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Abstract A key ingredient in the Taylor-Wiles proof of Fermat’s last theorem is the classical Ihara
lemma, which is used to raise the modularity property between some congruent Galois representations.
In their work on Sato and Tate, Clozel, Harris and Taylor proposed a generalisation of the Ihara lemma in
higher dimension for some similitude groups. The main aim of this paper is to prove some new instances
of this generalised Thara lemma by considering some particular non-pseudo-Eisenstein maximal ideals of
unramified Hecke algebras. As a consequence, we prove a level-raising statement.
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1702 P. Boyer

1. Introduction

Let F = F*E be a CM field with F/Q quadratic imaginary and F* totally real. For B/F
a central division algebra with dimension d? equipped with a involution of second kind *

and B € §*=71, consider the similitude group G/Q defined for any Q-algebra R by
G(R):={(g) € R* x (B” ® R)* such that gg* =}

with B” = E@F,C F, where ¢ = is the complex conjugation and #g the involution
z > 2% = Bx*B~L. For p = uwu® decomposed in E, we have

G@Q)=Qy x[[B,),

w|u
where w describes the places of F' above u. We suppose the following;:

— The associated unitary group Go(R) is compact.

— For any place z of QQ inert or ramified in E, then G(Q) is quasi-split.

— There exists a place vy of F above u such that FUO 2 Dy, 4 is the central division
algebra over the completion Fy, of F' at vy, with invariant %.

Fix a prime number [ # p and consider a finite set S of places of F' containing the
ramification places Bad of B. Denote by Tg/Z; the unramified Hecke algebra of G outside
S. For a cohomological minimal prime ideal M of Tg, we can associate both a near
equivalence class of Q;-automorphic representation Il and a Galois representation

pi : Gp = Gal(F/F) — GL4(Q))

such that the eigenvalues of the Frobenius morphism at an unramified place w are given
by the Satake parameter of the local component ITg ., of ITs. The semisimple class oy,
of the reduction modulo ! of pz depends only on the maximal ideal m of T containing
m. For all prime z of Z split in E and a place w ¢ S of F' above x, we then denote by
Py (X) the characteristic polynomial of p,, (Frob,,).

1.1 Conjecture (Generalised Thara lemma by Clozel, Harris and Taylor). Consider the
following:

— an open compact subgroup U of G(A) such that outside S, its local component is
the maximal compact subgroup;

— a place wg € S decomposed in E;

— a mazimal m of Tg such that py, is absolutely irreducible.

£et fr_ be an irreducible subrepresentation of CW(E(Q)\ﬁ(A)/ﬁwO,E)m, where U =
U w, U ; then its local component m,,, at wo is generic.

Remark. In its classical version for GLsy, Thara’s lemma is used to raise the modularity
property between some congruent Galois representations; this was also the role of
this higher-dimensional version in Clozel, Harris and Taylor’s paper on the Sato-
Tate conjecture. Shortly afterward, Taylor found an argument to avoid Thara’s lemma.
However, this conjecture remains highly interesting (see, e.g., [14, 18]).
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The main result of this paper is the following instances of Conjecture 1.1.

1.2 Theorem. Conjecture 1.1 is true if the maximal ideal m verifies the following extra
properties:

(H1) m is KHT-free (see. Remark 1).

(H2) The image of P ., in its Grothendieck group is multiplicity free! and does not
contain any full Zelevinsky line.”

(H3) Dy v, 18 multiplicity free in the following meaning. It corresponds (see. §2.2) by
Jacquet-Langlands correspondence to some super-Speh representation Speh,(Qu,),
where 0., s a supercuspidal Fy-representation of GLy(Fy,) with d = sg (see. [15,
Theorem 3.1.4]. We then ask (see. the notation in §2.2) that

Qvo,Qvo{l}s e vao{S - 1}

be pairwise distinct.

Remark. Concerning (H1), we say that m is KHT free if the cohomology groups of the
Kottwitz—Harris—Taylor Shimura variety of §2.1, localised at m, are free. From [8], any of
the following properties ensures the KHT-freeness of m (see. §3.2):

(1) There exists wy € Spl(I) such that (see. §3.1) the multiset Sy (w1) of roots of P 4, (X)
does not contain any submultiset of the shape {«, g, &}, where g¢,, is the cardinality
of the residue field. This hypothesis is called generic in [12].

(2) [F(exp(2in/l) : F]| > d, if we suppose the following property to be true (see.
[8, hypothesis 4.17)): if 6 : Gp —> GL4(Q,) is an irreducible continuous representation
such that for all places w € S above a prime x € Z split in E, then Py, ., (6 (Frob,,))=0
(resp., Py, (0 (Frob,,)) =0) and 6 is equivalent to p,, (resp., pyv), where m" is the
maximal ideal of Tg associated to the dual multiset of Satake parameters (see. [8,
Notation 4.4]). In [17], the authors proved that the previous property is verified in
each of the following cases:

e ., is induced from a character of G, where K/F is a cyclic Galois extension.
o [>dand SLy(k) C B (Gr) CF; GLyg(k) for some subfield k C ;.

(3) Py is irreducible and [F(exp(2iz/l) : F] > d [11].

By Chebotarev’s theorem, the hypothesis [F'(exp(2in/l) : F| > d allows us to pick places
v of F' such that the order ¢, of the residue field of F' at v is of order strictly greater
than d in Z/I7Z.

1n particular, quw, cannot be congruent to 1 modulo I.

2Using the main result of [9], we could take off the condition about not containing a full
Zelevinsky line (see. Remark 4.2.2).
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Remark. About (H2), note that the first condition also appears in [13, §4.5] in the
statements of level raising. Concerning the second condition of (H2), we can remove it
using the main result of [9] (see. Remark 4.2).

To prove theorem 1.2, we first translate such a property to the cohomology group
of middle degree of the Kottwitz—Harris—Taylor Shimura variety X; associated to the
similitude group G/Q, such that

— G(A®) = G(A®P) x GLa(Fyy) X [T wiu (By,),
wWHEV
— the signatures of G(R) are (1,d —1) x (0(3 d) x---x(0,d).

In particular, to each prime ideal M of Tg is associated a Q,-irreducible automorphic
representation Ilg of G(Ag) whose Satake parameters at finite places outside S are
prescribed by M. We then compute the cohomology groups of the geometric generic fibre
of X7 through the spectral sequence of vanishing cycles at the place vy. Thanks to (H1),
the Hi(XU,Zl)m are free, and so Hi(XU,Fl)m =(0) for i #d—1.

Remark. Moreover, (H2) (resp., (H3)) ensures that the graded parts of the filtration of
H* (X, F))m, given by the integral version of the weight-monodromy filtration, at the
place wy (resp., vg) are also free.

The contribution of the supersingular points of the special fibre at vy, using (H3),
allows us to associate to an irreducible subrepresentation 7 of C*(G(Q)\ G(A) /F”O,Fl)m
an irreducible subrepresentation m of Hd_l(XU,Fl)m7 such that 7% ~ 7%, We
then try to prove the genericness of m,, by proving, using (H2), the genericness of
irreducible submodules of H% (X, F})y,. One ingredient in §4.1 comes from [21, §5],
where the hypothesis that p,, is absolutely irreducible ensures that the lattices of isotypic
components of H% (X U,@l)ma given by the Zl—cohomology, can be written as a tensorial
product of stable lattices for G(A*) and the Galois actions.

Finally, (H2) is needed to control the combinatorics.

Remark. As pointed out to us by M. Harris, the case where the cardinality g, of
the residue field at wg is congruent to 1 modulo [ should be of crucial importance
for the applications. Meanwhile, our strategy relies on the construction of a filtration
of H¥1(Xy,F))m where each graded part verifies the genericness of an irreducible
submodule and where these graded parts are parabolically induced. When ¢,,, = 1mod [,
parabolically induced F;-representations are often semisimple, and so they cannot verify
the genericness of an irreducible submodule. It seems that our approach is not well
adapted to treating this fundamental case.

To state our application to level raising, denote by S,,,(m) the supercuspidal support
of the modulo ! reduction of Ig ,, for any prime ideal m C m: it depends only on m.
By (H2), this support is multiplicity free, and we first break it as Sy, (m) = [[,c 7 Sp(m)
according to the set of Zelevinsky lines ZL(p) = {o{k}: k € Z}, where Z is the set of
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equivalence classes of irreducible supercuspidal F;-representations o of some GLgo)(Fyy)
with 1 < g(p) < d, under the equivalence relation o ~ o{k} for any k € Z.

For any such g, we then denote l;(0) > --- > lr)(0) > 1, such that S,(m) can be written
as the union of r(p) Zelevinsky unlinked segments of length ; (o),

[ov*, prfthi@-1] = {ka,gvk‘*‘l, ,ka'+l1:(g>—1}_

Then for any minimal prime ideal m C m and IT € I, we write its local component
M, ~ X, Ty, (0) and T1,, (0) = X;ﬂfl) Ty, (0, ©), where for each 1 < i < r(g) the modulo
[ reduction of the supercuspidal support of I, (¢, ?) is, with the notations of §3.2, those
of the Zelevinsky segment [gv®, gv¥itli@—1],

1.3 Proposition. Take a mazimal ideal m verifying hypotheses (H1) and (H2). Let
0o be such that S,,(m) is nonempty, and consider 1 < i < r(op). Then there exist a
manimal prime ideal M C m and an automorphic representation Tl € Tl such that, with
the previous notations, I1y,(00,1) is nondegenerate — that is, isomorphic to Sty (o) (Tw,)
for some irreducible cuspidal Q,-representation T -

In particular, when there is only one segment — which is always the case for GLy — then
the result is optimal.

Remark. In Proposition 1.3, we could also prove that for any such m and any I € I,
then IT,, (0o, %) is nondegenerate, which looks similar to [1, Theorem 2.1], where 5, is
supposed to be absolutely irreducible and decomposed generic, which also imposes that
the cohomology groups are free.

2. Shimura variety of Kottwitz—Harris—Taylor type

2.1. Geometry

Recall from the introduction that a prime number [ is fixed distinct from all other prime
numbers, which will be considered in the following. Let F' = FTE be a CM field with
E/Q imaginary quadratic such that [ is unramified, and F'* totally real with a fixed
embedding 7 : F'* < R. For a place v of F, we denote by F, the completion of F' at v,
with ring of integers O,, uniformiser @, and residual field « (v) with cardinality g,.

Let B be a central division algebra over F' of dimension d? such that at any place
x of F, B, is either split or a division algebra. We moreover suppose the existence of
an involution of second kind % on B such that % is the complex conjugation c¢. For
B € B*=71, we denote fig : x> Bz*B ! and let G/Q such that for any Q-algebra R,

G(R) = {()\, g) € R* x (B°? o R)* such that ggnﬂ = A},
with B’ = BQ,. F. If © = yy° is split in F, then
G(@) = (By")* x @ =~ Qi x [[B,

2

where, identifying the places of F™ above z with those of F above y, we write z =[], 2.
Moreover, we can impose the conditions that
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— if z is inert in E then G(Q) is quasi-split,
— the signature of G(R) is (1,d —1) x (0,d) x --- x (0, d).

With the notations of the introduction, we have

-~ 3 X HOP\ x
G(h™) = Ch=") x (@, GLa(Fu) x [] BI).
w|u
wW#VQ
2.1.1 Definition. We denote by Bad the set of places w of F such that B, is nonsplit.
Let Spl be the set of finite places w of F' not in Bad such that wg is split in E. For such
a place w with p = wg, we write abusively

GA")=GA) xQy x [ BM,

ulp
uFEW

and G(Fy) = GL4(Fy).

Remark. With the notations of the introduction, the role of w in Definition 2.1.1 will
be taken by either by vy, vy or wy.

2.1.2 Notation. For all open compact subgroups U? of G(A*P) and m = (mq, ---,m,) €
7%, we consider

UP(m) = UP x Z5 x [ [Ker(0F, —> O, /Py)).

i=1
For wy one of the v; and n € N, we also introduce U"0(n) := UP(0, ---,0,n,0, ---,0).

We then denote by I the set of UP(m) such that there exists a place = for which the
projection from U? to G(Q,) does not contain any element with finite order except the
identity (see. [19, pp. 90ff.]).

Attached to each I € I is a Shimura variety X; — SpecO, of Kottwitz—Harris—Taylor
type, and we denote by Xy = (X7)jcs the projective system: recall that the transition
morphisms 7y : Xy — X; are finite flat and even étale when m;(J) = my(). This
projective system is then equipped with a Hecke action of G(A*) x Z, where the
action of z in the Weil group W, of F, is given by —deg(z) € Z, deg = valoArtZl,
and Art;1 : Wv“b ~ FX is the Artin isomorphism which sends geometric Frobenius to
uniformisers.

2.1.3 Notations (see. [3, §1.3]). Let I € 7. Then we have the following:
— The special fibre of X7 is denoted is X; s, and its geometric special fibre X7 5 :=
X1, s x SpecFp.
— For1<h<d, Xlzg (resp., Xlzg) is the closed (resp., open) Newton stratum of

height A, defined as the subscheme where the connected component of the universal
Barsotti-Tate group is of rank greater than or equal to h (resp., equal to h).

Remark. X]Zf; is of pure dimension d —h. For 1 < h < d, the Newton stratum XI:g is
geometrically induced under the action of the parabolic subgroup Py q—n(F,), defined as
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the stabiliser of the first & vectors of the canonical basis of F¢. Concretely, this means
there exists a closed subscheme X ngﬁ stabilised by the Hecke action of P, 4_p(F,) such
that -

=h  v=h
XI,E — XJ,;E X P, d—h(Fy) GL4(Fy).

2.1.4 Notations. Denote

h . y=>h >1 :>h ., y=h >h
7 .XI!§<—>XL§, yi .XLEL>X],5

and j=h = ihj=".

2.2. Jacquet—Langlands correspondence and p-type

For a representation m, of GLy(F,) and n € %Z, set m,{n} =7, ® qv_n"al"det. Recall that
the normalised induction of two representations m, ; and 7, 2 of, respectively, GL,, (F,)
and GL,,(Fy) is

. GLnj+4ng (Fv) N2 m
T X Ty = lndPnl.'rL1+7L2(FU)nv’1 o) Ry, 2 5

A representation m, of GL4(F,) is called cuspidal (resp., supercuspidal) if it is not a
subspace (resp., subquotient) of a proper parabolic induced representation. When the
field of coefficients is of characteristic zero, these two notions coincide, but this is no
more true for F;.

Remark. The modulo ! reduction of an irreducible Q,-representation is still irreducible
and cuspidal, but not necessarily supercuspidal. In this last case, its supercuspidal support
is a Zelevinsky segment associated to some unique inertial equivalent class o, where g is
an irreducible supercuspidal F;-representation. Thanks to (H2), we will not be concerned
by this subtlety.

2.2.1 Definition. We say that m, is of type ¢ when the supercuspidal support of its
modulo [ reduction is contained in the Zelevinsky line of o.

2.2.2 Definition ([4, §1.4] and [24, §9]). Let g be a divisor of d = sg and 7, an irreducible
cuspidal Q;-representation of GL4(F,). Then the normalised induced representation

1—s 3—s s—1
Ty Xy —— 1 X+ X,
2 2 2

holds a unique irreducible quotient (resp., subspace) denoted by Stg(w,) (resp.,
Speh,(,)); it is a generalised Steinberg (resp., Speh) representation.

Remark. If x, is a character of F‘, then Speh,(x,) = x, odet.

The local Jacquet—Langlands correspondance is a bijection between irreducible essen-
tially square-integrable representations of GL4(F,) — that is, representations of the type
St () for m, cuspidal — and irreducible representations of D; 4> Where D, 4 is the central

division algebra over F, with invariant %.
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2.2.3 Notation. We will denote by m,[s|p the irreducible representation of D,
associated to Sts(w,)) by the local Jacquet-Langlands correspondence.

We denote by Ry, (d) the set of equivalence classes of irreducible Fj-representations of
D} . For T € Ry, (d), let Cz be the subcategory of smooth Zj"-representations of D,
with objects whose irreducible subquotients are isomorphic to a subquotient of Tpx g

Note that C; is a direct factor inside Rep%zm(D: 1), so that every Zj"-representation
Vzlnr of D: 4 can be decomposed as a direct sum

VZm" ~ @ Van’
1 LT
fERﬁl (d)

where Vzrr is an object of Cs.
Let 7, be an irreducible cuspidal representation of GLy(F,) and fix an integer s > 1.
Then the modulo ! reduction of Speh, (rr) is irreducible (see. [15, §2.2.3]).

2.2.4 Notation. When the modulo [ reduction of m, denoted by p, is supercuspidal,
then we will denote by Speh,(p) the modulo ! reduction of Speh,(): we call it an ;-
superspeh representation.

By [15, 3.1.4], we have a bijection

{IE_?[ — superspeh irreducible representations of GLg(F U)}

{IE_?Z — representations irreducible of D;d} (2.2.5)

compatible with the modulo [ reduction in the sense that if 7, is a lifting of o, then the
modulo ! reduction of V[s] p matches through the previous bijection with the super-Speh
Speh (o).

2.2.6 Definition. An F;-representation of Dy, (resp., an irreducible cuspidal represen-
tation of GL4(Fy)) is said to be of type g if all its irreducible subquotients are, through
bijection (2.2.5), associated to some super-Speh Speh, (o) (resp., its supercuspidal support
belongs to the Zelevinsky line of o).

Recall that if €(o) is the cardinality of the Zelevinsky line associated to o (see. [23,
p. 51]), then

_ ] €@, ife(@>1;
m(e) = { 1 otherwise.

2.2.7 Notation. Let (o) be the biggest integer i such that [ divides %Q)g. We then
define

g1(0)=g and V0<i<r7(0), gi(c) =m(o)l'yg.

We also denote s;(0) := Lﬁj.

https://doi.org/10.1017/51474748020000729 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748020000729

lhara lemma in higher dimension 1709

If 7, is an irreducible cuspidal Q,-representation of GLj(F,) with type o, then there
exists ¢ such that k = g;. We say that m, is of o-type 4, and we denote by Scusp; (o) the
set of inertial equivalence classes of irreducible cuspidal Q;-representations of o-type 1.

2.2.8 Notation. For ¢ an irreducible supercuspidal F;- representation of GLy(Fy), we
denote R, = ]_[5>1‘R (sg), where R,(sg) is the set of equivalence classes of irreducible
F;-representations of Dy, of type o.

2.3. Harris—Taylor local systems

Let m, be an irreducible cuspidal @l representation of GLy(F,) and fix ¢ > 1 such that
tg < d. Thanks to Igusa varieties, Harris and Taylor constructed a local system on X : 1 ,

€y

LQz(n“[t D)1, = @‘E@z (0o, )15

=1

where (m,[t]D)‘D: = @Z”l Ov,s With p, ; irreducible. The Hecke action of Py q—¢q(Fy) is

then given through its quotient GLg_;y x Z. These local systems have stable 7Z;-lattices,
and we will write simply L(7,[t] p)1; for any Z;-stable lattice that we do not want to
specify.

2.3.1 Notations. For Il; any representation of GL:; and & : %Z — le defined by
E(%) = ¢'/2, we introduce

~ _tg—d

HT1(7TU, Ht) = L(nv[t]D)ﬂ(g Ht RXE 2
and its induced version

—~ tg—d
AT (e, 1) = (LGl o) @ T @ 82 ) Xy, 4 4y GLa(Fo),

where the unipotent radical of Py g—ty(F,) acts trivially and the action of
cow [ 9y ¥ 00,
(g ’ < 0 get )700) € G(A ) X Ptg,d—tg(Fv) X Wv
is given by
e the action of g on Il; and deg(oy,) € Z on E# and
e the action of (g°?,g¢, val(det ) — degoy,) € G(A®"Y) x GLg4— tg(Fy) X Z on
tg—d
Ly, (roltlp); ®E T

We also introduce
HT (o, )1 = HT (0, )1 |d — tg]
and the perverse sheaf

P(tv”v)lh- ]i HT(nvaStt(nv))h ®L(7Tv)

1p, b«
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and their induced versions HT (w,,I1;) and P(t,m,), where
j=h=i"oj=" X7t XZ1 < X1 ;
and LY is the local Langlands correspondence.

Remark. Recall that 7] is said to be inertially equivalent to =, if there exists a character
(71— @lx such that 7] >~ m, @ (¢ ovalodet). Note (see. [3, 2.1.4]) that P(¢,7,) depends
only on the inertial class of m,, and

P(t,ﬂ'v) = emjp(tvn'u)s

where P(t,7,) is an irreducible perverse sheaf. When we want to speak of the Q;-versions,
we will add it on the notations.

2.3.2 Definition. We say that HT (7, 1;) or P(t,7,) is of type g if 7, is.

2.3.3 Lemma. If pRo is a GL4(F,) x W,-equivariant irreducible subquotient of
H'(X15,, Py, 1) ®7, F1), then

e 0o is an irreducible subquotient of the modulo | reduction of L(mwy ® xv), where xy
is an uramified character of F,, and

o p is an irreducible subquotient of the modulo | reduction of a induced representation
of shape St¢(mwy ® xu) X V¥, where Yy, is an integral irreducible representation of
GLg—tg(Fy).

Proof. The result follows directly from the description of the actions given previously.
O

As usual for o a representation of W, and n € %27 we will denote by o(n) the twisted
representation g — o (g)| Art;l(g)|", where | —| is the absolute value of F,.

2.4. Free perverse sheaf
Let S fSpech and X /S be of finite type; then the usual t-structure on D(X,Z;) :=
DY(X,7Zy) is

Ae?DX,Z) & Vre X, H'i*A=0, Vk > —dim [z},

Ae?D* (X, 7)) & Vre X, H'iLA=0, Vk < —dim{z],

where i, : Speck(xz) < X and H*(K) is the kth sheaf of the cohomology of K.
2.4.1 Notation. Let pC(X,Zl) denote the heart of this ¢-structure with associated
cohomology functors PH*. For a functor T, we denote P T := PHO S T

The category PC(X,Z;) is abelian equipped with a torsion theory (7, F), where 7° (resp.,
F) is the full subcategory of objects T (resp., F') such that [N 17 is trivial for some large
enough N (resp., [.1r is a monomorphism). Applying Grothendieck—Verdier duality, we
obtain

PrD0(X,Z) = {A e PDV(X,Z;) : PH' (A) € T}
D=0 (X, 7)) = {A e PD>(X,Z)) : PH'(A) € F,

with heart?*C(X,Z;) equipped with its torsion theory (%, 7]—1]).
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2.4.2 Definition (see. [6, §1.3]). Let
F(X,Z) :=PC(X,Z)NPTC(X,Z)) = PD=°(X,Z) N P+*D=(X,Z))
be the quasi-abelian category of free perverse sheaves over X.
Remark. For an object L of F(X,Z;), we will consider filtrations
LiclyC--CL.=L

such that for every 1 <i<e—1, L; = L;1 is a strict monomorphism — that is, L;11/L;
is an object of F(X,Z;).
For a free L € F(X, A), we consider the diagram

L

P Lt Pt Lo Pt L P L,

where the bottom is (see. [6, remark following 1.3.12]) the canonical factorisation of
Ptgi* [ —> P4,5*L and where the maps can, ; and can, j are given by the adjunction
property. Consider now X equipped with a stratification

X=X'>5Xx225...0 X34,

and let L € F(X,Z;). For 1 <h < d, denote X'/ := X=! — X=h+1 an(d ji=h . x1=h s x=1
We then define

Fill (L) := Im¢<p+j,1frjlff~*L — L),
which gives a filtration
0 =Fil)(L) C Fil (L) C Fil{ (L)--- C Fil{"}(L) c Fil}(L) = L.

Dually, CoFil, (L) = Coim¢(L — pj*lf’"jlf’"’*l,). Define a cofiltration

L= COFﬂ@’*, d(L) - COFﬂgy*yd_l(L) e
e COFﬂG,*’l(L) - COFﬂG,*’o(L) =0

and a filtration
0=Fil;%(L) cFill"%L) c--- c Fil°(L) = L,
where Fil;"(L) := Kergc(L —» CoFil*,r(L)).

Remark. These two constructions are exchanged by Grothendieck—Verdier duality,
D(CoFilg 1, (L)) ~Filg',(D(L)) and D(CoFilg « (L)) = Filg ,(D(L)).

We can also refine the previous filtrations (see. [6, Proposition 2.3.3]) to obtain
exhaustive filtrations

0=Fill;2"" (L) c Fill7>" " (L) ¢ -
L CFIO(D) € R NI = L (24.3)
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such that the graded parts grr*(L) are simple over Q;, — that is, they verify

].—h j="*grrk (L) < grr* (L) for some h. Dually, we can construct a cofiltration

L = CoFill, ya-1(L) — CoFill, ga-1_1(L) — --- — CoFill, _54-1(L) =
and a filtration Fill_"(L) := Ker;r(L —» CoFill*,T(L)).

2.5. Vanishing-cycle perverse sheaf
2.5.1 Notation. For I € I, let

d—1
Wy A:=RY,, 1(A[d—1])< )

be the vanishing-cycle autodual perverse sheaf on X;; . When A = 71, we will simply
write Wr.

Recall the following result of [19] relating Wy with Harris—Taylor local systems:

2.5.2 Proposition (see. [3, §2.4] and [19, Proposition 1V.2.2]). There is a G(A>") x
P a—n(Fy) x Wy -equivariant isomorphism

v, h h—d—1 h—1—1
in d(DX ooz (M1 7) pe. ~ D LUy,
teR (h)

where

- R* (h) is the set of equivalence classes of irreducible F;-representations of th;

- forr € Ry, (h) and V a Z,-representation of Dv n» Vi denotes (see. [16, §B.2]) the
direct factor of V whose irreducible subquotzents are isomorphic to a subquotient

of T o, where Dy, p, is the mazimal order of Dy, p;
3 ; : i (q[i
— with the previous notation, (uf,N = (ﬂFU,Zl,d)f
— the matching between the system indexed by I and those by N is given by the map
my : I —> N.

s and

Remark. For 7 € RE (h) and a lifting T which by Jacquet—Langlands correspondence can
be written T >~ 7[t]p for 7 irreducible cuspidal, let ¢ € Scuspﬁl (g) be in the supercuspidal
support. Then the inertial class of o depends only on 7, and we will use the following
notation:

2.5.3 Notation. With the previous notation, we write V, for V;.

Remark. V; 7 is an object of F(X1.5 Zy). Indeed, by [2, Proposition 4.4.2], W, 7, is an

object of PD=%(X7 5,Z;). By [20, Variant 4.4 of Theorem 4.2], we have DV;7 ~V;7,
so that

V7, € PO(X7 5, Z)NPTD (X7 5, Z) = F( X135, 7).

https://doi.org/10.1017/51474748020000729 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748020000729

lhara lemma in higher dimension 1713

2.5.4 Proposition (see. [9, §3.2]). We have a decomposition

d
\I/I2® @ \I/Q,

g=1 Q€SCUSDFZ (9)
where all the Harris—Taylor perverse sheaves of W, ®7, Q, are of type o.

Remark. In [3], we decomposed ¥ ®7, Q, as a direct sum EBM W, , where 7, describes
the set of equivalent inertial classes of irreducible cuspidal representations. Then ¥, ®7z,
Q, ~ @Mecusp( o) ¥r,» where Cusp(g) is the set of equivalent inertial classes of irreducible
cuspidal representations of type o in the sense of Definition 2.2.6.

In [10] we give the precise description of grs 1 (Wr,o), which is defined over Z;. By
construction, they are supported on X Z:U and trivial if g does not divide r. Otherwise,
for r = tg we have

. Dy o tg.% —
ind % (] tg, grg’!(\llf,g)®zl Ql>:

(D';(,tg)ow'?
(@) L1
P P HIG, Sty () ®Lim,) (— - )

i=—1  myeScusp;(0)
tigi(0)=tg

We can then consider the naive p-filtration

Fil' 5, (W.tg) C--- CFIL | 5 (W, tg) = =" grd ,(¥r,) ®7, Q.

. D - L .
where md<DvX.tg>°wg (Fﬂg’k’@l(lll, tg)) is isomorphic to

r(0)

& &b HT(nv,Sttjm))@M”v)(‘tlgl)’
i=k

my€Scusp; (0)
tigi(0)=tg

and the associated integral filtration of j‘ztg”kgrg!(‘~IJ1—,Q)7 defined by pullback

Fill (W, 1) — = = = = Fil’ | o (¥,1g)
r
|

A
= erd (W ) = ard (V7o) ®7, Q.

For k= —1,---,7(0), the graded parts gr, (¥, tg) are then of o-type k. We can then
refine these filtrations by separating the m, € Scusp,(0) to obtain

(0) = Fil*(W, tg) C Fil} ' (W, tg) C -+ C Fily " (W, tg) = 5T erd (1)
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By taking the iterated images of j!:tg Fﬂ]g(\ll,tg) — grtél(\l-’f,g)7 we then construct a
filtration
(0) = Fil) (¥, g) C Fil) (W, tg) C -+~ C Fil} (¥, tg) = grd ,(¥z,,).
Finally, we can filter each of these graded parts using an exhaustive filtration of

stratification to obtain a filtration of W7, whose graded parts are ‘B(nv,t)(Lg)Jr%)

for m, € Scusp; (o) with ¢ > —1 and k=0, ---,s;(0) — 1.

3. Cohomology of KHT Shimura varieties

3.1. Localisation at a non-pseudo-Eisenstein ideal

3.1.1 Definition. Let Spl be the set of places v of F' such that p, := vg # [ is split in
E and B) >~ GL4(F,). For each I € I, write Spl(/) for the subset of Spl of places which
do not divide the level I.

Let Unr(/) be the union of
— places ¢ # [ of Q inert in £ not below a place of Bad and where I; is maximal and

— places w € Spl(J).

3.1.2 Notation. For I € I a finite level, write

T, := ]_[ T,,

zeUnr(])

where for z a place of Q (_resp., x € Spl(d)), T, is the unramified Hecke algebra of G(Q,)
(resp., of GL4(F;)) over Z;.

3.1.3 Example. For w € Spl(I), we have
Tw="2iTwi: i=1,---,d|
where T, ; is the characteristic function of
i d—i
GL4(Oy) ding(@y . L - D) GLa(Ow) C CLa(Fy).
More generally, the Satake isomorphism identifies T, with ZZ[X un(T,)| W=, where

— T, is a split torus,
—  Wx is the spherical Weyl group and
XU (T,) is the set of Z;-unramified characters of 7.

Consider a fixed maximal ideal m of T;, and for every x € Unr(/) denote by Sy (z) the
multiset® of modulo ! Satake parameters at z associated to m.

3A multiset is a set with multiplicities.
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3.1.4 Example. For every w € Spl(/), the multiset of Satake parameters at w corre-
sponds to the roots of the Hecke polynomial

d L
Rl § L
Prow(X) =Y (~1)'qn? Ty, X" eF[X].
=0

That is, Sm(w) := {k eT;/m=~ F; such that Po () = 0}. For a maximal ideal m of
Ty ®z, @Q,, we also have the multiset of Satake parameters

Sz (w) := {A eT; ®7, @l/ﬁ :@l such that Py, (A) = O}.

3.1.5 Notation. Let IT be an irreducible automorphic representation of G(A) of level I,
which means here that IT has nontrivial invariants under I and that for every x € Unr(]),
I, is unramified. Then IT defines

— a maximal ideal m(IT) of T ®7, Q or
— a minimal prime ideal M(I1) of T;; contained in a maximal ideal m(IT) of T,
which corresponds to its modulo [ Satake parameters.

A minimal prime ideal @ of T; is said to be cohomological if there exists a cohomological
automorphic @l—representation IT of G(A) of level I with m = m(IT). Such a IT is not
unique, but M defines a unique near equivalence class in the sense of [22]; we denote it by
IMg. Then let

pag, : Gal(F/F) — GLa(@Q)

be the Galois representation associated to such a IT thanks to [19, 22], which by the
Chebotarev theorem can be defined over some finite extension K — that is, P, =
i Ok Q.

It is well known that ps has stable lattices and the semisimplification of its modulo I
reduction is independent of the chosen stable lattice. Moreover, it depends only on the
maximal ideal m; we denote by

Pt Gr —> GLy(F))

its extension to F;. For every w € Spl(I), recall that the multiset of eigenvalues of
P (Froby,) is Sm(w), obtained from Sz (w) by taking the modulo [ reduction.

Assume moreover that p,, is absolutely irreducible. Then the Q;-cohomology group
HI-Y(X U,ﬁv@l)m gives a continuous d-dimensional Galois representation

Pm - Galp,s — GLd(TS,m[l/l])a

where Galp g is the Galois group of the maximal extension of F' which is unramified
outside S. As all characteristic Frobenius polynomials take values in Tg m, and as p,, is
absolutely irreducible, using the classical theory of pseudorepresentations we know that
pm takes values in GLg(Tg m).
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3.2. Freeness of the cohomology

From now on we fix a maximal ideal m of T; verifying one of the following conditions
(see. the introduction):

(1) There exists w; € Spl(J) such that Sy (w;) does not contain any submultiset of the
shape {o, gy, @}, where g, is the cardinality of the residue field. This hypothesis is
called generic in [12].

(2) With [F(exp(2in/l): F| > d:

e ., is induced from a character of Gi for a cyclic galoisian extension K /F or
o SLy(k) CPm(Gr) CF; GLy(k) for a subfield k C Fy.

Remark. If the main result of [11] is true, one may only suppose, besides the irreducibility
of p,,, that [F(exp(2in/l) : F| > d.

3.2.1 Theorem (see. [8]). Form as before, the localised cohomology groups H* (X1 7, Z))m
are free.

As X; —> SpecO, is proper, we have a G(A*) x W,-equivariant isomorphism
H™YWi(X; 5 7)) ~ H'(Xr;5,,¥r). Using the previous filtration of W7, we can com-
pute HP*9(X;5,,Wr,)m through a spectral sequence whose entries® EP? are the
HPH( X7 5, Py, ) (2220 | for 7, € Scusp; (0) with ¢ > —1 and k=0, ---,5;(0) — L.
Over Q,, it follows from [4], thanks to the hypothesis (1) on m, that all these cohomology
groups are concentrated in degree 0, so that this Q,-spectral sequence degenerates in Fj.
In this section, under (H2) we want to prove the same result on F;, which is equivalent
to the freeness of H’(Xr.3,, (7, t)(%))m.

We need first some notations from [4, §1.2]. For all ¢ > 0, we denote

r
Ft = {(al,"',(lr,fl,"',ET)ENTX{:’:}T: 7"21, Za’i:t]-
i=1

A element of I'* will be denoted by ( &1, -+, @), where the arrow above each integer a; is
& (resp., ;) if €; is negative (resp., positive). We then consider on I'* the equivalence
relation induced by

PR _
(--~,<E,(b_,---)=(---,a+b,~--), (--~,_a),_b),~-~)=(~--,a+b,---)

and (~~,<0_, )y =(-- ,_0), --+). We denote by T‘)t the set of these equivalence classes

whose elements are denoted by [ZE, ,EI].

%
Remark. In each class [? Ek)] e T't, there exists a unique reduced element
(b1, -+, bp,€1, -+ ,€.) €'t such that b; > 0 for all 1 <i < r and €;¢;,; is negative for
1<i<r.

4We do not need here to give the precise relations between (p, q) and i,¢,k in the formula.
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3.2.2 Theorem. Let (by, -+, by €1, --+,€,.) be the reduced element in [fﬁ, ,EZ] € F)t.
We then define

(i)
as the subset of permutations o of {0, ---,t — 1} such that for all 1 <1 < r with €; positive

(resp., negative) and for all by +---+b;_1 <k <k < by +---+b;, then o1 (k) <o LK)
(resp., o~ L(k) > o 7L(K")).
We also introduce S°? [((H, ,EZ]) by imposing, under the same conditions, o~ (k) >

o Yk (resp., o7 (k) <o 7L(K)).

3.2.3 Proposition (see. [24, §2]). Let g be a divisor of d = sg and 7 be an irreducible
cuspidal representation of GL4(F,). There exists a bijection

(6, @] e T o (&, . T

into the set of irreducible subquotients of the induced representation

1—5 3—s s—1

T X T X oo X TT
2 2 2
characterised by the following property:
- — 1-s5 1—s
Tpyag (@ @l)= > w 5 HoO) @@ ——to(s— 1),
ves (187, 71)

or equivalently by

- 1\ 1-s 1-s
Tpon o el = > 71{T+0(0)}®~~®7T{T+U(s—1)}-
GE‘y’P([ﬁy...yaﬁ])

Remark. With this notation, Sts(w) (resp., Speh (7)) is [s — 1], (resp., [s —1]7).

3.2.4. Lemma. Let 7 be an irreducible cuspidal Q,;-representation of GL4(Fy) such
that its modulo | reduction g is supercuspidal. Suppose the cardinality of the Zelevinsky
line of o is greater than or equal to s. Then the irreducible subquotients of the modulo [

—
reduction of |G, ---, ay|x for |a1,---, @] describing T ! are pairwise distinct.

Proof. By hypothesis on the cardinality of the Zelevinsky line, all these irreducible
F;-subquotients have a nontrivial image under Jp, ,, . . The result then follows directly
from

— the commutation of Jacquet functors with the modulo [ reduction and

— the fact that the 7“1(71){155 + k} are pairwise distinct for 0 < k < s, so that the
of m{ 155} X n{ggs} X oo X n{sgl} is multiplicity free.

image under Jp, ,,

O
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3.2.5. Notation. We will denote by [fﬂ ,E:]Q any irreducible subquotient of the
modulo ! reduction of [fﬂ, ,EZ],,.

Remark. If, moreover, the cardinality of the Zelevinsky line of g is strictly greater than
%
s, then (see. [5]) the modulo [ reduction of [s—1|, is irreducible and nondegenerate —
. .
that is, [s — 1], is well defined and nondegenerate.

3.2.6. Theorem. Consider a mazimal ideal m of Tg such that for all i, the Z;-module
Hi(XU,ﬁ,Zl)m is free. We suppose moreover, according to (H2), that the image of pm, wy
in the Grothendieck group is multiplicity free. Then for all Z;-Harris—Taylor local systems
HT (7. 1), the H (Xy 5, Piy *HT (s ) are free.

Remark. In Theorem 3.2.6, we need just the multiplicity-free part of (H2), as it is used
in the previous lemma. Note, moreover, that by [7, §4.5], the multiplicity-free hypothesis
is necessarily true.

Proof. First denote by Scusp,,, (m) the set of inertial equivalence classes of irreducible
supercuspidal F;-representations belonging to the supercuspidal support of the modulo
[ reduction of the local component at wy of a representation IT in the near equivalence
class I, associated to m.

We then consider the vanishing-cycle spectral sequence at wy, localised at m:

H' X Zom > P H' Xv.5.Y10)m-

geScuspr (m)

Then for every o € Scuspw0 (m), the Hi(XU,éwa"I]I,g)m are free. For m, of type o, the
strategy to prove the freeness of H'(Xy. CN j;tg HT (7, t))m is to argue by absurdity
and produce some torsion cohomology class in one of the H*(X U, 5100,\1’]’ o)m- Then let ¢
be minimal such that there exists ¢ # 0 with

i 1—t+2k —
H (XI,EwOaP(ﬂwo, t) (T)) ®z, Fi # (0)
m

for 0 <k < t, and where P(1ry,, t)(#) is a graded part of some filtration of W,.
Consider, for example, the filtration constructed before using the adjunction

j!lfhjlfh'* —> Id. As remarked before — and considering also W,v and its filtration
constructed using Id — j*lfh j1=h* _ we can suppose that such an i is strictly negative,

and we denote by 4y such a minimal 4.

By Lemma 2.3.3, an irreducible GL4(Fy,) X Wy,-equivariant subquotient of
H (X7, 5ug s P (g t)(#))m ®z, F, is one of the modulo ! reductions of a representation
we can write in the following shape:

> — <> 1)
([E5.“5a’i——_{7 17t_17 15(_11—435.(6;]7TXTU}0>®L(T[{§})7
where the a; are some integers, Y, is an irreducible Q,-representation whose modulo [

reduction has a supercuspidal support away from those of the previous segment and the
following are true:
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e The symbol T before (resp., after) the t — 1 can be TorTif Z;;% a; > 0 (resp.,
> j=it1 0 > 0). We will write a; =t +1.

e Let {n{%},n{% + 1}, {5+t - 1}} denote the supercuspidal support of

t—1 inside [E,--~,t—1,~~-ﬂ]ﬂ. Then %: 5 +k, where k is the integer in
P (T, ) (F=52E).

Remark. In particular, we can suppose that the previous k is equal to 0.
Consider then such an irreducible subquotient t x yr,,, ® o, where

e Yy, (resp., o) is any irreducible subquotient of the modulo [ reduction of Yy,
(resp., ]L(JT{%})) and
e 7 is an irreducible subquotient of the modulo [ reduction of some

<~ — T T — —
[Gr, -+, a1, 1,t—=1, 1, a;41, -~ arlr-

By the previous lemma 3.2.4, we can recover the a; from t.

Let us show now that this v x ¥, ® o is also a subquotient of HiO(XL Bug Vro)m ®7z,

F;, which contradicts our hypothesis on m. Denote Fil*~! c Fil* ¢ W7, such that
grk = Fil* /FilF 1 ~ P (T t)(%). By hypothesis (H2), all the irreducible cuspidal Q-
representations n;,o € Scuspm (0) such that one of the H*(Xr, 5w0,7>(7r;)0, t)(#))m #(0)
are necessarily of po-type —1. Then in particular all the Harris—Taylor perverse sheaves
P(m,,,1') which are subquotients of Fil*~' must verify ¢ > ¢. The spectral sequence
which computes H©T (X Sug Fil* 1. ®7, F,, thanks to a filtration of Fil*~!, allows us
to describe it as extensions between irreducible subquotients of the modulo [ reduction
of some

< T <> 8’
([((Ha".a(_li——_{’ 1 7t/_15 1 7m,"‘a]n/XWwo>®L(n/{§})

! <—

with ¢’ > ¢ and where n’{%} belongs to the supercuspidal support of ¢’ — 1. But using the
inequality ¢ > ¢, we see that T cannot be a subquotient of the modulo [ reduction of any
<« — — —
[afls e, A1, 1 7t_19 1 » A1, 0 a'r]n~

Now using the filtration Fil*~! c Fil* ¢ W,, to conclude it suffices to look at
Ho~ (X7, 50> Y10/ Fil®) ®z, 1. For the Harris-Taylor perverse sheaves P(r,, , t)(#)
with ¢’ > ¢t we argue as before, and for the others we invoke the minimality of ¢ and 4.

3.3. From the Thara lemma to the cohomology
Recall first that

=d _ =d
ijgvo - ]_[ XI*‘_G’UO'v
ieKerl(Q, @)

and that for a G(A*)-equivariant sheaf #7, on nguo its fibre at some compatible

A

system z; r of supersingular points has an action of G(Q) x GLy (FUO)O, where GLg4 (Fvo)0
is the kernel of the valuation of the determinant, so that (see. [3, Proposition 5.1.1]) as a
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G(A®) >~ G(A®) x GL4(F,,)-module, we have

—d G A 10 VA
HO(XFS, ) =indg o ™" 27

Here, § € G(Q) > (8%, val orn(8,,)) € ‘G(A> ") x Z and the action of Gup € GLg(Fy,) is
given by those of (gO Valdetgvo Gug» valdet gy) € GLg (FUO)0 x 7, where gy € GLq(F,,) is any
fixed element with valdet go = 1. Moreover (see. [3, Corollaire 5.1.2]), if z*F; is provided
with an action of the kernel (DX d)o of the valuation of the reduced norm — an action

compatible with those of G(Q) — Dvo, — then as a G(A*®)-module we have

DX

HOX73, 0 712.0 = C(CQ\GA™). M) @py ind 3" o 27 (3.3.1)
3.3.1 Lemma. Let 7 be an irreducible sub-F;-representation of C*(G(Q)\ G(A)/ U, F)).
Denote its local component w,, at vy as Ty |s]p, with Ty an irreducible cuspi-
dal representation of GLg(Fy,) with d = sg. Then T is a subrepresentation of
HO(XUvO S HT(nUOa 8)) ®Zl Fl
Proof. Clearly we have 7% c C*(G(Q)\G(A)/ U™, F)) ®7,,- The result then follows
from expression (3.3.1) and the definition of the Harris—Taylor local system H T(JTUVO,S)
with support on the supersingular stratum. O

3.3.2 Proposition. Let m be a mazimal ideal of Tg verifying (H1) and (H3), and let
7 be an irreducible sub-F- -representation of C*(G@Q\GA)/ U, F))m. Then 77 is a
sub-F;-representation of H%*~ Y(Xy, g JF)m.

Proof. By [15, Theorem 3.1.4], 7,, is associated, through the modulo [ Jacquet-
Langlands correspondence, to some super-Speh Speh, (¢) with ¢ an irreducible supercusp-
idal representation of GL4(F,,) with d = sg. Recall that H Xy, Sup? W, )m is a direct factor
of Hd’l(XU’,-,UO,Fl)m7 so that it suffices to prove that 7°? is a sub-F,;-representation of
H (X0 5,0, o)

As in the proof of Theorem 3.2.6, but now using (H3), consider the filtration of ¥,
introduced before so that its graded parts are some Harris—Taylor perverse sheaves of
type o and its m-localised cohomology groups are free concentrated in degree 0. Note in
particular that P(nvo, s)(sgl) is its first graded part, so that using the spectral sequence
computing H* (XU,SUO, V,)m with E"? given by the Hi(XU’g,UO,P(JT;O,t)(#))m, we
see that

s—1 .
i (XU SUO’P(T[UO7 )(T))m L|_> HZ(XU,Evo"ij)m

with free cokernel, so that HO(X;%’EHO,P(NUVO, 5)(%1))m is a subspace of H4~! (XU iy, JFDm.
The result then follows from Lemma 3.3.1. O

The strategy to prove the Thara lemma, under our restrictive hypothesis on m, is now
to prove the same statement on Hd’l(XU,ﬁUO,IFl)m — that is, if 7% is a subspace of it,
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then its local component 77" at the place wp is generic. Finally, our statement of the
Thara lemma will follow from Proposition 4.2.2.

4. Nondegeneracy property for global cohomology

4.1. Global lattices as a tensorial product

From now on we suppose that p,, is absolutely irreducible.

4.1.1 Proposition. Let [1°UV ®Lg(HXI) be a direct factor of Hd_l(XU,ﬁvl,@l)m, and
consider its lattice given by the Z;-cohomology. Then this lattice is a tensorial product
I'e®Tw of a stable lattice T'¢ (resp., Tw ) of IV (resp., of La(I1}) ).

Proof. The result is classical, and we resume the arguments of [21, §5]. With [21,
Definition 5.2], as p,, is supposed to be absolutely irreducible, T U® Lg(l'lxl) is 07"
typic, where oz, is, up to isomorphism, the only stable Z;-lattice of Lg(l'[xl). The
statement then follows from [21, Proposition 5.4]. O

Reasonably, it should be possible to prove the higher-dimensional version of [21,
Theorem 5.6] — that is, to prove that as a Tg n[Galp, s]-module,

Hdil(XU,r’]a L)m = O ®11'31m Pm

for some Tg w-module oy, on which Galp acts trivially.

4.2. Proof of the main result

Let S(m) be the supercuspidal support of the modulo [ reduction of any I, 4, in the near
equivalence class associated to a minimal prime ideal m C m. Recall that S(m) depends
only on m, and by (H2) it is multiplicity free; we decompose it according to the set Z of
Zelevinsky lines defined as the set of equivalence classes of irreducible supercuspidal F;-
representations @ of some GLg) (Fuy,) with 1 < g(0) < d, under the equivalence relation
o ~ o{k} for any k € Z:

S(m) = ]_[ So(m).
0eZ

Recall that for such g, its associated Zelevinsky line ZL(0) = {o{k}: k € Z} is of cardinality
€(0). We then denote by 11 (0) > --- > l,5)(0) > 0 the integers so that S,(m) can be written
as a disjoint union of r(p) unlinked Zelevinsky segments

lof8:), 018: +1:(0) — 1}] = {el8:) 018 + 1}, -+, 0{8i + Li(0) — 1}}.

An irreducible Fj-representation Twy Of GLq(Fy,) whose supercuspidal support is equal
to S(m) can be written as a full induced 1, = XQ 7,, where each 7, is also a full induced
representation

r(0)
7o~ X T
i=1
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with 7, ; of supercuspidal support equal to those of [0{8;},0{8; + l;(¢) — 1}]. Using
Notation 3.2.5, each of these 7, ; can be written as

To.i = [a1(0), a2(0), -+ » at;(0) (@) o1,
with Z;;(i) a; = li (Q) —1.
4.2.1 Definition. We say (see. Remark 3.2.5) that t,,, is nondegenerate if for all ¢ and
all 1 <i <1(0), 7o, = [li(0) — 1gs,)-

4.2.2. Proposition. Let t,, be an irreducible representation of GL4(Fy,,) which is a
subspace of

H* N (X150 00y, g Fm 2= im H ™ (X prw0 (), g F D) em-

n
Then ., is nondegenerate.

Proof. Note first that the supercuspidal support of 7, must be S(m). The exhaustive
filtration of W,, (see. §2.5), whose graded parts are Harris—Taylor perverse sheaves, gives
a filtration of H% (X ywo (Oo),,-,wo,Fl)m, whose graded part are, thanks to Theorem 3.2.6,

the
1—t+4+2k —
HO (XUwO(oo),r,wO,P(ﬂwo, t) (T)) ®z, Fi
m

for ., € Scusp_; (¢) with g such that S,(m) is nonempty. Then 7,,, must be a subspace
of one of these graded parts. We argue by absurdity using the following lemma:

4.2.3. Lemma. If p is a subspace of [t —1], =5, x p’, then with Notation 3.2.5,

ol 3

s—t—1
- if§=s—1t, then,o=|:t—1,_1), :| R
0

s—t—1
- if§=t—s, then,o=|: ,(1_,t—1:| ;
0
— otherwise — that is, if t —s <8 <s—t — then

s—t—6—1 - = s—t+5—1
P = e ’ 1 ’ t— 1’ 1 5
e
Proof. The result is well known over Q;, and we can easily argue in the same way
using

— the fact that all p{ 153 +k} for 0 <k < s—1 are pairwise distinct and
— the property of commutation between the modulo ! reduction and the Jacquet
functors.
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Consider, for example, the case t —s < & < s — t. By Frobenius reciprocity we see that
the subspace we are looking for is some undetermined irreducible subspace of the modulo

s—t—48—1 s—t+é6—1
P S
| reduction of |: e, 1,e=1,1, T :| . By convention (see. Notation 3.2.5), we
b g
s—t—5§—1 - N s—t+6—1
denote such a subquotient |: e, Lyt—=1,1, "--- :| . O
0

Suppose now, by absurdity, that there exists an irreducible supercuspidal F;-
representation oo such that t,, is degenerate, take ¢ with

Tooii = [ T2 oo

and let B € %Z be such that go{B} is the supercuspidal corresponding to the end of the
arrow @ . From Proposition 4.1.1 we see that 7,, ® Py, is an Fl[GLd(FwO) X Gal(f/F)]—
submodule of H¥1(X U’LUO(OQ).ﬁwo,IF[)m. After restricting the Galois action to the Weil

group at wgy, we See_that Tuwo ® L(00{B}) has to be an FI[GLd (Fuy) X Wiy, |-submodule of
H4= Y (X ywo (o), 7wy F)m and, as before, of one of the

1—t+4+2k =
H° (XUMO (©0).iiug » P (Tug 1) <T>> ®z, Fi
m

for m,, € Scusp_;(0o). Recall that this last cohomology group is parabolically induced
from

1—t+2k —
0 =tg _
H (XUwo (00), Ty Ltg” P (nwo’ 2 ( 2 >> ®Zl i,
m

where by Lemma 2.3.3 every irreducible FZ[Ptg,d(FU,O) X Wy l-subquotient of it can

be written as [t — 1190{—%} ® T ® L(go{a}), where 7 is any irreducible representation of
GLg—tq(Fyy) and o € %Z is such that po{a} belongs to the supercuspidal support of
H

[t - 1190{—%}'

The contradiction then follows from Lemma 4.2.3.

Finally, our restricted version of the Thara lemma given in the introduction follows from
Propositions 3.3.2 and 4.2.2.

Remark. Note that in the previous proof we used the second part of (H2) to say that the
modulo [ reduction of [§T1],T is irreducible and so any of its subspace is nondegenerate
(see. Remark 3.2.5). Using the main result of [9], we have this last property without any
hypothesis, so as this is the only place where we use the second part of (H2), we can
remove it.

4.3. Level raising

Before dealing with the general case, consider the case d = 2, and take [ > 3 such that
the order of g, modulo ! is 2. Suppose then, by absurdity, that there exists a maximal
ideal m such that
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(a) for every prime ideal M C m, the local component at wy of I is unramified;

(b) for such a prime ideal, we write IT& wy = Xwp,1 X Xuwo,2 and suppose Xwo,lXJOI,Q =y
mod [.

Using (a) and the spectral sequence of vanishing cycles at wp, we obtain
H' Xy .Fm = H' (X5, Y ED)m,

where X [jlgw is the ordinary locus of the geometric special fibre of Xy at wp. It is
well known that this cohomology group is parabolically induced. Moreover, the only
nondegenerate irreducible representation of GLg4(Fy,) which is a subquotient of the
modulo ! reduction of Xuwg, 1 X Xwe, 1V is cuspidal, because of the fact that gy, is of order
2 modulo /; this nondegenerate representation can not be a subspace of the induced
representation H'(Xy,F;)m. The contradiction is then given by the Thara lemma.

In higher dimension, recall first the notations of the beginning of the previous section.
For a minimal prime ideal M C m and an automorphic representation IT € I in the near
equivalence class associated to m, we write its local component at wg as

ng = X Hwo (Q)
[

and Iy, (o) = X:igl) T, (0, %), where for each 1 <i < 7(g), the modulo / reduction of the
supercuspidal support of I, (0,%) is, with the notations of the previous section, that of
the Zelevinsky segment [0{8;},0{8; + l;(0) — 1}].

4.3.1 Proposition. Take a mazimal ideal m verifying hypotheses (H1) and (H2). Let oo
be such that Sy, (m) is nonempty, and consider 1 < i < r(go). Then there exist a minimal
prime ideal M C m and an automorphic representation I1 € T such that with the previous
notation, Iy, (0o,%) is nondegenerate — that is, it is isomorphic to Sty o) (7ww,) for some
irreducible cuspidal Q,-representation T wg -

Remark. In particular, if S(m) = S,,(m) and r(gg) =1 — that is, the supercuspidal
support of the modulo ! reduction of the local component at wy of any IT € g for any
m C m is a Zelevinsky segment — then IT,,, is nondegenerate. This is the case considered in
[13, §4.5]. In a forthcoming work, we intend to explain how to raise the level simultaneously
for all 1 <14 < r(gg) and all gg together.

Proof. For a minimal prime ideal m C m and IT € [Tz, we write

My, (00, %) 2 Sty (g, 1) X -+ Sty (Mg, a)s

where 51 > 53>+ > 5, >1and mwy,1, -+, Ty, o are irreducible cuspidal @l—representations
of type 0o of GLg,(Fu,). We then argue by absurdity: we suppose a > 2 for all m C m
and we choose such an M so that s; is maximal. The strategy is then, using Lemma 4.2.3,
to construct a degenerate FZ[GLd (Fwo)]—subspace of H¥ N Xyuwp (oo),r’zwo’Fl)m which
contradicts the genericness of irreducible submodules of this cohomology group, which
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was proved before. In [4, §3.6] we prove that for all minimal prime ideals @’ C m,

HY(Xy 3, HTg, (g, 1, ) = (0)

either if ¢t > s or for ¢t = s1, if 4 # 0. Consider now the filtration

Fil, 5190 (W, ) > Fill 7519 (W) > W,

and recall that, by construction,

~ Fil, "9 (W,,) is supported in

1- -1
- 8Tk Slgl(\pgo):@nwoescuspfl(go)P(nwo,31)(312 )

X>3191

~7% and
I, Swg

By Theorem 3.2.6, we know the cohomology groups of Harris—Taylor perverse sheaves to
be free, so

~ H'(Xy.3,,, Fil, """ (Wg))m = (0) and
- H'(Xy. 5wy Yoo/ Fily LI (Yo N s free.

Recall, moreover (see. [4, §3.6]), that IT,, ®L(7rw0,1)(312_1) is a direct factor of

) s1—1
Hl(XUWO(oo),swo’HTQl(nwo,lvsl)< 12 )) -

m

The stable lattice given by the Z;-cohomology looks like (F(QO, 1) x I"¢o 1) x Iy, where

— Tl ig g stable lattice of (X

I'(00.1) is a stable lattice of Stg, (7T, 1),

oo Hwol(m) x (X% My (go. 1)) and
S1— ).

['w is a stable lattice of L(my, 1) (%5

The result then follows from Lemma 4.2.3. O
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