(�•,...,•,C) : �n,op
→ Cat∞. We also write SPAN(C)→ �n,op

for its underlying left fibration, corresponding to the functor Map(�•,...,•,C) : �n,op
→ S.

Remark 2.2.3. The ∞-category SPAN
+
(C) has a universal property by [11, Proposition

7.3]. For any ∞-category K over �n,op, we have a natural equivalence

Map/�n,op(K,SPAN
+
(C)) ' Map(K×�n,op �̂n,C).

Definition 2.2.4. Let �i denote the full subcategory of �i spanned by the pairs (i, j)
with j − i 6 1. These subcategories are preserved by inert maps in �, giving a functor

�• : �int→ Cat. Similarly, we define �i1,...,in := �i1 × · · ·×�ik , which gives a functor

�•,...,• : �n
int→ Cat with a natural transformation �•,...,•→ �•,...,•|�n

int
.

Definition 2.2.5. Let C be an∞-category with pullbacks. We say a functor f : �i1,...,ik →

C is cartesian if it is a right Kan extension of its restriction to �i1,...,ik . We write SPAN+n (C)

and SPANn(C) for the full subcategories of SPAN
+

n (C) and SPANn(C), respectively,

spanned by the cartesian functors.

We then have the following:

• The restricted projection SPAN+n (C)→ �n,op is a cocartesian fibration, by [14,

Corollary 5.12].

• The corresponding functor �n,op
→ Cat∞ is an n-uple category object, by [14,

Proposition 5.14].

Similarly, SPANn(C) is an n-uple Segal space.

Definition 2.2.6. We let Spann(C) := U n
Seg(SPANn(C)) be the underlying n-fold Segal

space of SPANn(C).

Notation 2.2.7. If C is an ∞-category with pushouts, we also write COSPANn(C) :=

SPANn(C
op) and Cospann(C) := Spann(C

op).

We have the following results from [14]:

• The n-fold Segal space Spann(C) is complete, by [14, Corollary 8.5].

• For objects, x, y ∈ C, the (n− 1)-fold Segal space of maps Spann(C)(x, y) is naturally

equivalent to Spann−1(C/x,y), by [14, Proposition 8.3]. Here C/x,y := C/x ×C C/y is the

∞-category of spans x ← c→ y with x and y fixed.
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• As a consequence, if C has a terminal object (i.e. C has all finite limits), then the

(∞, n)-category Spann(C) has a natural symmetric monoidal structure, as in [14,

Proposition 12.1].

• The symmetric monoidal (∞, n)-category Spann(C) has duals, by [14, Corollary 12.5].

Following [14, Section 6], we also consider a variant of the definition of Spann(C), giving

a higher category of ‘iterated spans with local systems’ in a category object in C.

Notation 2.2.8. Let 5 : �̂→ �op be the functor taking ([n], (i, j)) to [ j − i], and a

morphism ([n], (i, j))→ ([m], (i ′, j ′)) given by a morphism φ : [m] → [n] in � such that

(i, j) 6 (φ(i ′), φ( j ′)) to the morphism [ j ′− i ′] → [ j − i] given by s 7→ φ(i ′+ s)− i . We

write 5n for the product of n copies of 5, and 5I : �I
→ �n,op for its restriction to �I .

Definition 2.2.9. Let C be an∞-category with pullbacks. Given a functor F : �n,op
→ C,

we write SPAN
+

n (C; F)→ �n,op for the cocartesian fibration corresponding to the functor

I 7→ Fun(�I ,C)/F◦5I .

Remark 2.2.10. SPAN
+

n (C; F) can also be described as the ∞-category of commutative

diagrams

�I C1
1

�n,op C.

5I ev1

F

If we write C//F for the pullback

C//F C1
1

�n,op C,

ev1

F

this means we can describe SPAN
+

n (C; F) as the pullback

SPAN
+

n (C; F) SPAN
+

n (C//F )

�n,op SPAN
+

n (�
n,op),

where the bottom horizontal map is the section of SPAN
+

n (�
n,op)→ �n,op corresponding

to 5n under the equivalence

Map/�n,op(�n,op,SPAN
+
(�n,op)) ' Map(�̂n,�n,op)

of Remark 2.2.3.

Definition 2.2.11. Suppose C is an ∞-category with pullbacks and F : �n,op
→ C is an

n-uple category object. (Then 5I F : �I
→ C is cartesian for all I by [14, Lemma 6.4].)
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We define SPAN+n (C; F) as the pullback

SPAN+n (C; F) SPAN
+

n (C; F)

SPAN+n (C) SPAN
+

n (C).

Then SPAN+n (C; F)→ �n,op is a cocartesian fibration, being a fibre product of

cocartesian fibrations over �n,op along functors that preserve cocartesian morphisms.

Moreover, it corresponds to an n-uple category object in Cat∞ by [14, Proposition 6.7].

We write SPANn(C; F) for the underlying left fibration, which corresponds to an n-uple

Segal space, and Spann(C; F) for its underlying n-fold Segal space.

Remark 2.2.12. Using the description of the right adjoint U n
Seg in terms of iterated

pullbacks in the proof of [14, Proposition 4.12], it is easy to see that for an n-uple

category object F : �n,op
→ C, we have

Spann(C; F) ' U n
SegSPANn(C; F) ' Spann(C;U

n
Seg F).

If C is an ∞-category with finite limits, and ξ, η are objects of Spann(C; F),
corresponding to morphisms ξ : x → F0,...,0, η : y → F0,...,0 in C, then by [14, Proposition

9.3], we can identify the (n− 1)-fold Segal space of maps Spann(C; F)(ξ, η) with

Spann−1(C; Fξ,η), where Fξ,η is the functor �n−1,op
→ C defined as the pullback

Fξ,η F1

x × y F0× F0.
ξ×η

Here it will be convenient to slightly reformulate this, using the following observation.

Lemma 2.2.13. Suppose C is an ∞-category with pullbacks. Given a functor F : �n,op
→

C/x , there is a natural equivalence

Spann(C/x ; F) ' Spann(C; F).

Proof. The commutative square

(C/x )
11

C1
1

C/x C

ev1 ev1

is cartesian; pulling back along F : �n,op
→ C/x , we get a natural equivalence C//F '

(C/x )//F , and hence a natural equivalence SPANn(C; F) ' SPANn(C/x ; F), which restricts

to an equivalence Spann(C; F) ' Spann(C/x ; F).
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As a consequence, we may identify Spann(C; F)(ξ, η) with Spann−1(C/x×y; Fξ,η); it is

easy to see that this identification is compatible with the identification Spann(C)(x, y) '
Spann−1(C/x×y).

It follows that if F is a functor to symmetric monoidal n-fold Segal objects in C, then

Spann(C; F) is a symmetric monoidal n-fold Segal space (see [14, Proposition 13.1]).

If X is an ∞-topos, we can make sense of complete n-fold Segal objects in X, and of

(symmetric monoidal) n-fold Segal objects having adjoints (and having duals). We then

have the following.

• If F : �n,op
→ X is complete, then Spann(X; F) is a complete n-fold Segal space by [14,

Corollary 9.7].

• If F has adjoints, then so does Spann(X; F), by [14, Theorem 3.3].

• If F is a symmetric monoidal complete n-fold Segal object in X that has duals, then

Spann(X; F) has duals.

Here we only consider X of the form P(C) for some∞-category C, in which case all these

notions are given objectwise in C by the usual notions for n-fold Segal spaces.

2.3. Spans with coefficients

We now introduce higher categories of spans with coefficients as a variant of the

constructions above.

Definition 2.3.1. Suppose C is a small ∞-category. Given a functor F : Cop
→ Segn(S),

we define the n-fold Segal space of spans in C with coefficients in F as the pullback

Spann(C; F) Spann(P(C); F ′)

Spann(C) Spann(P(C)),

where F ′ is F regarded as a functor �n,op
→ P(C), Spann(P(C); F ′) is the ∞-category of

spans in the ∞-topos P(C) with coefficients in F ′, and the bottom horizontal functor is

induced by the Yoneda embedding. We define the variants SPANn(C; F), etc. similarly.

Remark 2.3.2. From the definition of SPANn(P(C); F ′), we see that SPANn(C; F) has the

following description: its fibre at I is the space of commutative diagrams

�I P(C)1
1

C×�n,op P(C)×P(C)

�n,op,

5I Y×F ′
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where Y denotes the Yoneda embedding. If we define F→ C×�n,op by the pullback

square

F P(C)1
1

C×�n,op P(C)×P(C),
Y×F ′

then we can equivalently describe SPANn(C; F) as the space of commutative diagrams

�I F

�n,op.

5I

(Here F→ C×�n,op is the bifibration (see §A.1) corresponding to F viewed as a functor

Cop
×�n,op

→ S.) From this, we obtain an alternative definition of SPANn(C; F)I as the

pullback

SPANn(C; F) SPAN(F)

SPANn(C) SPANn(C)×�n,op SPANn(�n,op),

where the bottom horizontal map is the fibre product of the inclusion SPANn(C)→

SPANn(C) with the functor �n,op
→ SPANn(�n,op) corresponding to 5 : �̂→ �n,op.

Remark 2.3.3. Given a functor F : C→ Catn(S), it follows from Remark 2.2.12 that we

have

Spann(C; F) ' U n
SegSPANn(C; F) ' Spann(C;U

n
Seg F).

Lemma 2.3.4.

(i) If F : Cop
→ Segn−1(S) lands in the full subcategory Cat(∞,n) of complete n-fold

Segal spaces, then Spann(C; F) is a complete Segal space.

(ii) If F is a functor from Cop to symmetric monoidal n-fold Segal spaces, then

Spann(C; F) is symmetric monoidal.

(iii) If F is a functor from Cop to (∞, n)-categories with adjoints, then Spann(C; F) has

adjoints.

(iv) If F is a functor from Cop to symmetric monoidal (∞, n)-categories with duals,

then Spann(C; F) has duals.

Proof. In case (i), F ′ : �n,op
→ P(C) is a complete n-fold Segal object of P(C), so

Spann(P(C); F ′) is a complete n-fold Segal space by [14, Proposition 9.2]. The n-fold Segal

space Spann(C; F) is therefore complete as the limit of a diagram of complete objects,

computed in n-fold Segal spaces, is complete. Similarly, in case (ii), F ′ is a symmetric

monoidal n-fold Segal object in P(C), and so Spann(P(C); F ′) is symmetric monoidal by

[14, Proposition 13.1]. Moreover, the functors in the pullback square defining Spann(C; F)
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are naturally symmetric monoidal, and the forgetful functor from symmetric monoidal

n-fold Segal spaces to n-fold Segal spaces preserves limits. Parts (iii) and (iv) follow

similarly using Corollary 2.1.17 together with [14, Theorem 13.3 and Corollary 13.4].

Proposition 2.3.5. Suppose ξ, η are objects of Spann(C; F) corresponding to pairs (x ∈
C, ξ ∈ F(x)), (y ∈ C, η ∈ F(y)). If we define Fξ,η : C/x,y → Segn−1(S) to be the functor

that takes x ← z→ y to the pullback

Fξ,η(z) F(z)1

{(ξ, η)} F(x)0× F(y)0 F(z)0× F(z)0,

then there is a natural equivalence of (n− 1)-fold Segal spaces

Spann(C; F)(ξ, η) ' Spann−1(C/x,y; Fξ,η).

Proof. From the definition of Spann(C; F) as a pullback, it follows that we have a pullback

square

Spann(C; F)(ξ, η) Spann(P(C); F ′)(ξ ′, η′)

Spann(C)(x, y) Spann(P(C))(Y (x), Y (y)),

where ξ ′ is the morphism Y (x)→ F0,...,0 corresponding to ξ ∈ F0,...,0(x), and similarly

for η′. By [14, Proposition 9.3], we can identify Spann(P(C); F ′)(ξ ′, η′) with
Spann−1(P(C); F ′

ξ ′,η′
), where F ′

ξ ′,η′
is the (n− 1)-fold Segal object in P(C) defined as the

pullback

F ′
ξ ′,η′

F1

Y (x)× Y (y) F0× F0.
ξ ′×η′

Here F ′
ξ ′,η′

is naturally a functor �n−1,op
→ P(C)/Y (x)×Y (y), and so by Lemma 2.2.13,

we can equivalently identify this with Spann−1(P(C)/Y (x)×Y (y); F ′
ξ ′,η′

), compatibly with

the identification of Spann(P(C))(Y (x), Y (y)) with Spann−1(P(C)/Y (x)×Y (y)) from [14,

Proposition 8.3]. We thus have a pullback square

Spann(C; F)(ξ, η) Spann−1(P(C)/Y (x)×Y (y); F ′
ξ ′,η′

)

Spann−1(C/x,y) Spann−1(P(C)/Y (x)×Y (y)).

The canonical functor P(C/x,y)→ P(C)/Y (x)×Y (y) is an equivalence (since C/x,y → C

is the right fibration for Y (x)× Y (y)), and under this equivalence, the functor F ′
ξ ′,η′

corresponds to (Fξ,η)′. Our pullback square is therefore equivalent to that defining

Spann−1(C/x,y; Fξ,η), as required.
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Remark 2.3.6. In the special case where C has a terminal object ∗ and x ' y ' ∗ so

that ξ and η are objects of F(∗), we can identify Fξ,η with the functor Cop
→ Segn−1(S)

taking c ∈ C to the mapping (n− 1)-fold Segal space F(c)( f ∗ξ, f ∗η) , where f denotes

the unique map c→ ∗.

2.4. Spans with coefficients in cospans

Suppose C is an ∞-category with pullbacks, and consider a functor F : Cop
→

Catpo
∞ to the ∞-category of small ∞-categories with pushouts. Then we have a

functor COSPANn(F) : Cop
→ Catn(S), and we can consider the n-uple Segal space

SPANn(C;COSPANn(F)). Our goal in this subsection is to give a simpler description

of this n-uple Segal space.

Proposition 2.4.1. Let F→ Cop be the cocartesian fibration corresponding to a functor
F : Cop

→ Catpo
∞. Then there is a natural equivalence

SPANn(C;COSPANn(F)) ' COSPANn(F).

Our starting point is the following description of spans with coefficients in cospans.

Proposition 2.4.2. Given φ : Cop
→ Cat

po
∞ with corresponding cocartesian fibration F→

Cop, then SPANn(C;COSPANn(φ))I is equivalent to the space of diagrams of the form

Tw`(�I )×�n,op �̂n,op F

�I,op Cop

α

γ op

such that α takes every morphism of Tw`(�I )×�n,op �̂n,op that lies over a cartesian

morphism in �̂n,op to a cocartesian morphism in F, where �̂n,op→ �n,op is the cartesian

fibration for I 7→ �I,op. Here Tw`(�I ) denotes the left fibration version of the twisted

arrow category of �I ; see Definition A.2.2.

Proof. Let X→ C×�n,op be the bifibration corresponding to

(c, I ) 7→ COSPAN
+

n (φ(c))I .

Then by Remark 2.3.2, we can identify SPANn(C;COSPAN
+

n (φ))I with the space of

commutative diagrams


�I X

�n,op

5I

 '


�I X

C×�n,op

�n,op

5I


.
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Now Corollary A.2.6 identifies this with the space of commutative diagrams

Tw`(�I ) X`

�I,op
×�I Cop

×�n,op

�I �n,op5I


.

Here X`→ Cop
×�n,op is the underlying left fibration of the cocartesian fibration for the

functor (c, I ) 7→ Fun(�I , φ(c)), and so Corollary A.3.10 identifies this space with that of
commutative squares 

Tw`(�I )×�n,op �̂n,op F

�I,op Cop

α

 ,
such that α takes every morphism of Tw`(�I )×�n,op �̂n,op that lies over a cartesian

morphism in �̂n,op to a cocartesian morphism in F.

Notation 2.4.3. We use the abbreviation

XI
:= Tw`(�I )×�n,op �̂n,op.

Corollary 2.4.4. SPANn(C;COSPANn(φ))I is the space of commutative diagrams

Tw`(�I )×�n,op �̂n,op F

�I,op Cop,

α

γ op

where

(1) γ : �I
→ C is cartesian, i.e. is a right Kan extension of its restriction to �I ,

(2) α takes every morphism of Tw`(�I )×�n,op �̂n,op that lies over a cartesian morphism

in �̂n,op to a cocartesian morphism in F,

(3) for every morphism i : A→ B in �I , the diagram

�πI (B),op
' {i}×�n,op �̂n,op→ {γ (A)}×Cop F ' φ(γ (A))

is cocartesian, i.e. is a left Kan extension of its restriction to �πI (B),op.

In order to use this description to prove Proposition 2.4.1, we need to relate diagrams

of shape XI to diagrams of shape �I,op in F. This we will do in two steps, using the

following explicit description of the category Xn .
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Lemma 2.4.5.

(i) The category �n
×�op �̂1,op is equivalent to the partially ordered set of quadruples of

integers (a, b, c, d), 0 6 a 6 b 6 c 6 d 6 n, where (a, b, c, d) 6 (a′, b′, c′, d ′) if and

only if

a 6 a′ 6 b′ 6 b 6 c 6 c′ 6 d ′ 6 d.

This corresponds to a cartesian morphism in �̂1,op if and only if b′ = b, c′ = c, and

the projection to �n is given by (a, b, c, d) 7→ (a, d).

(ii) The category Tw`(�n) is equivalent to the partially ordered set of quadruples of

integers (a, b, c, d), 0 6 a 6 b 6 c 6 d 6 n, where (a, b, c, d) 6 (a′, b′, c′, d ′) if and

only if

a′ 6 a 6 b 6 b′ 6 c′ 6 c 6 d 6 d ′,

i.e. the opposite of the partially ordered set in (i). The projections Tw`(�n)→

�n,op,�n are given by (a, b, c, d) 7→ (a, d), (b, c), respectively.

(iii) The category Xn
' Tw`(�n)×�op �̂1,op is equivalent to the partially ordered set of

sextuples of integers (a, b, c, d, e, f ), where 0 6 a 6 b 6 c 6 d 6 e 6 f 6 n, where

(a, b, c, d, e, f ) 6 (a′, b′, c′, d ′, e′, f ′), if and only if

a′ 6 a 6 b 6 b′ 6 c′ 6 c 6 d 6 d ′ 6 e′ 6 e 6 f 6 f ′.

This corresponds to a cartesian morphism in �̂1,op if and only if c′ = c, d ′ = d. The
projections to Tw`(�n) and �n

×�op �̂1,op are given by

(a, b, c, d, e, f ) 7→ (b, c, d, e), (a, b, d, e),

respectively.

Proof. Since �̂1,op→ �n,op is the cartesian fibration for the functor [n] ∈ � 7→ �n,op
∈

Cat, the category �̂1,op has object pairs ([n], (i, j)) with 0 6 i 6 j 6 n, with a morphism

([n], (i, j))→ ([m], (i ′, j ′)) given by a morphism φ : [m] → [n] in � such that (i, j) 6
(φ(i ′), φ( j ′)) in �n,op, i.e. (φ(i ′), φ( j ′)) 6 (i, j) in �n , or i 6 φ(i ′) 6 φ( j ′) 6 j .

On the other hand, the functor 5n : �n
→ �op takes (i, j) to [ j − i], so an object of the

fibre product �n
×�op �̂1,op is a pair ((i, j), (i ′, j ′)) with 0 6 i 6 j 6 n and 0 6 i ′ 6 j ′ 6

j − i . Identifying this with the quadruple (i, i ′+ i, j ′+ i, j), we get a bijection between the
objects of �n

×�op �̂1,op and the set of quadruples (a, b, c, d) with 0 6 a 6 b 6 c 6 d 6 n.

A morphism ((i, j), (i ′, j ′))→ ((k, l), (k′, l ′)) is unique if it exists, and corresponds to

the inequalities (i, j) 6 (k, l) and (k′+ k− i, l ′+ k− i) 6 (i ′, j ′) (since the corresponding
inclusion [l − k] ↪→ [ j − i] in � is given by t 7→ t + k− i), i.e.

i 6 k 6 l 6 j, k′+ k− i 6 i ′ 6 j ′ 6 l ′+ k− i,

which we can rewrite as

i 6 k 6 k′+ k 6 i ′+ i 6 j ′+ j 6 l ′+ k 6 l 6 j.

Equivalently, there is a unique morphism (a, b, c, d)→ (a′, b′, c′, d ′) if and only if a 6
a′ 6 b′ 6 b 6 c 6 c′ 6 d ′ 6 d, as required to prove (i).
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To prove (ii), observe that an object of Tw`(�n) is a morphism (i, j)→ (i ′, j ′) in �n ,

which we can identify with a quadruple (i, i ′, j ′, j) with 0 6 i 6 i ′ 6 j ′ 6 j 6 n. Now a

morphism from (i, j)→ (i ′, j ′) to (k, l)→ (k′, l ′) in Tw`(�n) is a commutative diagram

(i, j) (k, l)

(i ′, j ′) (k′, l ′),

which corresponds to the inequalities

i 6 i ′ 6 j ′ 6 j, i ′ 6 k′ 6 l ′ 6 j ′

k 6 i 6 j 6 l, k 6 k′ 6 l ′ 6 l,
which we can combine into the single chain of inequalities

k 6 i 6 i ′ 6 k′ 6 l ′ 6 j ′ 6 j 6 l,

which proves (ii).

To prove (iii), observe that the fibre product Tw`(�n)×�op �̂1,op is equivalently the

fibre product Tw`(�n)×�n (�n
×�op �̂1,op) of the categories considered in (i) and (ii).

We can therefore identify an object of this category with a pair ((a, b, c, d), (i, j, k, l)),
where (b, c) = (i, l), or equivalently a sextuple (a, b, j, k, c, d) with 0 6 a 6 b 6 j 6 k 6
c 6 d 6 n. The inequalities in (i) and (ii) also combine to give the inequalities in (iii) as

the criterion for a morphism to exist in this partially ordered set.

Definition 2.4.6. Let Tn denote the partially ordered set of quadruples (a, c, d, f ) with

0 6 a 6 c 6 d 6 f 6 n, where (a, c, d, f ) 6 (a′, c′, d ′, f ′) if and only if a′ 6 a 6 f 6 f ′

and c′ 6 c 6 d 6 d ′. We then define functors αn : X
n
→ Tn and βn : �n,op

→ Tn by

αn(a, b, c, d, e, f ) = (a, c, d, f ),

βn(i, j) = (i, i, j, j).
We also define γn : T

n
→ �n,op by (a, c, d, f ) 7→ (a, f ); note that γn ◦βn = id. For I =

([i1], . . . , [in]) ∈ �n,op, we set TI
:=

∏
j T

i j , and we similarly define αI , βI , and γI as

products.

Proposition 2.4.7. Let Cn denote the set of morphisms (a, c, d, f )→ (a′, c′, d ′, f ′) in Tn

such that c = c′, d = d ′, and similarly let C I denote the product of these morphisms viewed

as morphisms in TI . Then composition with the functor βI induces an equivalence

MapC/�I,op(TI ,F)→ Map(�I,op,F),

where MapC/�I,op(TI ,F) denotes the space of commutative squares

TI F

�I,op Cop,

f

γI

where f takes the morphisms in C I to cocartesian morphisms in F.
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Proof. To prove this, we will show that the morphism of marked simplicial sets

(N�I,op)[→ (NTI ,C I )

is marked anodyne in the cocartesian sense, i.e. dual to that of [17, Definition 3.1.1.1].

Marked anodyne morphisms are closed under the cartesian product of marked simplicial

sets by [17, Proposition 3.1.2.3], so it suffices to prove the case n = 1. We will do this

using a filtration of NTI ; to define this, it is convenient to first make up some terminology

and notation:

•We say a simplex of NTI is old if it is contained in the simplicial subset N�I,op, and

new otherwise.

• If σ : 1n
→ NTI is a non-degenerate new simplex, corresponding to a sequence of

morphisms A0
f1
−→ A1 → · · · → An , we define ν(σ ) to be the integer such that Ai ∈

βn(N�I,op) for i < ν(σ) and Aν(σ ) /∈ βn(N�I,op).

• If σ is a non-degenerate new n-simplex as above, we say that σ is long if ν(σ ) > 0 and

the morphism Aν(σ )−1 → Aν(σ ) is in Cn , and short otherwise.

• If σ is a long new non-degenerate (n+ 1)-simplex, then we say that σ is associated to

the short new non-degenerate n-simplex dν(σ )−1σ . Observe that for every short new

non-degenerate n-simplex, there is a unique long new non-degenerate (n+ 1)-simplex
associated to it.

We let Fn be the smallest simplicial subset of NTI containing Fn−1 (where we start

with F−1 containing only the old simplices) together with the short new non-degenerate

n-simplices and the long new non-degenerate (n+ 1)-simplices. We then have a filtration
of marked simplicial sets

βn(N�I,op) = F−1 ⊆ F0 ⊆ · · · ⊆ NTI ,

where we implicitly regard all these simplicial sets as marked by those of their edges that

lie in Cn . Since NTI is the union of the simplicial subsets Fi , it suffices to show that the

morphisms Fi−1 ↪→ Fi are all marked anodyne.

Next, we define a subsidiary filtration

FN−1 = GN ,N+1 ⊆ GN ,N ⊆ · · · ⊆ GN ,0 = FN ,

where GN ,m contains FN−1 together with those short new non-degenerate N -simplices σ

such that ν(σ ) > m, as well as their associated (N + 1)-simplices. Then it suffices to show

that the inclusions GN ,m ↪→ GN ,m−1 are all marked anodyne.

Consider now a short new non-degenerate N -simplex σ with associated (N + 1)-simplex

σ ′. Then we observe that

• dν(σ )σ ′ = σ ,

• diσ
′ is a long N -simplex if i 6= ν(σ ), ν(σ )+ 1, and so is in FN−1,

• ν(dν(σ )+1σ
′) = ν(σ )+ 1, so dν(σ )+1σ

′ lies in GN ,ν(σ )+1.
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Thus we have pushouts ∐
σ 3

N+1
m

∐
σ 1

N+1

GN ,m+1 GN ,m,

where the coproducts are over all short new non-degenerate N -simplices σ such that

ν(σ ) = m. If m > 0, then the top horizontal morphism is inner anodyne, and if m = 0,

then for every σ the edge 0→ 1 in 3N+1
0 is sent to an edge of NTn that lies in Cn . Hence

the top horizontal morphism is still marked anodyne.

Let us also write MapC/�I,op(XI ,F) for the space of commutative squares

XI F

�I,op Cop,

f

gop

where f takes the morphisms that lie over cartesian morphisms in �̂n,op to cocartesian

morphisms in F. Then composition with αI and βI gives natural maps

MapC/�I,op(XI ,F)← MapC/�I,op(TI ,F)
∼
−→ Map(�I,op,F).

Now we define Mapcocart
C/�I,op(X

I ,F) to be the subspace of such squares where

• g : �I
→ C is cartesian,

• for every morphism i : A→ B in �I , the diagram

�πI (B),op
' {i}×�n,op �̂n,op→ {g(A)}×Cop F ' φ(g(A))

is cocartesian,

and we also define Mapcocart
C/�I,op(T

I ,F) to be the subspace of functors that restrict under

βI to cocartesian functors �I,op
→ F.

Proposition 2.4.8. The maps given by composition with αI and βI restrict to maps

Mapcocart
C/�I,op(X

I ,F)← Mapcocart
C/�I,op(T

I ,F)
∼
−→ Mapcocart(�I,op,F).

We need the well-known description of colimits in a cocartesian fibration, which we

spell out as follows.

Lemma 2.4.9. Suppose π : E→ B is a cocartesian fibration and I is a small ∞-category

such that

(i) B has colimits of shape I,
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(ii) each fibre Eb has colimits of shape I,

(iii) the cocartesian pushforward functor f! : Eb → Eb′ preserves colimits of shape I for

all morphisms f : b→ b′ in B.

Then E has colimits of shape I. The colimit of a diagram p : I→ E is computed by

(1) extending πp : I→ B to a colimit diagram q : IF→ B,

(2) taking the cocartesian pushforward p′ : I→ Eq(∞) of the diagram p along the

morphisms q(i)→ q(∞),

(3) computing the colimit of p′ in the fibre Eq(∞).

Proof. By [17, Corollary 4.3.1.11], the assumptions imply that there exists a lift p̄ : IF→
E over q, which is a π -colimit diagram. Combining [17, Propositions 4.3.1.9 and 4.3.1.10],

we see that this π-colimit is equivalent to the colimit of the pushed-forward diagram p′

in the fibre Eq(∞). On the other hand, since q is a colimit diagram in B, [17, Proposition

4.3.1.5(2)] shows that p̄ is a π -colimit diagram if and only if it is a colimit diagram

in E.

Proof of Proposition 2.4.8. We must check that composition with αI takes a

commutative square in Mapcocart
C/�I,op(T

I ,F) to one in Mapcocart
C/�I,op(X

I ,F). Since F→ Cop is

the cocartesian fibration corresponding to a functor Cop
→ Cat

po
∞ , Lemma 2.4.9 implies

that a commutative square in F is a pushout if and only if it projects to a pushout

square in Cop and its cocartesian pushforward to the fibre over the terminal object is a

pushout square in that fibre. This implies in particular that composition with F→ Cop

takes cocartesian diagrams in F to cocartesian diagrams in Cop. Thus it remains only to

show that for every morphism i : A→ B in �I , the diagram

�πI (B),op
' {i}×�n,op �̂n,op→ TI

×�I,op {A} → {g(A)}×Cop F ' φ(g(A))

is cocartesian. But this diagram is a cocartesian pushforward to the fibre g(A) of the

diagram

�πI (B),op
→ �I,op βI

−→ TI
→ F,

which is cocartesian by [14, Proposition 5.9], and is therefore cocartesian, using again

the description of pushouts in F.

Consequently, we see that the functors αI and βI induce a morphism of n-uple Segal
spaces

COSPANn(F)→ SPANn(C;COSPANn(F)).

To see that this is an equivalence, we need the following observation.

Lemma 2.4.10. The functor α1 : X
1
→ T1 exhibits T1 as the localization of X1 at the

morphisms (0, 0, 0, 0, 1, 1)→ (0, . . . , 0, 1) and (0, 0, 1, 1, 1, 1)→ (0, 1, . . . , 1).

Proof. We can depict the partially ordered set X1 as

(0, . . . , 0)→ (0, . . . , 0, 1)← (0, . . . , 0, 1, 1)→ (0, 0, 0, 1, 1, 1)

← (0, 0, 1, . . . , 1)→ (0, 1, . . . , 1)← (1, . . . , 1)
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and T1 as

(0, 0, 0, 0)→ (0, 0, 0, 1)→ (0, 0, 1, 1)← (0, 1, 1, 1)← (1, 1, 1, 1).

The result is clear from this description since both decompose as pushouts of free

categories.

Proof of Proposition 2.4.1. We have a morphism of n-uple Segal spaces

COSPANn(F)→ SPANn(C;COSPANn(F)).

To see that this is an equivalence, it suffices to show that it is an equivalence on fibres

COSPANn(F)I → SPANn(C;COSPANn(F))I , where I = ([i1], . . . , [in]) with i j = 0 or 1
for all j , which follows from the previous lemma.

Corollary 2.4.11. Let F : Cop
→ Cat∞ be a functor such that F(x) has finite colimits

for x ∈ C and F( f ) : F(x)→ F(y) preserves finite colimits for every morphism f : x →
y in Cop. Then there is a symmetric monoidal equivalence of symmetric monoidal

(∞, n)-categories

Cospann(F)
∼
−→ Spann(C;Cospann(F)).

Proof. Since the functors αI and βI are defined as cartesian products, we have a

commutative diagram of equivalences

Mapcocart
C/�k,I,op(X

k,I ,F) Mapcocart
C/�k,op(X

k,Mapcocart
C/�I,op(X

I ,F))

Mapcocart
C/�k,I,op(T

k,I ,F) Mapcocart
C/�k,op(T

k,Mapcocart
C/�I,op(T

I ,F))

Map(�k,I,op,F) Map(�k,op,Map(�I,op,F)),

∼

∼

∼

∼

∼

∼

∼

with the notation in the right-hand column interpreted so that it makes sense. Setting

k = 1 and taking the fibres (via the maps �0
q�0

→ �1, etc.) at the constant maps to the

initial object (which we denote with the subscript (∅,∅)), we get a commutative diagram

of equivalences

Mapcocart
C/�1,I,op(X

1,I ,F)(∅,∅) Mapcocart
C/�I,op(X

I ,F)

Mapcocart
C/�1,I,op(T

1,I ,F)(∅,∅) Mapcocart
C/�I,op(T

I ,F)

Map(�1,I,op,F)(∅,∅) Map(�I,op,F).

∼

∼

∼

∼

∼

∼

∼

From this we see that on the underlying n-fold Segal objects, the equivalences of

Proposition 2.4.1 are compatible under delooping, i.e. we have commutative squares of
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equivalences

Spann+1(C;Cospann+1(F))(∅,∅) Spann(C;Cospann(F))

Cospann+1(F)(∅,∅) Cospann(F).

∼

∼

∼ ∼

It follows that the equivalence Spann(C;Cospann(F))
∼
−→ Cospann(F) is symmetric

monoidal, as required.

Remark 2.4.12. Let F be as above, and suppose σ : Cop
→ F is a section that takes finite

limits in C to colimits in F. Then it follows from the equivalence of Corollary 2.4.11 that

σ induces a symmetric monoidal functor of (∞, n)-categories

Spann(C)→ Spann(C;Cospann(F)).

2.5. Review of higher Morita categories

In this subsection, we will briefly recall the definition of the higher Morita category of

En-algebras in an En-monoidal ∞-category, as constructed in [15].

Definition 2.5.1. A �n-monoidal ∞-category is a cocartesian fibration V⊗→ �n,op such

that the corresponding functor �n,op
→ Cat∞ is an n-uple monoid in Cat∞, in the sense

of Definition 2.1.10. We will abuse notation by writing V for V⊗(1,...,1) and just saying that

‘V is a �n-monoidal ∞-category’.

Remark 2.5.2. As a special case of Remark 2.1.13, the notion of �n-monoidal∞-category

is equivalent to that of En-monoidal ∞-category considered in [20].

Notation 2.5.3. We say a morphism in �n
:= �×n is inert or active if each of its

components in � is inert or active, respectively, in the sense of Definition 2.1.1.

Definition 2.5.4. Suppose V is a �n-monoidal ∞-category. Then a �n,op-algebra in V is

a section

V⊗

�n,op

A

such that A takes inert morphisms in �n,op to cocartesian morphisms in V⊗.

Remark 2.5.5. It follows from the Dunn–Lurie additivity theorem that �n,op-algebras in

V are the same thing as En-algebras; see [15, Corollary A.27].

Definition 2.5.6. More generally, if O is an ∞-category over �n,op with a suitable notion

of inert morphisms residing over the inert morphisms in �n,op, we can define O-algebras
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in a �n-monoidal ∞-category V as commutative triangles

O V⊗

�n,op

A

,

where A takes inert morphisms in O to cocartesian morphisms in V⊗. In particular,

this definition makes sense if O is a (generalized) �n-∞-operad, in the sense of [15,

Definition 5.8]. We write Algn
O(V) for the full subcategory of Fun/�n,op(O,V⊗) spanned

by the O-algebras.

Example 2.5.7. For any object I in �n,op, the slice category �n,op
/I := ((�×n)/I )

op is a

generalized �n-∞-operad via the forgetful functor. Algebras for �op
/[1] in V correspond to a

pair of associative algebras and a bimodule between them, while �n,op
/I -algebras where I =

(1, . . . , 1, 0, . . . , 0) with k 1’s correspond to k-fold iterated bimodules in En−k-algebras

in V; these are the k-morphisms in the higher Morita category. On the other hand,

�op
/[2]-algebras correspond to a triple of associative algebras A0, A1, A2, together with

Ai –A j -bimodules Mi j for all 0 6 i < j 6 2, as well as an A1-bilinear map M01⊗M12 →

M02, or equivalently a map M01⊗A1 M12 → M02 of A0–A2-bimodules.

Example 2.5.8. Let �/[n] denote the full subcategory of �/[n] spanned by the morphisms

φ : [m] → [n] such that φ(i + 1)−φ(i) 6 1 for all i . For I = (i1, . . . , in) in �n , we set

�n,op
/I :=

∏n
t=1 �

op
/[it ]

; then �n,op
/I is a generalized �n-∞-operad via the forgetful functor to

�n,op. A �op
/[2]-algebra in V corresponds to a triple of associative algebras, A0, A1, A2,

together with an A0–A1-bimodule M01 and an A1–A2-bimodule M12.

Definition 2.5.9. If S is some class of∞-categories, we say that a �n-monoidal∞-category

V⊗ is compatible with S-shaped colimits if V has S-shaped colimits and the tensor product

functor

V×2
' V⊗(2,1,...,1)→ V

coming from the map (2, 1 . . . , 1)→ (1, . . . , 1) preserves S-shaped colimits in each

variable. (The n tensor products obtained in this way by permuting (2, 1, . . . , 1) can

all be shown to be equivalent, so the definition does not depend on the choice of this

map.)

Definition 2.5.10. Let τI : �
n,op
/I → �n,op

/I be the inclusion. Composition with τI induces

a functor τ ∗I : Algn
�n,op
/I
(V)→ Algn

�n,op
/I
(V). If V is compatible with �op-colimits, then this

functor has a fully faithful left adjoint τI,!. We say a �n,op
/I -algebra is composite if it is in

the essential image of this functor, or equivalently if the counit map τI,!τ
∗

I A→ A is an

equivalence.

Example 2.5.11. A �op
/[2]-algebra as in Example 2.5.7 is composite if and only if the

morphism M01⊗A1 M12 → M02 is an equivalence, i.e. if and only if the �op
/[2]-algebra
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presents M02 as the composite of M01 and M12 in the higher Morita category.

Definition 2.5.12. Suppose V is a �n-monoidal ∞-category compatible with

�n,op-colimits. There is a functor �n,op
→ Cat∞ taking I to Algn

�n,op
/I
(V) and a morphism

φ : I → J to the functor given by composition with the functor �n,op
/I → �n,op

/J defined by

composing with φ. We let

ALGn(V)→ �n,op

be the corresponding cocartesian fibration, and write ALGn(V) for the full subcategory

of ALGn(V) spanned by the composite �n,op
/I -algebras for all I .

We can now state the main result of [15].

Theorem 2.5.13 [15, Theorem 5.31]. For V as above, the restricted functor ALGn(V)→

�n,op is a cocartesian fibration, and the corresponding functor is an n-uple category object

in Cat∞.

Remark 2.5.14. The assumption that V is compatible with �op-colimits can be weakened

to the assumption that V ‘has good relative tensor products’ in the sense of [15, Definition

5.18]. In particular, it is not necessary that V has all simplicial colimits, only those that

occur when forming relative tensor products. For example, if V is equipped with the

cocartesian symmetric monoidal structure, then the relative tensor products are given by

pushouts, and it is enough to assume that V has finite colimits.

Remark 2.5.15. An n-uple category object in Cat∞ gives, by viewing ∞-categories as

complete Segal spaces, an (n+ 1)-uple Segal space. From this, we can obtain an (n+
1)-fold Segal space via Proposition 2.1.6.

Notation 2.5.16. We write Algn(V) for the completion of the underlying (n+ 1)-fold

Segal space U n+1
Seg ALGn(V) of ALGn(V). Thus Algn(V) is an (∞, n+ 1)-category; we write

algn(V) for its underlying (∞, n)-category. Equivalently, algn(V) is the completion of the

underlying n-fold Segal space of the n-uple Segal space corresponding to the left fibration

obtained by forgetting the non-cocartesian morphisms in ALGn(V).

We then have the following results from [15], which we state for algn(V), this being the

version of the higher Morita category relevant to this paper.

Theorem 2.5.17 [15, Theorem 5.49]. algn(V)(A, B) ' algn−1(ModA,B(V)).

Corollary 2.5.18. If V is an En+m-monoidal ∞-category, then algn(V) is Em-monoidal.

In particular, if V is symmetric monoidal, so is algn(V).

We now discuss two conjectures that will be relevant to our understanding of the higher

category of derived Poisson stacks.

https://doi.org/10.1017/S1474748020000274 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000274


Shifted coisotropic correspondences 813

Conjecture 2.5.19. Suppose V is a symmetric monoidal ∞-category compatible with

�n,op-colimits. Then the symmetric monoidal (∞, n)-category algn(V) has duals (in the

sense of Definition 2.1.15, i.e. its objects are dualizable and all i-morphisms have adjoints

for 1 6 i < n). In particular, all objects of algn(V) are fully dualizable.

Remark 2.5.20. This conjecture has been proved by Gwilliam and Scheimbauer in [13]

for a closely related model algF A
n (V) of the higher Morita (∞, n)-category, defined using

factorization algebras. It is expected that there is an equivalence algF A
n (V) ' algn(V)

when V is pointed, i.e. the unit of the monoidal structure is the initial object, and more

generally that there is an equivalence

algF A
n (V) ' algn(VI/).

Since the forgetful functor VI/→ V induces a symmetric monoidal functor algn(VI/)→

algn(V), the result of Gwilliam–Scheimbauer together with such a hypothetical

equivalence would imply that algn(V) has duals (since duals and adjoints are preserved

by any functor, and i-morphisms in algn(V) for i < n are naturally pointed, and so lift

uniquely to algn(VI/)).

Conjecture 2.5.21. If V is a pointed En-monoidal ∞-category (i.e. the unit is the initial
object), then the (n+ 1)-fold Segal space U n+1

Seg ALGn(V) is complete.

Remark 2.5.22. Completeness of an n-fold Segal space X is equivalent to completeness of

the underlying Segal space X•,0,...,0 and of the (n− 1)-fold Segal spaces of maps X(x, y).
In the case of U n+1

Seg ALGn(V), both the underlying Segal space and the (n− 1)-fold Segal

spaces of maps can themselves be described as higher Morita categories (pointed if V is

pointed). By induction, this means that it suffices to prove the conjecture in the case

n = 1.

Remark 2.5.23. It is shown in [33, §3.2.9] that for a pointed monoidal ∞-category, the

degeneracy map from the space of objects of U 2
SegALG1(V) to the space of equivalences

is surjective on π0, i.e. in the pointed case every Morita equivalence comes from an

equivalence of algebras in V. (More precisely, Scheimbauer proves the analogue of this
statement for the factorization algebra model, but the proof also works for the algebraic

model.) Conjecture 2.5.21 then amounts to the assertion that this essentially surjective

map is in fact an equivalence.

2.6. Iterated cospans as a higher Morita category

Suppose C is an ∞-category with finite colimits. Then we can define an (∞, n)-category

Cospann(C) of iterated cospans in C as in §2.2. We can also view C as a symmetric

monoidal ∞-category via coproducts, and hence define an (∞, n)-category algn(C
q) of

En-algebras in C. In this subsection, we will show that there is an equivalence

Cospann(C) ' algn(C
q).

For I in �n , the space Cospann(C)I is defined as a subspace of the underlying space

of the ∞-category Fun(�I ,C), while algn(C
q)I is similarly obtained (before completion)
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from Algn
�n,op
/I
(Cq). We will prove the equivalence of (∞, n)-categories by finding a natural

equivalence of ∞-categories

Algn
�n,op
/I
(Cq)

∼
−→ Fun(�I ,C)

and a compatible equivalence between �n,op
/I -algebras and functors from �I .

We first consider the case n = 1, which breaks down into three steps:

(1) We define a �-∞-operad BMi and a natural map �op
/[i]→ BMi of generalized

�-∞-operads such that for any monoidal ∞-category V, the induced functor

Alg1
BMi

(V)→ Alg1
�op
/[i]
(V)

is an equivalence.

(2) We define a unital �-∞-operad BM∗i and a natural map BMi → BM∗i such that for

any monoidal ∞-category V, the induced functor

Alg1
BM∗i

(V)→ Alg1
BMi

(V)I/

is an equivalence.

(3) We have a natural equivalence (BM∗i )[1] ' �i,op, so using the non-symmetric version

of [20, Proposition 2.4.3.16] for any ∞-category C with coproducts, we have an
equivalence

Alg1
BM∗i

(Cq) ' Fun(�i,op,C).

The case of n > 1 will then be obtained from this by induction.

Definition 2.6.1. Let BMn be the non-symmetric operad with objects xi j where 0 6 i 6
j 6 n and multimorphisms given by

Hom(xi1 j1 , . . . , xik jk ; xst ) =


∗, s = i1, j1 = i2, . . . , jk = t, k > 0,

∗, s = t, k = 0,

∅, otherwise.

If BM⊗n denotes its (non-symmetric) category of operators, there is a natural map

�op
/[n]→ BM⊗n

over �op, taking (i0, . . . , ik) to (xi0i1 , . . . xik−1ik ).

Lemma 2.6.2. Composition with the functor �op
/[n]→ BM⊗n induces an equivalence

Alg1
BMn

(V)→ Alg1
�op
/[n]
(V)

for all monoidal ∞-categories V.
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Proof. Without loss of generality, we may assume that V is compatible with colimits, as

any monoidal∞-category is a full subcategory of one that is (possibly passing to a larger

universe if V is large and not presentable). Then we have a commutative square

Alg1
BMn

(V) Alg1
�op
/[n]
(V)

Fun((BMn)[1],V) Fun((�op
/[n])[1],V).

Here the vertical arrows are both monadic right adjoints (e.g. by [10, Corollary A.5.6]),

and the bottom horizontal arrow is an equivalence, since (�op
/[n])[1] and (BMn)[1] are

both the set of pairs (i, j) with 0 6 i 6 j 6 n. To show that the top horizontal arrow
is an equivalence, it now suffices by [20, Corollary 4.7.3.16] to check that the natural

map between free algebras for the two monads is an equivalence. From the formula

for (non-symmetric) operadic left Kan extensions (see [10, §A.4]), we see that the

corresponding monads are given by

T�op
/[n]
8(i, i ′) '

∞∐
k=0

∐
( j0,..., jk )

i= j0, jk=i ′

8( j0, j1)⊗ · · ·⊗8( jk−1, jk) ' TBMn8,

which gives the desired equivalence.

Definition 2.6.3. Let BM∗n be the non-symmetric operad with objects xi j with 0 6 i 6
j 6 n, and multimorphisms given by

Hom(xi1 j1 , . . . , xik jk ; xst ) =


∗, s 6 i1 6 j1 6 i2 6 · · · 6 jk 6 t, k > 0,

∗, s 6 t, k = 0,

∅, otherwise.

There is an obvious map πn : BMn → BM∗n . We let BM∗,⊗n → �op be the category of
operators for BM∗n and denote the induced map BM⊗n → BM∗,⊗n also by πn .

Remark 2.6.4. The operad BM∗n is unital, i.e. every object has a unique nullary operation.

By the non-symmetric variant of [20, Proposition 2.3.1.11], this means that for every

monoidal ∞-category V, the forgetful functor

Alg1
BM∗n

(V)I/ ' Alg1
BM∗n

(VI/)→ Alg1
BM∗n

(V)

is an equivalence. In particular, the unit I , equipped with its unique BM∗n-algebra

structure, is initial in Alg1
BM∗n

(V).

Proposition 2.6.5. The functor πn induces an equivalence

AlgBM∗n
(V)→ AlgBMn (V)I/

for every monoidal ∞-category V.
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Proof. Since I ∈ AlgBMn (V) is the image of the initial object of AlgBM∗n
(V), the functor

π∗n : AlgBM∗n
(V)→ AlgBMn (V)

factors uniquely through the forgetful functor from AlgBMn (V)I/.

We may again assume, without loss of generality, that V is compatible with small

colimits. Then we have a commutative square

Alg1
BMn

(V)I/ Alg1
BM∗n

(V)

Fun((BMn)[1],V) Fun((BM∗n)
'

[1],V).

Here the vertical arrows are both monadic right adjoints; for the left one, this is because

it factors as a composite Alg1
BMn

(V)I/→ Alg1
BMn

(V)→ Fun((BMn)[1],V), where both

functors are not only monadic right adjoints but also preserve sifted colimits. Moreover,

the bottom horizontal arrow is clearly an isomorphism (note that we use the underlying

groupoid of (BM∗n)[1]). Therefore, we may again use [20, Corollary 4.7.3.16] to show that

the top horizontal morphism is an equivalence by comparing the free algebras for the

two monads. The left adjoint to the left-hand functor takes 8 to FBMn (8)q I , where the

coproduct is taken in BMn-algebras. The formula for FBMn identifies I with FBMn (δ),
where

δ(i, j) '

 I, j = i + 1,

∅, otherwise.

Since FBMn preserves colimits, this means we have

FBMn (8)q I ' FBMn (8q δ),

and so

(FBMn (8)q I )(i, i ′) '
∞∐

k=0

∐
( j0,..., jk )

i= j0, jk=i ′

(8q δ)( j0, j1)× · · ·× (8q δ)( jk−1, jk)

'

∞∐
k=0

∐
( j0,..., jk )

i= j0, jk=i ′

∐
S⊆{1,...,k}

js= js−1+1,s∈S

⊗
s /∈S

8( js−1, js).

In this coproduct, we have a term of the form 8(i1, j1)⊗ · · ·⊗8(ik, jk) whenever

i 6 i1 6 j1 6 i2 6 · · · 6 ik 6 jk 6 i ′,

corresponding to (i, i + 1, . . . i1− 1, i1, i2, i2+ 1, . . . , jk, jk + 1, . . . , j − 1, i ′) with S
identifying the pairs not of the form (it , jt ). This gives equivalences

(FBMn (8)q I )(i, i ′) ' I q
∞∐

k=1

∐
i6i16···6 jk6i ′

8(i1, j1)⊗ · · ·⊗8(ik, jk) ' FBM∗n
(i, i ′),

where the second equivalence again comes from the formula for operadic Kan extensions.
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Corollary 2.6.6. If C is an ∞-category with finite coproducts, then there is a natural

equivalence of ∞-categories

Alg1
�op
/[n]
(Cq) ' Fun(�n,op,C).

Proof. Since Cq is unital, by Lemma 2.6.2 and Proposition 2.6.5, we have natural

equivalences

Alg1
�op
/[n]
(Cq) ' Alg1

BM∗n
(Cq).

Using the non-symmetric analogue of [20, Proposition 2.4.3.9], it follows that the
restriction functor Alg1

BM∗n
(Cq)→ Fun((BM∗n)[1],C) is an equivalence. (Alternatively, we

can use [20, Proposition 2.4.3.9] together with the formula for symmetrizations of ordinary

non-symmetric operads from [10, Corollary 3.7.8], which does not change the fibre over

[1].) Finally, observe that by definition, (BM∗n)[1] is precisely the partially ordered set

�n,op.

Remark 2.6.7. A variant of the same argument gives a similar equivalence

Alg1
�op
/[n]
(Cq) ' Fun(�n,op,C),

compatible with that of Corollary 2.6.6 in the sense that we have a commutative square

Alg1
�op
/[n]
(Cq) Fun(�n,op,C)

Alg1
�op
/[n]
(Cq) Fun(�n,op,C).

∼

∼

Passing to left adjoints, we see that under these equivalences, the composite �op
/[n]-algebras

in Cq correspond precisely to the functors �n,op
→ C that are left Kan extended from

�n,op. Since the equivalences are natural in [n] ∈ �, this implies the following.

Corollary 2.6.8. If C is an ∞-category with finite colimits, we have a natural equivalence

ALG1(C
q)→ COSPAN+1 (C)

of category objects in Cat∞, and so an equivalence

alg1(C
q)→ Cospan1(C)

of ∞-categories.

We can now prove the general case by induction.

Corollary 2.6.9. If C is an ∞-category with finite coproducts, then we have a natural

equivalence

ALGn(C
q) ' COSPAN+n (C)

of n-uple category objects in Cat∞.
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Proof. If V is a �n+m-monoidal∞-category, then Alg�m,op
/J

(V) has a natural �n-monoidal

structure, given objectwise by the tensor product in V, such that there is a natural

equivalence

Algn
�n,op
/I
(Algm

�m,op
/J

(V)) ' Algn+m
�n+m,op
/(I,J )

(V),

by [15, Corollary A.77].

Suppose we have a natural equivalence

Alg�n−1,op
/J

(Cq) ' Fun(�J,op,C).

The canonical symmetric monoidal structure on the left-hand side corresponds to

the cocartesian structure on the right, since this is the unique symmetric monoidal

structure given objectwise in �J,op by the coproduct in C. For I = ([i], J ) in �n , using

Corollary 2.6.6, we then have a natural equivalence

Algn
�n,op
/I
(Cq) ' Alg1

�op
/[i]
(Algn−1

�n−1,op
/J

(Cq)) ' Alg1
�op
/[i]
(Fun(�J,op,C)q)

' Fun(�i,op,Fun(�J,op,C)) ' Fun(�I,op,C).

As in Remark 2.6.7, we also have a compatible equivalence Algn
�n,op
/I
(Cq) ' Fun(�I,op,C)

and hence a natural equivalence

ALGn(C
q)I ' COSPAN+n (C)I ,

as required.

Passing to underlying n-fold Segal spaces, since the symmetric monoidal structures are

defined by delooping in both cases, we get the following corollary.

Corollary 2.6.10. If C is an ∞-category with finite coproducts, then we have an

equivalence of symmetric monoidal (∞, n)-categories

algn(C
q) ' Cospann(C).

3. Higher categories of coisotropic correspondences

Our goal in this section is to introduce the notion of (iterated) coisotropic
correspondences, and to construct higher categories where these are the (higher)

morphisms. In §3.1, we give a brief outline of the theory of formal localization in derived

algebraic geometry, as developed in [7]. We then review the notions of Poisson structures

on derived stacks and coisotropic structures on morphisms of derived stacks, also from
[7], in §3.2. We will avoid going into the technical details of the various constructions,

and we refer the reader to [7] and to [26] for a more complete and precise treatment of

the subject. In §3.3, we first define coisotropic correspondences between derived Poisson

stacks, and then use the results of the previous section to construct (∞, n)-categories

of derived Poisson stacks and iterated coisotropic correspondences. We finish by briefly

discussing the expected relation of our higher categories to higher categories of symplectic

derived stacks in §3.4.
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3.1. Derived stacks and formal localization

We fix a base field k of characteristic 0. Let cdga60 denote the ∞-category of

commutative algebras in non-positively graded cochain complexes of k-modules. We write

dSt for the ∞-category of derived stacks, i.e. étale sheaves of (large) spaces on cdga60.
Representable (pre)sheaves give a fully faithful functor (cdga60)op

→ dSt, and we write

dAff ' (cdga60)op for its image; objects of dAff will be called derived affine schemes.

We denote by dArt ⊂ dSt the full subcategory of derived Artin stacks locally of finite

presentation. This is a convenient ∞-category of derived stacks X , which admit perfect

cotangent complexes LX . The dual will be denoted by TX .

Consider the inclusion functor

i : calgred
→ cdga60,

where calgred is the full sub-∞-category of discrete reduced commutative k-algebras.

The ∞-category calgred can be endowed with the étale topology, and we let Stred be the

∞-category of stacks on the associated site. By restriction, we immediately get a functor

of ∞-categories
i∗ : dSt→ Stred,

which has both a left adjoint i! and a right adjoint i∗, as i is both continuous and

cocontinuous.

Definition 3.1.1.

• The functor

(−)dR := i∗i∗ : dSt→ dSt

is called the de Rham stack functor.

• The functor

(−)red := i!i∗ : dSt→ dSt

is called the reduced stack functor.

Note that by adjunction, for any X ∈ dSt, we have canonical morphisms X → XdR and

Xred → X . One can prove that if X ∈ dSt is a derived stack, then XdR is simply given by

XdR : (dAff)op
−→ S

A 7−→ X (Ared),

where Ared is the reduced k-algebra H0(A)/Nilp(H0(A)). On the other hand, if Spec A ∈
dAff is affine, then (Spec A)red ' Spec(Ared).

The theory of formal localization mainly deals with the study of the projection X →
XdR. This map is of particular interest, as its fibres are precisely the formal completions

of X at its points. More concretely, let Spec A→ XdR be an A-point of XdR, and let X A
be the fibre product

X A X

Spec A XdR.
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It can be shown (see [7, Proposition 2.1.8]) that X A is equivalent to the formal

completion of the map Spec Ared
→ X ×Spec A. This is easily seen to imply that (X A)red '

Spec Ared. In other words, one can think of X A as a sort of ‘formal thickening’ of Spec Ared.

By the properties of the de Rham stack, the map Spec A→ XdR corresponds to a map

Spec Ared
→ X , which is induced by the map Spec Ared

' (X A)red → X A, so that we get

a commutative diagram

X A X

Spec Ared Spec A XdR

of derived stacks, where the square on the right is cartesian.

The upshot of the above discussion is that we can think of X → XdR as a family of

formal derived stacks and, more explicitly, as the family of formal completions of X at

its closed points. By the general theorem of [19], these formal completions correspond to
dg Lie algebras. However, these dg Lie algebras do not extend to form a sheaf of dg Lie

algebras over XdR. Instead, the Chevalley–Eilenberg complexes of these dg Lie algebras

extend globally, thus producing a sheaf of graded mixed algebras over XdR.

We are interested in studying prestacks on XdR, that is to say functors out of the

∞-category (dAff/XdR)
op. Let ε-dggr be the∞-category of graded mixed dg modules (i.e.

the∞-category underlying the model category of these considered in [7]). For notational

convenience, we give the following definition.

Definition 3.1.2. Let X be a derived stack.

•We denote by DX the ∞-category of prestacks of ind-objects in graded mixed dg

modules on XdR, that is to say

DX := Fun((dAff/XdR)
op, Ind(ε-dggr)).

We consider this as a symmetric monoidal ∞-category with respect to the pointwise
tensor product coming from Ind(ε-dggr).

•We denote by AX the ∞-category of prestacks of graded mixed cdgas in ind-objects

on XdR, that is to say

AX := Fun((dAff/XdR)
op,CAlg(Ind(ε-dggr))).

Equivalently, since the tensor product on DX is pointwise, we have

AX ' CAlg(DX ).

Note that both assignments X 7→ DX and X 7→ AX are functorial, in the sense that if

we have a map f : X → Y of derived stacks, we immediately get a functor f ∗ : DY → DX
(and similarly for AX ), simply given by pullback of prestacks. Equivalently, we can encode

these functors into cocartesian fibrations D→ dStop and A→ dStop.
Consider the following ind-object in the ∞-category ε-dggr:

k(∞) := {k(0)→ k(1)→ · · · → k(i)→ k(i + 1)→ · · · },
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where k(i) is the graded mixed module simply given by k sitting in degree 0 and weight

i , together with the trivial mixed structure. The maps k(i)→ k(i + 1) are the canonical

morphisms in the ∞-category of graded mixed modules.

The ind-object k(∞) is a commutative algebra in the category Ind(ε-dggr), and it can

be used to define two fundamental prestacks on XdR.

Definition 3.1.3. (1) The twisted crystalline structure sheaf of X is defined to be

D∞XdR
: (dAff/XdR)

op
−→ CAlg(Ind(ε-dggr))

(Spec A→ XdR) 7−→ DR(Ared/A)⊗k k(∞).

(2) The twisted prestack of principal parts of X is defined as

P∞X : (dAff/XdR)
op
−→ CAlg(Ind(ε-dggr))

(Spec A→ XdR) 7−→ DR(Spec Ared/X A)⊗k k(∞).

Both prestacks D∞XdR
and P∞X are functorial in X , in the sense that they can be

interpreted as sections of the cocartesian fibration A→ dStop. We will denote the

corresponding sections by D∞ and P∞, respectively. Note however that given a map

of derived stacks f : X → Y , we have f ∗D∞YdR ' D∞XdR
, but in general f ∗P∞Y is not

equivalent to P∞X . In other words, the section D∞ is cocartesian, while P∞ is not. We

remark however that there is always an induced map f ∗P : f ∗P∞Y → P∞X .

For every derived stack X , there is a natural map D∞XdR
→ P∞X in the category AX ,

which one can view as endowing P∞X with the structure of a D∞XdR
-algebra.

For notational convenience, we give the following definition.

Definition 3.1.4. The cocartesian fibration associated to the functor

X 7→ ModD∞XdR
(DX )

will be denoted as M→ dStop.

Note that by definition, we have an equivalence AX ' CAlg(DX ), which in turn gives

an equivalence

(AX )D∞XdR
/ ' CAlg(ModD∞XdR

(DX )) ' CAlg(MX ).

Thus, P∞X can be viewed as an object of CAlg(MX ), and P∞ as a section of the cocartesian

fibration MCAlg → dStop corresponding to CAlg(M(–)).

By a slight abuse of notation, we denote by MCAlg → dArtop the restriction of the

cocartesian fibration MCAlg → dStop to the full subcategory of derived Artin stacks

locally of finite presentation. The following is the key input we will need to apply the

results of the previous section to coisotropic correspondences.

Proposition 3.1.5. Suppose that the diagram

W X

Y Z

f

p q

g
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is a pullback of derived Artin stacks locally of finite presentation. Then the induced

diagram

f ∗q∗P∞Z f ∗P∞X

p∗P∞Y P∞W

is a pushout in the ∞-category CAlg(MW ).

Proof. Since CAlg(MW ) ' CAlg(DW )D∞WdR
/ and the forgetful functor to CAlg(DW )

detects weakly contractible colimits, it suffices to show that the underlying diagram in

CAlg(DW ) is a pushout. But by definition, DW is a functor ∞-category, equipped with

the pointwise symmetric monoidal structure, and so we have an equivalence

CAlg(DW ) ' Fun((dAff/WdR)
op,CAlg(Ind(ε-dggr))).

It is therefore enough to check that the diagram is a pushout when evaluated at each

object of dAff/WdR . In other words, given a point Spec A→ WdR, we need to show that
the diagram

P∞Z (A) P∞X (A)

P∞Y (A) P∞W (A)

is a pushout in CAlg(Ind(ε-dggr)). Unravelling the definition of the twisted prestack of

principal parts, we are left with proving that the diagram

DR(Spec Ared/Z A) DR(Spec Ared/X A)

DR(Spec Ared/YA) DR(Spec Ared/WA)

is a pushout of graded mixed commutative algebras. The forgetful functor

CAlg(ε-dggr) −→ CAlg(dggr)

creates colimits. Hence it suffices to show that the above square is a pushout in

the category of graded commutative algebras. The derived stacks X A, YA, Z A,WA are

algebraizable in the sense of [7, Definition 2.2.1], so by [7, Proposition 2.2.7], we have

an equivalence DR(Spec Ared/X A) ' SymAred(LSpec Ared/X A
[−1]) of graded commutative

algebras and similarly for other stacks.

Therefore we need to prove that the square

SymAred(LSpec Ared/Z A
[−1]) SymAred(LSpec Ared/X A

[−1])

SymAred(LSpec Ared/YA
[−1]) SymAred(LSpec Ared/WA

[−1])
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is a pushout of graded commutative algebras. Since the functor SymAred(−) commutes

with colimits, it is enough to prove that

LSpec Ared/Z A
LSpec Ared/X A

LSpec Ared/YA
LSpec Ared/WA

is a pushout square. But this follows directly from [24, Lemma 3.5].

Corollary 3.1.6. The section P∞ : dArtop
→MCAlg preserves finite colimits.

Proof. Proposition 3.1.5 implies, via Lemma 2.4.9, that P∞ preserves pushouts. It thus

only remains to show that it preserves the initial object, i.e. that P∞Spec k is the initial

object of CAlg(MSpec k), or equivalently that the canonical map D∞(Spec k)dR
→ P∞Spec k

is an equivalence. The functor D∞(Spec k)dR
sends Spec A ∈ dAff to DR(Ared/A)⊗k k(∞).

Similarly, the functor P∞Spec k sends Spec A ∈ dAff to DR(Ared/(Spec k)A)⊗k k(∞). But by

definition, (Spec k)A ∼= Spec A, so the map D∞(Spec k)dR
→ P∞Spec k is an equivalence.

3.2. Poisson and coisotropic structures

In this subsection, we recall the notions of Poisson and coisotropic structures in the

context of derived algebraic geometry. Let dg be the symmetric monoidal model category

of cochain complexes of k-modules. We will often work with an arbitrary symmetric

monoidal∞-category C satisfying a set of assumptions (see [7, Section 1.1]; in particular,

we refer there for a proof that the∞-categories we consider here satisfy the assumptions).

Assumption 3.2.1. Let C be a symmetric monoidal model category, which is

combinatorial as a model category. Assume the following:

(1) C is tensored over dg compatibly with the model and symmetric monoidal

structures.

(2) For any cofibration j : X → Y , any object A ∈ C and any morphism u : A⊗ X → C ,

the pushout square

C D

A⊗ X A⊗ Y

u
id⊗ j

is a homotopy pushout.

(3) For a cofibrant object X ∈ C, the functor X ⊗ (−) : C→ C preserves weak

equivalences.

(4) C is a tractable model category.

(5) Weak equivalences in C are stable under filtered colimits and finite products.
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We denote by C the localization of C with respect to weak equivalences, which is a

k-linear presentably symmetric monoidal ∞-category. We will abuse notation and just

say ‘C satisfies Assumption 3.2.1’, without explicitly mentioning the model category C.

Recall that Ps+1 is the dg operad controlling s-shifted Poisson algebras (i.e.

commutative algebras together with a compatible Lie bracket of degree −s); the notation

is chosen so that Pn is the cohomology of the little discs operad En for n > 2. The operad

Ps+1 can be used to define Poisson structures on commutative algebras (see [22, Theorem

3.2], [7, Theorem 1.4.9] and [23, Theorem 4.5]).

Definition 3.2.2. Let C be a k-linear symmetric monoidal ∞-category satisfying

Assumption 3.2.1. We define AlgPs+1
(C) to be the localization of the category of

Ps+1-algebras in C along weak equivalences.

By construction, we have a forgetful functor

AlgPs+1
(C) −→ CAlg(C).

Definition 3.2.3. Let C be a symmetric monoidal ∞-category as above. Let A ∈ CAlg(C)

be a commutative algebra. The space Pois(A, s) of s-shifted Poisson structures on A is

the fibre of

AlgPs+1
(C)→ CAlg(C)

taken at the point corresponding to the given commutative structure on A.

Note that the operad Ps+1 has an involution given by changing the sign of the

bracket, which preserves the map from the commutative operad. Therefore, it induces

an involution on AlgPs+1
(C), which we consider as passing to the opposite Ps+1-algebra

and, similarly, an involution on Pois(A, s) that we denote by πA 7→ −πA.

Let X be a derived Artin stack locally of finite presentation. Recall from the previous

section that one can associate to X an ∞-category MX , which in the language of [7]

corresponds to D∞XdR
-modules. Moreover, one has a canonical object in CAlg(MX ), given

by P∞X . We can define Poisson structures on X in the following way (see [7, Theorem

3.1.2]).

Definition 3.2.4. With notations as above, the space Pois(X, s) of s-shifted Poisson

structures on X is defined to be the space Pois(P∞X , s), where P∞X is considered as a

commutative algebra in the ∞-category MX = ModD∞XdR
(DX ) of D∞XdR

-modules.

The notion of shifted Poisson structure on a derived stack admits a relative version. To

state this, we will use the following result (Poisson additivity) proved in [32, Theorem

2.22].
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Theorem 3.2.5. Let C be a symmetric monoidal ∞-category satisfying Assumption 3.2.1.

Then there is an equivalence

AlgPs+1
(C) ' Alg(AlgPs (C))

of symmetric monoidal ∞-categories satisfying the following compatibilities:

(1) It is equivariant with respect to the involution on AlgPs+1
(C) given by passing to

the opposite Ps+1-algebra and the involution on Alg(AlgPs (C)) given by passing to

the opposite associative algebra.

(2) It is compatible with the forgetful functors to CAlg(C), i.e. the diagram

AlgPs+1
(C) Alg(AlgPs (C))

CAlg(C) Alg(CAlg(C))

∼

∼

commutes.

Corollary 3.2.6. Let C be a symmetric monoidal∞-category satisfying Assumption 3.2.1.

Then there is an equivalence

AlgPs+n (C) ' AlgEn (AlgPs (C))

of symmetric monoidal ∞-categories.

For a symmetric monoidal ∞-category C, we denote by LMod(−) the ∞-category of

pairs (A,M) of an algebra A ∈ Alg(C) and a left A-module M ∈ C. Note that there is an

equivalence

LMod(CAlg(C)) ' Mor(CAlg(C))

of ∞-categories by [20, Proposition 2.4.3.16] since the tensor product in CAlg(C) is the

coproduct. As a consequence, we get a forgetful functor

LMod(AlgPs (C))→ Mor(CAlg(C))

defined for every integer s.

Definition 3.2.7. Let C be a symmetric monoidal∞-category satisfying Assumption 3.2.1.

Let φ : A→ B be a morphism of commutative algebras in C. The space Cois(φ, s) of

s-shifted coisotropic structures on φ is the fibre of

LMod(AlgPs (C))→ Mor(CAlg(C))

taken at the point corresponding to φ.

We have a forgetful functor

LMod(AlgPs (C)) −→ Alg(AlgPs (C)) ' AlgPs+1
(C),
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where the last equivalence is given by Theorem 3.2.5, and this is compatible with the

forgetful functor to CAlg(C). Therefore, we obtain a forgetful map

Cois(φ, s) −→ Pois(A, s),

i.e. an s-shifted coisotropic structure on A→ B encodes an s-shifted Poisson structure

on A together with some extra data.

Remark 3.2.8. It is also possible to give another definition of a shifted coisotropic

structure. Namely, in [31] and [23], the authors describe a 2-coloured operad P[s+1,s]. An

important feature of this operad is that any P[s+1,s]-algebra (A, B) has an underlying

morphism A→ B of commutative algebras.

More specifically, there is a natural morphism of 2-coloured operads Comm11
→

P[s+1,s], where Comm11
is the operad of morphisms of commutative algebras. In turn,

this induces a forgetful functor AlgP[s+1,s]
→ Mor(CAlg), and one can define s-shifted

coisotropic structures in terms of the fibre of this functor.

This alternative definition has the advantage of being somewhat more explicit, and it
is proved to be equivalent to Definition 3.2.7 in [32, Section 3].

Similarly to what we did in Definition 3.2.4, we can now extend the notion of

shifted coisotropic structure to general morphisms of derived stacks. Let f : Z → X be a

morphism between derived Artin stacks locally of finite presentation. We have an induced

symmetric monoidal functor f ∗ : MX →MZ and a natural map f ∗P : f ∗P∞X → P∞Z in

CAlg(MZ ). We can now give the following definition, which is [24, Definition 2.1].

Definition 3.2.9. Let f : Z → X be a morphism of derived Artin stacks locally of finite

presentation. The space Cois( f, s) of s-shifted coisotropic structures on f is the pullback

Cois( f, s) Pois(X, s)

Cois( f ∗P, s) Pois( f ∗P∞X , s).

In other words, an s-shifted coisotropic structure on a map f : Z → X of derived

stacks is given by an s-shifted Poisson structure on X , together with a compatible

P[s+1,s]-structure on the morphism f ∗P : f ∗P∞X → P∞Z .

3.3. Coisotropic correspondences

We begin by giving the definition of what we mean by a shifted coisotropic

correspondence.

Definition 3.3.1. Let

X Z Y
f g
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be a correspondence of derived Artin stacks locally of finite presentation. The space

Cois( f, g; s) of s-shifted coisotropic structures on the correspondence ( f, g) is the pullback

Cois( f, g; s) Pois(X, s)×Pois(Y, s)

Cois(( f, g); s) Pois(X × Y, s),

where ( f, g) is the induced map Z → X × Y , and the vertical morphism on the right

sends a pair of Poisson structures (πX , πY ) on X and Y to the Poisson structure πX −πY
on X × Y .

The notion of an s-shifted coisotropic correspondence can be reinterpreted in a nice

algebraic manner. Namely, consider an s-shifted coisotropic correspondence

X Z Y
f g

between derived Artin stacks locally of finite presentation. The s-shifted Poisson

structures on X and Y correspond to Ps+1-structures on P∞X and P∞Y . By Poisson

additivity, we can think of P∞X and P∞Y as associative algebras in the ∞-category of

Ps-algebras. In other words, they are objects of the ∞-categories Alg(AlgPs (MX )) and
Alg(AlgPs (MY )), respectively. Moreover, these s-shifted Poisson structures allow us to

enhance f ∗P∞X ⊗ g∗P∞Y to an algebra object in AlgPs (MZ ).

Next, the s-shifted coisotropic structure on Z → X × Y endows P∞Z with a left

module structure over f ∗P∞X ⊗ g∗P∞Y in AlgPs (MZ ). In other words, P∞Z becomes an

( f ∗P∞X , g∗P∞Y )-bimodule.

In this sense, coisotropic correspondences give a geometric incarnation of bimodules.

This fact is the main motivation for our Morita approach to the construction of the

∞-category of coisotropic correspondences.

Remark 3.3.2. Note that a coisotropic morphism from X to Y corresponds to X viewed

as a coisotropic correspondence from Spec k to Y .

Following §2.2, we have a symmetric monoidal (∞, n)-category Spann(dArt), which has

the following informal description:

• Its objects are derived Artin stacks locally of finite presentation.

• A 1-morphism from X to Y is given by a correspondence X ← Z → Y .

• Higher morphisms are given by iterated correspondences.

The symmetric monoidal structure on Spann(dArt) is given by the product of derived

Artin stacks with the unit given by the terminal object ∗ = Spec k. Each object X ∈
Spann(dArt) is canonically self-dual with the evaluation and coevaluation maps given by

X × X X ∗
1

, ∗ X X × X1

(see [14, Lemma 12.3]).
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Next, using the notation introduced in the same section, we have a functor

Cn := Cospann(CAlg(M)) : dArtop
−→ Cat(∞,n).

This sends a derived stack X to the (∞, n)-category Cn(X) := Cospann(CAlg(MX )), which

has the following informal description:

• Its objects are commutative algebra objects in MX .

• A 1-morphism from A to B is given by a cospan A→ C ← B of commutative algebras

in MX .

• Higher morphisms are given by iterated cospans.

Following Section 2.3, we can also combine the two (∞, n)-categories we have
introduced above into a symmetric monoidal (∞, n)-category Spann(dArt;Cn) whose

objects are pairs (X, A) of a derived stack X ∈ dArt and a commutative algebra A ∈MX .

By Corollary 3.1.6, the section P∞ : dArtop
→MCAlg preserves finite colimits; so by

Corollary 2.4.11 and Remark 2.4.12, it induces a symmetric monoidal functor

Spann(dArt) −→ Spann(dArt;Cn).

The cocartesian monoidal structure on CAlg(MX ) corresponds to the usual tensor

product of algebras; so by Corollary 2.6.10, we have an equivalence of diagrams of

symmetric monoidal (∞, n)-categories

Cn ' algn(CAlg(M)),

where algn(−) is the Morita (∞, n)-category of En-algebras. Therefore, we have an

equivalence of symmetric monoidal (∞, n)-categories

Spann(dArt; algn(CAlg(M))) ' Spann(dArt;Cn).

Next, the forgetful functor

AlgPs−n+1
(MX ) −→ CAlg(MX )

is symmetric monoidal; so we obtain a forgetful functor of diagrams of symmetric

monoidal (∞, n)-categories

Ps
n := algn(AlgPs−n+1

(M)) −→ algn(CAlg(M)) ' Cn,

and hence a forgetful functor of symmetric monoidal (∞, n)-categories

Spann(dArt;Ps
n) −→ Spann(dArt;Cn).

Definition 3.3.3. The (∞, n)-category CoisCorrs
n of s-shifted coisotropic correspondences

is the pullback

CoisCorrs
n Spann(dArt;Ps

n)

Spann(dArt) Spann(dArt;Cn)

of (∞, n)-categories.
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Let MPs+1 → dArtop be the cocartesian fibration corresponding to the functor

AlgPs+1
(M) ' AlgEn (AlgPs+1−n

(M)),

where the latter equivalence is given by Corollary 3.2.6. For a complete n-fold Segal

space C, we denote by C' := C0,...,0 ∈ S the space of objects of C. The space (CoisCorrs
n)
'

is given by the pullback of spaces of objects obtained from the defining pullback of

(∞, n)-categories. Since the n-fold Segal spaces of iterated spans are already complete,

we have Spann(dArt)' ' dArt', and by Proposition 2.4.1, we have

Spann(dArt;Cn)
'
'M'CAlg.

Using Lemma 2.3.4, we can similarly identify Spann(dArt; algn(AlgPs−n+1
(M)))' in

terms of the fibration for algn(AlgPs−n+1
(M))'. The symmetric monoidal ∞-category

AlgPs−n+1
(M) is pointed; so if we assume Conjecture 2.5.21, then we can identify this

space with M'Ps+1
. With this assumption, we thus get a pullback square

(CoisCorrs
n)
' M'Ps+1

dArt' M'CAlg
P∞

of spaces. Therefore, the space of objects of CoisCorrs
n coincides with the space of derived

Artin stacks X equipped with a lift of P∞X ∈ CAlg(MX ) to a Ps+1-algebra in MX , i.e. an

s-shifted Poisson structure π ∈ Pois(X, s). One may analyse in a similar way the space

of 1-morphisms, so let us present an informal summary:

• Objects of CoisCorrs
n are derived Artin stacks X ∈ dArt together with an s-shifted

Poisson structure πX ∈ Pois(X, s).

• Its morphisms from (X, πX ) to (Y, πY ) are given by correspondences X
f
←− Z

g
−→ Y of

derived Artin stacks equipped with an s-shifted coisotropic structure γZ ∈ Cois( f, g; s)
compatible with the given s-shifted Poisson structures πX and πY .

• Higher morphisms are given by iterated correspondences.

Note that the diagram defining CoisCorrs
n is a diagram of symmetric monoidal

(∞, n)-categories. Therefore, CoisCorrs
n carries a natural symmetric monoidal structure.

This symmetric monoidal structure can also be defined by delooping, i.e. we have

equivalences

CoisCorrs
n(∗, ∗) ' CoisCorrs−1

(∞,n−1).

Theorem 3.3.4. Assuming Conjecture 2.5.19, the symmetric monoidal (∞, n)-category

CoisCorrs
n has duals (i.e. its objects are dualizable and all i-morphisms for i < n have

adjoints).

Proof. The symmetric monoidal (∞, n)-category Spann(dArt) has duals by [14, Theorem

12.4 and Corollary 12.5].

Assuming Conjecture 2.5.19, the symmetric monoidal (∞, n)-categories Cn(X) and

Ps
n(X) have duals for any derived Artin stack X ∈ dArt. Thus, by Lemma 2.3.4, the

symmetric monoidal (∞, n)-categories Spann(dArt;Ps
n) and Spann(dArt;Cn) have duals.
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The claim therefore follows from Corollary 2.1.17.

Remark 3.3.5. Unwinding the definitions, if X is an s-shifted derived Poisson stack,

viewed as an object of CoisCorrs
1, then the dual X∨ has the same underlying derived stack

X , but its Poisson structure corresponds to the reversed multiplication on P∞X , viewed as

an associative algebra in AlgPs (MX ). By Theorem 3.2.5, in terms of AlgPs+1
(MX ), this

amounts to taking the negative of the Poisson bracket. Thus a coisotropic correspondence

from X to Y is equivalent to a coisotropic correspondence from Spec k to X∨× Y , or (using

Remark 3.3.2) a coisotropic morphism to X∨× Y .

3.4. Relationship with Lagrangian correspondences

In this section, we sketch a conjectural relationship between our (∞, n)-category of

s-shifted coisotropic correspondences and the (∞, n)-category of s-shifted Lagrangian
correspondences from [14] and [6].

Let C be a symmetric monoidal∞-category satisfying Assumption 3.2.1. Then one has

the de Rham functor (see [7, Section 1.3])

DR : CAlg(C) −→ CAlg(ε-dggr),

which sends a commutative algebra A to the graded commutative algebra

HomC(1,SymA(LA[−1])) equipped with the de Rham differential. One can therefore

define the functors

A2(s),A2,cl(s) : CAlg(C)→ CAlg(S)

of s-shifted two-forms and closed s-shifted two-forms by

A2(A, s) = Homdggr(k(2)[−s− 2],DR(A))

A2,cl(A, s) = Homε-dggr(k(2)[−s− 2],DR(A)),

where k(2)[−s− 2] is the unit object concentrated in weight 2 and cohomological degree

s+ 2 with the trivial mixed structure. Note that by construction, we have a natural

forgetful map A2,cl(s)→ A2(s).
Applying the above construction to C = dg, the∞-category of complexes of k-modules,

we obtain functors

A2(s) : cdga60
−→ CAlg(S), A2,cl(s) : cdga60

−→ CAlg(S).

Let A2(s),A2,cl(s) : dArtop
→ CAlg(S) be the corresponding right Kan extensions.

Definition 3.4.1. The (∞, n)-category IsotCorrs
n of s-shifted isotropic correspondences is

IsotCorrs
n := Spann(dArt;A2,cl(s)) ' Spann(dArt/A2,cl(s)).

Now suppose D is a finite category with an initial object ∅ ∈ D and let DF be the

category obtained by formally adjoining a terminal object ∗ ∈ DF. Suppose X : D→
dArt/A2,cl(s) is a diagram of derived Artin stacks equipped with closed s-shifted two-forms.

Then we obtain a diagram TX : D→ QCoh(X∅) whose value on d ∈ D is given by pulling
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back TXd along the unique map X∅→ Xd . Using the closed two-forms, we can extend this

to a diagram TX : DF→ QCoh(X∅) whose value on the final object is (TX )∗ := LX∅ [s].
We say the diagram X : D→ dArt/A2,cl(s) is non-degenerate if TX : DF→ QCoh(X∅) is a

limit diagram.

Definition 3.4.2. The (∞, n)-category Lags
n of s-shifted Lagrangian correspondences

is the subcategory Lags
n ⊂ IsotCorrs

n consisting of non-degenerate diagrams �i1,...,in →

dArt/A2,cl(s).

Let C be a symmetric monoidal category satisfying Assumption 3.2.1 and C its
localization. We define AlgPs+1

(C)ω to be the category whose objects are Ps+1-algebras

equipped with a strictly closed two-form ω. We have the following two functors,

F1, F2 : AlgPs+1
(C)ω −→ AlgPs+1

(Modk[h̄]/h̄2(C)).

• Given a Ps+1-algebra A ∈ AlgPs+1
(C), we define F1(A) to be the commutative algebra

A[h̄]/h̄2 equipped with the bracket {a, b}h̄ = (1+ h̄){a, b} for a, b ∈ A.

• Given a Ps+1-algebra A ∈ AlgPs+1
(C) equipped with a closed two-form ω =∑

i fi ddRgi ∧ ddRhi , we define F2(A) to be the commutative algebra A[h̄]/h̄2 equipped

with the bracket {a, b}h̄ = {a, b}± h̄
∑

i fi {gi , a}{hi , b} with the sign determined by the

Koszul sign rule.

Note that both F1 and F2 modulo h̄ are given by the forgetful functor AlgPs+1
(C)ω →

AlgPs+1
(C) and they preserve weak equivalences. Therefore, after localization, they give

rise to a diagram of symmetric monoidal ∞-categories

AlgPs+1
(C)ω AlgPs+1

(Modk[h̄]/h̄2(C)) AlgPs+1
(C),

F1

F2

where the last functor is given by evaluating at h̄ = 0. We denote the limit of the above

diagram by AlgPs+1
(C)compat. This is the∞-category of compatible pairs; see [7, Definition

1.4.20] and [27, Definition 1.24].

Definition 3.4.3. The (∞, n)-category CompCorrs
n of s-shifted compatible correspondences

is the pullback

CompCorrs
n Spann(dArt; algn(AlgPs−n+1

(M)compat))

Spann(dArt) Spann(dArt;Cn)

of (∞, n)-categories.

Note that by construction, we have a symmetric monoidal forgetful functor

CompCorrs
n −→ CoisCorrs

n .
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We expect that one may define non-degenerate coisotropic correspondences

CoisCorrs,nd
n ⊂ CoisCorrs

n similarly to Lags
n ⊂ IsotCorrs

n . Denote

CompCorrs,nd
n := CoisCorrs,nd

n ×CoisCorrs
n

CompCorrs
n .

Conjecture 3.4.4. (1) The projection CompCorrs,nd
n → CoisCorrs,nd

n is an equivalence.

(2) There is a symmetric monoidal functor CompCorrs,nd
n → IsotCorrs

n.

(3) The previous functor restricts to an equivalence CompCorrs,nd
n → Lags

n.

This conjecture would establish the existence of a symmetric monoidal functor of

(∞, n)-categories

Lags
n −→ CoisCorrs

n,

which is an equivalence onto the subcategory CoisCorrs,nd
n .

Let us note that there is a forgetful functor from AlgPs+1
(C)ω to the ∞-category of

commutative algebras equipped with a closed s-shifted two-form. Thus, the second claim

is closely related to [12, Conjecture 1.3.1]. Claims (1) and (3) on the level of objects have

been proven in [7, Theorem 3.2.4] and [27, Theorem 3.33]. The same claims on the level

of 1-morphisms have been proven in [28] and [24, Theorem 4.22].

Remark 3.4.5. In [6], it is also shown that every symplectic derived stack determines

an oriented extended TQFT using the AKSZ construction (defined in the derived

algebro-geometric context in [25]). It is tempting to speculate that there exists an

analogue of the AKSZ construction for derived Poisson stacks (cf. [16]), and that this

can be used to construct, for every derived Poisson stack, oriented extended TQFTs

Bordor
0,n → CoisCorrs

n .

Appendix A. Twisted Arrows and Bifibrations

Our goal in this appendix is to prove two somewhat technical results, Corollary A.2.6

and Proposition A.3.1, which will allow us to describe the higher category of spans with

coefficients in cospans in Proposition 2.4.2.

A.1. Bifibrations

We begin with a preliminary discussion of bifibrations, in the following sense.

Definition A.1.1. A bifibration (p, q) : E→ A×B consists of a cartesian fibration p and

a cocartesian fibration q such that a morphism f in E is

• p-cartesian if and only if q( f ) is an equivalence,

• q-cocartesian if and only if p( f ) is an equivalence.

Remark A.1.2. This definition is a model-independent version of [17, Definition 2.4.7.2].
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Lemma A.1.3. Consider a commutative triangle of ∞-categories

E E′

A×B

f

(p, q) (p′, q ′) ,

where (p, q) and (p′, q ′) are bifibrations. Then f takes q-cocartesian morphisms to
q ′-cocartesian morphism, and p-cartesian morphisms to p′-cartesian morphisms.

Proof. This is immediate from the definition as f takes a morphism φ in E such that

p(φ) is an equivalence to the morphism f (φ) where p′ f (φ) ' p(φ) is an equivalence, and

similarly for q.

Proposition A.1.4. Suppose (p, q) : E→ A×B is a functor such that p is a cartesian

fibration, q is a cocartesian fibration, p takes q-cocartesian morphisms to equivalences,

and q takes p-cartesian morphisms to equivalences. Then we have the following:

(i) The functor qa : Ea → B on fibres at a ∈ A is a cocartesian fibration, and a

morphism in Ea is qa-cocartesian if and only if its image in E is q-cocartesian.

(ii) The functor pb : Eb → A on fibres at b ∈ B is a cartesian fibration, and a morphism

in Eb is pb-cartesian if and only if its image in E is p-cartesian.

Proof. We prove (i); the proof of (ii) is the same. Suppose x
φ
−→ x ′ is a morphism in Ea , i.e.

a morphism in E over b→ b′ in B and ida in A. Then for y ∈ E, we have a commutative

diagram

MapE(x ′, y) MapE(x, y)

MapA(a, py)×MapB(b′, qy) MapA(a, py)×MapB(b, qy)

MapB(b′, qy) MapB(b, qy).

Here the bottom square is cartesian (since pφ is an equivalence in A), and so the top

square is cartesian if and only if the outer square is cartesian.

Suppose first that φ is q-cocartesian so that the outer square is cartesian for any y. If

py ' a, then we can take fibres in the top square at ida ∈ MapA(a, a) ' MapA(a, py),
giving a square

MapEa (x
′, y) MapEa (x, y)

MapB(b′, qy) MapB(b, qy),
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which is cartesian since the top square is cartesian. This exhibits φ as qa-cocartesian.

Moreover, since q-cocartesian morphisms exist, so do qa-cocartesian morphisms, i.e. qa
is a cocartesian fibration.

Now suppose that φ is qa-cocartesian. To show that φ is also q-cocartesian, we must

prove that the top square in the diagram above is cartesian for all y ∈ E. For a given y,

this will follow if we can show that for every map ψ : a→ py, the square

MapE(x ′, y)ψ MapE(x, y)ψ

MapB(b′, qy) MapB(b, qy)

of fibres at φ is cartesian. Let ψ̄ : ψ∗y→ y be a p-cartesian morphism over ψ ; then qψ̄
is an equivalence, so this square is equivalent to

MapEa (x
′, ψ∗y) MapEa (x, ψ

∗y)

MapB(b′, qy) MapB(b, qy),

and this is cartesian since φ is by assumption qa-cocartesian.

Corollary A.1.5. Suppose (p, q) : E→ A×B is as in Proposition A.1.4. Then the
following are equivalent:

(1) (p, q) is a bifibration.

(2) qa is a left fibration for all a ∈ A.

(3) pb is a right fibration for all b ∈ B.

(4) The fibre Ea,b is an ∞-groupoid for all a ∈ A, b ∈ B.

Proof. Part (i) of Proposition A.1.4 implies that (p, q) is a bifibration if and only if

every morphism in Ea is qa-cocartesian for all a, i.e. qa is a left fibration. Similarly, part

(ii) implies that (1) is equivalent to (3). Finally, since qa is by assumption a cocartesian

fibration, it is a left fibration if and only if its fibres Ea,b are ∞-groupoids for all b ∈ B;

so (2) is equivalent to (4).

We will now show that we can replace bifibrations by left fibrations, and vice versa,

using the following constructions:

Construction A.1.6. (i) Suppose (p, q) : E→ A×B is a bifibration. Then we have a

commutative triangle

E A×B

A

(p,q)

p ,
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where the diagonal maps are cartesian fibrations, and the horizontal map takes

p-cartesian morphisms to cartesian morphisms for the projection A×B→ A, as

these are precisely the morphisms that project to equivalences in B. Let p∨ : E`→
A be the cocartesian fibration dual to p; then dualization gives a commutative

triangle

E` Aop
×B

Aop

p∨ ,

where the diagonal maps are cocartesian fibrations and the horizontal map preserves

cocartesian morphisms.

(ii) Suppose (p, q) : F→ Aop
×B is a left fibration. Then we have a commutative

triangle

F Aop
×B

Aop

(p,q)

p ,

where the diagonal maps are cocartesian fibrations. A morphism φ : x → x ′ in F

is p-cocartesian if and only if q(φ) is an equivalence in B: In the commutative
diagram

MapF(x ′, y) MapF(x, y)

MapAop(px ′, py)×MapB(qx ′, qy) MapAop(px, py)×MapB(qx, qy)

MapAop(px ′, py) MapAop(px, py),

the top square is cocartesian since (p, q) is a left fibration, while the bottom square

is cartesian if q(φ) is an equivalence, and hence such a morphism is p-cocartesian;

since such p-cocartesian morphisms always exist, by uniqueness, all p-cocartesian

morphisms must map to equivalences in B. Thus (p, q) preserves cocartesian

morphisms in the triangle above, and so if p∨ : Fb
→ A denotes the cartesian

fibration dual to p, we get a dual triangle

Fb A×B

A

(p∨,q ′)

p∨ ,

where the diagonal maps are cartesian fibrations and the horizontal map preserves

cartesian morphisms.

Proposition A.1.7. We keep the notation of Construction A.1.6.
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(i) Suppose (p, q) : E→ A×B is a bifibration. Then (p∨, q ′) : E`→ Aop
×B is a left

fibration.

(ii) Suppose (p, q) : F→ Aop
×B is a left fibration. Then (p∨, q ′) : Fb

→ A×B is a

bifibration.

We prove general versions of the criteria we will use to establish this proposition.

Lemma A.1.8. Suppose given a commutative triangle

E D

C

f

p q

of functors between ∞-categories such that we have the following:

(1) p and q are cartesian fibrations.

(2) f takes p-cartesian edges to q-cartesian edges.

(3) For each object c ∈ C, the induced map on fibres fc : Ec → Dc is a cartesian

fibration.

(4) Suppose given a commutative square

φ∗e′ e′

φ∗e e

α

β γ

δ

in E lying over the degenerate square

c′ c

c′ c

φ

idc′ φ

idc

in C, where α and δ are p-cartesian edges and γ is fc-cartesian. Then β is

fc′-cartesian. (In other words, the induced functor φ∗ : Ec → Ec′ takes fc-cartesian

edges to fc′-cartesian edges.)

Then f is also a cartesian fibration.

Proof. Suppose given e ∈ E lying over d ∈ D and c ∈ C (i.e. d ' f (e) and c ' p(e) '
q(d)) and a morphism δ : d ′→ d in D lying over γ : c′→ c in C. Then we must show

that there exists an f -cartesian morphism e′→ e over δ.
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Since p is a cartesian fibration, there exists a p-cartesian morphism β : γ ∗e→ e over

γ , and as f takes p-cartesian edges to q-cartesian edges, its image in D is a q-cartesian

edge f (β) : γ ∗d → d. There is then an essentially unique factorization of δ through f (β),
as

d ′
α
−→ γ ∗d

f (β)
−−→ d.

Now α is a morphism in Dc′ ; so since fc′ is a cartesian fibration, there exists an

fc′-cartesian edge ε : α∗γ ∗e→ γ ∗e. We will show that the composite β ◦ ε : α∗γ ∗e→
γ ∗e→ e is an f -cartesian morphism over δ.

To see this, we consider the commutative diagram

MapE(x, α∗γ ∗e) MapE(x, γ ∗e) MapE(x, e)

MapD( f (x), d ′) MapD( f (x), γ ∗d) MapD( f (x), d)

MapC(p(x), c′) MapC(p(x), c′) MapC(p(x), c),
id

where x is an arbitrary object of E. By [17, Proposition 2.4.4.3], to see that β ◦ ε is

f -cartesian, we must show that the composite of the two upper squares is cartesian. We

will prove this by showing that both of the upper squares are cartesian. By construction,

β is p-cartesian and f (β) is q-cartesian; so the composite of the two right squares and

the bottom right square are both cartesian, and hence so is the upper right square.

Since a commutative square of spaces is cartesian if and only if the induced maps on all

fibres are equivalences, to see that the upper left square is cartesian, it suffices to show

that the square

MapE(x, α∗γ ∗e)µ MapE(x, γ ∗e)µ

MapD( f (x), d ′)µ MapD( f (x), γ ∗d)µ

obtained by taking the fibre at µ : p(x)→ c′ is cartesian for every map µ. Now taking

p- and q-cartesian pullbacks along µ, we can (since f takes p-cartesian morphisms to

q-cartesian morphisms) identify this with the square

MapEp(x)
(x, µ∗α∗γ ∗e) MapEp(x)

(x, µ∗γ ∗e)

MapDp(x)
( f (x), µ∗d ′) MapDp(x)

( f (x), µ∗γ ∗d).

But this is cartesian since by assumption, the map µ∗α∗γ ∗e→ µ∗γ ∗e is f p(x)-cartesian

(because ε is fc′ -cartesian).
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Remark A.1.9. In the situation of Lemma A.1.8, if the maps on fibres fc are right

fibrations for all c ∈ C, then condition (4) is automatically satisfied since every morphism

is fc-cartesian.

Lemma A.1.10. Suppose π : E→ I× J is a functor of ∞-categories such that

(i) the composite πI : E→ I is a cartesian fibration,

(ii) for every i ∈ I, the functor πi : Ei → J on fibres over i is a cocartesian fibration.

Then the composite πJ : E→ J is a cocartesian fibration, and π preserves cocartesian

morphisms.

Proof. Given e ∈ E lying over j ∈ J and a morphism φ : j → j ′, we must show that there

exists a cocartesian morphism in E over φ with source e. Suppose e lies over i ∈ I, and

let φ̄ : e→ e′ be a cocartesian morphism over φ in Ei . We will show that φ̄ is also a

cocartesian morphism in E. Thus we wish to prove that the commutative square

MapE(e′, x) MapE(e, x)

MapJ( j ′, k) MapJ( j, k)

φ̄∗

φ∗

is cartesian for every x ∈ E lying over k ∈ J. It suffices to prove that the square

MapE(e′, x) MapE(e, x)

MapJ( j ′, k)×MapI(i, l) MapJ( j, k)×MapI(i, l)

φ̄∗

φ∗× id

is cartesian, where x lies over l in I. But to show this, it is enough to show that the

commutative square

MapE(e′, x) f MapE(e, x) f

MapJ( j ′, k) MapJ( j, k)

φ̄∗

φ∗
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on fibres over f : i → l is cartesian for all f . Since E→ I is a cartesian fibration, we can

rewrite this as

MapEi (e
′, f ∗x) MapEi (e, f ∗x)

MapJ( j ′, k) MapJ( j, k),

φ̄∗

φ∗

where f ∗x → x is a cartesian morphism over f . But now this square is cartesian since φ̄

is by assumption cocartesian in Ei . The assertion that π preserves cocartesian morphisms

amounts to π taking πJ-cocartesian morphisms to equivalences in I, which is clear from

our description of πJ-cocartesian morphisms.

Proof of Proposition A.1.7. We first prove case (i). It follows from Corollary A.1.5 and

Lemma A.1.8 (using Remark A.1.9) that (p∨, q ′) is a cocartesian fibration. Moreover,

the fibre E`a,b is by construction equivalent to the fibre Ea,b, which is an ∞-groupoid.

Hence (p∨, q ′) is a left fibration.

In case (ii), Lemma A.1.10 implies that q ′ is a cocartesian fibration, and that
q ′-cocartesian morphisms map to equivalences under p∨. Since we also know that q ′

takes p∨-cartesian morphisms to equivalences, Corollary A.1.5 implies that (p∨, q ′) is a

bifibration since the fibres (Fb)a,b ' Fa,b are ∞-groupoids.

Remark A.1.11. Dually, we can replace a bifibration E→ A×B by a right fibration

Er
→ A×Bop and vice versa.

Remark A.1.12. Let Catbifib
∞/A×B denote the full subcategory of Cat∞/A×B spanned by

the bifibrations, and let similarly CatL
∞/C and CatR

∞/C denote the full subcategories of

Cat∞/C spanned by the left and right fibrations, respectively. Since dualizing fibrations

is an equivalence of ∞-categories, the constructions in Proposition A.1.7 and their dual

versions give equivalences

Catbifib
∞/A×B ' CatL

∞/Aop×B ' CatR
∞/A×Bop .

A.2. Sections of bifibrations

In this subsection, we will describe sections of a bifibration in terms of the corresponding

left and right fibrations.

Proposition A.2.1. Let I be an ∞-category. Then the functor (ev0, ev1) : I
11
→ I× I is

the free bifibration on I, in the sense that the map

Map/I×I(I
11
,E)

∼
−→ Map/I×I(I,E),

induced by composition with the canonical map const : I→ I1
1
, is an equivalence for

every bifibration E→ I× I.
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Proof. By [11, Theorem 4.5], the functor ev0 : I
11
→ I is the free cartesian fibration on

idI. Composition with const therefore induces an equivalence

Mapcart
/I (I1

1
,C)

∼
−→ Map/I(I,C)

for any cartesian fibration C→ I. In our case, we then have a commutative square

Mapcart
/I (I1

1
,E) Map/I(I,E)

Mapcart
/I (I1

1
, I× I) Map/I(I, I× I),

∼

∼

where the horizontal maps are equivalences. On the fibre over (ev1, ev0) : I
11
→ I× I

(which corresponds to the diagonal 1 : I→ I× I), we get an equivalence

Map/I×I(I
11
,E)

∼
−→ Map/I×I(I,E)

since the morphisms in the source automatically preserve cartesian morphisms by

Lemma A.1.3.

Describing the spaces of sections of a bifibration in terms of the corresponding left and

right fibrations turns out to involve the twisted arrow ∞-category.

Definition A.2.2. If C is an ∞-category, we define Twr (C) as the simplicial space

Map([n] ? [n]op,C).

Restricting to the factors [n] and [n]op, we get a projection

Twr (C)→ C×Cop.

We also define Tw`(C) := Twr (C)op, which as a simplicial space is Map([n]op ? [n],C).

The following is essentially [20, Proposition 5.2.1.3] or [3, Proposition 1.1]. Since we

have defined Twr (C) as a Segal space rather than a quasi-category, we briefly discuss how

to adapt the proof to this setting.

Proposition A.2.3.

(i) If C is a Segal space, then so is Twr C.

(ii) If C is a Segal space, then the morphism Twr C→ C×Cop is a right fibration.

(iii) If C is a complete Segal space, then so is Twr C.

Proof. To see that Twr C is a Segal space, it suffices to prove that the morphisms

εr (3n
i )→ εr (1n) for 0 < i < n are Segal equivalences (i.e. local equivalences for the

localization to Segal spaces), where εr denotes the colimit-preserving functor P(�)→
P(�) extending [n] 7→ [n] ? [n]op. This follows from the proof of [20, Proposition 5.2.1.3],

where this map is shown to be inner anodyne in simplicial sets.
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A morphism E→ B of Segal spaces is a right fibration if and only if the commutative

square

E1 B1

E0 B0

d0 d0

is cartesian. For Twr C→ C×Cop, we have (Twr C)1 ' Map(εr (11),C), where εr (11) '

11 ?11,op
' 13, and the square can be rewritten as

Map(13,C) Map(1{0,1}q1{2,3},C)

Map(1{1,2},C) Map(1{1}q1{2},C).

This is cartesian since

1{0,1}q1{1} 1
{1,2}
q1{2} 1

{2,3}
→ 13

is a (generating) Segal equivalence.

It is easy to see that any right fibration E→ B is conservative, and so gives a pullback

square

E
eq
1 B

eq
1

E0 B0.

d0 d0

Thus if B is complete, then so is E, which means that (ii) implies (iii).

Proposition A.2.4. The projection Twr (C)→ Cop is the cartesian fibration corresponding

to the cocartesian fibration ev1 : C
11
→ C.

Proof. Let π : E→ Cop be this dual cartesian fibration. Observe that we have a

commutative triangle

C1
1

C×C

C

(ev0, ev1)

ev1
,

where the downward maps are cocartesian fibrations, and the horizontal map preserves

cocartesian morphisms. Dualizing, this corresponds to a diagram

E C×Cop

Cop

φ

π ,
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where φ preserves cartesian morphisms. We claim that φ is in fact a right fibration.

To prove this, we first use [17, Proposition 2.4.2.11] to see that φ is a locally cartesian

fibration since fibrewise over Cop it is given by Ex ' (C
11
)x ' C/x → C, which is a right

fibration; since the fibres are moreover spaces, this implies that φ is a right fibration.

We can now use [20, Corollary 5.2.1.22] to conclude that E is equivalent to Twr (C) over
C×Cop if and only if

(i) for c ∈ C, the fibre Ec,C has a terminal object,

(ii) for c ∈ Cop, the fibre Ec,Cop has a terminal object,

(iii) an object x ∈ E over (a, b) is terminal in Ea,C if and only if it is terminal in Eb,Cop .

In our case, the fibre Ec,Cop is equivalent to C/c, and the fibre at c ∈ C is (Cc/)
op (as this

is the dualization of the fibre Cc/→ C of C1
1
→ C×C at c, and dualization preserves

pullbacks). Both of these clearly have terminal objects. An element in the fibre over

(a, b) ∈ C×Cop can be identified with a morphism b→ a, and in both cases, the criterion

for this to be a fibrewise terminal object is that this morphism must be an equivalence.

Corollary A.2.5. The left and right fibrations corresponding to the bifibration I1
1
→ I× I

are the left and right twisted arrow ∞-categories

Tw` I→ Iop
× I, Twr I→ I× Iop,

respectively.

Proof. By Proposition A.2.4, Twr I→ Iop is the cartesian fibration corresponding to

ev1 : I
11
→ I, and similarly for Tw` I; so this follows from Construction A.1.6.

From this, we obtain a useful description of the sections of a bifibration.

Corollary A.2.6. Suppose E→ A×B is a bifibration. Then for functors α : C→

A, β : C→ B, the space of sections

E

C A×B
(α,β)

is equivalent to the spaces of commutative squares
C1

1
E

C×C A×B
α×β

 '


Twr (C) Er

C×Cop A×Bopα×βop

 '


Tw`(C) E`

C×Cop Aop
×B

αop×β

 .

A.3. Fibrations of functor ∞-categories

In this subsection, we will prove the following result.
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Proposition A.3.1. Let F→ I be the cocartesian fibration for a functor F : I→ Cat∞
and G→ I be the cartesian fibration for a functor G : Iop

→ Cat∞. If H→ I is the

cocartesian fibration for the functor H := Fun(F(–),G(–)) : I→ Cat∞, then there is a

natural equivalence of ∞-categories

FunI(I,H) ' FunI(F,G).

Under this equivalence, the cocartesian sections of H correspond to the functors F→ G

that take cartesian morphisms to cocartesian morphisms.

The proof requires understanding a variant of the twisted arrow category.

Definition A.3.2. For an ∞-category C, viewed as a complete Segal space, we define

Tw2(C) to be the simplicial space

Twr
2(C)n ' Map([n] ? [n]op ? [n],C).

Since [n] ? [n]op ? [n] can be identified with the pushout of∞-categories ([n] ? [n]op)q[n]op

([n]op ? [n]), the simplicial space Twr
2(C) is given by the pullback

Twr
2(C) Twr (C)

Twr (C)op Cop.

This implies in particular that Twr
2(C) is a complete Segal space, i.e. an ∞-category.

Lemma A.3.3. Let f : E→ B be any functor of ∞-categories. Then

Twr (B)×B E→ Bop

is a cartesian fibration, corresponding to the functor B→ Cat∞ given by

b 7→ B/b×B E.

Proof. This functor factors as the composite

Twr (B)×B E→ E×Bop
→ Bop,

where the first functor is a cartesian fibration, being a pullback of Twr (B)→ B×Bop,

and the second is obviously a cartesian fibration. Moreover, we can write Twr (B)×B E as

the fibre product Twr (B)×B×Bop E×Bop of cartesian fibrations over Bop. This identifies

the corresponding functors as the fibre product of the functors associated to the three

factors; as Twr (B)→ Bop corresponds to b 7→ B/b by Proposition A.2.4 and the two

other fibrations correspond to constant functors, this gives the result.

Lemma A.3.4. There are natural equivalences of ∞-categories

Twr (C/x ) ' (C/x )
op
×Cop Twr (C),

Twr (Cx/) ' Cx/×C Twr (C).
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Proof. We will prove the first equivalence; the proof of the second is similar. By the

universal property of C/x and the definition of the twisted arrow ∞-category, we have a

natural pullback square

Map([n],Twr (C)/x ) Map([n] ? [n]op ? [0],C)

{x} Map([0],C).

On the other hand, we have a pullback square

Map([n], (C/x )
op
×Cop Twr (C)) Map([n]op,C/x )

Map([n] ? [n]op,C) Map([n]op,C).

We can expand this to a commutative diagram

Map([n], (C/x )
op
×Cop Twr (C)) Map([n]op,C/x ) {x}

Map([n] ? [n]op ? [0],C) Map([n]op ? [0],C) Map([0],C)

Map([n] ? [n]op,C) Map([n]op,C),

where all the squares are pullbacks. In particular, the composite square in the top

row is a pullback, which shows that Map([n], (C/x )
op
×Cop Twr (C)) is equivalent to

Map([n],Twr (C)/x ), naturally in [n] and x , as required.

Lemma A.3.5. Suppose π : E→ B is a cartesian fibration whose fibres are all weakly

contractible. Then π is both cofinal and coinitial.

Proof. The functor π is cofinal by [17, Lemma 4.1.3.2]. To see that it is also coinitial,
observe that for any functor F : B→ C the right Kan extension π∗π

∗F exists, and

π∗π
∗F(b) ' limEb F(b) ' F(b), where the second equivalence uses that Eb is weakly

contractible; thus π∗π
∗F ' F . The limit of π∗F over E is the limit over B of π∗π

∗F ' F ;

hence π is indeed coinitial.

Lemma A.3.6. For any ∞-category C, the functors Twr (C)→ C,Cop are both cofinal and

coinitial.

Proof. We know that Twr (C)→ C and Twr (C)→ Cop are cartesian fibrations, with fibres

(Cx/)
op and C/x , respectively. These ∞-categories are weakly contractible; hence these

functors are both cofinal and coinitial by Lemma A.3.5.

Lemma A.3.7. Let π0, π2 : Twr
2(C)→ C be the projections induced by restriction to the

first and the second copy of [n] in [n] ? [n]op ? [n], respectively. Then
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(i) π0 is a cartesian fibration, corresponding to the functor x 7→ Twr (Cx/)
op,

(ii) π2 is a cocartesian fibration, corresponding to the functor x 7→ Twr (C/x ).

Proof. From the definition of Twr
2(C), we have a pullback square

Twr
2(C) Twr (C)

Twr (C)op Cop.

Now Lemma A.3.3 applied to Twr (C)op
→ Cop (using the equivalence Twr (C) ' Twr (Cop))

gives that π0 is a cartesian fibration corresponding to the functor

x 7→ (Cx/)
op
×Cop Twr (C)op.

Similarly, using the op’ed version of Lemma A.3.3, we see that π2 is the cocartesian

fibration for the functor x 7→ (C/x )
op
×Cop Twr (C). Now Lemma A.3.4 identifies these

functors with Twr (C–/)
op and Twr (C/–), respectively.

Lemma A.3.8. Consider a diagram

E F

B

φ

p q
,

where p and q are cocartesian fibrations and φ preserves cocartesian morphisms. If the

functor φb : Eb → Fb is cofinal for every b ∈ B, then φ is cofinal, as is φ×BB′ for any

functor B′→ B.

Proof. It suffices to check that composition with φop preserves limits for functors

f : Fop
→ S. But here we have natural equivalences

lim
Fop

f ' lim
b∈Bop

lim
F

op
b

f |Fop
b
' lim

b∈Bop
lim
E
op
b

( f φ)|Fop
b
' lim

Eop
f φ.

Since the same condition holds for the pullback of φ along any map B′→ B, any such

pullback of φ is also cofinal.

Lemma A.3.9. There is a natural inclusion of posets [n]× [1] → [n] ? [n]op ? [n],
extending the inclusion of two copies of [n], which induces a functor of ∞-categories

8 : Twr
2(C)→ C1

1
.

This functor is both cofinal and coinitial.

Proof. We have commutative diagrams

Twr
2(C) C1

1

C

8

π2 ev1

Twr
2(C) C1

1

C.

8

π0 ev0
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In the first diagram, the diagonal morphisms are both cocartesian fibrations while in

the second, they are cartesian fibrations. Moreover, the functor 8 clearly preserves

cocartesian and cartesian morphisms for these fibrations. To show that the top morphism

is cofinal or coinitial, it therefore suffices by Lemma A.3.8 to show that the induced

morphisms on fibres are all cofinal in the first diagram and coinitial in the second

diagram. At x ∈ C, we can identify these with the projections Twr (C/x )→ C/x and

Twr (Cx/)
op
→ Cx/, respectively. These are both cofinal and coinitial by Lemma A.3.6.

Proof of Proposition A.3.1. By [11, Corollary 7.7], the∞-category FunI(I,H) is the limit

lim
i→ j∈Twr (I)op

Fun(I/ i , H( j)) ' lim
i→ j∈Twr (I)op

Fun(I/ i × F( j),G( j)).

Similarly, FunI(F,G) is the limit

lim
i→ j∈Twr (I)op

Fun(I/ i ×I F,G( j)).

Here I/ i ×I F→ I/ i is a cartesian fibration, equivalent by [11, Corollary 7.6] to the colimit

colim
x→y∈Twr (I/ i )

I/x × F(y).

Thus the ∞-category FunI(F,G) is the limit

lim
i→ j∈Twr (I)op

lim
x→y∈Twr (I/ i )op

Fun(I/x × F(y),G( j)).

Let Twr
3(I) denote the pullback Twr

2(I)×I Twr (I), where Twr
2(I) is defined in

Definition A.3.2. By Lemma A.3.7, the projection Twr
3(I)→ Twr (I) is then the cocartesian

fibration for the functor taking i → j in Twr (I) to Twr (I/ i ). Combining the limits in the

expression above, we may therefore identify FunI(F,G) with the limit

lim
x→y→i→ j∈Twr

3(I)
op

Fun(I/x × F(y),G( j)).

We may also identify Tw3(I) with the pullback Twr (I)×Iop Twr
2(I)

op. The functor whose

limit we are taking clearly factors through

Twr (I)×Iop 8
op
: Twr (I)×Iop Twr

2(I)
op
→ Twr (I)×Iop (I

11
)op,

where 8 is the functor of Lemma A.3.9. This functor is cofinal by Lemma A.3.8 since 8 is

fibrewise cofinal and coinitial, and so this is the pullback of a fibrewise cofinal morphism

of cocartesian fibrations over Iop. This means we may identify FunI(F,G) with the limit

lim
x→y→ j∈Twr (I)op×II

11
Fun(I/x × F(y),G( j)).

Now consider the commutative triangle

C C1
1

C

c

ev0

,
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where c is the functor induced by composition with 11
→ 10, taking an object to its

identity morphism. This is a morphism of cartesian fibrations, given on fibres by {x} →
Cx/, which is clearly coinitial; hence c is itself coinitial, as is its pullback along any

morphism to the base C. In particular, the induced functor Twr (I)op
→ Twr (I)op

×I I
11

is coinitial. Thus FunI(F,G) can finally be identified with

lim
x→ j∈Twr (I)op

Fun(I/x × F( j),G( j)),

which is the same as our first expression for FunI(I,H). To identify the cocartesian

sections, observe that our work so far shows that the cocartesian fibration H→ I has the

same universal property as the cocartesian fibration given by (the dual of) [17, Corollary

3.2.2.13], whose cocartesian sections are shown there to be given by functors F→ G that

take cartesian morphisms to cocartesian ones.

Corollary A.3.10. Let E→ C be a cartesian fibration corresponding to a functor ε : Cop
→

Cat∞, and F→ D be a cocartesian fibration corresponding to a functor φ : D→ Cat∞.

Then if G→ C×D is the cocartesian fibration corresponding to Fun(ε, φ) : C×D→

Cat∞, then G satisfies

Fun/C×D(I,G) ' Fun/D(I×C E,F)

for any functor I→ C×D. Under this equivalence, a cocartesian morphism in G

corresponds to a functor

11
×C E→ F

that takes cartesian morphisms for 11
×C E→ 11 to cocartesian morphisms in F.

Proof. Apply Proposition A.3.1 to the pullback of the fibrations to I.
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