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ABSTRACT

The projection of outstanding liabilities caused by incurred losses or claims
has played a fundamental role in general insurance operations. Loss reserving
methods based on individual losses generally perform better than those based
on aggregate losses. This study uses a parametric individual information model
taking not only individual losses but also individual information such as
age, gender, and so on from policies themselves into account. Based on this
model, this study proposes a computation procedure for the projection of
the outstanding liabilities, discusses the estimation and statistical properties
of the unknown parameters, and explores the asymptotic behaviors of the
resulting loss reserving as the portfolio size approaching infinity. Most impor-
tantly, this study demonstrates the benefits of individual information on loss
reserving. Remarkably, the accuracy gained from individual information is
much greater than that from considering individual losses. Therefore, it is
highly recommended to use individual information in loss reserving in general
insurance.

KEYWORDS
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1. INTRODUCTION

In the operations of insurance companies and other financial institutions, the
terms loss reserve and loss reserving generally refer to the funds kept by the
operators. The purpose of these funds is to protect institutions from poten-
tial ruins caused by huge claims and payments. In general insurance industry,
in particular, adequate assets are required to cover the outstanding liabilities
from the written insurance policies. Moreover, insurance industry authorities
commonly mandate adequate assets as a fundamental regulatory requirement
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(e.g., Solvency II Directive put forward by the European Union, which has
been in effect since January 1 2016).

For companies operating general insurance, however, it is not an easy task
to compute the reserves based on all the observed data for two intertwined
reasons. First, the uncertainty about loss distributions requires statistical
methodologies to estimate the unknown projections of outstanding liabilities.
The second reason stems from two types of inherent lags: the lags between the
occurrences of claims events and their reports to the insurers (reporting delays
(R-delays)) and the lags of the reported claims between times of the reports
and their final settlements (i.e., settlement delays (S-delay)), which depend on
various commercial and legal factors. These lags contribute to difficulties in
the statistical procedures, though the recent improvements of communication
techniques have largely alleviated the delays in reporting claims. The study
and practice of loss reserves are generally divided into two areas: incurred
but not reported (IBNR) claims and reported but not settled (RBNS) claims,
influenced by the R-delays and S-delays of claims, respectively.

The most successive algorithms have so far been the well-known chain-
ladder method and its related versions, all of which are based on the so-called
aggregate or macro data summarized in run-off triangles. Using this approach,
any computation of reserves can be performed via pencil and paper. An
extensively accepted distribution-free stochastic understanding of chain-ladder
method is proposed by Mack (1993). Other excellent contributions can be
found in Gogol (1993) and Verrall (2000) who discussed some parametric set-
tings of the models and England and Verrall (2002, 2006) for credibility, exact
Bayesian and generalized linear models, just to name a few. One can also
be referred to the monograph by Wüthrich and Merz (2008), and the refer-
ences therein, for a comprehensive summary of the details of their theories and
algorithms.

Another branch of research, stemming from Arjas (1989) and Norberg
(1993, 1999), base loss reserves on individual or micro losses. This approach
entails modeling the development processes of individual claims using marked
Poisson’s processes in continuous time, under which the loss reserves can still
be computed in closed mathematical forms. The most recent extensions in this
branch include Badescu et al. (2016) and Yu and He (2016) who modeled the
developments using marked Cox processes (also known as double stochastic
processes). These processes are more flexible than Poisson’s processes, which
have equal mean and variance functions and, thus, do not universally fit all
claims occurrences.

The main argument supporting the algorithms based on individual data is
that, from a statistical perspective, the data employed in the classical run-off
triangles are not necessarily sufficient statistics for the unknown parameters.
This means significant statistical information in the raw data collected from
individuals may be wasted. The past 30 years have seen a series of research
efforts on statistical models to compute loss reserves directly from individual
losses. In addition to what have been mentioned above, some examples are

https://doi.org/10.1017/asb.2020.42 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.42


THE IMPACTS OF INDIVIDUAL INFORMATION 305

Jewell (1989, 1990), who used fully parametric Bayesian models under a contin-
uous and discrete time framework to fit the occurrences and their developments
of claims; Zhao and Zhou (2010), who considered the R-delays so as to predict
the IBNR reserves; and Larsen (2007), who revisited the marked Poisson’s pro-
cesses but with a discrete time setting as a practically feasible skeleton of the
model proposed by Norberg (1993).

It appears more convenient and more applicable to practice to statistically
model the individual loss reserving with a discrete time framework, similar to
Hesselager (1995), Pigeon et al. (2013, 2014), and Godecharle and Antonio
(2015). Along this line, Huang et al. (2015a, b, 2016) demonstrated a significant
reduction in themean squared error of loss reserves using individual/micro data
from the popular aggregate data models that typically employ such methods
as the chain-ladder and Bornhuetter–Ferguson. They did this by, respectively,
deriving their asymptotic variances and numerically comparing them, thus
pointing out a promising direction for more informative loss reserving. The
fundamental philosophy from statistics maintains that the more the relevant
information, the greater the accuracy is.

The main price of employing individual data is the requirement for com-
putational capacity. This is especially the case for general insurance, in which
a portfolio generally contains numerous written policies, even reaching a few
millions in certain lines of the insurance business. However, with the rapidly
increasing in computing power nowadays in terms of central processing units
and graphical processing units and techniques such as parallel and distributed
computation in huge computer clusters, computation with individual data is no
longer a problem, at least for the algorithms that have so far been developed.
Recently, some researchers even analyzed the granular models based on weekly
and daily recorded data. This was to reflect the heterogeneity in R-delays on
the occurrence dates of the claims and the strong weekday and holiday pat-
terns leading to less claims being reported during the weekends and holidays.
Meanwhile, Badescu et al. (2016) and Avanzi et al. (2016) modeled the accident
arrival processes at a weekly level using Cox processes. Verrall and Wüthrich
(2016), Verbelen et al. (2017), and Crevecoeur et al. (2019) computed daily
reserves based on daily recorded data. Those research efforts have allowed for
clearer understanding of the claims development processes. Increasing comput-
ing power and refining techniques have supported the newly emerging trend of
cooperating machine learning (including deep learning) for loss reserving, as in
Gabrielli and Wüthrich (2018), Wüthrich (2018), Kuo (2019), among others.

In recent times, data generated by the insurance community have sharply
increased not only in volume and in time granular, but also in structural com-
plexity, owing to rapidly increasing organizational capacities of data collection,
collation, and storage. For example, in motor car insurance, one of the most
popular strategies for rate making is to incorporate driver behavior, which is
recorded by certain intelligent terminals as an aspect of usage-based insur-
ance (a bonus-malus system). Exploring these data’s usage can shed light on
how to increase the accuracy of outstanding liability projections. In insurance
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disciplines other than loss reserving, considerable efforts have been made to
use individual features , see, for example, Denuit et al. (2007) and the refer-
ences therein. However, while the claims development heterogeneity over time
has clearly been recognized, the one over insureds has so far attracted only
scarcely few attention in the context of loss reserving. By heterogeneity among
insureds, we mean that claims development patterns are influenced by fac-
tors that reflect individual heterogeneity among individual policies. For motor
car insurance, these factors include, for examples, a policyholder’s age, years
of driving experience, gender as well as an insured vehicle’s price, fuel used,
brand class, and geographical location, contract type of the insurance and so
on, whereas for health insurance, these factors could include the policyholder’s
age, gender, health status, and others that have not been recognized by the
insurance industries. Fung et al. (2020) proposed a class of models of cer-
tain desired appealing theoretical properties to analyze IBNR loss reserving.
Their models combined the ideas of data transform and distribution mixture
to accommodate the heavy-tailed behavior, complex distributional characteris-
tics such as multimodality and peculiar links between policyholders’ risk profile
and claim amounts exhibited in real datasets. The real data analysis in Fung
et al. (2020) show a clear evidence for the heterogeneity among insureds in a
motor car insurance business. Some more evidences of the heterogeneity can
also be found in the real data analysis part of the current paper for a health
insurance business (see Section 4.2, especially Figure 4 and Table 5, for details).

This study explores and quantitatively characterizes the possible effects
of individual information on loss reserving. It advocates using this approach
to loss reserving in the current era of highly developed computing capacity.
We are primarily for a theoretical purpose other than to propose a para-
metric model for loss reserving. Incorporating the individual features into a
comprehensive regression model to fit the claims development data in general
insurance allow for a more accurate projection of a portfolio’s outstanding lia-
bilities. To be specific, this study theoretically demonstrates that, in terms of a
particularly specified parametric model for claims development (which never-
theless effectively fits a real data also), the incorporation of insureds’ individual
information can significantly improve the accuracy of the loss reserve projec-
tion. Meanwhile, the reduction in accuracy by incorporating false covariates is
relatively limited. Moreover, the advantages of using this approach are more
significant than those from considering individual losses. See Theorems 3.4
and 3.5, the subsequent discussion and the simulations in Section 3.4 for more
details.

The paper is organized as follows. Section 2 formulates the model and
discusses the maximum likelihood estimates (MLEs) of the unknown param-
eters and the theoretical properties in terms of asymptotic analysis. Based on
these theoretical properties, Section 3 derives the corresponding formula of loss
reserves and the asymptotic properties of loss reserving, with and without indi-
vidual information. It also reports a small simulation study in order to exhibit
the behaviors of the loss reserving method in fixed size portfolio. Section 4
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addresses a thorough real data analysis. Section 5 concludes the paper with a
few remarks. All proofs are deferred to the Appendix.

2. A CLAIMS DEVELOPMENT MODEL USING INDIVIDUAL INFORMATION

This preliminary section consists of two parts. The first concisely describes an
individual claims development. It considers individual information to reflect
the individual features of policies and the data structure to loss reserving and,
in addition, provides the distributional assumptions. The second part is for the
maximum likelihood estimation and its theoretical properties for later use in
loss reserving.

2.1. Claims development

In general insurance, a dataset for loss reserving, regardless of whether it is in
macro or micro form, is typically organized through periods of fixed length
(conventionally referred to as “(accident) years”), as analyzed by, for example,
Huang et al. (2015a, b) excluding the individual features:

(1) The entire observation horizon is composed of n calendar years, at the end
of which, (referred to also a date n), a loss reserving is made.

(2) In a year, say i, there are mi effective insurance policies (exposures), coded
by (i, k), k= 1, 2, . . . ,mi and associated with every policy (i, k) is a random
element:

Eik :=
(
rik, xik;Nik; {(Uikl,Vikl,Yikl)}Nik

l=1
)
, (2.1)

consisting of
(i) a risk exposure rik ∈ (0, 1] in that year,
(ii) a number Nik of incurred claims from this individual, which is possi-

bly incompletely observed at the evaluation date n due to R-delays,
(iii) accordingly a sequence of chronologically recorded claims data

(Uikl,Vikl,Yikl) of R-delaysUikl (the time lags between the occurrences
of accidents and their reports to the insurance company), S-delays
Vikl (the time lags between their reports to the insurance company
and final settlements), and claim amounts Yikl paid in a lump sum at
their settlements, l = 1, 2, . . . ,Nik and

(iv) especially, an observable d-vector covariates xik = (1, xik1, . . . ,
xik,d−1)′ to indicate the individual information, on which the joint
distribution of the frequency of claims, R-delays, S-delays, and
payments may depend, where d is a positive integer.

(3) All the individual observations Eik, k= 1, 2, . . . ,mi, i= 1, 2, . . . , n are iid
from a population E := (r, x;N; {(Ul,Vl,Yl)}Nl=1), which is the individual
observation from a representative policy.
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(4) Because the analyses proceed basically in terms of large sample approxima-
tions as m→∞, where m=∑n

i=1 mi is the total number of policies in the
n accident years, we make an assumption that mi/m→ κi with constants
κi, i= 1, 2, . . . , n.

Following the conventional terminologies, a claim (Ul,Vl,Yl) incurred in
year i is called settled, RBNS and IBNR if its R- and S-delays (U ,V ) take
values in A s

i = {(u, v) : i+ u+ v≤ n, } (settled), A rbns
i = {(u, v) : i+ u≤ n< i+

u+ v} (RBNS) and A ibnr
i = {(u, v) : i≤ n< i+ u} (IBNR), respectively.

The joint distribution of the representative claim development E is speci-
fied by the product of the marginal distribution of (r, x) and the conditional
distribution of (N; {(Ul,Vl,Yl)}Nl=1), as in what follows.

Distribution Assumption 1 (Distribution of E). For any given vector β, the pair
(r, x) is arbitrarily distributed with E[r exp (x′β)]<∞. Given (r, x), the three ran-
dom parts N, {Ul}Nl=1, and {(Vl,Yl)}Nl=1 are mutually independent of each other
with each distributed as follows.

(1) Claims number N. N ∼Possion(r exp (x′β)).
(2) R-delays {Ul}Nl=1. There exists a maximum R-delay Dr such that {Ul}Nl=1 iid

∼U
with

Pr (U = u|x) := pu = pu(x; π )= exp(x′π u)∑Dr

j=0 exp(x′π j)
, u= 0, 1, 2, . . . ,Dr, with π 0 = 0.

(3) Settlements {(Vl,Yl)}Nl=1. Let {(Vl,Yl)}Nl=1 iid
∼ (V ,Y ) and there also exists a

maximum S-delay Ds such that

Pr (V = v|x) := qv = qv(x; ρ)= exp (x′ρv)∑Ds

j=0 exp (x′ρ j)
, v= 0, 1, . . . ,Ds, with ρ0 = 0.

To formulate the distribution of Y given V, introduce augmented vectors
xv = (x′, δ′v)

′, where δv is a Ds-dimensional vector such that δ0 = 0 and, for
v= 1, 2, . . . ,Ds, δv is a unit vector with 1 at the v-th position. Then, Y
follows a distribution with density f (y; ηv, σ ), y ∈ (0,+∞), so that E[Y |x,
V = v]=μv(ηv, σ ) is a function of ηv and σ , where ηv is linked to x′vγ by
means of g(ηv)= x′vγ for some differentiable increasing function g.

The distribution specification above involves the vectors of unknown
parameters:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

β = (β0, β1, . . . , βd−1)′ for claims number N,

π = (π ′1, π
′
2, . . . , π

′
Dr )
′ for R-delays Ul with πu = (πu0, πu1, . . . , πu,d−1)′, u= 1, 2, . . . ,Dr,

ρ = (ρ′1, ρ
′
2, . . . , ρ

′
Ds )
′ for S-delays Vl with ρv = (ρv0, ρv1 . . . , ρv,d−1)′, v= 1, 2, . . . ,Ds,

γ = (γ0, γ1, . . . , γd−1, γd , . . . , γd−1+Ds )′ and σ for claims severityYl ,
(2.2)
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where β, π us as well as ρvs are d-dimensional vectors and γ is a (d +Ds)-
dimensional vector. An abbreviation θ is sometimes used to represent the whole
vector of parameters (β ′, π ′, ρ ′, γ ′, σ ).

While it is not the primary purpose of this study to propose a practically
useful model, the following remarks explain why loss reserving is discussed
under Distribution Assumption 1:

(1) There are basically two cases for the supports of R- and S-delays: finite
and infinite. It would be a priori known (generally read from the items of
the insurance contracts) if the supports are finite or infinite before any loss
reserving is taken care of. Even for the case the delays take unrestricted
values, if the probability to take values over certain limits is quite small,
one can safely assume a capped delays by cutting off the tails with proba-
bility small enough. As a result, the assumption of capped R- and S-delays
is reasonable in many real insurance businesses, especially for such insur-
ance without very much high claims payments. An example is the general
health insurance. The assumption of capped delays has been extensively
adopted in such traditional methods as chain-ladder algorithm. If the tails
cannot be safely cut off, however, the models such as the one proposed
in Fung et al. (2020) or some others would be more suitable. From the
statistical point of view, for their distributions to be reasonably estimated
with observations over a finite number of years, the number of unknown
parameters to be estimated must be finite. Here, the former is taken,
whereas Crevecoeur et al. (2019) and Fung et al. (2020), for example, took
the latter.

(2) Logistic regression is generally the starting point for analyzing categorical
responses. The most recent examples in insurance include, for example,
Boj and Costa (2018) and Heras et al. (2018). If the coefficients included in
π and ρ are zero, the setting above reduces to the one discussed by Huang
et al. (2015a, b).

(3) The assumption on the conditional distribution of claims payments sub-
sumes exponential families such as gamma, inverse Gaussian, and log-
normal distribution and also includes distributions such as Pareto II that
does not belong to exponential families. In our real data analysis, the
Pareto II distribution fits the claims payments well.

(4) For convenience, we assume that max (Dr,Ds)< n≤Dr +Ds + 1. The first
inequality is to make π and ρ to be reasonably estimated and the second
inquality does not reduce the generality of the model because for the case
n>Dr +Ds + 1, one can simply recode the first n−Dr −Ds as year 1.

For easy reference, in the following collected are some necessary notation
that will frequently appear in this paper.
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Notation 2.1.

(1) The following will always be used without a claim:
- δu for unit vectors with 1 at component u and δ0 = 0, of which dimensions
can be read from context,

- ID the identity matrix of dimension D,
- 1D the vector of dimension D with 1 everywhere,
- ⊗ the Kronecker product.

(2) Write p= (p1, p2, . . . , pDr)′, log p= ( log p1, log p2, . . . , log pDr)′, and Pu =∑u
j=0 pj and write qv = (q1, q2, . . . , qv)′, qv = (qv+1, qv+2, . . . , qDs)′, q= qDs

and log q= ( log q1, log q2, . . . , log qDs)′, so that, by the identities ∂pu
∂π
=

pu(δu − p)⊗ x and ∂qv
∂ρ
= qv(δv − q)⊗ x, it follows that:

∂p′

∂π
= (diag(p)− pp′)⊗ x, ∂q′

∂ρ
= (diag(q)− qq′)⊗ x,

∂ log p′

∂π
= (IDr − p1′Dr)⊗ x, ∂ log q′

∂ρ
= (IDs − q1′Ds)⊗ x. (2.3)

Further denote by Qv =∑v
t=0 qt and Q̄v =∑Ds

t=v+1 qt, v= 0, 1, . . . ,Ds − 1
the cumulative distribution function and tail probability of the S-delays,
respectively, which prove quite helpful in discussing the S-delays subject
to censoring. Also write Q̄= (Q̄0, Q̄2, . . . , Q̄Ds−1)′. Thoroughly, we take the
convention

∑j2
j=j1 · = 0 if j1 > j2.

(3) Notation Dr
i =Dr ∧ (n− i) and Ds

i =Ds ∧ (n− i) are also used to represent,
respectively, the possibly observed maximum R- and S-delays for accident
year i.

2.2. Individual likelihood

To establish the likelihood and estimate the parameters, the likelihood of an
individual in every year, say i is described in the following points:

• The potential R-delays {Ul : l = 1, 2, . . . ,N} are subject to a common right
truncation by n− i so that Ul can be observed only when Ul < n− i. Denote
by Nr(≤N) the number of the reported claims from the policy, and with no
loss of generality denote by {Ul : l = 1, 2, . . . ,Nr} the observed R-delays.
• The potential S-delays {Vl : l = 1, 2, . . .Nr} are subject to a right censoring,

such that the observed are random pairs (Zl,Cl) := (Vl ∧ (n− i−Ul),Cl)
with Cl = 1 if Vl ≤ n− i−Ul (i.e., Vl is observed) and zero otherwise. Use
Ns to denote the number of the settled claims out of the Nr reported.
• The payments Yl are subject to a relevant right truncation in the sense that
Yl is observable only when Cl = 1.
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To summarize, the observed part of a claim development E is represented by

Eo =

⎧⎪⎨
⎪⎩
(r, x;Nr,Ns; {Ul; (Zl,Cl)}Nr

l=1; {Yl}Ns

l=1), if Nr ≥Ns > 0,

(r, x;Nr, 0; {Ul; (Zl,Cl)}Nr

l=1 ∗ ), if Nr > 0 and Ns = 0,

(r, x; 0, 0; ∗ ∗ ), if Nr = 0,
(2.4)

where “*” indicates the missing parts caused by the truncation. Then, under
Distribution Assumption 1, the log-likelihood in terms of Eo in year i is

lEo(θ)=Nrx′β − r exp (x′β)PDr
i
+

Nr∑
l=1

[
log pUl +Cl log qVl + (1−Cl) log Q̄n−i−Ul

+Cl log f (Yl; ηVl , σ )
]
, (2.5)

up to an additive constant (not mentioned below), where Dr
i is defined in

Notation 2.1 (3) and
∑0

l=1 · = 0 is assumed to accommodate the case Nr = 0.
Split Nr =∑Dr

i
u=0 N

r
u into a Dr-vector N r

i = (Nr
1,N

r
2, . . . ,N

r
Dr
i
, 0, . . . , 0)′ and

Ns =∑Ds
i

v=0 N
s
v into a Ds-vector N s

i = (Ns
1,N

s
2, . . . ,N

s
Ds
i
, 0, . . . , 0)′ with Nr

u and
Ns
v the numbers of reported claims with R-delay u and settled claims with S-

delay v, respectively. Further split the total number of RBNS claims Nrbns :=
Nr −Ns into N rbns

i = (Nrbns
0 ,Nrbns

1 , . . . ,Nrbns
Dr
i
, 0, . . . , 0)′ withNrbns

u as the number
of RBNS claims with R-delay u.

Moreover, denote by Yvl, l = 1, 2, . . .Ns
v the settled claims payments with

S-delay v. Then, the log-likelihood can be simplified further to:

lEo =Nrx′β − r exp (x′β)PDr
i
+ (Nr

0,N
r′
i )
(
log p0, log p′

)′
+ (Ns

0,N
s′
i )( log q0, log q

′)′ +
Dr
i∑

u=0
Nrbns
u log Q̄n−i−u +

Ds
i∑

v=0

Ns
v∑

l=1
log f (Yvl; ηv, σ ).

(2.6)

Because the terms 1− 3, 4− 5, and 6 here involve only parameters (β, π), ρ,
and (γ , σ ), respectively, the MLEs of (β, π ), ρ, and (γ , σ ) can be derived sep-
arately and involve only the numbers Nr

u’s, (N
s
v,N

rbns
u )’s, and Ns

v’s and their
payments, respectively. Note that Nrbns

u = 0 if n− i− u≥Ds (i.e., 0≤ u≤ n−
i−Ds). The summation in the second to the last term of (2.6) can also be
represented by another summation

∑Dr
i

u=(n−i−Ds+1)+ .
Denote by pDr

i
= (p1, . . . , pDr

i
, 0, . . . , 0)′ the truncated R-delay probabilities

(Dr-dimensional). The following lemma is for individual score functions and
information matrix.

Lemma 2.1 (Individual scores and information). The following holds for an indi-
vidual in year i:
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(1) the score functions are⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂lEo

∂β

∂lEo

∂π

∂lEo

∂ρ

∂lEo

∂(γ ′, σ )′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(Nr − r exp (x′β)PDr
i
)x[

Nr
i − r exp (x′β)pDr

i
− (Nr − r exp (x′β)PDr

i
)p
]
⊗ x

[
Ns
i +

∑Dr
i

u=0
Nrbns
u

Q̄n−i−u

(
0

qn−i−u

)
−Nrq

]
⊗ x

∑Ds
i

v=0
∑Ns

v
l=1

∂ log f (Yvl; ηv, σ )
∂(γ ′, σ )′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(2.7)

(2) The Fisher information matrix is the expectation of the block diagonal
matrix:

I = r exp (x′β)

⎛
⎜⎜⎝
I1i ⊗ xx′

I2i ⊗ xx′
I3i

⎞
⎟⎟⎠ ,

where

I1i =
Dr
i∑

u=0
pu

(
1

δu − p

)
(1, δ′u − p′),

I2i =Pn−i−Ds(diag(q)− qq′)+
(Ds−1)∧(n−i)∑
v=(n−i−Dr)+

pn−i−v

⎛
⎝diag(qv)− qvq′v −qvq′v

−qvq′v Qv

Q̄v
qvq
′
v

⎞
⎠ ,

I3i =
Ds
i∑

v=0
PDr

i+vqvE
[
− ∂2 log f (Y ; ηv, σ )

∂(γ ′, σ )′∂(γ ′, σ )

∣∣∣∣ x
]
, (2.8)

in which Pu = 0 if u< 0.

The expectations in computing the information matrix in the lemma above
are taken with respect to the joint distribution of the completely observable
random variables (r, x). Hence, they can readily be estimated with their empir-
ical versions. This remark also applies to all asymptotic variances appearing in
latter theorems.

2.3. Parameter estimation

For every individual (i, k), use Eo
ik for E

o in (2.4) so that its log-likelihood lEoik
and score functions

∂lEoik
∂θ

can be deduced by means of (2.6) and(2.7), with the
quantities there replaced by their (i, k)-instances, for example, x, Ns, Nrbns

u , pu,
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qv, and so on by xik, Ns
ik, N

rbns
iku , piku, qikv, and so on, respectively. Thanks to

the statistical independence among policies, the overall score functions is ∂l
∂θ
=

n∑
i=1

mi∑
k=1

∂lEoik
∂θ

. The MLEs of the unknown parameters are thus established by

equating the overall score functions to zero and can be solved by standard
computing packages (e.g., we used the R package Rsolnp by Ghalanos and
Theussl, 2015) in the real data analysis below). The asymptotic distributions
are provided in the following theorem, in which the regularity conditions are
standard and can be found in any standard textbook in statistical asymptotics,
for example, van der Vaart (2000).

Theorem 2.1 (Asymptotics of MLE). Under the usual regularity conditions,
(β̂, π̂ ), ρ̂, and (γ̂ , σ̂ ) are asymptotically mutually independent with:

√
mvec

(
β̂ − β, π̂ − π

)
L→N

(
0, I−11

)
,
√
m(ρ̂ − ρ)

L→N
(
0, I−12

)
and

√
mvec(γ̂ − γ , σ̂ − σ )

L→N
(
0, I−13

)
,

where

I1 =E

[
Dr∑
u=0

n−u∑
i=1

κipu

(
1

δu − p
)
(1, δ′u − p′)⊗ (r exp (x′β)xx′)

]
,

I2 =E

[(
n−Ds∑
i=1

κiPn−i−Ds(diag(q)− qq′)⊗ (r exp (x′β)xx′)

)]

+E

⎡
⎣
⎛
⎝Ds−1∑

v=0

n−v∑
i=(n−v−Dr)∨1

κipn−i−v

⎛
⎝diag(qv)− qvq′v −qvq′v

−qvq′v Qv

Q̄v
qvq
′
v

⎞
⎠
⎞
⎠

⊗(r exp (x′β)xx′)
⎤
⎦ and

I3 =E

[
r exp (x′β)

Ds∑
v=0

n−v∑
i=1

κiPDr
i+vqvE

[
− ∂2 log f (Y ; ηv, σ )

∂(γ ′, σ )′∂(γ ′, σ )

∣∣∣∣ x
]]

.

3. LOSS RESERVING

This section precisely specifies the terminologies “loss reserve” and “loss reserv-
ing” and establishes a computation procedure for loss reserves. It then discusses
the properties of loss reserving with and without individual information and
thus shows the impact of introducing individual information.
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3.1. Loss reserving with individual information

From now on, the numberm of the whole portfolio exposed to n accident years
is explicitly indicated for the purpose of asymptotic analysis. Moreover, use
F to stand for the updated information on the observations of the individual
covariates, exposures, the R-delays of reported claims, S-delays and final pay-
ments of settled claims, and censored S-delays of RBNS claims, in n accident
years.

The outstanding liabilities of the insureds—that is, the sum of future
payments for all RBNS and IBNR claims—can be represented as:

R=Rrbns +Ribnr =
n∑
i=1

Rrbns
i +

n∑
i=1

Ribnr
i =

n∑
i=1

Rrbns
i +

n∑
i=n−Dr+1

Ribnr
i , (3.1)

where

Rrbns
i =

mi∑
k=1

Nik∑
l=1

YiklIA rbns
i

(Uikl,Vikl), 1≤ i≤ n, and

Ribnr
i =

⎧⎪⎪⎨
⎪⎪⎩
0, 1≤ i≤ n−Dr,

mi∑
k=1

Nik∑
l=1

YiklIA ibnr
i

(Uikl,Vikl), n−Dr + 1≤ i≤ n.

(3.2)

are, respectively, the outstanding liabilities of RBNS and IBNR claims occur-
ring in accident year i. Then, as in Huang et al. (2015b), “loss reserve” is defined
as the projection:

Rm =Rm(θ )=E[R|F ] (3.3)

of R on the information F that is observed at the evaluation date n, where the
unknown parameter θ is explicitly indicated as a reminder of the uncertainty
in the distribution of the random element E. Recall the definition of μvs in
Assumption 1 and denote by:

μ̃v =E[Y |V ≥ v, x]=
∑Ds

t=v qtμt∑Ds

t=v qt
, v= 0, 1, . . . ,Ds, (3.4)

such that one has the policy-specified quantities:

μikv =μv(g−1(x′ikvγ ), σ ) and μ̃ikv =
∑Ds

t=v qiktμikt∑Ds

t=v qikt
, v= 0, 1, . . . ,Ds, (3.5)

where the function μv( · ) is defined in Assumption 1.
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The following theorem provides a formula to compute the loss reserve
Rm(θ ), in which Orbns

v and Oibnr
u respectively correspond to the reserves for

the RBNS claims reported in year n− v+ 1 and the IBNR claims with an
R-delay u.

Theorem 3.1. Under Assumption 1,

Rm(θ )=Rrbns
m (ρ, γ , σ )+Ribnr

m (θ)=
Ds∑
v=1

Orbns
v (ρ, γ , σ )+

Dr∑
u=1

Oibnr
u (θ ), (3.6)

where Orbns
v =

∑n−v+1
i=(n−v−Dr+1)∨1 O

rbns
iv and Oibnr

u =
∑n

i=n−u+1 O
ibnr
iu with

• Orbns
iv =

∑mi
k=1 N

rbns
ik,n−i−v+1μ̃ikv, the reserves for the RBNS liabilities of claims

occurring in year i and reported in year n− v+ 1 and
• Oibnr

iu =
∑mi

k=1 pikurik exp (x
′
ikβ)μ̃ik0, the reserves for the IBNR claims occurring

in year i with R-delay u.

Equation (3.6) is almost the same as Equation (3.2) in Huang et al. (2015b)
except for the computation of the summandsOrbns

iv andOibnr
iu due to introducing

covariates xiks. Because the assumption n=Dr +Ds + 1 in Huang et al. (2015b)
is replaced by max (Dr,Ds)< n≤Dr +Ds + 1, however, a different computa-
tion procedure for the loss reserve Rm(θ ) is required. Depicted in Table 1 below
is a new procedure, for easy reference, which intuitively displays the generat-
ing processes of IBNR reserve on the right panel and RBNS reserve on the left
panel. Note that claims occurring at years from 1 to n−Dr have been reported
at the evaluation date. We write br = n−Dr + 1 to represent the beginning
year from which R-delays (i.e., IBNR claims) need to be taken care of. The
computation of IBNR reserves turns out to still have some similarity to the
classical chain ladder method: there the terms in {Oibnr

iu : i+ u> n} correspond
to the blank entries in the down-right part of a run-off table. The significant
difference from the chain-ladder method exists in how the entries Oibnr

iu s are
computed. Unlike IBNR claims, there are more years for which RBNS need
to be taken care of. The entries in the left-lower part of the table correspond
to RBNS reserves {Orbns

iv ; n−Dr < i+ v< n}. Particularly, every column corre-
sponds to an S-delay v and is made of a series of reserves for RBNS claims
reported in year n− v+ 1, that is, {Orbns

iv ; i= (n− v−Dr + 1)∨ 1, . . . , n− v+
1}. Especially, this implies that the beginning year for S-delays (i.e., RBNS
claims) to be taken care of is bs = (n−Dr −Ds + 1)∨ 1= 1 if n≤Dr −Ds and
2 if n=Dr +Ds + 1.Moreover, while the expression of the RBNS reserves were
designed in the form of the theorem so as to give the tabular algorithm, it
allows for other alternatives. For example, they can be organized in the years
the claims have been reported so as to get another computation algorithm sim-
ilar to the current IBNR reserve. With this alternative, one works with two
run-off-like triangles.

https://doi.org/10.1017/asb.2020.42 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.42


316
Z
.W

A
N
G
,X

.W
U

A
N
D

C
.Q

IU

TABLE 1

COMPUTATION OF LOSS RESERVE Rm(θ)=Rrbns
m (ρ, γ , σ )+Ribnr

m (θ ).

RBNS Settlement delay Accident Reporting delay IBNR
reserve Ds · · · · · · 2 1 year 1 2 · · · · · · Dr reserve

Rrbns
bs Orbns

bs,Ds bs

↓
.
.
.

. . .
.
.
.

↓
.
.
.

.

.

.
. . .

.

.

.

Rrbns
br−1−1 Orbns

br−2,Ds ← ← Orbns
br−2,2 br − 2

Rrbns
br−1 Orbns

br−1,Ds ← ← Orbns
br−1,2 Orbns

br−1,1 br − 1

Rrbns
br Orbns

br,Ds ← ← Orbns
br,2 Orbns

br,1 br Oibnr
br,Dr Ribnr

br

↓
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

. . .
. .

.

. ↓

↓ Orbns
n−Ds+1,Ds

.

.

.
.
.
.

.

.

.
.
.
.

.

.

. . .
. .

.

.
.
.
. ↓

Rrbns
n−1 Orbns

n−1,2 Orbns
n−1,1 n − 1 Oibnr

n−1,2 → → Oibnr
n−1,Dr Ribnr

n−1
Rrbns

n Orbns
n1 n Oibnr

n,1 Oibnr
n,2 → → Oibnr

n,Dr Ribnr
n

Rrbns Total: Rm = Rrbns + Ribnr Ribnr

Note. Arrows→ and← have two purposes: indicating the direction of the summation and acting as an ellipsis sign.
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Because of the uncertainty in the distribution of the random element E,
as what was clearly indicated in Theorem 3.1, the loss reserve Rm(θ ) is still a
random function of the unknown parameters θ and thus needs to be further
estimated. Accordingly, the term “loss/claims reserving” refers to two pur-
poses: the reasonable estimate of the loss reserve and the procedure to produce
that estimate. Formally, after obtaining reasonable estimates θ̂ , as, for exam-
ple, what was done in Section 2.3, the term “loss reserving” is clearly specified
below.

Definition 3.1. The term loss reserving refers to the (random) quantity:

R̂m =Rm(θ̂)=
Ds∑
v=1

Orbns
v (ρ̂, γ̂ , σ̂ )+

Dr∑
u=1

Oibnr
u (β̂, π̂ , ρ̂, γ̂ , σ̂ ), (3.7)

obtained by substituting the estimates θ̂ into Rm(θ ) in (3.6) for the unknown
parameters.

Therefore, R̂m can also be computed by the procedure in Table 1 with the
unknown parameters replaced by their estimates.

3.2. Loss reserving neglecting individual information

For every individual (i, k), when the information on xik1, . . . , xik,d−1 is
neglected, the loss reserve can be obtained by simply replacing with zero the
coefficients of xikj, j= 1, 2, . . . , d − 1 in Theorem 3.1. The resulting reserve
resembles but still slightly different from what was obtained by Huang et al.
(2016), due to the parametric form of the final payments’ distribution used
here, as precisely described below.

On the one hand, at the population level, ignoring the individual infor-
mation x produces a false model (parallel to Distribution Assumption 1) that
holds true only when the coefficients of xikj, j= 1, 2, . . . , d − 1 are exactly zero.

Distribution Assumption 2 (The false model of E).

(1) The expectation of claim numbers per exposure becomes λ= exp (β0).
(2) The probabilities of R-delay U and S-delay V for each claim become

pu = exp (πu0)∑Dr

j=0 exp (πj0)
, u= 0, 1, . . . ,Dr and qv = exp (ρv0)∑Ds

j=0 exp (ρj0)
, v= 0, 1, . . . ,Ds.

(3.8)

(3) Given the S-delay V = v, the final payment Y is distributed as a density
function f (y; γ h

v , σ ), where γ h
v corresponds to γ0 + γd−1+v for v≥ 1 and γ0

for v= 0, writing γ h = (γ h
0 , γ

h
1 , . . . , γ

h
Ds).
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The loss reserve/reserving is then derived from this false model with its
“unknown parameters” λ, (p0, p1, . . . , pDr), (q0, q1, . . . , qDs), and (γ h, σ ). It
turns out helpful to use alternatively the expected claim numbers per exposure
with R-delay u:

λu = λpu, u= 0, 1, . . . ,Dr, that is, λ=
Dr∑
u=0

λu and pu = λu/λ, u= 0, 1, . . . ,Dr.

(3.9)

On the other hand, at the sample level, the intensity rik exp (x′ikβ) of claim
occurrence per exposure, R- and S-delays, final payments, and so on are
taken to be homogeneous over policies but with incorrectly assigned distribu-
tions, because once again the coefficients of xik1, xik2, . . . xik,d−1 are incorrectly
assigned zeros. Especially, μ̃ikv and piku exp (x′ikβ) in (3.6) reduce to μ̃v and λu,
respectively, such that the outstanding liabilities are now simplified to:

Orbns
v =

n−v+1∑
i=(n−v−Dr+1)∨1

mi∑
k=1

Nrbns
ik,n−i−v+1μ̃v :=Gvμ̃v and

Oibnr
u =

n∑
i=n−u+1

mi∑
k=1

rikλuμ̃0 := r[u]λuμ̃0,

where

Gv =
n−v+1∑

i=(n−v−Dr+1)∨1

mi∑
k=1

Nrbns
ik,n−i−v+1, v= 1, 2, . . . ,Ds and

r[u] =
n∑

i=n−u+1

mi∑
k=1

rik, u= 1, 2, . . . ,Dr. (3.10)

Note that Gv is the total number of RBNS claims reported in year n− v+ 1.
Also introduce

r(u) =
n−u∑
i=1

mi∑
k=1

rik, u= 0, 1, . . . ,Dr. (3.11)

Remark 3.1. The model in Assumption 2 is called false because it is not the true
distribution of the loss development. Denote by Ex the expectation operation with
respect to the distribution of x. Specifically, if individual information is neglected
from the analysis, then, given the S-delay V = v, the true density of the payment
Y is Ex [f (y; ηv, σ )], rather than the incorrectly taken f (y; γ h

v , σ ) in Assumption 2.
The terms “false loss reserve” and “false loss reserving” are also used below, with
similar meanings.
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The above procedure simply implies the following theorem that is straight-
forwardly deduced from Theorem 3.1. The subscript “H” indicates “Huang
et al.” hereafter.

Theorem 3.2. The false loss reserve obtained by neglecting individual information
{xik} is RH =Rrbns

m +Ribnr
m =

∑Ds

v=1 Gvμ̃v + μ̃0
∑Dr

u=1 r[u]λu.

In order to estimate the “unknown parameters” μ̃v and λu in Theorem 3.2,
the false log-likelihood is then deduced from the true one by again omitting the
individual information. To this end, write

Ñr
u =

n−u∑
i=1

mi∑
k=1

Nr
iku, u= 0, 1, . . . ,Dr, Ñs

v =
n−v∑
i=1

mi∑
k=1

Ns
ikv, v= 0, 1, . . . ,Ds, (3.12)

to represent the total number of reported claims with R-delay u and the total
number of settled claims with S-delay v, respectively. Then, set the coeffi-
cients of xikj, j= 1, 2, . . . , d − 1 in (2.6) to zero and, as usually done in survival
analysis, reparameterize {qv} as the harzard rates:

hv = Pr (V = v|V ≥ v)= qv
Q̄v−1

, v= 0, 1, . . . ,Ds, that is, q0 = h0 and

qv = hv
v−1∏
s=0

(1− hs), v= 1, . . . ,Ds. (3.13)

As a result, the false log-likelihood of the “unknown parameters” can be
represented as:

lH =
Dr∑
u=0

(
Ñr
u log λu − r(u)λu

)
+

Ds−1∑
v=0

(
Ñs
v log hv + (Ñ r

v − Ñs
v) log (1− hv)

)

+
Ds∑
v=0

Ñs
v∑

l=1
log f (Yvl; γ h

v , σ ),

where, withNikuv the numbers of policy (i, k)’s claims with R- and S-delay (u, v):

Ñ r
v =

n−v∑
i=1

Dr
i+v∑

u=0

Ds∑
s=v

mi∑
k=1

Nikuv (3.14)

is the total number of reported claims with S-delay no less than v, satisfying
Ñ r

v =
∑Ds

t=v Ñ
s
t +

∑Ds

t=v+1 Gt. The “MLE”s are therefore,
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̂u = Ñ
r
u

r(u)
, u= 0, 1, . . . ,Dr,

ĥv = Ñ
s
v

Ñ r
v

, v= 0, 1, . . . ,Ds (so that, q̂0 = ĥ0 and q̂v = ĥv
v−1∏
s=0

(1− ĥs), v= 1, . . . ,Ds by (3.13)),

(γ̂ h, σ̂ )=the solution of
Ds∑
v=0

Ñs
v∑

l=1

∂ log f (Yvl ; γ h
v , σ )

∂(γ h′, σ )′
= 0 (so that, μ̂v =μv(g−1(γ̂ h

v ), σ̂ ), v= 0, 1, . . . ,Ds)

(3.15)

With equality (3.4), estimate μ̃v by ˆ̃μv =
∑Ds

s=v q̂sμ̂s∑Ds
s=v q̂s

. The following theorem is sim-

ply obtained by replacing the “unknown parameters” μ̃v and λu in Theorem 3.2
with their estimates ˆ̃μv and λ̂u.

Theorem 3.3. The false loss reserving obtained by neglecting the individual
information is R̂H =∑Ds

v=1 Gv
ˆ̃μv + ˆ̃μ0

∑Dr

u=1 r[u]λ̂u.

3.3. Asymptotic behaviors of the loss reservings

The distributional features of the deviations R̂m −Rm and R̂H −Rm demon-
strate the effects of introducing covariates x, as shown separately in the
following two theorems in asymptotic sense.

Theorem 3.4 needs the notation: μv = (μv+1,μv+2, . . . ,μDs)′ and αv =
(qv

∂μv
∂(γ ′,σ ) , qv+1

∂μv+1
∂(γ ′,σ ) , . . . , qDs

∂μDs

∂(γ ′,σ ) )
′, v= 0, . . . ,Ds, where ∂μv

∂(γ ′,σ ) = ( ∂μv
∂ηv

x′v
ġ(ηv)

, ∂μv
∂σ

)
with ġ the derivative function of g.

Theorem 3.4. 1√
m (R̂m −Rm)

L→N(0, σ 2
I ) with σ 2

I =
∑3

j=1 g̃
′
jI
−1
j g̃j, where Ijs are

defined as in Theorem 2.1 and

g̃1 =
Dr∑
u=0

n∑
i=n−u+1

κiE

[
pur exp (x′β)μ̃0

(
1

δu − p

)
⊗ x

]
,

g̃2 =
Dr∑
u=0

n∑
i=(n−u−Ds+1)∨1

κiE

[
pur exp (x′β)

(
0

diag(q(n−i−u)+)μ(n−i−u)+ − μ̃(n−i−u+1)+q(n−i−u)+

)
⊗ x

]
,

g̃3 =
Dr∑
u=0

n∑
i=(n−u−Ds+1)∨1

κiE

[
pur exp (x′β)

(
0

α(n−i−u+1)+

)]
. (3.16)

The misspecification of the model giving R̂H brings high complexity to the
notation and makes it difficult to express and prove the asymptotic results
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commensurate with Theorem 3.4. First note that R̂H is a function of the statis-
tics r(u)s in (3.11), Ñr

us and Ñs
vs in (3.12), Ñ r

v s in (3.14), and (γ̂ h, σ̂ ) through
μ̂v =μv(g−1(γ̂ h

v ), σ̂ ). The law of large numbers readily gives⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r[u]
m

a.s.→ ř[u] :=
n∑

i=n−u+1
κiE[r], u= 1, 2, . . . ,Dr,

λ̂u
a.s.→ λ̌u := E[pur exp (x′β)]

E[r]
, u= 1, 2, . . . ,Dr,

ĥv
a.s.→ ȟv :=

∑n−v
i=1 κiE

[
PDr

i+v r exp (x
′β)qv

]
∑n−v

i=1 κiE
[
PDr

i+v r exp (x
′β)Q̄v−1

] , v= 0, 1, . . . ,Ds,

(3.17)

where r is the exposure of a representative policy, as postulated in
Assumption 1. Let

(
γ̌
h′, σ̌

)
=Argmax

(γ h,σ )

Ds∑
v=0

n−v∑
i=1

κiE
[
r exp (x′β)PDr

i+vqv log f
(
Y ; γ h

v , σ
)]
. (3.18)

Denote by

μ̌v =μv

(
g−1(γ̌ h

v ), σ̌
)
and q̌v = ȟv

v−1∏
s=0

(
1− ȟs

)
(3.19)

the limits of μ̂v and q̂v as m→∞. Then, corresponding to R̂H , we introduce

ŘH =
Ds∑
v=1

Gv
ˇ̃μv + ˇ̃μ0

Dr∑
u=1

r[u]λ̌u, where ˇ̃μv =
Ds∑
s=v

q̌sμ̌s/

Ds∑
s=v

q̌s (3.20)

and define

σ 2
H = ξ ′�̌ξ with ξ =

(
ˇ̃μ0(ř[1], ř[2], . . . , ř[Dr]),

Dr∑
u=1

ř[u]λ̌u, Ǧ1, Ǧ2, . . . , ǦDs

)′
,

(3.21)

where Ǧv =∑Dr

u=0 κn−u−v+1E
[
pur exp (x′β)Q̄v−1

]
, v= 0, 1, . . . ,Ds, and the mean-

ing of �̌ is deferred to (A14). With this notation, the following theorem
presents R̂H ’s asymptotic behaviors.

Theorem 3.5. Under usual regular conditions on f (y; η, σ ) (see White, 1982),
with parameters ŘH in (3.20) and σ 2

H in (3.21):

1√
m

(
R̂H − ŘH

)
L→N

(
0, σ 2

H

)
and

1
m

(
ŘH −Rm

)
→, (3.22)
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where the asymptotic bias is

=
Ds∑
v=1

Dr
v∑

u=0
κn−v−u+1E

[
pur exp (x′β)Q̄v−1( ˇ̃μv − μ̃v)

]

+
Dr∑
u=1

n∑
i=n−u+1

κiE
[
pur exp (x′β)( ˇ̃μ0 − μ̃0)

]
. (3.23)

This section concludes with the following two obvious but important facts
deduced from Theorem 3.5:

(1) If none of the covariates has effects on the occurrence and claims devel-
opment, then we have that λ̌u = λu = pu exp (β0) (by (3.17)), q̌v = qv and
μ̌v =μv (by (3.19)), where pu, qv, and μv were defined in by (3.8), u=
0, 1, . . . ,Dr, v= 0, 1, . . . ,Ds. This results in an equality ŘH =Rm and
thus indicates that the loss reserving R̂H generally gives more efficient
evaluation (e.g., also asymptotically unbiased but with smaller variance)
of the loss reserves than R̂m.

(2) Generally, omitting the useful covariates in the loss reserving results in
an asymptotic bias:

1
m

(
R̂H −Rm

)
= 1√

m

1√
m

(
R̂H − ŘH

)
+ 1
m

(
ŘH −Rm

)
p→, (3.24)

that is, the difference (R̂H −Rm)=Op(m) is of the same order as the
exposure sizem, much higher than the order

√
m of R̂m −Rm. The effects

of using individual information are quite shocking compared with those
demonstrated in Huang et al. (2016), in which the improvement of the
individual loss data method over the classical chain-ladder method was
only in the order of

√
m. Nevertheless, it is not easy to learn how 

changes over the parameters. Some insight might be revealed by the fol-
lowing numerical computation conducted in the simplest setting n= 3,
Dr = 1, and Ds = 1 years with two examples of parameter varying:

Example 1. Dimension d = 3 and the parameters varied in an auxiliary param-
eter t ranging in [− 1, 1] by step 0.01 as:

β ′ = (2, 0.6t,−0.7t), π ′ = (1,−0.8t, 0.8t), ρ ′ = (1,−0.5t, 0.4t)′, γ ′
= (2, 0.9t,−0.6t, 0.7), σ = 4. (3.25)

Example 2. Dimension d = 4 and parameters varied over t ranging in [− 2, 2]
by step 0.02 as:

β ′ = (1,−0.5t, 0.3t, 0.4t), π ′ = (− 1,−0.3t, 0.5t, 0.4t), ρ ′ = (1, 0.4t,−0.6t, 0.8t)′,
γ ′ = (3, 0.7t,−0.2t,−0.6t, 0.9), σ = 1. (3.26)
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TABLE 2

PARAMETER SETTINGS FOR THE SIMULATION.

Settings

Parameters I II III IV

β ′ (2, 0.6,−0.7) (1,−0.5, 0.3, 0.4) (2, 0, 0) (1, 0, 0, 0)
π ′ (1,−0.8, 0.8) (− 1,−0.3, 0.5, 0.4) (1, 0, 0) (− 1, 0, 0, 0)
ρ ′ (1,−0.5, 0.4) (1, 0.4,−0.6, 0.8) (1, 0, 0) (1, 0, 0, 0)
γ ′ (2, 0.9,−0.6, 0.7) (3, 0.7,−0.2,−0.6, 0.9) (2, 0, 0, 0.7) (3, 0, 0, 0, 0.9)
σ 4 1 4 1

(a) (b)

FIGURE 1: The asymptotic bias over varying coefficients of covariates. (a) Example 1. (b) Example 2.

The other details of the computation were the same as the one described in
Section 3.4 below. The bias  was approximated using (3.24) by Monte Carlo
method withm= (10, 000, 10, 000, 10, 000) risk exposures, that is, 10, 000 expo-
sures every year. For every combination of the values of the parameters, with
R̂H computed according to Theorem 3.3 and Rm computed by inserting the
parameters into (3.6),  was approximated by R̂H−Rm

m . In the computation, as
shown by the plots of || over t in Figure 1, || increased when t got large and
approached zero when the coefficients tended to zero.

3.4. A simulation study

This subsection reports the results from a small simulation study that demon-
strated the impact of individual information on loss reserving with finite
portfolio sizes. The simulation proceeded with n= 3 years, Dr = 1, and Ds = 1
under the two settings of risk exposures: m1 = (4000, 4000, 4000) (4000 expo-
sures every year) and m2 = (10,000, 10,000, 10,000) (10,000 exposures every
year). Four settings of the true values of the parameters as listed in Table 2
were examined: settings I (d = 3) and II (d = 4) represented the mechanism that
the individual information had effects on the claim developments and III and
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TABLE 3

MEAN ± STANDARD DEVIATION OF THE RELATIVE ERRORS.

Portfolio Case R̂m R̂H

m1

I 1.8002± 1.2967 40.073± 7.0266
II 1.2066± 0.9012 18.791± 3.1496
III 2.0024± 1.4578 1.9972± 1.4560
IV 1.1663± 0.9030 1.1683± 0.8963

m2
I 1.0762± 0.7947 39.827± 5.0717
II 0.7075± 0.4988 18.711± 1.9492
III 1.2252± 0.9544 1.2247± 0.9527
IV 0.6818± 0.5238 0.6812± 0.5246

IV represented the mechanism that the individual information had no effects
by assigning 0 to the coefficients of the covariates xik1, xik2 in setting I and
xik1, xik2, xik3 in setting II. Note that γ3 = 0.7 in settings I and III and γ4 = 0.9
in settings II and IV characterized the correlation between the S-delays and the
final claims. The risk exposures associated with every individuals were indepen-
dent and identically drawn from a uniform distribution on [0, 1], the covariates
were produced using standard normal distributions of dimension 2 for settings
I and III and 3 for settings II and IV, and the claim amounts were drawn from
a log-normal distribution whose parameters depended on γ and σ as defined
in Distribution Assumption 1.

A total of 200 duplicates were carried out for both the portfoliosm1 andm2

with parameter values specified above. In order to show the effects of individ-
ual information, for the reserving with and without x1, . . . , xd−1, we computed
Rm according to (3.6) with the imposed parameter values for every portfolio
and then the absolute relative errors |R̂m−Rm|Rm

× 100 and |R̂H−Rm|Rm
× 100, for every

portfolio and settings of parameters. The results from the 200 runs were sum-
marized in the form “mean ± sd (standard deviation)” in Table 3. Comparing
columns R̂m and R̂H clearly shows the following two facts that are coincide
with the asymptotic conclusions:

(1) Under settings I and II, the individual information model (IIM) provided
much more accurate loss reserving in terms of both the mean (measuring
the average of the relative errors) and the standard error (measuring the
stability of the relative errors).

(2) Under settings III and IV, the IIM provided loss reservings that were a bit
worse in term of the standard error.

The findings can also be much more clearly depicted by the empirical densi-
ties of the 200 simulated relative errors, as shown for portfolio m2 in Figure 2.
The plots illustrated that when real effects of the covariates exist (settings I and
II ), the absolute relative errors of R̂H had both greater mean and dispersion,
whereas, in the absence of real effects (settings III and IV), the two models
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FIGURE 2: Estimated densities of the relative differences R̂m−Rm
Rm

and R̂H−Rm
Rm

. (a) Setting I. (b) Setting II.
(c) Setting III. (d) Setting IV.

showed almost the same prediction capability. This simulation thus supports
the use of the IIM.

4. REAL DATA APPLICATION

This section addresses a real analysis in health insurance, using a dataset from
a commercial insurance company in China. This section also discusses the dif-
ference between the loss reservings with and without individual information,
where the former is referred to as IIM and the latter the individual data model
(IDM), following the terminology in Huang et al. (2016).

4.1. Data description

The dataset documented the starting and ending dates of the insurance poli-
cies, and the following individual information on insureds: age, gender, policy
type (serious illness insurance and general health insurance), geometric region,
and occurrences and developments of claims between January 1 2019 and
September 23 2019.
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TABLE 4

THE INDIVIDUAL INFORMATION IN REAL DATA ANALYSIS.

Covariate Description Type Levels

x1 Insured’s age Quantitative
x2 Insured’s gender Binary Female: 1, male: 0
x3 Policy type Binary General health insurance: 1

Serious illness insurance: 0
x4 − x8 Geographical location Categorical Regions I–V: one-hot encoding

with (x4, x5, . . . , x8) so that
region VI: x4 = · · · = x8 = 0

The four factors were organized into eight features x1, . . . , x8, as shown in
Table 4. One month was taken as the time unit (“accident year” in previous
sections). Because the highly developed communication system, the R-delays
in health insurance are generally mediate; in the data, all the delays were not
more than 150 days (5 months). By China Banking and Insurance Regulatory
Commission, the reported claims in health insurance are generally required to
be settled within 2 months if no disagreement exists. Thus, the maximum R-
and S-delays were safely set to Dr = 5 and Ds = 3 (the real data supported this
assumption). In order to examine the accuracy of the loss reservings, June 30
2019 was set as evaluation date. Accordingly, the dataset was partitioned into
observed set (reported or settled claims and their developments before June
30 2019) and validation set (the claims and their development incurred before
June 30 2019 and reported or settled after June 30 2019), that is, we worked
with n= 6, Dr = 5, and Ds = 3 (months).

4.2. Heterogeneity of claims developments

In order to explore possible heterogeneity among risks, we produced from
the data a sequence of plots first, as listed in Figure 3. Plots (a)–(c) were the
daily risk exposures (effective policies/1000), the claims intensities (number of
reported claims per exposure), and risk intensities (proportion of individuals
over 55 years of age), all over dates, respectively. An obvious increasing in
risk exposures was seen in Plot (a). The second plot clearly depicted a het-
erogeneity in claims intensities over time. Though there appeared a synchrony
between the daily exposures and the claims intensities, it is a common sense that
no dependence should exist between the two quantities. The decreasing trend
from July 2019 to September 23 2019 might be attributable to IBNR claims
(R-delays). The increasing trend before July 2019 might be attributable to cer-
tain other factors. Plot (c) appeared to support this by an obvious synchronous
increasing between claims intensities and risk intensities and thus implied a
possibility to use age of the insureds to improve projection of the outstand-
ing claims. The last showed the violin plots of the logarithms of payments of

https://doi.org/10.1017/asb.2020.42 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.42


THE IMPACTS OF INDIVIDUAL INFORMATION 327

Month Month

R
is

k 
ex

po
su

re
s 

(1
03 )

(a) (b)
40

45
50

55
60

65
70

2019/01 2019/03 2019/05 2019/07 2019/09 2019/01 2019/03 2019/05 2019/07 2019/09

Month

Pr
op

or
tio

n 
(1

0−2
)

7.
8

7.
9

8.
0

8.
1

8.
2

8.
3

0
2

4
6

8
10

2019/01 2019/03 2019/05 2019/07 2019/09 General health Serious illness
Policy type

Lo
g 

pa
ym

en
ts

(c) (d)

FIGURE 3: Heterogeneity of claims development. (a) Risk exposures (b) Claims intensity (c) Risk intensity
(d) Logarithm of payments.
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FIGURE 4: Histograms of reporting (lower) and settlement (upper) delays (in days).

the two policy types, which indicated that claims from serious illness insurance
contracts generally caused larger payments.

Secondly, the histograms of R- and S-delays measured in days were also
provided under a few combinations of covariate values including gender, geo-
graphical location, and age, as presented in Figure 4. It was strongly proposed
that the individual information had impacts on the distributions of R- and
S-delays.

Another evidence supporting claims development heterogeneity among
individuals came from the model-checking procedure. This involved a sequence
of statistical tests for the hypotheses that the regression coefficients were zero,
after establishing the model (as illustrated in the following Subsection 4.3). In
Table 5, brought forward highlighted the results from a set of such tests for
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TABLE 5

LIKELIHOOD RATIO TESTS FOR EFFECTS OF INDIVIDUAL FEATURES ON CLAIMS DEVELOPMENT.

Hypothesis H0 χ 2 statistic df p-Value

Separate

H01 : βk = 0, k= 1, . . . , 8 5166.9 8 0.0000
H02 : πuk = 0, u= 1, . . . , 5, k= 1, . . . , 8 428.9 40 0.0000
H03 : ρvk = 0, v= 1, . . . , 3, k= 1, . . . , 8 161.7 24 0.0000
H04 : γk = 0, k= 1, . . . , 8 9439.2 8 0.0000

Joint H0: H01 −H04 are all true 18, 049.1 80 0.0000

the impacts of the covariates on the distributions of R-delays, S-delays, and
the claims amounts separately (the first four tests) and jointly (the last test).
The test statistics were the standard likelihood ratios (LR): −2 log LR∼ χ 2

k
of degree of freedom k. From the results, one arrived at the same conclusion
regarding heterogeneity.

4.3. The model and its estimation

Here addressed are the models for claims payments and parameter estimation
in the established model.

When fitting claims payments given an S-delay v, three candidate models
were considered:

• Pareto II: f (y; ηv, σ )= σησ
v

(y+ ηv)σ+1
, with log (ηv)= x′vγ and μv = ηv

σ−1 , σ > 1.

• Log-normal: f (y; ηv, σ )= 1

y
√
2πσ

exp
(
− ( log y− ηv)2

2σ 2

)
, with ηv = x′vγ and

μv = exp
(
ηv + σ 2

2

)
.

• Gamma: f (y; ηv, σ )= yσ−1 exp (− y/ηv)
�(σ )ησ

v

, with log (ηv)= x′vγ and μv = σηv,

in which the Pareto II and log-normal models are heavy-tailed, and the Gamma
is regular. In order to examine the goodness of fit of those distributions,
the corresponding statistics were computed, including log-likelihoods, Akaike
information criterions (AICs), Bayesian information criterions (BICs), and p-
values of KS, χ 2 (using R package “stats” with 20 equiprobable intervals) and
AD (using R package “ADGofTest”) tests for every models, see the left panel
of Table 6. All the statistics supported to use Pareto II to fit the data. The
same statistics were also computed for the corresponding models ignoring the
individual information, and these statistics were shown in the right panel of
Table 6. The results provided strong evidence against using those false models.

As an auxiliary tool, a graphical diagnostic was also conducted for the can-
didate models by checking the Q-Q plots of F(Yl; η̂v, σ̂ )s. Should the model
be true, these statistics would approximately follow a uniform distribution
on [0, 1], where F is the hypothesized cumulative distribution function of the
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TABLE 6

SELECTION STATISTICS FOR CLAIMS PAYMENTS AND p-VALUE (IN THE BRACKETS) OF
GOODNESS-OF-FIT STATISTICS.

Model selection statistics

With individual information Without individual information

Log-likelihood AIC BIC Log-likelihood AIC BIC
Distribution (KS test) (χ 2 test) (AD test) (KS test) (χ 2 test) (AD test)

Pareto II −111,699.3 223,424.6 223,520.8 −116, 187.9 232,385.7 232,422.7
(0.6342) (0.1037) (0.1398) (< 10−15) (< 10−15) (< 10−7)

Log-normal −111, 856.5 223,739.0 223,835.2 −115, 658.7 231,327.4 231,364.5
(1.5× 10−11) (< 10−15) (< 10−7) (< 10−15) (< 10−15) (< 10−7)

Gamma −112, 807.2 225,640.3 225,640.3 −115, 419.3 230,848.6 230,885.6
(< 10−15) (< 10−15) (< 10−7) (< 10−15) (< 10−15) (< 10−7)

The boldface in Table 6 is to highlight the best largest values of model selection statistics
computed for Pareto II, log-normal and gamma distribution.

Pareto II

Theoretical quantile

Sa
m

pl
e 

qu
an

til
e

Gamma

Theoretical quantile

Sa
m

pl
e 

qu
an

til
e

(a) (b)

Log-normal

Theoretical quantile

Sa
m

pl
e 

qu
an

til
e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pareto II
(without individual information)

Theoretical quantile

Sa
m

pl
e 

qu
an

til
e

(c) (d)

FIGURE 5: Q-Q plots for Gamma, Pareto II, and log-normal distributions. (a) Gamma (b) Pareto II (c)
Log-normal (d) Parate II under IDM

claims payment given S-delay v and Yls are the observations of payments
accompanied with S-delay v. The Q-Q curve of the IDMwith Pareto II was also
plotted and placed to the right of Figure 5. Clearly, the Q-Q analysis displayed
in plots (a) to (c) again strongly recommended IIM with Pareto II distributed
claims payments.
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TABLE 7

ESTIMATED PARAMETERS, STANDARD ERRORS, AND P-VALUES FOR CLAIMS NUMBERS: IIM.

Std. Std. Std.
Estimate error p-Value Estimate error p-Value Estimate error p-Value

β π 1 π 2

Intercept −4.8773 0.0083 0.0000 1.0763 0.0166 0.0000 0.1860 0.0234 0.0000
x1 0.0316 0.0001 0.0000 0.0067 0.0003 0.0000 0.0090 0.0005 0.0000
x2 0.0595 0.0117 0.0000 −0.0537 0.0234 0.0216 −0.0653 0.0330 0.0479
x3 1.2176 0.0123 0.0000 −0.1393 0.0246 0.0000 −0.0933 0.0347 0.0071
x4 0.7673 0.0244 0.0000 −0.2000 0.0482 0.0000 0.0982 0.0592 0.0970
x5 0.6899 0.0342 0.0000 −0.3350 0.0679 0.0000 −0.1250 0.0842 0.1378
x6 0.4640 0.0130 0.0000 −0.8323 0.0263 0.0000 −1.0009 0.0387 0.0000
x7 0.3713 0.0150 0.0000 −0.6942 0.0301 0.0000 −0.9388 0.0448 0.0000
x8 0.2327 0.0279 0.0000 −0.6831 0.0560 0.0000 −0.7452 0.0773 0.0000

π 3 π 4 π 5

Intercept −0.7168 0.0400 0.0000 −1.6150 0.0665 0.0000 −2.0133 0.0936 0.0000
x1 0.0105 0.0009 0.0000 0.0169 0.0015 0.0000 0.0286 0.0020 0.0000
x2 −0.2613 0.0592 0.0000 −0.5202 0.1052 0.0000 0.0677 0.1242 0.5853
x3 −0.0024 0.0579 0.9656 0.1526 0.0925 0.0992 −0.0296 0.1325 0.8232
x4 0.2456 0.0927 0.0081 0.5673 0.1336 0.0000 0.2633 0.1856 0.1559
x5 −0.4761 0.1711 0.0053 −0.4097 0.2965 0.1671 −0.0200 0.2797 0.9428
x6 −0.9295 0.0659 0.0000 −0.8913 0.1132 0.0000 −1.2872 0.1602 0.0000
x7 −0.8464 0.0756 0.0000 −0.8048 0.1291 0.0000 −1.2988 0.2044 0.0000
x8 −0.9161 0.1456 0.0000 −1.1461 0.2753 0.0000 −1.6853 0.4318 0.0000

ρ1 ρ2 ρ3

Intercept −0.7403 0.0182 0.0000 −1.6842 0.0502 0.0000 −12.2900 0.0989 0.0000
x1 0.0052 0.0004 0.0000 0.0072 0.0011 0.0000 −0.0026 0.0024 0.2759
x2 −0.0563 0.0256 0.0277 −0.1685 0.0725 0.0201 −0.1374 0.1396 0.3252
x3 0.0043 0.0270 0.8727 0.4435 0.0654 0.0000 −0.4118 0.1620 0.0110
x4 −0.0779 0.0535 0.1449 −1.9145 0.2053 0.0000 9.0674 0.2910 0.0000
x5 0.0484 0.0746 0.5156 −1.3663 0.2326 0.0000 8.7198 0.6505 0.0000
x6 0.1280 0.0285 0.0000 −1.0798 0.0740 0.0000 9.5204 0.1249 0.0000
x7 −0.0699 0.0330 0.0344 −1.4868 0.0980 0.0000 8.2593 0.2544 0.0000
x8 0.0421 0.0610 0.4892 −1.4348 0.1848 0.0000 8.8984 0.3461 0.0000

The parameters were estimated using the maximum likelihood method by
employing an R package called Rsolnp (Ghalanos and Theussl, 2015), a stan-
dard tool that can generally computes the solutions to nonlinear optimizations.
The parameter estimates for IIM with Pareto II, their standard errors, and p-
values were also listed in the following Tables 7 and 8. The tables read that the
most covariates were significant at level 0.05. Particularly, larger age tended to
increase the number of claims and there was a higher rate of claim occurrence
in the general health insurance than in serious illness insurance, while the latter
tended to cause larger reporting and S-delays.
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TABLE 8

ESTIMATED PARAMETERS FOR CLAIM PAYMENTS: IIM.

γ Intercept x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

Estimate 8.7763 0.0105 −0.0942 −2.9001 0.1180 0.0214 −0.0378 0.0290 0.1641 0.2173 0.4046 0.8265
Std. error 0.0134 0.0003 0.0190 0.0233 0.0390 0.0552 0.0218 0.0235 0.0452 0.0257 0.0969 0.2525
p-Value 0.0000 0.0000 0.0000 0.0000 0.0025 0.6976 0.0837 0.2174 0.0002 0.0000 0.0000 0.0010

σ̂ = 1.6681
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TABLE 9

ESTIMATED PARAMETERS: IDM.

λ̂ p̂0, p̂1, p̂2, p̂3, p̂4, p̂5 q̂0, q̂1, q̂2, q̂3 γ̂
h′, σ̂

0.0579 0.2373, 0.4252, 0.1788,
0.0763, 0.0423, 0.0401

0.5889, 0.3471, 0.0480,
0.0160

8.3794, 8.5778, 8.6416,
8.9645,1.6681

0.0 0.5 1.0 1.5 2.0 2.5 3.0−1
.2

4
−1

.2
2

−1
.2

0
−1

.1
8

−1
.1

6

 σ

lo
g-

lik
el

ih
oo

d
(1

05 )

5e+07 6e+07 7e+07 8e+07 9e+07 1e+08

0.
0e

+0
0

1.
0e

−0
7

2.
0e

−0
7

IIM
IDM

(a) (b)

FIGURE 6: The insensitivity of likelihood and the simulated outstanding liabilities. (a) Maximum
log-likelihood over σ (b) Estimated densities of R̂ in (3.1)

The estimated λ, p, q, γ h
v s, and σ in IDM are listed in Table 9, computed

based on the formulae in (3.15). Note that the direct MLE of σ was originally
σ̂ = 0.9491, resulting in an irregular distribution of the payments under which
the mean is infinity. However, a careful examination found that the maximum
log-likelihood was quite flat when σ took values approximately in [0.9, 2.0]. See
the plot to the left of Figure 6 for a visualization of the maximum log-likelihood
over σ , which showed that the change in the maximum log-likelihood was small
when σ ran up from 0.5 . Therefore, we simply set σ̂ = 1.6681, a value obtained
under IIM with Pareto II, which had been shown to fit the data quite well with
individual information.

4.4. Loss reserving

Firstly, by substituting their estimates into the computation procedure for the
parameters of IIM in Table 1, loss reserving R̂m was computed in a way dis-
played in Table 10. R̂H was also computed in the same manner. The two
reservings were listed in Table 11. The table also presented nominal 95%
confidence intervals, which were computed with the asymptotic variances
(Theorems 3.4 and 3.5) approximated by their empirical versions (substituting
the estimates for the parameters).

4.5. Accuracy evaluation

In this real data analysis, the true values of the parameters and thus the the
true distribution of claim developments were unknown. Hence, to evaluate the
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TABLE 10

COMPUTATION OF LOSS RESERVING Rm(θ̂ )=Rrbns
m (ρ̂, γ̂ , σ̂ )+Ribnr

m (θ̂ ).

RBNS Settlement delay Accident Reporting delay IBNR
reserve 3 2 1 year 1 2 3 4 5 reserve

590,619 38,906 86,909 464,804 1

1,141,402 99,090 451,159 591,153 2 1,074,815 1,074,815
2,361,841 418,313 813,786 1,129,742 3 1,173,582 1,239,333 2,412,915
4,786,300 248,457 1,593,137 2,944,706 4 2,459,996 1,289,009 1,364,776 5,113,781
9,565,154 1,250,456 8,314,698 5 6,382,374 2,614,485 1,369,544 1,451,360 11,817,763
8,009,765 8,009,765 6 16,002,858 6,623,571 2,712,566 1,419,821 1,504,758 28,263,574
26,455,081 Total: 75,137,929 48,682,848
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TABLE 11

LOSS RESERVINGS, CONFIDENCE INTERVALS (IN MILLIONS, AND TWO-SIDE p-VALUES).

Model Loss reserving 95% asymptotic confidence interval Realized p-Value

IIM 75.1379 (66.6724, 83.6035) ≥ 80.0181 0.2836
IDM 56.6157 (36.4723, 76.7592) ≥ 80.0181 0.0141

prediction capability of IIM, instead of computing the absolute relative error
|R̂m−Rm|

Rm
× 100 (as did in the simulation previously), the distribution of outstand-

ing liabilities R at evaluation date June 30 2019 (see (3.1)) was approximated
using a Monte Carlo procedure that drew 20000 computerized realizations for
every unrealized claims development from the estimated distributions as what
follows.

I Monte Carlo under IIM.
Repeat for J = 1 to 20,000 to produce Monte Carlo realizations
R1,R2, . . . ,R20,000 as follows:

(i) For each policy (i, k) (i> n−Dr) and every R-delay u satisfying
u> n− i, first a number Nibnr

iku was generated from a Poisson distri-
bution with mean rik exp (x′ikβ̂)p̂iku, where p̂iku is obtained by plugging
π̂ into piku, then was a set (Nibnr

iku0,N
ibnr
iku1, . . . ,N

ibnr
ikuDs) of numbers from

a multinomial M(Nibnr
iku ; q̂ik0, q̂ik1, . . . , q̂ikDs) if Nibnr

iku > 0, where q̂ikv =
qikv(xik, ρ̂), and finally was Nibnr

ikuv payments from a Pareto II dis-
tribution with density f (y; η̂v, σ̂ ) with log (ηv)= x′ikvγ̂ for every v=
0, 1, . . . ,Ds.

(ii) For every number Nrbns
iku (> 0), a set (Nrbns

iku,n−i−u+1, . . . ,N
rbns
ikuDs) of

numbers was drawn from a multinomial M(Nrbns
iku ; (q̂ik,n−i−u+1, . . . ,

q̂ikDs)/ ˆ̄Qik,n−i−u+1), where ˆ̄Qik,n−i−u+1 was a plug-in estimate as that of
q̂ikv, and then Nrbns

ikuv payments from a Pareto II distribution with den-
sity f (y; η̂v, σ̂ ) with log (ηv)= x′ikvγ̂ for every v= n− i− u+ 1, . . . ,Ds.

(iii) Compute Ribnr
J , Rrbns

J , and then RJ by means of (3.1)
II Monte Carlo under IDM.

The IBNR and RBNS claims and their developments using the “false”
IDM with Pareto II were also generated in the same way described above
to produce correspondingly 20,000 Monte Carlo realizations.

The automatically generated densities by an R package from the 20,000
Monte Carlo realizations under IIM and IDM were visualized in part (b)
of Figure 6, showing a sharp difference between the distributions of the two
predictions. The middle vertical line there represented the real observed out-
standing claims (listed also in the fourth column of Table 11). This plot told
a much greater accuracy in IIM by including effective individual informa-
tion than IDM that ignored that useful information. In addition, denoting by
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TABLE 12

RUN-OFF TRIANGLE FOR CUMULATIVE PAYMENTS AND LOSS RESERVING BY CHAIN-LADDER
METHOD.

Development year
Accident Loss
year 0 1 2 3 4 5 reserving
1 0.00 50,693 1,579,167 3,295,008 4,206,331 5,308,198 –
2 68,834 3,717,531 8,318,154 11,097,503 12,642,863 15,954,719 3,311,855
3 1,076,717 8,984,984 15,064,103 19,330,621 22,630,197 28,558,280 9,227,660
4 2,042,607 13,256,064 23,831,204 32,196,194 37,691,818 47,565,360 23,734,156
5 2,923,321 18,860,600 35,381,929 47,801,339 55,960,631 70,619,772 51,759,172
6 2,737,337 20,097,259 37,701,864 50,935,594 59,629,878 75,250,195 72,512,857

Total: 160.5457× 106

Rrl realized outstanding liabilities, the two-side “p-values” were computed by
2

20,000min{#(RI <Rrl), #(RI >Rrl)} . Coincide with the result of Theorem 3.5,
the prediction came with a great bias when omitting the individual informa-
tion which indeed influenced the occurrence of claims and their developments.
In this dataset, the reserving R̂m was larger than R̂H , though the purpose of
introducing individual information is to give more accurate rather than higher
reservings

4.6. Comparison with chain ladder

To compare with, we also computed a loss reserving by means of the chain-
ladder method from the data, as shown in the run-off triangle in Table 12. The
estimated developments of cumulative payments by chain-ladder method were
displayed in the bottom right part of the table (the boldfaced). The rightmost
column listed the loss reservings of accident years and the last rowwas the total,
which gave almost the twice of the the real loss reserve (the fourth column in
Table 11).

5. CONCLUSIONS

This research is mainly motivated by the trend of Big Data applications. In
terms of a parametric model for loss reserving which takes into account individ-
ual information, this paper studied the asymptotic behaviors of loss reserving
with and ignoring individual information. Note that this approach clearly
makes tremendous sense in the insurance industry because, in most practice, a
portfolio usually contains a huge number of policies. In addition to theoretical
induction, this study also examined by simulations the error reduction from
introducing individual covariates in prediction of the outstanding liabilities.
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The analyzed model, which is parametric in a statistical context, has
achieved its purpose to demonstrate the reduction effects of individual
information. However, some researchers may be concerned with the limitation
that the model may be subjective and thus question its robustness in practi-
cal applications. To address this aspect, a recommended next step would be to
study this problem under a nonparametric framework.

Another potential limitation of this model is its critical assumption on the
independence between individuals. While this would be true in a majority of
real insurance operations, it has also long been recognized that, in many cir-
cumstances, a degree of dependence exists among individuals. An example of
this is in group insurance, in which individuals from a same group may be
dependent in facing the same risks. Significant efforts have been made in areas
such as pricing, credibility models, among others, and so on to incorporate
the effects of dependence among risks. Thus, studying loss reserving under
conditions of dependence would also be worth of further research efforts.

Another potential limitation is that in the model we discussed, the same
covariates x are shared by the distributions of R-delays, S-delays, and the
payments, when, in fact, they may be affected by different sets of covariates.
While covariates determinations are basically the business of the mechanism
governing the producing of data, model/variable selection procedures may
help.

In the insurance industries, loss reserving is generally periodically reviewed,
and it would be helpful but challenging to analyze the problems of loss reserv-
ing in terms of continuous time stochastic processes in a point of view of
mathematics—like the framework proposed by Heras et al. (2018)—but leave
the distribution of those stochastic processes fully or at least partly unknown.

ACKNOWLEDEGMENT

This work was supported by NSFC (71771089), the Shanghai Philosophy and
Social Science Foundation (2015BGL001), and the National Social Science
Foundation Key Program of China (17ZDA091).

REFERENCES

ARJAS, E. (1989) The claims reserving problem in non-life insurance: Some structural ideas.
ASTIN Bulletin: The Journal of the IAA, 19(2), 139–152.

AVANZI, B., WONG, B. and YANG, X. (2016) A micro-level claim count model with overdisper-
sion and reporting delays. Insurance: Mathematics and Economics, 71, 1–14.

BADESCU, A.L., LIN, X.S. and TANG, D. (2016) A marked Cox model for the number of IBNR
claims: Theory. Insurance: Mathematics and Economics, 69, 29–37.

BOJ, E. and COSTA, T. (2018) Logistic classification for new policyholders taking into account
prediction error. In Mathematical and Statistical Methods for Actuarial Sciences and Finance,
pp. 161–165. Springer.

https://doi.org/10.1017/asb.2020.42 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.42


THE IMPACTS OF INDIVIDUAL INFORMATION 337

CREVECOEUR, J., ANTONIO, K. and VERBELEN, R. (2019) Modeling the number of hid-
den events subject to observation delay. European Journal of Operational Research, 277(3),
930–944.

DENUIT, M., MARÉCHAL, X., PITREBOIS, S. and WALHIN, J.F. (2007) Actuarial Modelling of
Claim Counts: Risk Classification, Credibility and Bonus-Malus Systems. London: John Wiley
& Sons.

ENGLAND, P.D. and VERRALL, R.J. (2002) Stochastic claims reserving in general insurance.
British Actuarial Journal, 8(3), 443–518.

ENGLAND, P.D. and VERRALL, R.J. (2006) Predictive distributions of outstanding liabilities in
general insurance. Annals of Actuarial Science, 1(2), 221–270.

FUNG, T.C., BADESCU, A. and LIN, X.S. (2020) A new class of severity regression
models with an application to IBNR prediction. North American Actuarial Journal.
doi:10.1080/10920277.2020.1729813.

GABRIELLI, A. and WÜTHRICH, V.M. (2018) An individual claims history simulation machine.
Risks, 6(2), 29.

GHALANOS, A. and THEUSSL, S. (2015) Rsolnp: General Non-linear Optimization Using
Augmented Lagrange Multiplier Method. R package version 1.16.

GODECHARLE, E. and ANTONIO, K. (2015) Reserving by conditioning on markers of individ-
ual claims: A case study using historical simulation. North American Actuarial Journal, 19(4),
273–288.

GOGOL, D. (1993) Using expected loss ratios in reserving. Insurance: Mathematics and
Economics, 12(3), 297–299.

HERAS, A., MORENO, I. and VILAR-ZANÓN, J.L. (2018) An application of two-stage quantile
regression to insurance ratemaking. Scandinavian Actuarial Journal, 2018(9), 753–769.

HESSELAGER, O. (1995) Modelling of discretized claim numbers in loss reserving. ASTIN
Bulletin: The Journal of the IAA, 25(2), 119–135.

HUANG, J., QIU, C. and WU, X. (2015a) Stochastic loss reserving in discrete time: Individual vs.
aggregate data models. Communications in Statistics-Theory and Methods, 44(10), 2180–2206.

HUANG, J., QIU, C., WU, X. and ZHOU, X. (2015b) An individual loss reserving model with
independent reporting and settlement. Insurance: Mathematics and Economics, 64, 232–245.

HUANG, J., WU, X. and ZHOU, X. (2016) Asymptotic behaviors of stochastic reserving:
Aggregate versus individual models. European Journal of Operational Research, 249(2),
657–666.

JEWELL, W.S. (1989) Predicting IBNYR events and delays: I. continuous time. ASTIN Bulletin:
The Journal of the IAA, 19(1), 25–55.

JEWELL, W.S. (1990) Predicting IBNYR events and delays II. Discrete time. ASTIN Bulletin:
The Journal of the IAA, 20(1), 93–111.

KUO, K. (2019). Deep Triangle: A deep learning approach to loss reserving. Risks, 7(3), 97.
LARSEN, C.R. (2007). An individual claims reserving model. ASTIN Bulletin: The Journal of the

International Actuarial Association, 37(01), 113–132.
MACK, T. (1993) Distribution-free calculation of the standard error of chain ladder reserve

estimates. ASTIN Bulletin: The Journal of the IAA, 23(2), 213–225.
NORBERG, R. (1993). Prediction of outstanding liabilities in non-life insurance 1. ASTIN

Bulletin: The Journal of the IAA, 23(1), 95–115.
NORBERG, R. (1999). Prediction of outstanding liabilities II. Model variations and extensions.

ASTIN Bulletin: The Journal of the IAA, 29(1), 5–25.
PIGEON, M., ANTONIO, K. and DENUIT, M. (2013). Individual loss reserving with the

multivariate skew normal framework.ASTIN Bulletin: The Journal of the IAA, 43(3), 399–428.
PIGEON, M., ANTONIO, K. and DENUIT, M. (2014). Individual loss reserving using paid-

incurred data. Insurance: Mathematics and Economics, 58, 121–131.
VAN DER VAART, A.W. (2000). Asymptotic Statistics. New York: Cambridge University Press.
VERBELEN, R., ANTONIO, K., CLAESKENS, G. and CRÈVECOEUR, J. (2017). Predicting daily

IBNR claim counts using a regression approach for the occurrence of claims and their
reporting delay. Working paper. Available at https://lirias.kuleuven.be/handle/123456789/
580750.

VERRALL, R.J. (2000). An investigation into stochastic claims reserving models and the chain-
ladder technique. Insurance: Mathematics and Economics, 26(1), 91–99.

https://doi.org/10.1017/asb.2020.42 Published online by Cambridge University Press

https://doi.org/10.1080/10920277.2020.1729813
https://lirias.kuleuven.be/handle/123456789/580750
https://lirias.kuleuven.be/handle/123456789/580750
https://doi.org/10.1017/asb.2020.42


338 Z. WANG, X. WU AND C. QIU

VERRALL, R.J. and WÜTHRICH M.V. (2016). Understanding reporting delay in general insur-
ance. Risks, 4(3), 25.

WHITE, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica:
Journal of the Econometric Society, 50, 1–25.

WÜTHRICH, M.V. (2018). Machine learning in individual claims reserving. Scandinavian
Actuarial Journal, 2018(6), 465–480.

WÜTHRICH,M.V. andMERZ,M. (2008) Stochastic Claims ReservingMethods in Insurance. West
Sussex: John Wiley & Sons.

YU X. and HE, R. (2016). Individual claims reserving models based on marked Cox processes (in
Chinese). Chinese Journal of Applied Probability and Statistics, 32(2), 201–219.

ZHAO, X. and ZHOU, X. (2010). Applying copula models to individual claim loss reserving
methods. Insurance: Mathematics and Economics, 46(2), 290–299.

ZHIGAO WANG
Key Laboratory of Advanced Theory and Application
in Statistics and Data Science-MOE
School of Statistics
East China Normal University
Shanghai, China
E-Mail: wangzhigao2015@163.com

XIANYI WU
Key Laboratory of Advanced Theory
and Application in Statistics and Data Science-MOE
School of Statistics
East China Normal University
Shanghai
China
E-Mail: xywu@stat.ecnu.edu.cn

CHUNJUAN QIU (Corresponding author)
Key Laboratory of Advanced Theory
and Application in Statistics and Data Science-MOE
School of Statistics
East China Normal University
Shanghai, China
E-Mail: cjqiu@stat.ecnu.edu.cn

APPENDIX A. PROOFS OF THEOREMS

A.1. Proof of Lemma 2.1

This proof temporarily uses E to represent expectation given (r, x) so that I =−E[ ∂2lEo
∂θ∂θ ′ ].

Here presented in only the computation of E[ ∂
2lEo

∂ρ∂ρ′ ] and the others can similarly be done
using (2.3) and Assumption 1.
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By some algebraic computation, it follows that

∂2lEo

∂ρ∂ρ′ = −
⎡
⎣
⎛
⎝ Dsi∑
v=0

Ns
v +

Dri∑
u=0

Nrbns
u

⎞
⎠ (diag(q)− qq′)

+
Dri∑
u=0

Nrbns
u

⎛
⎝ Ds∑
j=n−i−u

qj
Q̄n−i−u

δj

Ds∑
j=n−i−u

qj
Q̄n−i−u

δ
′
j −

Ds∑
j=n−i−u

qj
Q̄n−i−u

δjδ
′
j

⎞
⎠
⎤
⎦⊗ xx′.

Because
∑Dsi

v=0 Ns
v +

∑Dri
u=0 Nrbns

u is just the number of those reported claims incurred in
accident year i:

E

⎛
⎝ Dsi∑
v=0

Ns
v +

Dri∑
u=0

Nrbns
u

⎞
⎠= r exp (x′β)PDri .

Observe further that Nrbns
u = 0 for i≤ n−Ds and 0≤ u≤ n− i−Ds. Therefore,

E

[
∂2lEo

∂ρ∂ρ′

]
=− r exp (x′β)

⎡
⎢⎣PDri (diag(q)− qq′)

−
Dri∑

u=(n−i−Ds+1)+
pu

⎛
⎜⎜⎝
0 0

0 diag(qn−i−u)−
qn−i−uq′n−i−u

Q̄n−i−u

⎞
⎟⎟⎠
⎤
⎥⎥⎦⊗ xx′. (A1)

Let v= n− i− u and note that

diag(q)− qq′ −
⎛
⎜⎝
0 0

0 diag(qv)− qvq
′
v

Q̄v

⎞
⎟⎠=

⎛
⎝ diag(qv)− qvq′v −qvq′v

−qvq′v Qv
Q̄v
qvq
′
v

⎞
⎠ .

Then, Equation (A1) gives rise to the desired result.

A.2. Proof of Theorem 2.1

By standard theory of MLE, what is needed is just the computation of the information
matrix. Let

Ijm =
n∑
i=1

mi∑
k=1

Ijik, j= 1, 2, 3. (A2)
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Applying the law of large numbers and exchanging the summation orders:

I1 � lim
m→∞

I1m(β, π )
m

=E

⎡
⎣ Dr∑
u=0

n−u∑
i=1

κipu

(
1

δu − p
)
(1, δ′u − p′)⊗ (r exp (x′β)xx′)

⎤
⎦ a.s.,

I2 =E

⎡
⎣
⎛
⎝n−Ds∑

i=1
κi

n−i−Ds∑
u=0

pu(diag(q)− qq′)

+
Ds−1∑
v=0

n−v∑
i=(n−v−Dr)∨1

κipn−i−v

⎛
⎝ diag(qv)− qvq′v −qvq′v

−qvq′v Qv
Q̄v
qvq
′
v

⎞
⎠
⎞
⎠⊗ (r exp (x′β)xx′)

⎤
⎦ a.s.,

where I2 � limm→∞ I2m(θ )
m and

I3 � lim
m→∞

I3m(θ )
m
=−E

⎡
⎣r exp (x′β) Ds∑

v=0

n−v∑
i=1

κiPDri+vqv
∂2 log f (Y ; ηv, σ )
∂(γ ′, σ )′∂(γ ′, σ )

⎤
⎦ .

A.3. Proof of Theorem 3.1

According to (3.1), the loss reserve can be computed as:

E[R|F ]=E

[ n∑
i=1

Rrbnsi |F
]
+E

⎡
⎣ n∑
i=n−Dr+1

Ribnri |F
⎤
⎦ .

Firstly, under Assumption 1, the RBNS loss reserve is

E

[ n∑
i=1

Rrbnsi |F
]
=E

⎡
⎣ n∑
i=1

mi∑
k=1

Nik∑
l=1

YiklIA rbns
i

(Uikl ,Vikl)|F
⎤
⎦

=
n∑
i=1

Dri∑
u=0

E

⎡
⎢⎣ mi∑
k=1

Nrbns
iku∑
l=1

Y∗ikl |F
⎤
⎥⎦

=
Ds∑
v=1

n−v+1∑
i=(n−v−Dr+1)∨1

mi∑
k=1

Nrbns
ik,n−i−v+1μ̃ikv,

where, given xik, Y∗ik1, . . . ,Y
∗
ikNrbns

iku
are i.i.d variables with the same distribution as that of

Yik1 given Vik1 > n− i− u and the third equality follows from the definition of μ̃ikv (see
(3.4)) and the substitution v= n− i− u.

Second, recalling that Niku means the number of claims with R-delay u, the IBNR loss
reserve can be computed by
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E

⎡
⎣ n∑
i=n−Dr+1

Ribnri |F
⎤
⎦=E

⎡
⎣ n∑
i=n−Dr+1

mi∑
k=1

Nik∑
l=1

YiklIA ibnr
i

(Uikl ,Vikl)|F
⎤
⎦

=
n∑

i=n−Dr+1

mi∑
k=1

Dr∑
u=n−i+1

E

⎡
⎣Niku∑
l=1

Yikl |F
⎤
⎦

=
Dr∑
u=1

n∑
i=n−u+1

mi∑
k=1

pikurik exp (x′ikβ)μ̃ik0.

The proof is then complete.

A.4. Proof of Theorem 3.4

For any u ∈ {0, 1, . . . ,Dr}, let gu = (gu1, gu2, gu3)′ and ϕu = (ϕu1, ϕu2, ϕu3)′ be such that⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

gu1 = 0, 0 the zero vector of dimension (Dr + 1)p, ϕu1 = vec (1, (δu − p)) μ̃0 ⊗ x,
gu2 =

(
0

diag(qn−i−u)μn−i−u − μ̃n−i−u+1qn−i−u

)
⊗ x, ϕu2 =

(
0

diag(q0)μ0 − μ̃0q0

)
⊗ x,

gu3 =
(

0
αn−i−u+1

)
⊗ x, ϕu3 =

(
0
α0

)
⊗ x.

First note that

Ds∑
v=1

∂Orbns
v (ρ, γ , σ )

∂θ
=

Dr∑
u=0

n−u∑
i=(n−u−Ds+1)∨1

mi∑
k=1

Nrbns
iku∑Ds

s=n−i−u+1 qiks
giku,

where giku stands for the value of gu computed on individual (i, k), and

∂Oibnr
u (θ )
∂θ

=
n∑

i=n−u+1

mi∑
k=1

pikurik exp (x′ikβ)ϕiku,

in which ϕiku also represents ϕu’s value computed on individual (i, k). It follows from the law

of large numbers that 1
m

∂Rm
∂θ

P→ g̃0, where g̃0 = vec(g̃1, g̃2, g̃3). Therefore, by Theorem 2.1:

1√
m
(Rm(θ̂ )−Rm(θ))= 1

m
∂Rm
∂θ

√
m(θ̂ − θ )+ op

(
‖θ̂ − θ‖√

m

)
L→N(0, σ 2

I ).

A.5. Proof of Theorem 3.5

The proof proceeds in two parts with the first for the asymptotic bias (3.23) and the other
for the asymptotic normality (3.22). Since r appears as the form of r exp (x′β) in the
following statements, denote by η(β)= r exp (x′β).

Part I: Asymptotic bias.
Recalling the definition of Rm and ŘH (i.e., (3.6) and (3.20), respectively), it holds true

that
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ŘH −Rm =
Ds∑
v=1

Drv∑
u=0

mn−u−v+1∑
k=1

Nrbns
n−u−v+1,ku( ˇ̃μv − μ̃n−u−v+1,kv)

+
Dr∑
u=1

n∑
i=n−u+1

mi∑
k=1

(rikλ̌u ˇ̃μ0 − pikuηik(β)μ̃ik0).

Then, the law of large numbers and some simple algebra operations show that

1
m
(ŘH −Rm) a.s.→=

Ds∑
v=1

Drv∑
u=0

κn−v−u+1E[puη(β)Q̄v−1( ˇ̃μv − μ̃v)]

+
Dr∑
u=1

n∑
i=n−u+1

κiE[puη(β)( ˇ̃μ0 − μ̃0)]. (A3)

Part II: Asymptotic Normality.
Simple algebra computation gives

1√
m
(R̂H − ŘH )=

Ds∑
v=1

Gv
m

√
m( ˆ̃μv − ˇ̃μv)+

√
m( ˆ̃μ0 − ˇ̃μ0)

Dr∑
u=1

r[u]
m

λ̂u + ˇ̃μ0

Dr∑
u=1

r[u]
m

√
m(λ̂u − λ̌u).

(A4)

Let λ̂= (λ̂1, . . . , λ̂Dr )′, ˆ̃μ= ( ˆ̃μ0, ˆ̃μ1, . . . , ˆ̃μDs )′ with λ̂us and ˆ̃μvs given by (3.15) and
Theorem 3.3, respectively, and ξm = 1

m (
ˇ̃μ0(r[1], r[2], . . . , r[Dr]),

∑Dr
u=1 r[u]λ̂u,G1,G2, . . . ,GDs )′.

Then, the asymptotic distribution of

1√
m
(R̂H − ŘH )= (ξ ′m/m)

√
mvec(λ̂− λ̌, ˆ̃μ− ˇ̃μ) (A5)

can be simply deduced from that of λ̂ and ˆ̃μ, where λ̌= (λ̌1, . . . , λ̌Dr )′ and ˇ̃μ=
( ˇ̃μ0, ˇ̃μ1, . . . , ˇ̃μDs )′. This long and tedious process is addressed step by step in what follows.

Step 1. The asymptotic normality of statistics r= (r(1), r(2), . . . , r(Dr))′, N r =
(Ñr

1, Ñ
r
2 . . . , Ñr

Dr )
′, S and sm(γ̌

h, σ̌ ), where

S = (S′0, S
′
1, . . . , S

′
Ds )
′ with Sv = (Ñs

v, Ñ r
v )
′. (A6)

Recall that the output of the operator vec( ∗ ) stacks the components of the imput ∗ to
form a vector or a matrix in vertical direction depending on what the components are. The
law of large numbers yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r(u)/m
a.s.→ ř(u) :=

n−u∑
i=1

κiE[r], u= 1, 2, . . . ,Dr,

Ñr
u/m

a.s.→
n−u∑
i=1

κiE[puη(β)], u= 1, 2, . . . ,Dr,

Sv/m
a.s.→ Šv :=

n−v∑
i=1

κiE
[
PDri+vη(β)(qv, Q̄v−1)′

]
, v= 0, 1, . . . ,Ds.

(A7)
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Denote by (au, |s2u=s1 )= (as1 , . . . , as2 ) andKu =
∑n−u

i=1 κi. By Linderberg–Feller’s central limit
theorem,

√
m
(
1
m
vec(r,N r, S, sm)− vec(ř, Ň

r
, Š, 0)

)
L→N(0, Č), (A8)

where sm = sm(γ̌ h, σ̌ ), ř= vec(ř(u), |Dru=1), Ň
r = vec(KuE[puη(β)], |Dru=1), Š = vec(Šv, |Dsv=0) and

Č = lim
m→∞

1
m
Cov(vec(r,N r, S, sm)).

We now derive Č under Assumption 1 computed by means of the formula:

Cov(vec(r,N r, S, sm))=E[Cov(vec(r,N r, S, sm)|X)]+Cov(E[vec(r,N r, S, sm)|X]),

where the X is composed of the observed covariates and risk exposures. Apparently,
Cov(r, vec(N r, S, sm)|X)= 0. Then, combining some algebraic computation, the law of large
numbers gives

Fnsv � lim
m→∞

E[Cov(N r, Sv|X)]
m

= vec
(
Ku+vE

[
puη(β)qvς ′v

]
,
∣∣Dr
u=1
)
,

F
ns
v � lim

m→∞
Cov(E[N r|X],E[Sv|X])

m
= vec

⎛
⎝ n−u∨v∑

i=1
κiCov

(
puη(β), η(β)PDri+vqvς

′
v

)
,

∣∣∣∣∣
Dr

u=1

⎞
⎠ ,

Fssv � lim
m→∞

E[Cov(Sv, Sv|X)]
m

=
Drv+1∑
u=0

E [Ku+vpuη(β)Av] ,

F
r
0 � lim

m→∞
Cov(E[r|X])

m
= (Ku∨sVar(r))Dr×Dr , u, s ∈ {1, 2, . . . ,Dr},

F
r
1 � lim

m→∞
Cov(E[r|X],E[N r|X])

m
= (Ku∨sCov(r, η(β)ps))Dr×Dr , u, s ∈ {1, 2, . . . ,Dr},

F
r
2 � lim

m→∞
Cov(E[r|X],E[S|X])

m
= vec

⎛
⎜⎝
⎛
⎝ n−u∨v∑

i=1
κiCov

(
r, η(β)PDri+vqvς

′
v

)
,

∣∣∣∣∣
Ds

v=0

⎞
⎠ ,

∣∣∣∣∣∣
Dr

u=1

⎞
⎟⎠ ,

F
n � lim

m→∞
Cov(E[N r|X])

m
= (F

n
us)Dr×Dr and F

ss � lim
m→∞

Cov(E[S|X])
m

= (F
ss
tv)(Ds+1)×(Ds+1),

(A9)

where

ςv = (1, Q̄v−1qv
)′, Av = qv

⎛
⎝ 1 1

1 Q̄v−1
qv

⎞
⎠ , F

n
us =Ku∨sCov(puη(β), η(β)ps), u, s ∈ {1, 2, . . . ,Dr},
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and F
ss
tv =

n−t∨v∑
i=1

κiCov
(
η(β)PDri+t qtςt, η(β)PDri+vqvςv

)
, t, v ∈ {0, . . . ,Ds}. Also,

Fnd � lim
m→∞

E[Cov(N r, sm|X)]
m

= vec

⎛
⎝ Ds∑
v=0

Ku+vE
[
puη(β)qv

∂ log f (Y ; γ hv , σ )

∂(γ h′, σ )

]
, u= 1, 2, . . . ,Dr

⎞
⎠ ,

Fsdv � lim
m→∞

E[Cov(Sv, sm|X)]
m

=
Ds∑
t=v

Dr∑
u=0

Ku+t(I{t=v}, 1)′ ⊗E

[
puη(β)qt

∂ log f (Y ; γ ht , σ )

∂(γ h′, σ )

]
,

and

Fdd � lim
m→∞

E[Cov(sm, sm|X)]
m

=
Ds∑
v=0

Dr∑
u=0

Ku+vE
[
puη(β)qv

∂ log f (Y ; γ hv , σ )

∂(γ h′, σ )′
∂ log f (Y ; γ hv , σ )

∂(γ h′, σ )

]
.

Also denote F
r
3 = limm→∞ Cov(E[r|X],E[sm|X])

m and F
nd = limm→∞ Cov(E[Nr|X],E[sm|X])

m that is,

F
r
3 = vec

⎛
⎜⎝ Ds∑

v=0

n−u∨v∑
i=1

κiCov

(
r, η(β)PDri+vqvE

[
∂ log f (Y ; γ hv , σ )

∂(γ h′, σ )′

∣∣∣∣∣ x
])

,

∣∣∣∣∣∣
Dr

u=1

⎞
⎟⎠ ,

and

F
nd = vec

⎛
⎜⎝ Ds∑

v=0

n−u∨v∑
i=1

κiCov

(
puη(β), η(β)PDri+vqvE

[
∂ log f (Y ; γ hv , σ )

∂(γ h′, σ )′

∣∣∣∣∣ x
])

,

∣∣∣∣∣∣
Dr

u=1

⎞
⎟⎠ .

Besides,

F
sd
t � lim

m→∞
Cov(E[St|X],E[sm|X])

m

=
Ds∑
v=0

n−t∨v∑
i=1

κiCov

(
η(β)PDri+t qtςt, η(β)PDri+vqvE

[
∂ log f (Y ; γ hv , σ )

∂(γ h′, σ )′

∣∣∣∣∣ x
])

,

and

F
dd � lim

m→∞
Cov(E[sm|X],E[sm|X])

m
=

n∑
i=1

κiVar

⎛
⎝η(β)

Dsi∑
v=0

PDri+vqvE

[
∂ log f (Y ; γ hv , σ )

∂(γ h′, σ )′

∣∣∣∣∣x
]⎞
⎠ .

Then, F
sd = vec(F

sd
0 , F

sd
1 , . . . , F

sd
Ds ).
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The above procedure gives rise to the equality Č = Č1 + Č2, where

Č1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 · · · 0 0

0 diag(Ň
r
) Fns0 Fns1 · · · FnsDs Fnd

0 Fns′0 Fss0 ζ Š′1 · · · ζ Š′Ds Fsd0

0 Fns′1 Š1ζ ′ Fss1 · · · ζ Š′Ds Fsd1
...

...
...

...
. . .

...
...

0 Fns′Ds ŠDsζ ′ ŠDsζ ′ · · · FssDs FsdDs

0 Fnd′ Fsd′0 Fsd′1 · · · Fsd′Ds Fdd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

Č2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

F
r
0 F

r
1 F

r
2 F

r
3

F
r′
1 F

n
F
ns

F
nd

F
r′
2 F

ns′
F
ss

F
sd

F
r′
3 F

nd′
F
sd′

F
dd

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Step 2. The asymptotic distribution of
√
mvec(λ̂− λ̌, ĥ− ȟ, ˆ̃μ− ˇ̃μ).

Write ˆ̃γ = (γ̂ h′, σ̂ )′ and correspondingly write γ̃ = (γ̌ h′, σ̌ )′, where (γ̌ h′, σ̌ ) are defined in
(3.18). Expanding sm(γ̃ ) at ˆ̃γ gives rise to

1√
m
sm(γ̃ )=

⎡
⎣∫ 1

0

Imγ

(
γ̃ + t( ˆ̃γ − γ̃ )

)
m

⎤
⎦ dt · √m( ˆ̃γ − γ̃ ),

where

Imγ (γ h, σ )=−
Ds∑
v=0

Ñs
v∑

l=1

∂2 log f (Yvl ; γ hv , σ )

∂(γ h′, σ )′∂(γ h′, σ )
.

Under usual regular conditions, the statistic Imγ /m almost surely converges to the non-
singular matrix:

Iγ (γ h, σ )=−
Ds∑
v=0

n−v∑
i=1

E

[
η(β)PDri+vqvEfx

[
∂2 log f (Y ; γ hv , σ )

∂(γ h′, σ )′∂(γ h′, σ )

]]

at neighborhood around γ̃ . Denote by Lm0 =√mvec(λ̂− λ̌, ĥ− ȟ, ˆ̃γ − γ̃ ), where ĥ=
(ĥ0, ĥ1, . . . , ĥDs )′ and ȟ= (ȟ0, ȟ1, . . . , ȟDs )′ with ĥv given by (3.15) , by which so that ĥv =
H(Sv/m), v= 0, 1, . . . ,Ds, where H(y1, y2)= y1

y2
. With the partial derivatives of H that is,

Ḣ2(y1, y2)= ( 1
y2
,− y1

y22
), define two block matrices � = (− diag(λ̌), IDr )diag

−1(ř) and

�0 = diag (�1,�20) with �1 = diag
(
Ḣ2(Šv),

∣∣∣Ds
v=0

)
and �20 = I−1γ (γ h, σ ). (A10)
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It follows from the delta method that Lm0
L→N(0,�0), with �0 = diag(�,�0)Čdiag

(� ′,�′0). Further, denote by Lm =√mvec(λ̂− λ̌, ĥ− ȟ, μ̂− μ̌), where μ̂= (μ̂0, μ̂1, . . . ,
μ̂Ds )′, μ̌= (μ̌0, μ̌1, . . . , μ̌Ds )′ with μ̂v given by (3.15). At this point, we need to first derive
the asymptotic distribution of Lm, to which the following formula may help

Ḟ1 = vec
(

∂μv

∂(γ h′, σ )
, v= 0, 1, . . . ,Ds

)
(γ h,σ )′=γ̃

,

where the partial derivatives:

∂μv

∂γ hv
= ∂μv

∂ηv

1
ġ(ηv)

and
∂μv

∂γ hj

= 0, j �= v,

with μv =μv(γ hv , σ ). It follows again from the delta method that Lm
L→N(0,�), with � =

diag(�,�)Čdiag(� ′,�′), where, recalling �1 in (A10),

�= diag (�1,�2) with �2 = Ḟ1I−1γ (γ h, σ ). (A11)

To compute �, divide the matrix Č into a 2× 2 block matrix compatible with the block
diagonal matrices diag(�,�) and diag(� ′,�′) as:

Č =
(
Č11 Č12

Č′12 Č22

)
.

Hence,

� =
(

�Č11�
′ �Č12�

′

�Č′12� ′ �Č22�
′

)
.

Set h= (h0, h1, . . . , hDs )′, q= (q0, q1, . . . , qDs )′,μ= (μ0,μ1, . . . ,μDs )′, and μ̃= (μ̃0,
μ̃1, . . . , μ̃Ds )′. Note that μ̃ is a vector function of (q,μ) and, thus, a function of (h,μ)
according to (3.13), so that we denote

Q := ∂μ̃

∂μ
|ȟ = diag−1(T ′q̌)T ′diag(q̌), (A12)

where T is a (Ds + 1)× (Ds + 1) lower triangular matrix with 1 at all nonzero entries, q̌=
(q̌0, q̌1, . . . , q̌Ds )′, and

W := ∂μ̃

∂h
|
μ̌,ȟ = diag−1(T ′q̌)(T ′diag(μ̌)− diag( ˇ̃μ)T ′)diag(q̌)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
ȟ0

− 1
1−ȟ0

1
ȟ1

· · · · · · . . .

− 1
1−ȟ0

− 1
1−ȟ1

· · · 1
ȟDs

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(A13)
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Then it follows again by the delta method that
√
mvec(λ̂− λ̌, ˆ̃μ− ˇ̃μ) L→N(0, �̌) com-

bining the asymptotic results mentioned above, where

�̌ =
(

�̌11 �̌12

�̌′12 �̌22

)
, (A14)

with �̌11 =�Č11�
′, �̌12 =�Č12�

′(Q,W )′ and �̌22 = (Q�1 +W�2)Č22(�′1Q′ +�′2W ′).
Step 4. The asymptotic distribution of 1√

m
(R̂H − ŘH ).

Take a look back to the decomposition (A5). An application of Markov inequality

leads toGv
P→ Ǧv, v= 0, 1, 2, . . . ,Ds. Besides, r[u]/m and λ̂u converge almost surely, of which

the limits are given by (3.17). Therefore, ξ ′m/m
P→ ξ ′ with ξ given by (3.21). Then put the

asymptotic distributions in Step 2 and 3 above into the decomposition (A4) gives that

1√
m
(R̂H − ŘH )

L→N(0, ξ ′�̌ξ ).

This completes the proof.

https://doi.org/10.1017/asb.2020.42 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.42

	THE IMPACTS OF INDIVIDUAL INFORMATION ON LOSS RESERVING
	THE IMPACTS OF INDIVIDUAL INFORMATION ON LOSS RESERVING
	Introduction
	A claims development model using individual information
	Claims development
	Individual likelihood
	Parameter estimation

	Loss reserving
	Loss reserving with individual information
	Loss reserving neglecting individual information 
	Asymptotic behaviors of the loss reservings
	A simulation study

	Real data application
	Data description
	Heterogeneity of claims developments
	The model and its estimation
	Loss reserving
	Accuracy evaluation
	Comparison with chain ladder

	Conclusions
	Proofs of Theorems
	Proof of Lemma 2.1
	Proof of Theorem 2.1
	Proof of Theorem 3.1
	Proof of Theorem 3.4
	Proof of Theorem 3.5



