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Conventional underwater navigation and positioning methods for Autonomous Underwater
Vehicles (AUVs) either require the installation of acoustic arrays, which make AUVs less inde-
pendent, or result in cumulative errors. This paper proposes an Underwater Terrain Positioning
Method (UTPM) using Maximum a Posteriori (MAP) estimation and a Pulse Coupled Neural
Network (PCNN) model for highly accurate navigation by AUVs. The PCNN model is used as
a secondary discriminant to effectively identify pseudo-anchor points in flat terrain feature areas
and to find the true positioning point, which significantly improves the matching positioning
accuracy in these areas. Simulation results show that the proposed method effectively corrects
Inertial Navigation System (INS) cumulative errors and has high matching positioning accuracy,
which satisfy the requirements of AUV underwater navigation and positioning.
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1. INTRODUCTION. As an interdisciplinary research area, Autonomous Underwater
Vehicles (AUVs) have received extensive attention worldwide, and significant progress
has already been made. As the endurance of AUVs continues to increase, their underwater
navigation and positioning technology is becoming increasingly critical (Paull et al., 2014;
Xu et al., 2006).

Traditional underwater navigation and positioning methods include underwater acoustic
navigation (Ji and Liu, 2010; Lee, 2016), inertial navigation (Morgado et al., 2013) and
deadreckoning navigation (Yan et al., 2010), which are widely used for AUV underwater
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operations. However, underwater acoustic navigation requires the installation of an acoustic
array, which means that the AUV cannot operate independently. Further, dead-reckoning
navigation and Inertial Navigation Systems (INS) have cumulative errors which necessitate
the AUV coming to the surface periodically to receive Global Navigation Satellite System
(GNSS) signals to correct them. In recent years, underwater terrain matching navigation
(Nygren, 2008; Hagen et al., 2012; Claus and Bachmayer, 2015), which can effectively
correct the cumulative errors of INS, has become the focus of active underwater navigation
and positioning research. As underwater terrain matching navigation does not need the
support of external sensors, extended, hidden, all-weather, highly accurate navigation can
be achieved.

Among the many terrain matching methods, the terrain contour matching and Sandia
terrain matching navigation methods have been applied successfully to aircraft naviga-
tion (Xing, 2004). Compared with the terrain-positioning methods successfully applied
to aircraft, the development of underwater terrain-positioning technology has long been
impeded by difficulty in obtaining accurate underwater terrain data, owing to the com-
plexity of the ocean environment and restrictions on underwater terrain measurement
techniques. However, in recent years, with the development of multi-beam sounding tech-
niques, it has become possible to obtain highly accurate Digital Terrain Maps (DTMs).
This has led to intensive study of underwater terrain matching navigation being conducted
(Chen et al., 2015).

Continuous filtering methods are an active underwater terrain matching research area.
These methods include the Extended Kalman Filter (EKF) (Hagen and Anonsen, 2014;
Li et al., 2017), Unscented Kalman Filter (UKF) (Pan and Zhao, 2015), Particle Filter
(Nordlund and Gustafsson, 2010; Teixeira et al., 2017) and Point Mass Filter (Bergman and
Ljung, 2009). They have been studied in depth and exhibit good performance. However,
they are overly dependent on continuous real-time multi-beam data. Due to AUVs having
only a limited power source, continuous filtering methods are not applicable for practical
application without a major breakthrough in power techniques. In contrast to continuous
filtering methods, Underwater Terrain Positioning Methods (UTPMs) only need acoustic
impulse (ping) data, which is a significant advantage (Chen, 2013) In this paper, a UTPM
that uses Maximum a Posteriori (MAP) estimation and a Pulse Coupled Neural Network
(PCNN) model is proposed for AUV underwater navigation.

2. MAP-BASED MATCHING.
2.1. Underlying principle of MAP. The basic idea underlying MAP is use of measure-

ment data to estimate the system status. It is similar to Maximum Likelihood Estimation
(MLE) as proposed by Fisher (Geisser, 1992), and can be seen as regularised MLE (Ding
and Xiao, 2014).

If the posterior Probability Density Function (PDF) p(x|Z) of the estimated amount x is
given, the estimated value x̂ of MAP is the value of x which maximises the posterior PDF.
From the Bayesian formula, if p(Z |x) is known, the posterior PDF of the system status can
be calculated using Equation (1):

p(Z |x) =
p(Z |x)p(x)

p(Z)
(1)
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where p(x) is the prior PDF of x, p(Z) is the PDF of measurement data Z and p(Z |x) can
be obtained via calculation or experience. Let x̂MAP be the estimated value of MAP, taking
the natural logarithms of both sides of Equation (1) results in Equation (2):

ln p(x|Z) = ln p(Z |x) + ln p(x) − ln p(Z) (2)

The physical significance of MAP is as follows: if measurement data Z are determinate,
the probability that x is in the neighbourhood of x̂MAP is higher than that of other areas.
Obviously, MAP should satisfy the following equation:

∂

∂x
ln p(x|Z)|x=x̂MAP = 0 (3)

Equation (3) is called the posterior equation, which we can solve to obtain x̂MAP. As
p(Z |x) and x are independent, combining Equations (2) and (3), the posterior equation can
be rewritten as follows: [

∂

∂x
ln p(Z |x) +

∂

∂x
ln p(x)

]∣∣∣∣
x=x̂MAP

= 0 (4)

If there is no prior information of x – that is, the probability value of x is equivalent – the
prior PDF p(x) can be considered as a normal distribution with variance tending to infinity,
and p(x) is as follows:

p(x) =
1

(2π )n/2|Px |1/2 exp
{
−1

2
(x − μ)TP−1

x (x − μ)
}

(5)

where n is the number of measured data, Px is the covariance matrix of the measured error
and μ is the expected value. As the variance tends to infinity Px → ∞, P−1

x → 0. Taking
the natural logarithms of both sides of Equation (5):

∂

∂x
ln p (x) = −1

2
ln |Px| − ln

(
P−1

x

) − P−1
x (x − μ)

= −P−1
x (x − μ) → 0 (6)

At this point, x̂MAP satisfies the following condition:

∂

∂x
ln p(z|x)|x=x̂MAP = 0 (7)

According to the basics of MLE, Equation (7) is the judging condition of MLE. There-
fore, if there is no prior information of x, MAP will degenerate into MLE. In other words,
MLE is a special MAP. However, as MAP considers the a priori statistical information of
the estimated amount, MAP is better than MLE.

2.2. UTPM model. The vertical coordinates of an AUV can be measured using an
acoustic altimeter and a water pressure sensor in real time, resulting in no cumulative error.
Thus, the vertical position need not be considered in terrain matching. Based on the above
analysis, in this paper, the positioning accuracy considered is horizontal accuracy.
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Without considering the coordinate changes of the AUV in the vertical plane, and
assuming the navigation system performs a data update at each sampling time, the UTPM
model is stated as follows:

X t+1 = X t + Ut + vt (8)

Yt = H t(xt) + Et (9)

where X t is the INS position at time t, Ut is the position change between adjacent position-
ing times, ν t is the error of INS, Yt is the real-time sounding data at time t, H t is the local
DTM data at xt and Et is the sounding error, which is defined as Gaussian white noise. To
simplify the analysis, Equation (9) can be rewritten as follows:

y t = ht(xt) + et (10)

Assuming that the measurement errors are independent of the water depth, and the errors
are independent and identically distributed, the possibility of measuring sequence y t at xt
is p(y t|xt) = p(et), and the prior PDF can be expressed as Equation (11):

p
(
y t|xt

)
= p

(
y t − ht (xt)

)
=

1(√
2πσe

)n exp
[
− 1

2σ 2
e

(
y t − h (xt)

)2
]

(11)

Assuming the positioning error of INS obeys vt ∼ N (0, Σ), p(xt) can be expressed as
follows:

p(xt) =
1

2π
√

det Σ
exp

{
1
2

(xt − X )Σ−1(xt − X )T
}

(12)

In Equation (12), X = (X , Y) is the indicating position of INS. Substituting Equations
(11) and (12) into Equation (4), we obtain the posterior equation used for terrain matching
positioning. The positioning point which satisfies the a posteriori equation is the MAP
estimated position of terrain matching.

2.3. Pseudo-anchor points phenomenon. In principle, the positioning point which
satisfies the a posteriori equation can always be calculated, and the true position can be
fixed. Due to the complex underwater environment and the interference of measurement
errors, the position is not always unique and the posterior PDF p(xt|y t) has multiple peaks.
The peak which represents the actual position of the AUV is called the true positioning.
The peaks outside the true positioning are called pseudo-peaks, and the corresponding
anchor points are pseudo-anchor points. Pseudo-anchor points are a common phenomenon
in underwater terrain matching positioning and negatively influence the matching result.
This influence is particularly evident in flat areas and causes matching accuracy to decrease
or even fail.

Let us analyse the existence characteristics of a pseudo-peak. According to Equation
(9), we obtain the following:

y t = [h(xt) + Et] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ht,1 = h1(xt) + e1
...

ht,k = hk(xt) + ek
...

ht,n = hn(xt) + en

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(13)
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where ek is the measurement error of the k-th real-time sounding data and h(xk) is the
extracted depth data from DTM at xk. Suppose that x0 is the real matching position, x1 is
the pseudo-anchor point, and y0 and y1 are the sounding sequence at x0 and x1, respec-
tively. Let �y = [�y1, �y2, . . . , �yn]T be the difference sequence between y0 and y1;
thus, y1 = y0 − �y . Further, assuming that the measurement errors are independent and
identically distributed, we obtain Equation (14):

y1 = y0 − �y=[h(x0) − �h + Ek] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ht,1 = h1(xt) − �h1 + e1
...

ht,k = hk(xt) − �hk + ek
...

ht,n = hn(xt) − �hn + en

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(14)

p(x|y) = p(x|y)p(x)
p(y) ∝ p(y |x). Let J (xt) represent the power term of the exponential term

part in Equation (11), then:

J (xt) = (y t − h(xt))2 =
n∑

i=1

(yt,i − hi(xt))2 (15)

Thus:

J (x1) − J (x0) = (y1 − h(x1))T(y1 − h(x1)) − (y0 − h(x0))T(y0 − h(x0))

=
n∑

k=1

(ek − �hk)2 −
n∑

k=1

e2
k

=
n∑

k=1

(�h2
k − 2ek�hk)

(16)

As can be seen from Equation (16), when
∑1

k=1(�h2
k − 2ek�hk) � 0, there is no pseudo-

peak on the posterior PDF and x0 is the best matching position. In the presence of pseudo-
peaks, with the real-time sounding data increasing, the value of

∑n
k=1(�h2

k − 2ek�hk) will
gradually increase. Thus, theoretically, when the sounding data are sufficient, there will
be no pseudo-positioning. However, owing to the error of the measurement terrain and
terrain similarity, the pseudo-anchor points will not be adequately removed by increasing
the amount of sounding data. Further, too much sounding data results in heavy calculation,
which affects the real-time performance of the terrain matching algorithm.

The pseudo-anchor points are derived from terrain similarity and measurement error. If
the errors are independent and identically distributed, the pseudo-anchor points are decided
by the sum of all measurement data errors. The terrain matching algorithm is based on the
hypothesis that the effect of each set of measurement data for terrain matching is the same.
In this hypothesis, the overall error is the average of individual errors, and differences
in individual errors are not considered. When terrain features are flat, the differences in
the overall errors are not obvious. However, with increasing measurement data, the effect
of ‘error averaging’ also increases, which means that the result of terrain matching posi-
tioning cannot necessarily improve with increasing quantity of measurement data. Thus,
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if data with large error can be removed effectively, the effect of ‘error averaging’ can be
effectively suppressed, and the terrain matching performance can be improved. To achieve
this, a pseudo-anchor points discriminant method is proposed in this paper. In the pro-
posed method, pseudo-anchor points are effectively removed by screening the data that
have smaller errors in the measurement data, then discriminating all matching points.

3. PSEUDO-ANCHOR POINTS DISCRIMINANT METHOD BASED ON PCNN.
3.1. PCNN model. By studying the cerebral cortex of mammals, Eckhorn et al.

(1990) established a neuronal conduction characteristics model for the visual area, which
eventually developed into PCNN (Lindblad and Kinser, 2013; Mohammed et al., 2015).
PCNN is a single-layer artificial neural network model that does not need training on sam-
ple data as the network implementation is dominated by an iterative algorithm. In contrast
to traditional multi-layer artificial neural networks, PCNN can conduct self-learning and
self-supervision.

As shown in Figure 1, the PCNN model includes three mutually coupled func-
tional units: linking component, feeding component and step function. As shown in
Equation (17), the input to the linking component is determined by the output from the
previous iteration:

Lij (n) = e−αL Lij (n − 1) + VL × Yij (n − 1) (17)

where, Lij is the link status related to neuron (i, j ), VL and αL are an amplification factor
and a decay time constant, Yij is the output of neuron (i, j ) and n is the number of iterations.

The input to the feeding component is determined by the output from the previous
iteration, which is shown as Equation (18):

Fij (n) = e−αF Fij (n − 1) + VF × Yij (n − 1) + Aij (18)

where Fij (n) is the feed status related to neuron (i, j ), VF and αF are the amplification factor
and decay time constant and Aij is the normalised value of sounding data (i, j ). In contrast
to the original PCNN model, it considers a single weight value β, which is a constant value.
The combined output is shown as Equation (19):

Uij (n) = Fij (n) +
(
1 + βLij (n)

)
(19)

where Uij is the status of neuron (i, j ). As shown in Figure 1, the neuron output is defined
by the step function shown in Equation (20):

Yij (n)

{
1, Uij (n) > Tij (n)
0, otherwise

(20)

where Tij (n) is the threshold value, which can be dynamically calculated and updated
through Equation (21):

Tij (n) = e−αT Tij (n − 1) + VTYij (n) (21)

where VT and αT are an amplification factor and a decay time constant, respectively. As
noted from Equations (17)–(21), the output of the PCNN is affected by its parameters: VL,
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Figure 1. The PCNN model.

αL, VF , αF , β, VT and αT. Therefore, to improve the performance of PCNN, the above
parameters must be adjusted to the optimum.

The key features of PCNN are a nonlinear modulation coupling mechanism, the core
of the PCNN model and threshold exponential decay mechanism. In the traditional PCNN
model, the threshold changes repeatedly. Specifically, after a period of decline, owing to the
activation of neurons, the threshold rises sharply, falls sharply and then rises sharply again.
Thus, in PCNN, a significant amount of feature information is stored after processing in
the activation cycle and activation phase, and the information in the direct output is poor.
In order to overcome the above defect and reduce the amount of calculation, we improve
the threshold function as follows:

Fij (n) = Aij (22)

Lij (n) = VL × Yij (n − 1) (23)

Tij (n) = e−αT Tij (n − 1) (24)

The improved model reduces the operating parameters of PCNN, with the meaning of the
parameters remaining the same as in the standard PCNN model. The number of parameters
is reduced from nine to five, and the complexity of their setting is also reduced. The input
Fij is the value of the sounding data.

When the PCNN model is used to distinguish pseudo-anchor points, let the expressions
for Uij (n) and Yij (n) remain unchanged and Equations (22), (23) and (24) respectively
replace Equtions (18), (17) and (21). Further, we define the following three concepts:

(1) The external input of the PCNN neurons is the water depth value associated with the
coordinates, which is Fij (n) = Aij ;

(2) All PCNN neurons have the same structure and parameter;
(3) Each PCNN neuron can only be activated once.
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Figure 2. Sketch of the terrain searching and matching process.

3.2. Discriminant method of the pseudo-anchor points. The discriminant process
is divided into two steps: (1) matching unit data selection using the PCNN model and
(2) matching judgement by the selected data - the position which has the highest probability
is the real matching position.

3.2.1. Data selection method based on PCNN. The input to the traditional PCNN is
a two-dimensional matrix, whereas the input parameters of terrain matching are at least
three two-dimensional matrices. To simplify the description process, suppose that the real-
time sounding terrain is also a regular grid terrain. Then, the terrain matching process can
be as shown in Figure 2. If the number of matching position and pseudo-anchor points is
m, the number of terrain matrices processed by PCNN will be m + 1. The PCNN model
can only process one data matrix and the output is Boolean data. Thus, when designing
the PCNN structure, the output of the PCNN can be used to determine the similarity of
the real-time sounding terrain and the DTM extracted data: ‘0’ means ‘not similar’, ‘1’
means ‘similar’. The inputs to the PCNN are the similarity measure of real-time sounding
terrain and the DTM extracted data. Normalising the data to [0, 1], we obtain the similarity
measure sequence {λi}n

j =1, where λi is defined as follows:

λi = exp[−(y t,i − ht,i (xt,i))2/σ 2
e ] (25)

In the output matrix of PCNN, a ‘1’ indicates that the sounding error of the correspond-
ing data is small, the data should be retained in the second discrimination. Otherwise, if
the data has output ‘0’, the data should be removed in the second discrimination. In other
words, the ignition process is the similar terrain selection process. Figure 3 is a schematic
diagram of the data selection process.

The PCNN ignition calculation is performed for each node in the matching area, and
the number of ignitions is counted. We assume that there are N sounding data points in
real-time terrain, and there are m positioning points satisfying the MAP condition. The
flowchart of the data selection process is presented in Figure 4.

3.2.2. The matching judgement method. After the PCNN ignition calculation, the data
with the smaller differences are extracted, then further judgement calculations are per-
formed. Before judgement calculations, the data in

(
y t − ht (xt)

)2 have to undergo weight
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Figure 3. The data selection process based on PCNN.

Figure 4. Flowchart of the data selection process based on PCNN.

https://doi.org/10.1017/S0373463319000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463319000067


1242 PENGYUN CHEN AND OTHERS VOL. 72

processing using the ignition matrix {	

λj }N
j =1, which is defined as follows:

W =
N∑

j =1

	

λj (yt,j − ht,j (xt))2 (26)

Let W replace (y t − ht(xt))2 in Equation (11), the weighted PDF can be defined as
Equation (27):

p(y t|xt) = (
√

2πσe)−K exp
[
− 1

2σ 2
e

W
]

(27)

where K is the number of nodes with value ‘1’ after PCNN ignition calculation. Calculate
the prior PDF of m positioning points and the positioning point which has the maximum
value is the best position estimate.

4. IMPLEMENTATION OF THE TERRAIN MATCHING ALGORITHM.
4.1. Search area. For a terrain matching navigation system, the larger the search area,

the higher the terrain matching reliability, and the greater the matching time. Therefore, a
reasonable search area is necessary.

The search area is related to the performance of the INS. Considering the terrain res-
olution of DTM, the search area can be defined as a rectangular area determined by a
confidence ellipse (Nygren, 2005), with the centre of the rectangular area

(
pc,x, pc,y

)
indi-

cating the position from the INS. The index numbers of the local terrain can be calculated
using Equation (28):

R =

{
(x, y)

∣∣∣∣∣
∣∣x − pc,x

∣∣
Rx

≤ U ∧
∣∣y − pc,y

∣∣
Ry

≤ V

}
(28)

where Rx is the grid resolution along the x direction, Ry is the grid resolution along the y
direction, and, usually, Rx = Ry . U and V are the coefficients associated with lx and ly , which
depend on the error accumulation characteristics of INS; usually, lx = 2URx, ly = 2VRy .
The search area is shown in Figure 5, where the w1–w2 coordinate system is the confidence
ellipse coordinate system defined by Nygren (2005).

4.2. The UTPM process. The flowchart of the UTPM algorithm is shown in Figure 6.
The instructions for the calculation process are as follows:

(1) Multi-beam data must be processed in real time, which includes removing outlier
data and extracting terrain profile information.

(2) Multi-beam data include multiple pings. Considering the influence of the amount of
computation and the cumulative errors of INS, two to ten pings are usually used.

(3) According to the requirements of underwater terrain matching navigation and basic
knowledge of probability theory (Xie, 2005; Chang et al., 2005), the confidence of
the confidence ellipse must not be less than 0·95.

(4) The UTPM result can be used to correct the cumulative errors of INS diametrically
or fused with other navigational data.
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Figure 5. Confidence ellipsoid and rectangular search area.

Figure 6. UTPM algorithm flowchart.
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5. SIMULATION AND RESULT ANALYSIS.
5.1. Underwater semi-physical simulation system. The simulation tests were exe-

cuted in an underwater semi-physical simulation system. The system centre was a PC104
embedded computer. The structure of the simulation system is shown in Figure 7.

As shown in Figure 7, the simulation system comprised three components: monitoring
computer, environment simulation computer and PC104 embedded computer. The moni-
toring computer was the actual AUV monitoring computer, which is responsible for issuing
task-level parameters and startup instructions. At the same time, the ‘AUV’ status informa-
tion was displayed. The environment simulation computer simulated the AUV movement
in the marine environment and the sensors carried by the AUV. A PC104 embedded com-
puter ran the AUV control system, and it had the same parameters as the master AUV
computer, with the only difference being that the sensor information and the data packet
were sent by the environment simulation computer, and the actuator information was also
sent to the environment simulation computer through the Ethernet. The specifications of
the PC104 computer are listed in Table 1.

Figure 7. Structure of the underwater semi-physical simulation system.

Table 1. Specifications of the PC104 computer.

Entry Description

Brand (product model) SBS(PMI2)
CPU Intel Pentium M at 2·0 GHz
Chipset Intel85XGME/ICH4
Memory 256 MB
LAN Ethernet Controller Integrated in ICH4
Operating System VxWorks 5·5
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Figure 8. Initial interface of the Vega-based simulation module.

Based on the simulation system, the simulation test was divided into two parts: Test 1,
algorithm validation based on an electronic chart, which verified the feasibility of the pro-
posed algorithm; Test 2, playback simulation test using real multi-beam sounding data,
which verified the applicability of the proposed algorithm in a real marine environment.

5.2. Algorithm validation. In Test 1, a visual simulation toolkit issued by MultiGen-
Paradigm Inc., Vega software, was used for used to simulate the motion of AUV, Figure 8
shows the initial interface of the Vega-based simulation module. The intersecting rays (The
green line in Figure 8) of Vega (were used to simulate a multi-beam sounding system
(Li et al., 2011). Adding a Vega-based simulation module to the environment simulation
computer, ‘AUV’ motion and data acquisition were conducted in this module.

The DTM for the simulation test was obtained by interpolating the electronic chart. The
size of the DTM was 5 km × 5 km, and the grid spacing was 10 m. The DTM is shown
in Figure 9(a). A simulation model of DTM was then built and input to the Vega-based
simulation module.

As shown in Figure 9(b), five different terrain feature areas in DTM were selected. Dur-
ing Test 1, the selected local underwater map was interpolated with 2 m grid spacing. The
systematic errors of attitude and heading would influence measurement data. However,
these impacts are always negligible in terrain matching navigation because a Fibre Optic
Gyrocompass (FOG) is very accurate (Hagen and Ånonsen, 2014; Zhao et al., 2015). There-
fore, the measurement error of the attitude sensor can be ignored in the simulation test. In
order to quantify the terrain feature richness, the terrain entropy of the selected local under-
water map was calculated (Wang et al., 2007). The interval distance between two adjacent
ping samplings was 10 m. Table 2 shows the simulation parameters.

After setting the simulation parameters, the simulation tests were conducted based on
different terrain profile combinations. For comparison, simulation tests using the MLE
method (Peng et al., 2016) were conducted with the same simulation conditions. The
simulation results obtained after 500 simulation tests are shown in Table 3.

In Table 3, the average positioning error is the average error in each matching area,
the number of pseudo-anchor points is the maximum value in the simulation, 60 × 2 and
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(a)

(b)

Figure 9. DTM and matching area selection (a) DTM; (b) matching area selection.

60 × 5 are terrain combined modes. For example, 60 × 2 is a terrain with two terrain
profiles comprising 60 units of depth data in each profile.

In the simulation tests, the terrain tended to be gentle from Area 1 to Area 5. According
to the definition of terrain entropy, the smaller the terrain entropy value, the richer are
the terrain features and the higher the terrain adaptability. Comparing the MAP and MLE
positioning results, in the area with smaller terrain entropy, the performance of the two
algorithms is similar. As the terrain entropy increased, the matching positioning accuracy
decreased and the pseudo-anchor points appeared. As can be seen in Table 3, under the
same test conditions, the number of pseudo-anchor points of MAP is less than that of MLE.
Without removal of the pseudo-anchor points, the matching accuracy of MAP is higher than
that of MLE. Figure 10 shows the terrain matching results of MAP and MLE in Area 3. As
can be seen, under the same simulation conditions, the pseudo-anchor points of MAP are
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Table 2. Simulation parameters.

Parameter Name Value

Initial error of INS σx = σy = 30 m
Confidence of search area 0·95
Error of ‘multi-beam sounding system’ N (0,0·5)
Other errors N (0,0·5)

Table 3. Algorithm simulation results based on electronic chart data.

Serial number of matching areas 1 2 3 4 5

Terrain entropy in matching area 2·12 2·25 3·39 3·82 4·45

60 × 2 Number of pseudo-anchor
points (MAP/MLE)

-/- -/- 1/5 5/16 11/30

Average positioning error
(MAP/MLE) (m)

4·4/4·3 5·5/5·4 6·1/7·3 8·6/11·5 9·1/13·5

Average positioning time
(MAP/MLE) (s)

0·49/0·47 0·48/0·46 0·47/0·48 0·49/0·46 0·47/0·48

60 × 2
(Pseudo-points
removed)

Number of pseudo-anchor
points (MAP/MLE)

-/- -/- -/- -/- -/-

Average positioning error
(MAP/MLE) (m)

4·4/4·3 5·5/5·4 5·6/5·5 6·0/6·1 6·2/6·0

Average positioning time
(MAP/MLE) (s)

0·49/0·47 0·48/0·46 0·57/0·97 0·98/2·07 1·58/3·50

60 × 5 Number of pseudo-anchor
points (MAP/MLE)

-/- -/- -/1 1/10 10/28

Average positioning error
(MAP/MLE) (m)

3·5/3·6 3·9/4·1 4·0/4·1 4·5/5·2 8·7/12·2

Average positioning time
(MAP/MLE) (s)

1·04/1·01 1·03/1·02 1·02/1·04 1·03/1·01 1·01/1·02

60 × 5
(Pseudo-points
removed)

Number of pseudo-anchor
points (MAP/MLE)

-/- -/- -/- -/- -/-

Average positioning error
(MAP/MLE) (m)

3·5/3·6 3·9/4·1 4·0/3·9 4·5/4·7 5·7/5·9

Average positioning time
(MAP/MLE) (s)

1·04/1·01 1·03/1·02 1·02/1·28 1·27/2·14 2·17/3·99

less than those of MLE, and the probability distribution is more reasonable; hence, MAP is
superior to MLE.

Comparison of the matching positioning results of different terrain profile combinations
shows that the matching positioning accuracy of 60 × 5 is higher than that of 60 × 2. As
can be seen in Table 3, in Areas 3 and 4, the number of pseudo-anchor points is significantly
reduced. For example, there are five pseudo-anchor points using the MAP method in Area 4
by the 60 × 2 terrain, and only one pseudo-anchor point by the 60 × 5 terrain. However,
in areas where the terrain is flatter (Area 5), the number of pseudo-anchor points is not
significantly reduced (from 11 to ten using MAP and from 30 to 28 using MLE), and the
calculation time is significantly increased. As can be seen, in the flat terrain area, because
there are more pseudo-anchor points, the real-time performance of MLE is worse.
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(a) (b)

Figure 10. Terrain matching results (a) MAP (b) MLE.

(a) (b)

Figure 11. Probability distribution with different real-time terrains in Area 5 (a) 60 × 2 (b) 60 × 5.

Figure 11 shows the posterior PDF distribution with different real-time terrain combi-
nations in Area 5. As can be seen, in the flat terrain area, the posterior PDF distribution
of 60 × 5 is not changed significantly compared with 60 × 2. In other words, the match-
ing performance cannot be significantly improved by increasing real-time terrain data.
After the discrimination of pseudo-anchor points by PCNN, the true positioning point can
be found, and the positioning accuracy increases significantly. Therefore, the proposed
pseudo-anchor points discriminant method is effective. However, it should also be noted
that the calculation time of PCNN is proportional to the number of pseudo-anchor points
and the amount of real-time terrain data. As the number of pseudo-anchor points and the
amount of real-time terrain data increases, the calculation time also increases, which can
affect the real-time performance of terrain matching.

In theory, by screening and determining each search point using PCNN, then calculating
the PDF, the true matching position can be obtained. Figure 12 shows the probability distri-
bution after PCNN screening with 60 × 5 real-time terrain data. After screening all search
points, the probability distribution is a single peak distribution, which means that the effect
of ‘error averaging’ is effectively suppressed. However, in the simulation, the calculation
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Figure 12. Matching positioning based solely on PCNN.

time is over 100 seconds, which is unacceptable for real-time performance. Therefore, com-
bining MAP and PCNN is effective for terrain matching positioning. With advancements
in computer performance, PCNN terrain matching positioning has greater advantage.

5.3. Playback simulation. In Test 2, the data source of DTM was multi-beam sound-
ing data measured in a sea trial. The multi-beam sounding data were acquired using
GeoSwath Plus (GS+), a phase interferometry multi-beam sounding side scanner produced
by the GeoAcoustics Company. The size of the measured area was 1,000 m × 900 m, and
the depth was from 5 m to 40 m. After filtering and gridding processing, the grid spacing of
DTM was 1 m × 1 m (Figure 13).

The navigational data in the GS+ original file were obtained using the Real-time Kine-
matic (RTK) technique (GeoAcoustics Limited, 2007). Thus, the navigation accuracy was
up to several centimetres (Yao et al., 2016). Therefore, RTK data can be used for the real
position.

The path indicated by the arrow in Figure 13 is an independent multi-beam survey line,
which is used to simulate real-time sounding data. The survey line is perpendicular to the
lines marking the DTM; thus, data independence is ensured.

The playback simulation means that the data in the simulation are from sea trials and the
data are read according to the state when the data were acquired in simulation tests. As the
test data are from real multi-beam sounding, the playback simulation could verify the appli-
cability of the proposed method in the real marine environment. The initial error of INS is
established as σx = σy = 15 m, and the error characteristic satisfies σx = σy = N (0, (0·05t)2).
Calculation was completed of the terrain features of the independent line passing through
the area, and five matching areas can be selected sequentially along the survey line, as
shown in Figure 12. Similarly, the terrain entropy in the matching area is calculated
separately and is shown in Table 4.

Multiple playback simulation tests were conducted, with the results in Table 5 being
obtained. Matching length is defined as the distance between the two furthest real-time
terrain profiles. For example, there are five terrain profiles in the real-time terrain data,
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Figure 13. The DTM and independent survey line.

Table 4. Terrain entropy in the matching area.

Matching area 1 2 3 4 5

Terrain entropy 2·39 4·93 3·38 3·52 4·17

the length between adjacent terrain profiles is 10 m and the matching length is 40 m. The
accuracy requirement is that positioning errors be less than 5 m.

As can be seen from Table 5, in Area 1, which has the richest terrain features, the true
positioning point can be found using only 80 × 2 real-time terrain data and increasing the
data does not improve the positioning accuracy. In Areas 3 and 4, which have relatively
rich terrain features, there are pseudo-anchor points using 80 × 2 real-time terrain data, but
increasing the data to 80 × 5 causes the pseudo-anchor points to disappear; the positioning
accuracy of MAP using 80 × 5 is close to the PCNN result for 80 × 2. In Areas 2 and 5,
which have the poorest terrain features, the pseudo-anchor points still exist with 80 × 5
real-time terrain data; pseudo-anchor points discrimination must be conducted. In Area 5,
the positioning accuracy between 80 × 5 and 80 × 2 is approximately the same, whereas in
Area 2, the positioning accuracy meets the requirements only with 80 × 5 real-time terrain
data. This is because the terrain is very flat in Area 2, which results in the terrain data using
80 × 2 being too small to describe the terrain features after PCNN ignition calculation.
Therefore, before terrain matching positioning, the matching suitability of the local terrain
must first be assessed, which is used to determine the real-time terrain combination mode
in the terrain matching calculation.

As can be seen from the above analysis, the true positioning point can be found using
only a small amount of real-time terrain data by the proposed terrain matching positioning
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Table 5. Playback simulation results.

Matching Terrain Matching Removal of Positioning
area combined mode length (m) pseudo-anchor points error (m)

1 80 × 2 10 Only one positioning point 1·5
1 80 × 5 40 Only one positioning point 1·3
2 80 × 2 10 No 22·1
2 80 × 2 10 Yes 9·2
2 80 × 5 40 No 15·2
2 80 × 5 40 Yes 3·7
3 80 × 2 10 No 2·2
3 80 × 2 10 Yes 2·4
3 80 × 5 40 Only one positioning point 1·8
4 80 × 2 10 No 10·9
4 80 × 2 10 Yes 3·3
4 80 × 5 40 Only one positioning point 3·5
5 80 × 2 10 No 16·1
5 80 × 2 10 Yes 3·9
5 80 × 5 40 No 15·2
5 80 × 5 40 Yes 3·6

method in most areas, and the pseudo-anchor points can be removed effectively. However,
in excessively flat terrain areas, an overly small amount of terrain data cannot describe the
terrain features, and so the amount of real-time terrain data has to be increased. In the play-
back simulation tests, because of the high resolution of DTM, the positioning error was less
than 5 m in each matching area, and the accuracy was unrelated to the sailing distance and
sailing time. Therefore, the proposed method is applicable for AUV underwater navigation.

6. CONCLUSIONS. In this paper, an Underwater Terrain Positioning Method (UTPM)
using Maximum a Posteriori (MAP) was introduced and a discrimination method for
pseudo-positioning points based on the Pulse Coupled Neural Network (PCNN) model for
pseudo-anchor points in flat terrain areas was proposed. The following conclusions were
reached:

1. The cumulative error of INS can be corrected effectively by the UTPM algorithm
proposed in this paper.

2. In most areas, the true positioning point can only be found by combining several sets
of terrain profile data with PCNN discrimination.

3. In flat terrain areas, the true positioning point can be found by combining more terrain
profile data with PCNN discrimination.

4. The positioning performance is related to the local terrain entropy and the real-
time terrain profile combination; therefore, adaptively selecting the terrain profile
combination according to the local terrain entropy is efficacious.
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