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Abstract. We give necessary and sufficient conditions for nuclearity of Cuntz–Nica–
Pimsner algebras for a variety of quasi-lattice ordered groups. First we deal with the free
abelian lattice case. We use this as a stepping-stone to tackle product systems over quasi-
lattices that are controlled by the free abelian lattice and satisfy a minimality property.
Our setting accommodates examples like the Baumslag–Solitar lattice for n = m > 0
and the right-angled Artin groups. More generally, the class of quasi-lattices for which
our results apply is closed under taking semi-direct and graph products. In the process
we accomplish more. Our arguments tackle Nica–Pimsner algebras that admit a faithful
conditional expectation on a small fixed point algebra and a faithful copy of the coefficient
algebra. This is the case for CNP-relative quotients in-between the Toeplitz–Nica–Pimsner
algebra and the Cuntz–Nica–Pimsner algebra. We complete this study with the relevant
results on exactness.

Key words: C*-correspondences, product systems, Nica–Pimsner algebras, exactness,
nuclearity
2010 Mathematics Subject Classification: 46L08, 46L05 (Primary)

1. Introduction
A central theme in the C*-theory is the construction of operator algebras from a set of
geometric/topological data and the investigation of their properties. Understanding and
expanding the class of nuclear C*-algebras is of particular interest for the classification
programme in this respect. When the model uses nuclear building blocks and amenable
algebraic methods, the C*-output should be nuclear. However, nuclearity may be implied
by non-nuclear building blocks as well, requiring a sharper analysis. In this paper we
identify necessary and sufficient conditions for nuclearity (and exactness) of a large class
of Cuntz-type C*-algebras over quasi-lattices of central interest. This question has been
open for more than 15 years, even for the honest free abelian lattice (ZN , ZN

+).
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1.1. Background. The starting point is Pimsner algebras [24] which quantize a range
of Z+-transformations through the apparatus of C*-correspondences. There are two main
classes of C*-algebras one can associate to a C*-correspondence X over A: the Toeplitz–
Pimsner algebra T (X) generated by the Fock representation, and the Cuntz–Pimsner
algebra O(X) which is minimal in containing an isometric copy of the transformation.
In his influential work, Katsura [16] gave the correct ∗-relations that define O(X) and
answered a range of questions that are now in the core of the theory.

Arveson [2] introduced the semigroup analogue of C*-correspondences, that is, that of
product systems. Initially considered to understand semigroup actions of von Neumann
algebras, they now form a topic in their own right that encompasses a wide range of
constructs such as higher-rank graphs and generalized crossed products by (possibly non-
invertible) dynamics. Here one considers a semigroup {X p}p∈P of C*-correspondences
along with multiplication rules for a quasi-lattice (G, P). Fowler [11] realized that the
Fock representation attains a universal property as long as the compact operators respect
the quasi-lattice structure in the sense of Nica [23]. That settled the Toeplitz–Nica–Pimnser
algebras NT (X), yet the Cuntz analogue remained a mystery for some time. Motivated
by developments in higher-rank graphs, Sims and Yeend [27] envisioned the Cuntz–Nica–
Pimsner algebra NO(X) through the augmented Fock space construction. Later Carlsen,
Larsen, Sims and Vittadello [4] resolved the problem of co-universality of NO(X) under
an injectivity condition and when a co-action is at hand. Recently it has been shown by
Dor-On and Katsoulis [9] that NO(X) is minimal also in the sense of Arveson’s C*-
envelope for abelian lattices.

In the meantime a number of papers imported ideas from groupoids, dynamical systems
and iterations to study further the Nica–Pimsner algebras when (G, P) is amenable. It
has become apparent that exactness is more tractable for both NT (X) and NO(X).
The expectation is that each one is (and hence both are) exact if and only if so is the
diagonal A. This has been proven by several authors for general amenable quasi-lattices,
such as Alabandik and Meyer [1], Rennie, Robertson and Sims [25] and Fletcher [10].
Nuclearity behaves in a similar manner for NT (X) but not for NO(X), leaving open the
following question.

Question. Let (G, P) be a pair that admits a co-action. What conditions on X and/or A
are equivalent to nuclearity of NO(X)?

It is necessary to emphasize the importance of amenability here. In its absence the
problem becomes highly intractable. Even for A = C, a definitive answer for nuclearity
of semigroup algebras was not known until the recent breakthrough work of Li [21].

It has been verified that nuclearity of A implies that of NO(X) in several cases, such
as higher-rank graphs [17, 18], C*-dynamics [14] and in other more general amenable
contexts [1, 25, 26]. However, the converse is not true even at the level of Z+. Katsura [16]
presents an example of Ozawa for a C*-correspondence whose O(X) is nuclear but A is
not. He also gave the correct equivalent, namely that the embedding A ↪→O(X) is nuclear.
It appears that this is also equivalent to JX ↪→O(X) and A/JX being nuclear, for Katsura’s
ideal of covariance JX . Amenability allows us to reduce the problem to the fixed point
algebra and JX is exactly the intersection of its positive part with A.
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1.2. Main results. In the current paper we consider the nuclearity question for quasi-
lattices that have been at the centre of attention in recent years. Firstly, we prove necessary
and sufficient conditions for nuclearity for ZN

+ -product systems. This is not an immediate
consequence of the Z+-results, but we need to improve upon Katsura’s exposition on
nuclearity and short exact sequences [16, Appendix]. We treat this case separately as
it allows us to highlight our arguments and reduce the complexity of the proof for the
general case. For example, one of the key ideas is that elements inside boxes have a
common minimal. Secondly, we abstract our methods to accommodate more general quasi-
lattices that attain a ZN

+ -controlled map in the sense of Crisp and Laca [6] and inherit the
aforementioned ZN

+ -minimality (see Definition 5.4). This class includes quasi-lattices such
as the Baumslag–Solitar group for n = m > 0 and the right-angled Artin groups, while we
show that it is closed under taking semi-direct products and graph products.

THEOREM A. (Theorems 4.4, 5.5 and Proposition 5.6) Let ϑ : (G, P)→ (ZN , ZN
+) be

a controlled map with the minimality property. Set I := A ∩ B(0,∞] where B(0,∞] is the
positive part of the fixed point algebra NO(X)β . Then the following assertions are
equivalent:
(i) A/I is nuclear and the embedding I ↪→ B(0,∞] is nuclear;
(ii) the embedding A ↪→NO(X) is nuclear;
(iii) NO(X) is nuclear.

By a standard gauge-action argument we may replace NO(X) with the TN -fixed point
algebra NO(X)β in items (ii) and (iii). Our initial motivation was to explore NO(X).
Nevertheless, we are able to tackle more general TN -equivariant quotients NP(X) of
NT (X) as long as they admit an isometric copy of A and a map

E : NP(X)→ span{t (X p)t (X p)
∗
| p ∈ P}, (1.1)

such that E ⊗max idD and E ⊗ idD are faithful conditional expectations for every
C*-algebra D. This assumption is satisfied for the CNP-relative quotients in-between
NT (X) and NO(X) (Proposition 5.6). The nuclearity result is new even for the relative
Cuntz–Pimsner algebras of C*-correspondences of Muhly and Solel [22], that is, when
N = 1.

The ideal A ∩ B(0,∞] plays a fundamental role in our central theorem and there is a wide
class for which we can have a description, namely for strong compactly aligned product
systems over ZN

+ . Indeed, by solving polynomial equations in [8], we have

A ∩ B(0,∞] ⊆
( N⋂

i=1

ker φi

)⊥
∩

( N⋂
i=1

φ−1
i (KX i)

)
(1.2)

for this class of ZN
+ -product systems. In particular, equality holds for NO(X).

Finally, we show that exactness of A is equivalent to exactness of NT (X) and thus of
any quotient NP(X) that admits an isometric copy of A without any additional hypothesis
(Theorems 4.2 and 5.1). Our proof is based on splitting the fixed point algebra.

https://doi.org/10.1017/etds.2019.44 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2019.44


3378 E. T. A. Kakariadis

Organization of the paper. After giving preliminaries in §2, in §3 we prove the general
C*-results that are required. In §4 we show nuclearity for the (ZN , ZN

+) case. In §5 we
use these results to tackle quasi-lattices that attain ZN

+ -controlled maps. In §6 we give
examples of quasi-lattices that fall within our theorem. In §4 and in §5 we provide the
analogues for exactness for which we do not require ZN

+ -minimality.

2. Preliminaries
2.1. C*-correspondences. We need to fix notation for C*-correspondences. We mainly
follow [16, 20]. A C*-correspondence X over A is a right Hilbert module over A with
a left action given by a ∗-homomorphism φX : A→ LX . We write LX and KX for
the adjointable operators and the compact operators of X , respectively. For two C*-
correspondences X, Y over the same A we write X ⊗A Y for the balanced tensor product
over A. We say that X is unitarily equivalent to Y (X ' Y ) if there is a surjective
adjointable operator U ∈ L(X, Y ) such that 〈Uξ,Uη〉 = 〈ξ, η〉 and U (aξb)= aU (ξ)b for
all ξ, η ∈ X and a, b ∈ A.

A representation (π, t) of a C*-correspondence is a left module map that preserves
the inner product. Then (π, t) is automatically a bimodule map. Moreover, there exists a
∗-homomorphism ψ on KX such that ψ(θξ,η)= t (ξ)t (η)∗ for all θξ,η ∈KX . When π is
injective, both t and ψ are isometric.

The Toeplitz–Pimsner algebra TX is the universal C*-algebra with respect to the
representations of X . The Cuntz–Pimsner algebra OX is the universal C*-algebra with
respect to the representations that in addition satisfy π(a)= ψ(φX (a)) for all a ∈ JX , for
Katsura’s ideal

JX := ker φ⊥X ∩ φ
−1
X (KX).

2.2. Product systems. All groups we consider are discrete. Let P be a sub-semigroup
of a group G such that P ∩ P−1

= {e}. Then P defines a partial order on G given by
g ≤ h if and only if g−1h ∈ P . The pair (G, P) is a quasi-lattice ordered group if any
two elements p, q ∈ G with common upper bound in P have a least common upper bound
p ∨ q in P . We write p ∨ q =∞when p, q have no common upper bound in P , and write
p ∨ q <∞ otherwise. A set F ⊆ P is called ∨-closed if p ∨ q ∈ F whenever p, q ∈ F
with p ∨ q <∞.

From now on fix (G, P) as a quasi-lattice ordered group. A product system X over P
is a family {X p | p ∈ P} of C*-correspondences over the same C*-algebra A such that:
(i) Xe = A;
(ii) there are multiplication rules X p ⊗A Xq ' X pq for every p, q ∈ P \ {e}.
We will suppress the use of symbols for the multiplication rules. Hence we write ξpξq for
the image of ξp ⊗ ξq and so

φpq(a)(ξpξq)= (φp(a)ξp)ξq for all a ∈ A and ξp ∈ X p, ξq ∈ Xq .

More generally, the product system structure gives maps

i pq
p : LX p→ LX pq such that i pq

p (S)(ξpξq)= (Sξp)ξq .

Following Fowler’s work [11], a product system is called compactly aligned if

i p∨q
p (S)i p∨q

q (T ) ∈KX p∨q whenever S ∈KX p, T ∈KXq and p ∨ q <∞.
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A Nica covariant representation (π, t) of a product system X consists of a family of
representations (π, tp) of X p over A that respect the multiplication of the product system
in the sense that

tpq(ξpξq)= tp(ξp)tq(ξq) for all ξp ∈ X p, ξq ∈ Xq ,

and satisfy the Nica covariance for S ∈KX p and T ∈KXq ,

ψp(S)ψq(T )=

{
ψp∨q(i

p∨q
p (S)i p∨q

q (T )) if p ∨ q <∞,

0 if p ∨ q =∞.

In particular, if p ∨ q =∞ then tp(ξp)
∗tq(ξq)= 0, whereas if p ∨ q <∞ then

tp(ξp)
∗tq(ξq) ∈ tr (Xr )ts(Xs)∗ for r = p−1(p ∨ q), s = q−1(p ∨ q).

Hence the C*-algebra C∗(π, t) generated by π(A) and tp(X p) can be written as

C∗(π, t)= span{tp(ξp)tq(ξq)
∗
| ξp ∈ X p, ξq ∈ Xq and p, q ∈ P}.

For a finite F ⊆ P that is ∨-closed we write

BF := span{ψp(kp) | kp ∈KX p, p ∈ F}.

It follows from Fowler’s work [11] that the BF are closed C*-subalgebras of C∗(π, t).
Moreover, we write

B(e,∞] := span{ψp(kp) | kp ∈KX p, e 6= p ∈ P} and B[e,∞] := π(A)+ B(e,∞].

We refer to these sets as the cores of the representation (π, t).
The Toeplitz–Nica–Pimsner algebra NT (X) is the universal C*-algebra generated by

A and X with respect to the representations of X . The Fock space representation of Fowler
[11] ensures that A, and thus X , embeds isometrically in NT (X). In short, let F(X)=∑
⊕

q∈P Xq and for a ∈ A and ξp ∈ X p define

π(a)ξq = φq(a)ξq and t (ξp)ξq = ξpξq for all ξq ∈ Xq .

Then the Fock representation (π, t) is Nica covariant, and by taking the compression at
the (e, e)-entry we see that π , and thus t , is injective.

Among the quotients of NT (X) there is one of particular importance that generalizes
the one-dimensional Cuntz–Pimsner algebra and was identified by Sims and Yeend [27].
Let

Ie := A and Iq =
⋂
{ker φs | s ≤ q} for e 6= q ∈ P,

all of which are ideals in A. For r ∈ P , let

X̃r =
⊕
{X p Iq | p, q ∈ P such that pq = r},

and write φ̃r for the left action on X̃r . The product system X is called φ̃-injective if every
φ̃r is injective. Consequently, for p ≤ r we obtain a ∗-homomorphism

ĩr
p : LX p→ LX̃r with ĩr

p := ⊕{i
q
p | p ≤ q ≤ r}.
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If p 6≤ r then we set ĩr
p = 0. For a finite set F ⊂ P we say that a collection {kp}p∈F satisfies∑

{ ĩr
p(kp) | p ∈ F} = 0 for large r, (2.1)

if for every s ∈ P there exists s ≤ x ∈ P such that equation (2.1) holds for all r ≥ x . Let
FCNP be the set of all such {kp}p∈F . A Nica covariant representation (π, t) of X will be
called Cuntz–Nica–Pimsner covariant if∑

{ψp(kp) | p ∈ F} = 0 for all {kp}p∈F ∈ FCNP.

The Cuntz–Nica–Pimsner algebra NO(X) of Sims and Yeend is the universal C*-algebra
generated by A and X with respect to the CNP-representations of X . By using the
augmented Fock space, Sims and Yeend [27, Theorem 4.1] show that if X is φ̃-injective
then A, and thus X , embeds isometrically in NO(X). In particular, this is the case for pairs
(G, P) with the property that every bounded subset of P contains a maximal element [27,
Lemma 3.15]. For F ⊂ FCNP we let the quotient of NT (X) be the universal C*-algebra
with respect to the representations that are CNP on F , that is,∑

{ψp(kp) | p ∈ F} = 0 for all {kp}p∈F ∈ F .

Such a quotient will be called F-CNP-relative or just CNP-relative. It follows that CNP-
relative quotients factor through NT (X)→NO(X).

3. Short exact sequences
We will require some technical lemmas about short exact sequences. Recall that for
C*-algebras A and D, we denote by A ⊗ D (respectively, A ⊗max D) the minimal
(respectively, maximal) tensor product of A and D, and by A 	 D the kernel of the natural
surjection πA,D : A ⊗max D→ A ⊗ D. By definition

πB,D ◦ (ϕ ⊗max idD)= (ϕ ⊗ idD) ◦ πA,D

for any ∗-homomorphism ϕ : A→ B. Thus the restriction of ϕ ⊗max idD to A 	 D
induces a map ϕ 	 idD : A 	 D→ B 	 D. Recall that ϕ is nuclear if and only if
ϕ 	 idD = 0 for any C*-algebra D. Moreover, A is nuclear, if and only if idA is nuclear,
if and only if A 	 D = (0) for any C*-algebra D. We will constantly refer to some central
results from [16, Appendices]. We will also need some variation of [16, Proposition A.6].
For one direction we have the following proposition.

PROPOSITION 3.1. Let A, A′ be C*-algebras and let there be ideals I C A and I ′ C A′.
Suppose we have the following commutative diagram of short exact sequences:

0 // I //

ϕ0

��

A //

ϕ

��

A/I //

ϕ̃

��

0

0 // I ′ // A′ // A′/I ′ // 0

where ϕ : A→ A′ is an injective ∗-homomorphism that satisfies ϕ(I )⊆ I ′, ϕ̃ : A/I →
A′/I ′ is the induced map and ϕ0 := ϕ|I . If ϕ : A→ A′ is nuclear, then ϕ0 and ϕ̃ are both
nuclear.
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Proof. Fix a C*-algebra D. Since ϕ is an injective nuclear map, A is exact. Hence
ϕ 	 idD = 0, and by [16, Lemma A.5] we get

0 // I 	 D //

ϕ0	idD
��

A 	 D
π	idD //

0
��

(A/I )	 D //

ϕ̃	idD
��

0

0 // I ′ 	 D // A′ 	 D // (A′/I ′)	 D.

By commutation of the left square and exactness on I ′ 	 D, we must have that
ϕ0 	 idD = 0 so that ϕ0 is nuclear. By commutation of the right square and exactness
on (A/I )	 D, we must have that ϕ̃ 	 idD = 0 so that ϕ̃ is nuclear. �

The ideals I, I ′ we will be using are in a good position in the sense that I ⊆ I ′ and
there is an approximate identity for I ′, such that multiplying it by an element in A lands
us inside I . This will give a converse to Proposition 3.1. We require the next technical
lemma.

LEMMA 3.2. Let A, A′ be C*-algebras and let there be ideals I C A and I ′ C A′. Suppose
that ϕ : A→ A′ is an injective ∗-homomorphism such that ϕ(I )⊆ I ′ and there exists an
approximate identity (eλ)λ of I ′ such that ϕ(a)eλ ∈ ϕ(I ) for all a ∈ A. Then

ϕ ⊗max idD(A ⊗max D) ∩ I ′ ⊗max D ⊆ ϕ ⊗max idD(I ⊗max D)

for any C*-algebra D.

Proof. Let y ∈ ϕ ⊗max idD(A ⊗max D) ∩ I ′ ⊗max D, and choose x ∈ A ⊗max D such that
ϕ ⊗max idD(x)= y. By approximation from A � D we can write

x = lim
κ

nκ∑
i=1

a(κ)i ⊗ d(κ)i for a(κ)i ∈ A, d(κ)i ∈ D.

Let ( fµ)µ be an approximate identity of D. As y ∈ I ′ ⊗max D ⊆ A′ ⊗max D we then get

y = lim
λ,µ

y(eλ ⊗ fµ)= lim
λ,µ

ϕ ⊗max idD(x) · (eλ ⊗ fµ)= lim
λ,µ

lim
κ

nκ∑
i=1

ϕ(a(κ)i )eλ ⊗ d(κ)i fµ.

By assumption ϕ(a(κ)i )eλ ∈ ϕ(I ), and thus y ∈ ϕ ⊗max idD(I ⊗max D). �

PROPOSITION 3.3. Let A, A′ be C*-algebras and let there be ideals I C A and I ′ C A′.
Suppose we have the following commutative diagram of short exact sequences:

0 // I //

ϕ0

��

A //

ϕ

��

A/I //

ϕ̃

��

0

0 // I ′ // A′ // A′/I ′ // 0

where ϕ : A→ A′ is an injective ∗-homomorphism that satisfies ϕ(I )⊆ I ′, ϕ̃ : A/I →
A′/I ′ is the induced map and ϕ0 := ϕ|I . Suppose further that there exists an approximate
identity (eλ)λ of I ′ such that ϕ(a)eλ ∈ ϕ(I ) for all a ∈ A. If ϕ0 and the induced map ϕ̃ are
nuclear, then so is ϕ.
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Proof. Fix a C*-algebra D. Since ϕ0 and ϕ̃ are nuclear, we see that ϕ0 	 idD = 0 and
ϕ̃ 	 idD = 0. Then exactness of the maximal tensor product and [16, Lemma A.5] yield

0 // I 	 D //

0
��

A 	 D //

ϕ	idD
��

(A/I )	 D

0
��

0 // I ′ 	 D // A′ 	 D // (A′/I ′)	 D.

Let x ∈ A 	 D. By commutation of the right square and exactness on A′ 	 D, we see that
ϕ ⊗max idD(x) ∈ I ′ 	 D. By Lemma 3.2 there exists a c ∈ I ⊗max D such that ϕ0 ⊗max

idD(c)= ϕ ⊗max idD(x). However, since ϕ ⊗max idD(x) ∈ I ′ 	 D, we get

(ϕ0 ⊗ idD) ◦ πI,D(c)= πI ′,D ◦ (ϕ0 ⊗max idD)(c)= πI ′,D ◦ (ϕ ⊗max idD)(x)= 0.

Injectivity of ϕ0 ⊗ idD thus implies that c ∈ ker πI,D ≡ I 	 D. Hence we get that

ϕ ⊗max idD(x)= ϕ0 ⊗max idD(c)= ϕ0 	 idD(c)= 0.

As this holds for all x ∈ A 	 D we conclude that ϕ 	 idD = 0, and thus ϕ is nuclear. �

4. ZN
+ -product systems

For this section fix a product system X over (ZN , ZN
+) with coefficients in A. A

representation (π, t) of X admits a gauge action if there is a point-norm continuous
homomorphism β : TN

→ Aut(C∗(π, t)) such that

βz(tn(ξn))= zn tn(ξn) for all ξn ∈ Xn and βz(π(a))= π(a) for all a ∈ A.

Then the fixed point algebra C∗(π, t)β coincides with B[0,∞]. By universality, the C*-
algebra NT (X) attains a gauge action. Moreover, it follows that the Fock representation
defines a faithful ∗-representation of NT (X).

We will investigate nuclearity and exactness for quotients of NT (X) that inherit this
gauge action and attain a faithful copy of A, such as the Cuntz–Nica–Pimsner algebra
NO(X). Before we proceed, we have to introduce some notation and a definition. The
free generators of ZN

+ will be denoted by 1, 2, . . . , N. We denote the support of n by

supp n := {i ∈ {1, . . . , N } | ni 6= 0}.

For any F ⊆ {1, . . . , N } we write 1F :=
∑

i∈F i.

Definition 4.1. Let (π, t) be a Nica covariant representation of a product system X over
(ZN , ZN

+) with coefficients in A. A core B[m,m+m′] of C∗(π, t) is called a d-dimensional
box if |supp m′| = d .

Let m′ ∈ ZN
+ with |supp m′| = d + 1. By using a fixed i ∈ supp m′ we may write

B[m,m+m′] =

m′i∑
k=0

B[m+ki,m+ki+(m′−m′i i)]

as a sum of m′i + 1 boxes of dimension d. Moreover, for each 0≤ n ≤ m′i − 1, the box

B[m+(n+1)i,m+m′] =

m′i∑
k=n+1

B[m+ki,m+ki+(m′−m′i i)]
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is an ideal inside B[m+ni,m+m′]. Let eλ := ψm(km,λ) for an approximate identity (km,λ)

in KXm . Then (eλ)λ is an approximate identity for B[m,m], B[m,m+m′] and B[m,∞] when
m > 0.

Let us first deal with exactness and thus recapture [10, Corollary 4.18]. Our method is
different from the semi-direct decomposition of Deaconu [7] and Fletcher [10].

THEOREM 4.2. Let X be a compactly aligned product system over (ZN , ZN
+) with

coefficients in A. Let NP(X) be a quotient of NT (X) such that A ↪→NP(X)
isometrically. Then NP(X) is exact if and only if A is exact.

Proof. If NP(X) is exact then A is exact since exactness passes to subalgebras. As
NP(X) is a quotient of NT (X), and as exactness passes to quotients, it remains to show
that exactness of A implies exactness of NT (X), or equivalently that NT (X)β is exact
by [16, Proposition A.13].

Let (π, t) be the Fock representation with cores B[m,m+m′]. We first show that each
B[m,m+m′] is the linear direct sum of the C*-algebras B[n,n] for m ≤ n ≤ m + m′. Indeed,
suppose there are kn ∈KXn such that∑

{ψn(kn) | m ≤ n ≤ m + m′} = 0;

we will show that every kn is zero. To reach a contradiction let ` ∈ [m, m + m′] be minimal
such that k` 6= 0. Let p` : FX→ X` be the projection onto X`. Minimality of ` yields
p`ψn(kn)p` = 0 for all n 6= `, and thus we get the contradiction

k` = p`ψ`(k`)p` = p`
(∑
{ψn(kn) | m ≤ n ≤ m + m′}

)
p` = 0.

Now, the fixed point algebra NT (X)β is the inductive limit of the cores B[m,m+m′].
Thus in order to finish the proof it suffices to show that each such core is exact. By
[16, Proposition B.7], each KXn is exact and thus so is every B[n,n] ' ψn(KXn). For
the inductive step, suppose that all d-dimensional boxes are exact. Let B[m,m+m′] now
be a (d + 1)-dimensional box. Let i ∈ supp m′; then by the inductive hypothesis every
d-dimensional box

Bn := B[m+ni,m+ni+(m′−m′i i)] for 0≤ n ≤ m′i ,

is exact. Also let the algebras Am′i
:= Bm′i

and

An :=

m′i∑
k=n

Bk for 0≤ n ≤ m′i − 1,

so that An+1 is an ideal inside An . Since An = Bn + An+1 is a linear direct sum, we see
that An/An+1 ' Bn , and we obtain the split exact sequence

0 // An+1 // An // Bn // 0.

As exactness passes to extensions in split exact sequences, we may apply the same
argument for n = m′i − 1 and obtain that Am′i−1 is exact. Now we may induct on n and
get that every An is exact; in particular, so is A0 = B[m,m+m′]. �
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Remark 4.3. Arguments similar to Theorem 4.2 suffice to show that A is nuclear if and
only if NT (X) is nuclear. Consequently, if A is nuclear then every quotient NP(X)
of NT (X) is nuclear. However, the converse does not hold even for (Z, Z+). For a
counterexample where OX is nuclear but A is not see [16, Example 7.7].

Our next objective is to show that nuclearity of NO(X) is equivalent to the embedding
A ↪→NO(X) being nuclear. We can show this for any NP(X) that is a TN -equivariant
quotient of NT (X) and where the embedding A ↪→NP(X) is isometric. Notice that
NP(X) inherits the gauge action of NT (X).

THEOREM 4.4. Let X be a compactly aligned product system over (ZN , ZN
+) with

coefficients in A. Let NP(X) be a TN -equivariant quotient of NT (X) such that A ↪→
NP(X) isometrically. Set I := A ∩ B(0,∞]. Then the following assertions are equivalent:
(i) A/I is nuclear and the embedding I ↪→ B(0,∞] is nuclear;
(ii) the embedding A ↪→NP(X)β is nuclear;
(iii) the embedding A ↪→NP(X) is nuclear;
(iv) NP(X)β is nuclear;
(v) NP(X) is nuclear.

Proof. For the equivalence of items (i) and (ii), consider the following commutative
diagram of short exact sequences:

0 // I //

��

A //

��

A/I //

��

0

0 // B(0,∞] // B[0,∞] // B[0,∞]/B(0,∞] // 0.

However, by definition we have that

B[0,∞]/B(0,∞] ' A/(A ∩ B(0,∞])= A/I.

Therefore [16, Proposition A.6] implies that the embedding A ↪→ B[0,∞] is nuclear if and
only if A/I and the embedding I ↪→ B(0,∞] are both nuclear.

Items (iv) and (v) are equivalent by [16, Proposition A.13]. Trivially, item (v)
implies item (iii). Moreover, since A ⊆NP(X)β = B[0,∞] we can apply the conditional
expectation to deduce that item (iii) implies item (ii). Hence it remains to show that (ii)
implies (iv).

Note that nuclearity of A ↪→ B[0,∞] implies exactness for A, which in turn implies
exactness of NP(X) by Theorem 4.2. Hence, all C*-algebras involved will be exact.
The plan is to show that nuclearity of A ↪→ B[0,∞] implies nuclearity of the embedding
B[m,m+m′] ↪→ B[m,∞] for any box B[m,m+m′], by inducting on the dimension d = |supp m′|.
With that in hand, we get that B[0,m·1F ] embeds nuclearly in B[0,∞] for every m ∈ Z+
and F ⊆ {1, . . . , N }. Therefore, by taking the direct limit we can conclude that B[0,∞] is
nuclear.

To this end suppose that NP(X)= C∗(π, t). For the base step of the induction, notice
that the inclusion

B[m,m] = ψm(Xm) ↪→ B[m,∞]
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is nuclear by applying [16, Proposition B.8] for X = Xm and Y = t (Xm) · B[0,∞]. For
the inductive step, suppose that all d-dimensional boxes B[m,m+m′] embed into their
corresponding B[m,∞] nuclearly. Let B[m,m+m′] be now a (d + 1)-dimensional box. Fix
an i ∈ supp m′ and write

B[m,m+m′] =

m′i∑
k=0

Bk for Bk := B[m+ki,m+ki+(m′−m′i i)],

where every Bk is a d-dimensional box. We will reconstruct B[m,m+m′] inductively, and so
we define

An :=

m′i∑
k=n

Bk and A∞n := B[m+ni,∞] for 0≤ n ≤ m′i .

It is clear that Am′i
= Bm′i

and An = Bn + An+1 for 0≤ n ≤ m′i − 1. By the inductive
hypothesis on d-dimensional boxes the inclusions Bn ↪→ A∞n are nuclear for all 0≤ n ≤
m′i . We wish to induct on n and show that the inclusions An ↪→ A∞n are nuclear for all
0≤ n ≤ m′i , thus concluding nuclearity for n = 0, that is, for

B[m,m+m′] = A0 ↪→ A∞0 = B[m,∞].

For the base step n = m′i , by the inductive hypothesis on d-dimensional boxes, we have
that the embedding Bm′i−1 ↪→ A∞m′i−1 is nuclear. Therefore by applying Proposition 3.1 to
the commutative diagram

0 // Bm′i−1 ∩ Bm′i
//

��

Bm′i−1
//

��

Bm′i−1/Bm′i−1 ∩ Bm′i
//

��

0

0 // A∞m′i
// A∞m′i−1

// A∞m′i−1/A∞m′i
// 0

we derive that the map

Am′i−1/Am′i
' Bm′i−1/Bm′i−1 ∩ Bm′i

→ A∞m′i−1/A∞m′i
is nuclear. Furthermore, again by the inductive hypothesis for d-dimensional boxes, the
inclusion

Am′i
= Bm′i

↪→ B[m+m′i i,∞] = A∞m′i
is nuclear. Now the approximate identity of B[m+m′i i,m+m′i i] is an approximate identity for
both Am′i

and A∞m′i
, and Nica covariance yields

B[m+m′i i,m+m′i i] · Am′i−1 ⊆ Am′i
.

We may thus apply Proposition 3.3 to the diagram

0 // Am′i
//

��

Am′i−1
//

��

Am′i−1/Am′i
//

��

0

0 // A∞m′i
// A∞m′i−1

// A∞m′i−1/A∞m′i
// 0

and get that the inclusion Am′i−1 ↪→ A∞m′i−1 is nuclear. This proves the base step n = m′i .
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Now suppose that the embedding An+1 ↪→ A∞n+1 is nuclear, for n + 1≤ m′i . We will
show that the embedding An ↪→ A∞n is also nuclear. By the standing hypothesis we have
that the middle arrow in the diagram

0 // An+1 ∩ Bn //

��

Bn //

��

Bn/An+1 ∩ Bn //

��

0

0 // A∞n+1
// A∞n // A∞n /A∞n+1

// 0.

is nuclear. As before, by Proposition 3.1 we get that the map

An/An+1 ' Bn/(An+1 ∩ Bn)→ A∞n /A∞n+1

is nuclear. Moreover, the approximate identity of B[m+(n+1)i,m+(n+1)i] is an approximate
identity for both An+1 and A∞n+1, and Nica covariance yields

B[m+(n+1)i,m+(n+1)i] · An ⊆ An+1.

The map An+1 ↪→ A∞n+1 is nuclear by the inductive step, and thus we can apply
Proposition 3.3 to the diagram

0 // An+1 //

��

An //

��

An/An+1 //

��

0

0 // A∞n+1
// A∞n // A∞n /A∞n+1

// 0

and derive that its middle vertical embedding is nuclear. This completes the proof. �

Remark 4.5. There is a second way to obtain Theorem 4.4 for NO(X) when X is regular,
that is, when every φn is injective and φn(A)⊆KXn . For in this case there are injective
mappings

φm : A→KXm and KXm→K(Xm ⊗ Xm′) : km 7→ km ⊗ idXm′
.

As in the one-variable case (which can be traced back to Pimsner [24]) it is not hard
to show that NO(X)β is the inductive limit of KXn under these maps. This follows by
observing that NO(X) is the universal C*-algebra generated by representations that are
fibrewise covariant in the sense of Katsura by [27, Corollary 5.2], and thus

B[m,m+m′] = span{ψn(KXn) : m ≤ n ≤ m + m′} = ψm+m′(KXm+m′).

Therefore, when A ↪→NO(X)β is nuclear, the inclusions ψn(KXn)⊆NO(X) are
nuclear, and this yields nuclearity of NO(X)β . Fletcher [10, Corollary 5.21] obtains the
same result as an application of the elegant semi-direct decomposition of X .

Remark 4.6. The ideal A ∩ B(0,∞] plays a fundamental role in Theorem 4.4, and there is
a wide class of product systems for which we have a description. In [8] we introduced
the term strong compactly aligned for product systems over (ZN , ZN

+) if KXn ⊗ idX i ⊆

K(Xn ⊗ X i) whenever i /∈ supp n. The method of solving polynomial equations of [8, §4]
yields that

A ∩ B(0,∞] ⊆
( N⋂

i=1

ker φi

)⊥
∩

( N⋂
i=1

φ−1
i (KX i)

)
, (4.1)
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for any TN -equivariant quotient NP(X)= C∗(π, t) of NT (X) that admits a faithful copy
of A. In particular, in [8] it is shown that equality holds for NO(X).

Remark 4.7. Theorem 4.4 is new even for the case of N = 1, that is, for the relative Cuntz–
Pimsner algebras of Muhly and Solel [22]. Let us provide some background.

Let X be a C*-correspondence over A and fix J ⊆ φ−1
X (KX). The J -relative Cuntz–

Pimsner algebra O(J, X) is the universal C*-algebra with respect to the representations
(π, t) that satisfy

π(a)= ψ(φX (a)) for all a ∈ J.

By [15, Lemma 1.2] the embedding A ↪→O(J, X) is isometric if and only if J ⊆ JX .
Moreover, in [13] it is shown that every T-equivariant quotient of TX that admits an
isometric copy of A is a relative Cuntz–Pimsner algebra in the following sense. Let TX =

C∗(π, t) and q : TX → TX/I . Then TX/I 'O(J, X) for J = {a ∈ A | qπ(a) ∈ qψ(KX)}.
So in fact J = A ∩ B(0,∞].

Now we can see that an application of Theorem 4.4 gives the following equivalent
assertions for O(J, X) when J ⊆ JX :
(i) A/J is nuclear and the embedding J ↪→ B(0,∞] is nuclear;
(ii) the embedding A ↪→O(J, X) is nuclear;
(iii) O(J, X) is nuclear.

5. ZN
+ -controlled product systems

Recall from [6] that a controlled map ϑ : (G, P)→ (G ′, P ′) between quasi-lattice ordered
groups is an order-preserving homomorphism such that:
(C1) the restriction ϑ |P is finite-to-one;
(C2) for all p, q ∈ P with p ∨ q <∞, we have ϑ(p) ∨ ϑ(q)= ϑ(p ∨ q).
It then follows that:
(C3) ϑ−1(e′) ∩ P = {e};
(C4) if p ∨ q <∞ and ϑ(p)≤ ϑ(q) then p ≤ q;
(C5) if p ∨ q <∞ and ϑ(p)= ϑ(q) then p = q .

In this section we consider product systems over (G, P) for which there exists a
controlled map ϑ : (G, P)→ (ZN , ZN

+). We say that a Nica covariant representation (π, t)
of X over P admits a TN -gauge action via ϑ if there is a point-norm continuous family
homomorphism β : TN

→ Aut(C∗(π, t)) such that

βz(tp(ξp))= zϑ(p) tp(ξp) for all ξp ∈ X p and βz(π(a))= π(a) for all a ∈ A.

Universality implements a TN -gauge action β on NT (X). A standard gauge-action
argument gives that the Fock representation defines a faithful representation of NT (X).
This will become clear once we identify the appropriate boxes here. To this end let there
be a pair (π, t) that admits a TN -gauge action via ϑ . If p, q ∈ P with ϑ(p)= ϑ(q) then
by (C5) either p = q or p ∨ q =∞; thus Nica covariance yields

tp(ξp)
∗tq(ηq)= δp,qπ(〈ξp, ηq〉).

For n ∈ ZN
+ we thus define the induced sum of orthogonal C*-correspondences

Xn :=
∑
{tp(X p) | ϑ(p)= n},
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which becomes a C*-correspondence over A. Notice that the sum is finite as ϑ |P is finite-
to-one. The compact operators ideal KXn is then ∗-isomorphic to the matrix algebra

B[n,n] :=
∑
{tp(X p)tq(Xq)

∗
| ϑ(p)= n = ϑ(q)}.

We define
B[m,m+m′] :=

∑
{B[n,n] | n ∈ [m, m + m′]},

and note that the fixed point algebra C∗(π, t)β is the union of those boxes.

THEOREM 5.1. Let ϑ : (G, P)→ (ZN , ZN
+) be a controlled map and let X be a compactly

aligned product system over (G, P) with coefficients in A. Let NP(X) be a quotient of
NT (X) such that A ↪→NP(X) isometrically. Then NP(X) is exact if and only if A is
exact.

Proof. As with Theorem 4.2, we just need to check for NT (X). Consider first the Fock
representation (π, t). We may apply [16, Proposition B.7] for Xn :=

∑
{tp(X p) |ϑ(p)= n}

and deduce that the cores B[n,n] of NT (X) are exact. Now we may follow the proof of
Theorem 4.2 verbatim and derive that the fixed point algebra

C∗(π, t)β = span{t (X p)t (Xq)
∗
| ϑ(p)= ϑ(q)}

(and thus C∗(π, t)) is exact. The only difference is that we have to consider separately
the projections pq : FX→ Xq . To this end let ψr,r ′ : K(Xr , Xr ′)→ B(H) be the induced
map such that ψr,r ′(θξr ′ ,ξr )= t (ξr ′)t (ξr )∗, and suppose that

f :=
∑
{ψr1,r2(kr1,r2) | kr1,r2 ∈K(Xr1 , Xr2), ϑ(r1)= ϑ(r2) ∈ [m, m + m′]} = 0.

Let ` be minimal such that kq1,q2 6= 0 with ϑ(q1)= ϑ(q2)= `. By using (C5) and the Fock
space representation we have that

kq1,q2 = pq2 f pq1 = 0,

which gives the required contradiction. We also get that the {ψp(KX p)}ϑ(p)∈[m,m+m′] are
linearly independent and so the Fock representation defines a faithful representation of
NT (X). �

Remark 5.2. The proof of Theorem 5.1 also applies to show that NT (X) is nuclear when
A is nuclear. As nuclearity passes to quotients we also get that NO(X) is nuclear whenever
A is so. This gives an extension of [21, Corollary 8.3] for ZN -controlled quasi-lattices.
Indeed, C∗r (P) of [21] is NT (X) for the trivial product system with X p = C for all p ∈ P .

Nevertheless there is a conditional expectation onto a ‘smaller fixed point algebra’
of NT (X). The existence of such maps will be the prototype for the quotients we will
consider.

Remark 5.3. Let (π, t) be the Fock representation. It follows by [19, Proposition 5.4] that
there is a faithful conditional expectation

E : NT (X)→ span{ψp(KX p) | p ∈ P}.
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The main argument in our case is the following. Fix n ∈ ZN
+ and for each p ∈ ϑ−1(n)

consider the approximate identity (kp,λ)λ ⊆KX p. By passing to a sub-net let the
projections ep := w*- limλ ψp(kp,λ), and define

E p : B[n,n]→ ψp(KX p) : f 7→ ep f ep.

That is E p isolates the pth diagonal entry of B[n,n]. Now we can set

En :=
∑
⊕

p∈ϑ−1(n)

E p and E :=
∑
⊕

n∈ZN
+

En .

The proof of Theorem 5.1 shows that NT (X)β is the direct sum of the B[n,n] and so E
is well defined on NT (X)β . By applying the faithful conditional expectation induced by
{βz}z∈TN we may extend E to the whole of NT (X). It follows that E is the projection
to the diagonal part of the cores as required, and thus it is faithful. Likewise we have that
E ⊗ idD and E ⊗max idD are faithful conditional expectations for every C*-algebra D.

We will also require that (G, P) satisfies a ZN
+ -controlled minimality condition. In §6

we will see a range of (G, P) that satisfy these conditions.

Definition 5.4. Let ϑ : (G, P)→ (ZN , ZN
+) be a controlled map. We say that ϑ has the

minimality property if, whenever p 6= q are minimal in ϑ−1([m,∞]) for m ∈ ZN
+ , then

p ∨ q =∞.

Now we can extend the nuclearity results from (ZN , ZN
+) to such (G, P) and for

quotients of NT (X). In Proposition 5.6 we will show that the Cuntz–Nica–Pimsner
algebra is included in Theorem 5.5.

THEOREM 5.5. Let ϑ : (G, P)→ (ZN , ZN
+) be a controlled map with the minimality

property and X be a compactly aligned product system over (G, P). Let NP(X) be a
TN -equivariant quotient of NT (X) such that A ↪→NP(X) isometrically and there is a
faithful conditional expectation

E : NP(X)→ span{ψp(KX p) | p ∈ P}

such that E ⊗max idD (respectively, E ⊗ idD) is a faithful conditional expectation of
NP(X)⊗max D (respectively, NP(X)⊗ D) for every C*-algebra D. Let the ideal I :=
A ∩ B(0,∞]. Then the following assertions are equivalent:
(i) A/I is nuclear and the embedding I ↪→ B(0,∞] is nuclear;
(ii) the embedding A ↪→ E(NP(X)) is nuclear;
(iii) the embedding A ↪→NP(X)β is nuclear;
(iv) the embedding A ↪→NP(X) is nuclear;
(v) E(NP(X)) is nuclear;
(vi) NP(X)β is nuclear;
(vii) NP(X) is nuclear.

Proof. Since E is a conditional expectation and A ⊆ E(NP(X))⊆NP(X)β we get that
item (ii) is equivalent to item (iii). Furthermore, the proof of [3, Theorem 4.5.2] implies
that item (v) is equivalent to item (vi). Notice that the argument therein requires just the
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existence of a faithful conditional expectation E so that E ⊗max idD and E ⊗ idD are also
faithful. Hence the proof reads the same as that of Theorem 4.4 as long as we check how
the induction works so that item (ii) implies item (v). This will be done in a number of
steps.

For the base step, nuclearity of A ↪→ E(B[0,∞]) gives nuclearity of the orthogonal
embeddings ψp(KX p) ↪→ E(B[ϑ(p),∞]). Hence the embedding E(B[m,m]) ↪→ E(B[m,∞])
is nuclear. Fix m, m′ ∈ ZN

+ such that |supp m′| = d + 1. As in the proof of Theorem 4.4,
let i ∈ supp m′ and write

Bk := E(B[m+ki,m+ki+(m′−m′i i)])

= span{ψp(KX p) | ϑ(p) ∈ [m + ki, m + ki+ (m′ − m′i i)]},

and likewise

An :=

m′i∑
k=n

Bk and A∞n := B[m+ni,∞] for 0≤ n ≤ m′i − 1.

Suppose that the embeddings Bn ↪→ A∞n and An+1 ↪→ A∞n+1 are nuclear. We shall show
that the embedding An ↪→ A∞n is nuclear.

We need to make some preliminary comments that use minimality. Notice that if
m′ ≤ m′′ ≤∞ and an element is minimal in ϑ−1([m, m + m′]) then it is also minimal in
ϑ−1([m, m + m′′]). The minimality property suggests that if p ∈ ϑ−1([m,∞]) then there
is a unique element r that is minimal in ϑ−1([m,∞]) such that p ∈ r P . If the minimal r
is not in ϑ−1([m, m + m′]) then r ∨ q =∞ for every q ∈ ϑ−1([m, m + m′]). Next we set
the following sets for n = 0, . . . , m′i , based on m, m′ ∈ ZN

+ and the fixed i ∈ supp m′:
(i) Fn := {r ∈ P | r is minimal in ϑ−1([m + ni, m + m′])};
(ii) Fn+1 := {q ∈ P | q is minimal in ϑ−1([m + (n + 1)i, m + m′])};
(iii) Gn := {s ∈ P | s is minimal in ϑ−1([m + ni, m + ni+ (m′ − m′i i)])}.
It follows that Gn ⊆ Fn . The schematic of these sets is given in the following figure.

The minimality property shows that p ∨ p′ =∞ whenever p, p′ are distinct elements in
each of the above sets, in which case Nica covariance implies that ψp(kp)ψp′(kp′)= 0.
Let (kp,λ)λ∈3p denote an approximate identity of KX p. Set 3 as the directed product of
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the 3r for r ∈ Fn (respectively, for Fn+1) and set the projections that appear as weak*-
limits by

fn := w*- lim
λ∈3

∑
⊕

r∈Fn

ψr (kr,λ), fn+1 := w*- lim
λ∈3

∑
⊕

q∈Fn+1

ψq(kq,λ)

and
gn := w*- lim

λ∈3

∑
⊕

s∈Gn

ψs(ks,λ).

We define the ‘corners’

C∞n := fn A∞n fn and C∞n+1 := fn+1 A∞n+1 fn+1.

CLAIM 1. With the aforementioned notation we have that

C∞n = fn A∞n = span{ψp(KX p) | p ∈ Fn · P}

and
C∞n+1 = fn+1 A∞n+1 = span{ψp(KX p) | p ∈ Fn+1 · P}.

Moreover we have that

gn A∞n gn = gn A∞n = span{ψp(KX p) | p ∈ Gn · P} ⊆ C∞n ,

and that

fna = a for all a ∈ An, fn+1b = b for all b ∈ An+1 and gnc = c for all c ∈ Bn .

Proof of claim. We begin with C∞n . It suffices to show that C∞n attains the claimed linear
span form, and symmetry in the small fixed point algebra will give that fn A∞n = A∞n fn =

fn A∞n fn . To this end let p ∈ ϑ−1([m + ni,∞]); we have two cases.

Case 1. Suppose that p ∈ Fn · P . Then there is a unique minimal element r ′ ∈ Fn with
p = r ′ p′ and p ∨ r =∞ for all r ∈ Fn with r 6= r ′. Therefore, for kp ∈KX p, we get that

fnψp(kp)= w*- lim
λ

∑
⊕

r∈Fn

ψr (kr,λ)ψp(kp)= w*- lim
λ
ψr ′(kr ′,λ)ψr ′ p′(kr ′ p′)= ψ(kp).

Case 2. Suppose that p /∈ Fn · P and let r ′ be the minimal element in ϑ−1([m + ni,∞])
so that p ∈ r ′P . Then r ′ ∨ r =∞ and so p ∨ r =∞ for all r ∈ Fn , and Nica covariance
yields fnψp(KX p)= 0.

This shows that C∞n is the closed linear span of the ψp(KX p) for p ∈ Fn · P . The same
reasoning applies for C∞n+1. Applying the same argument on gn gives also that

gn A∞n gn = span{ψp(KX p) | p ∈ Gn · P} ⊆ span{ψp(KX p) | p ∈ Fn · P} = C∞n .

For the case of Bn , An and An+1 we proceed likewise, keeping in mind that for every
kp appearing in each of these sets, the index p is larger than a unique minimal element in
the corresponding set. The proof of the claim is complete. �

CLAIM 2. The embeddings Bn ↪→ C∞n and An+1 ↪→ C∞n+1 are nuclear.
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Proof of the claim. By using the approximate identities and Claim 1 we have that the
mapping

Bn = gn Bngn ↪→ gn A∞n gn ⊆ C∞n

is nuclear. In a similar way we have that the embedding

An+1 = fn+1 An+1 fn+1 ↪→ fn+1 A∞n+1 fn+1 = C∞n+1

is nuclear, and the proof of the claim is complete. �

CLAIM 3. The C*-algebra C∞n+1 is an ideal in C∞n .

Proof of the claim. First we show that C∞n+1 ⊆ C∞n . To this end let ψp(kp) ∈ C∞n+1 with
p = qp′ for q ∈ Fn+1. Let r ∈ Fn be the unique element with q = rq ′. But then p =
rq ′ p′ ∈ Fn · P and so ψp(kp) ∈ C∞n as well.

Next we show that C∞n+1 is an ideal in C∞n . For that we need to show that fn+1 fn = fn+1

as then we will have that

C∞n+1 · C
∞
n = fn+1 A∞n+1 A∞n fn ⊆ fn+1 A∞n+1 fn

= fn+1 A∞n+1 fn+1 fn = fn+1 A∞n+1 fn+1 = C∞n+1.

To this end, by definition we have that

fn+1 fn = w*- lim
µ

w*- lim
λ

∑
⊕

q∈Fn+1

ψq(kq,µ)
∑
⊕

r∈Fn

ψr (kr,λ).

Take a q ∈ Fn+1. If q ∈ Fn as well, then q ∨ r =∞ for any r ∈ Fn with r 6= q and so

w*- lim
µ

w*- lim
λ
ψq(kq,µ)

∑
⊕

r∈Fn

ψr (kr,λ)=w*- lim
µ

w*- lim
λ
ψq(kq,µ)ψq(kq,λ)

=w*- lim
µ
ψq(kq,µ),

as the last element is a projection. If q /∈ Fn then consider r ′ ∈ Fn the unique minimal
element so that q = r ′q ′. In this case we have that q ∨ r =∞ for any r ∈ Fn with r 6= r ′

and so

w*- lim
λ
ψq(kq,µ)

∑
⊕

r∈Fn

ψr (kr,λ)= w*- lim
λ
ψq(kq,µ)ψr ′(kr ′,λ)= ψq(kq,µ).

As this holds for all q ∈ Fn+1 we derive that

fn+1 · fn =w*- lim
µ

w*- lim
λ

∑
⊕

q∈Fn+1

ψq(kq,µ)
∑
⊕

r∈Fn

ψr (kr,λ)

=w*- lim
µ

∑
⊕

q∈Fn+1

ψq(kq,µ)= fn+1,

and the proof of the claim is complete. �

Now we check that the approximate identity hypothesis of Proposition 3.3 is satisfied
for An and C∞n+1. Let (eµ)µ be the approximate identity of C∞n+1 with

eµ :=
∑
⊕

q∈Fn+1

ψq(kq,µ).
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However, for ψp(kp) ∈ Bn we have that ϑ(p) ∈ [m + ni, m + ni+ (m′ − m′i i)], and so
for q ∈ Fn+1 with q ∨ p <∞ we get

ϑ(q ∨ p)= ϑ(q) ∨ ϑ(p) ∈ [m + (n + 1)i, m + m′].

Thus eµBn ⊆ An+1. As eµ is also an approximate identity in and for An+1 we have that

eµAn = eµBn + eµAn+1 ⊆ An+1.

Now we are set to finish the proof of the inductive step. That is, first we have observed
in Claim 2 that the middle arrow in the diagram

0 // An+1 ∩ Bn //

��

Bn //

��

Bn/An+1 ∩ Bn //

��

0

0 // C∞n+1
// C∞n // C∞n /C∞n+1

// 0

is nuclear and so the map

An/An+1 ' Bn/(An+1 ∩ Bn)→ C∞n /C∞n+1

is nuclear by Proposition 3.1. Moreover, we deduced that the map An+1 ↪→ C∞n+1 is nuclear
and that the hypotheses of Proposition 3.3 are satisfied. Hence applying this proposition to
the diagram

0 // An+1 //

��

An //

��

An/An+1 //

��

0

0 // C∞n+1
// C∞n // C∞n /C∞n+1

// 0

yields that the middle vertical embedding is nuclear. As C∞n ⊆ A∞n the map An ↪→ A∞n is
nuclear, and the proof is complete. �

PROPOSITION 5.6. Let ϑ : (G, P)→ (ZN , ZN
+) be a controlled map and X be a

compactly aligned product system over (G, P). If NP(X) is a CNP-relative quotient of
NT (X) then it satisfies the hypotheses of Theorem 5.5.

Proof. First we show that X is φ̃-injective and so A embeds isometrically in NO(X).
As A→NP(X) factors through A→NO(X) we have that A embeds isometrically in
NP(X). By [27, Lemma 3.15] we have to show that if S ⊆ P is bounded then it has a
maximal element. To reach a contradiction let p ∈ P such that s ≤ p for all s ∈ S and
suppose there exists a sequence s1 < s2 < · · · ≤ p of distinct elements in S. As ϑ is
order-preserving, we have that ϑ(S) is bounded by ϑ(p) in ZN

+ , and thus finite. However,
since all sn are comparable, by (C4) and (C5) we have that ϑ(s1) < ϑ(s2) < · · · , which
contradicts finiteness of ϑ(S).

Next we show the existence of the faithful conditional expectation. Suppose that
NP(X)= C∗(π̃, t̃) and notice that it inherits the TN -action from NT (X). Also fix
U : G→ B(`2(G)) be the left regular unitary representation of G. As in the proof of
[9, Lemma 3.1], the family (π̃ ⊗ I, t̃ ⊗U ) with

(̃t ⊗U )(ξp)= t̃p(ξp)⊗Up for all ξp ∈ X p
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defines a representation

8 : NP(X)→NP(X)⊗ C∗r (G).

We show that 8 is injective. Let E ′ : NP(X)→NP(X)β be the faithful conditional
expectation through the inherited action {βz}z∈TN on NP(X). By using the action β ⊗
idB(`2(G)) we have that the map

E ′ ⊗ idB(`2(G)) : NP(X)⊗ B(`2(G))→NP(X)β ⊗ B(`2(G))

is a faithful conditional expectation. Thus 8 is injective if and only if it is injective
on the TN -fixed point algebra, or equivalently if it is injective on the cores B[0,m].
Write (π, t, ψ)= (8π̃, 8̃t, 8ψ̃) and recall that kr,s ∈K(Xs, Xr ) so that ψ̃r,s(kr,s) ∈

span{̃t(Xs )̃t(Xr )
∗
}. Note that

8( f̃ )= f̃ ⊗ I for all f̃ ∈ span{ψ̃p(KX p) | ϑ(p) ∈ [0, m]}, (5.1)

and so the restriction of 8 on these C*-subalgebras is injective.

CLAIM. Let p, q be distinct with ϑ(p)= n = ϑ(q). If ϑ(r)= ϑ(s)= n with r 6= p or
s 6= q, or if r = s, then

t (Xq)
∗ψr,s(kr,s)t (X p)= (0).

Consequently, if ∑
{ψr,s(kr,s) | ϑ(r)= ϑ(s) ∈ [0, m]} = 0

and 0 6= n is minimal in [0, m] for which there exists kp,q 6= 0 with distinct p, q in ϑ−1(n)
then

t (Xq)
∗ψp,q(kp,q)t (X p)⊆ B(0,m−n].

Proof of the claim. By (C5) we have that p ∨ q =∞. By Nica covariance the product is
zero whenever the following are not simultaneously satisfied:

p ∨ r <∞, q ∨ s <∞ and r−1(p ∨ r) ∨ s−1(q ∨ s) <∞. (5.2)

By (C5), if r 6= p or s 6= q and ϑ(r)= n = ϑ(s) then the first or the second union does
not exist. Now let r = s and suppose that the unions above do exist, that is, there are
p′, q ′, x, x ′, y, y′ ∈ P such that pp′ = r x , qq ′ = r y and xx ′ = yy′. Then we would have
the contradiction p ∨ q <∞ as

pp′x ′ = r xx ′ = r yy′ = qq ′y.

Hence the unions in equation (5.2) are not satisfied and the product is zero when r = s.
For the second part, let ψr,s(kr,s) with ϑ(r)= ϑ(s) ∈ [0, m]. If all three unions in

equation (5.2) are satisfied, then Nica covariance yields

t (ξq)
∗ψr,s(kr,s)t (ξp) ∈ψp−1rw,q−1sw(K(X p−1rw, Xq−1sw))

for w := r−1(p ∨ r) ∨ s−1(q ∨ s),

otherwise the product is zero. By the first part the product is zero when r = s. For r 6= s
we see that if w exists then

0≤−ϑ(p)+ ϑ(p ∨ r)≤ ϑ(p−1rw)≤−ϑ(p)+ ϑ(p) ∨ ϑ(r) ∨ ϑ(q) ∨ ϑ(s)≤ m − n.
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If ϑ(p−1rw)= 0= ϑ(q−1sw) then (C5) yields p = p ∨ r . Likewise q = q ∨ s and so
r ≤ p and s ≤ q. Minimality of n forces that either (p, q)= (r, s) or kr,s = 0. Thus, for
every ξp ∈ X p and ξq ∈ Xq , there are suitable k′r ′,s′ with ϑ(r ′)= ϑ(s′) ∈ (0, m − n] so
that

0=
∑
{t (ξq)

∗ψr,s(kr,s)t (ξp) | ϑ(r)= ϑ(s) ∈ [0, m]}

= t (ξq)
∗ψp,q(kp,q)t (ξp)+

∑
{ψr ′,s′(k′r ′,s′) | ϑ(r

′)= ϑ(s′) ∈ (0, m − n]},

and the proof of the claim is complete. �

For the base step first we show that 8 is injective on every B̃[m,m]. To this end let

f̃ :=
∑
{ψ̃r,s(kr,s) | ϑ(r)= ϑ(s)= m} ∈ ker8.

We have that p ∨ r = q ∨ s =∞ for all (r, s) 6= (p, q) in the sum, and so

ψq(KXq)ψp,q(kp,q)ψp(KX p)= ψq(KXq)8( f̃ )ψp(KX p)= (0).

By using an approximate identity we have that ψp,q(kp,q)= 0, and so kp,q = 0 for all
(p, q) in the sum, giving that f̃ = 0. Next we show that 8 is injective on B̃[0,i]. To this
end let

f̃ :=
∑
{ψ̃r,s(kr,s) | ϑ(r)= ϑ(s) ∈ [0, i]} ∈ ker8.

Let p 6= q in ϑ−1([0, i]) with ϑ(p)= ϑ(q); then by (C3) we have that ϑ(p)= ϑ(q)= i.
By the claim we derive that

ψq(KXq)ψp,q(kp,q)ψp(KX p)= ψq(KXq)8( f̃ )ψp(KX p)= (0).

An approximate identity argument shows that kp,q = 0 whenever p 6= q. Therefore,

f̃ =
∑
{ψ̃r (kr ) | ϑ(r) ∈ [0, i]},

and so f̃ = 0 by equation (5.1). Next we show that 8 is injective on B̃[n,n+i]. To this end
let

f̃ :=
∑
{ψ̃r,s(kr,s) | ϑ(r)= ϑ(s) ∈ [n, n + i]} ∈ ker8,

with the understanding that for all kr,s in the sum with r 6= s we have that either
ψ̃r,s(kr,s)= 0 or ψ̃r,s(kr,s) /∈ B̃(ϑ(r),n+i]. Suppose that there are p 6= q such that
ψ̃p,q(kp,q) 6= 0 and assume first that this happens for p, q ∈ ϑ−1(n). Then by the claim
we derive that

π(A) 3 t (Xq)
∗ψp,q(kp,q)t (X p)⊆ B[i,i].

As 8 is injective on B̃[0,i] and by using an approximate identity argument, we get
ψ̃r,s(kr,s) ∈ B̃(ϑ(r),n+i], which is a contradiction. Hence kr,s = 0 for all r 6= s with ϑ(r)=
ϑ(s)= n. Now we can proceed as in the base case to show that kr,s = 0 for all distinct r, s
in ϑ−1(n + i) as well, and get that

f̃ =
∑
{ψ̃r (kr ) | ϑ(r) ∈ [n, n + i]}.

But then f̃ = 0 by equation (5.1). This finishes the proof of the base step.
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For the inductive step suppose that 8 is injective on all proper subsets [n, n′] of [0, m];
we will show that it is injective on B̃[0,m]. To this end let

f̃ :=
∑
{ψ̃r,s(kr,s) | ϑ(r)= ϑ(s) ∈ [0, m]} ∈ ker8,

with the understanding that for all kr,s in the sum with r 6= s we have that either
ψ̃r,s(kr,s)= 0 or ψ̃r,s(kr,s) /∈ B̃(ϑ(r),m]. Let 0 6= n be minimal so that ψ̃p,q(kp,q) /∈

B̃(ϑ(p),m] with p 6= q and ϑ(p)= n = ϑ(q). Then by the claim we derive that

π(A) 3 t (Xq)
∗ψp,q(kp,q)t (X p)⊆ B(0,m−n].

As m − n < m, injectivity of 8 on B̃[0,m−n] and an approximate identity argument yield
that ψ̃p,q(kp,q) ∈ B̃(ϑ(p),m], which is a contradiction. Hence we have

f̃ =
∑
{ψ̃r (kr ) | ϑ(r) ∈ [0, m]} ∈ ker8,

and so f̃ = 0 by equation (5.1). This finishes the proof that 8 is injective.
Let τe : C∗r (G)→ C be the compression to the (e, e)-position. By [3, Proposition 4.1.9]

the map idNP(X) ⊗τe is also a faithful conditional expectation. Therefore, the map

E := (idNP(X) ⊗τe) ◦ (E ′ ⊗ idB(`2(G))) ◦8 : NP(X)→NP(X)⊗ C∗r (G)

is a faithful conditional expectation with range

(idNP(X) ⊗τe) ◦ (E ′ ⊗ id)(span{t (X p)t (Xq)
∗
⊗Upq−1 | p, q ∈ P})

= (idNP(X) ⊗τe)(span{t (X p)t (Xq)
∗
⊗Upq−1 | ϑ(p)= ϑ(q)})

= span{ψp(KX p) | p ∈ P}.

For NP(X)=NT (X) we recover the conditional expectation of Remark 5.3.
Now fix a C*-algebra D. As before, the map E ′ ⊗ idB(`2(G)) ⊗ idD is a faithful

conditional expectation coming from β ⊗ idB(`2(G)) ⊗ idD . An application of [3, Lemma
4.1.8] gives that idNP(X) ⊗τe ⊗ idD is a faithful conditional expectation, and thus so is
the induced E ⊗ idD on NP(X)⊗ D. We want to show that the same holds for ⊗max.
Suppose that NP(X)⊗max D is faithfully represented on B(H) by 81 ×82 for the
commuting representations

81 : NP(X)→ B(H) and 82 : D→ B(H).

Then 81 ⊗U and 82 ⊗ I also commute and thus by universality of ⊗max they define a
representation

8 : NP(X)⊗max D→ (NP(X)⊗max D)⊗ C∗r (G).

Here (E ′ ⊗max idD)⊗ idC∗r (G) is induced by the gauge action {(βz ⊗max idD)⊗

idC∗r (G)}z∈TN and so is a faithful conditional expectation. In a similar way as in the first
part we can show that 8 is injective by applying the same argument on the C*-algebra
NP(X)⊗max D generated by the product system {81(X p)82(D)}p∈P . Now we can
apply [3, Lemma 4.1.8] to (idNP(X) ⊗max idD)⊗ τe = idNP(X)⊗max D ⊗τe to derive that
it is a faithful conditional expectation. Since

E ⊗max idD = ((idNP(X) ⊗max idD)⊗ τe) ◦ ((E ′ ⊗max idD)⊗ idC∗r (G)) ◦8

we conclude that E ⊗max idD is a faithful conditional expectation. �
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6. Examples
Major examples of product systems and their operator algebras come from higher-rank
graphs established by Kumjian and Pask [17] or from the generalized crossed products of
semigroup actions of Fowler [11]. The former are always nuclear as product systems over
(ZN , ZN

+) with an abelian A, while the nuclearity of the latter depends on the embedding
of A in the fixed point algebra (and not solely on A) when the quasi-lattice satisfies the
properties of our main theorem. In this section we give some more examples of quasi-
lattice ordered groups (and constructions) that are compatible with controlled maps in
(ZN , ZN

+) with the minimality property. What appears to be essential is a unique normal
form for expressing the elements.

6.1. The Baumslag–Solitar group for n = m > 0. Recall that the Baumslag–Solitar
group is defined as B(m, n)= 〈a, b | anb = bam

〉. Let B+(m, n) be its sub-semigroup
generated by a, b. Spielberg [28, Theorem 2.11] has shown that (B(m, n), B+(m, n)) is a
quasi-lattice ordered group.

We consider the case where m = n. By Britton’s lemma we can write every p ∈
B+(m, m) in a unique way as

p = a p1ba p2b · · · a pk ba pk+1 for p1, . . . , pk ∈ {0, . . . , m − 1} and pk+1 ∈ Z+.

As the commutation relation ab = ba dominates amb = bam we have that the
abelianization gives a surjective controlled map

ϑ : (B(m, m), B+(m, m))→ (Z2, Z2
+)

that counts the occurrences of a and b in the unique expression p = a p1ba p2b · · ·
a pk ba pk+1 so that

ϑ(p)≡ ϑ(a p1ba p2b · · · a pk ba pk+1) := (p1 + · · · + pk+1, k).

PROPOSITION 6.1. The abelianization map ϑ : (B(m, m), B+(m, m))→ (Z2, Z2
+) has

the Z2
+-minimality property.

Proof. Suppose that p, q are minimal in ϑ−1([(m1, m2),∞]) so that p ∨ q <∞. Then
there are r , s ∈ B+(m, m) such that

a p1b · · · a pk baυbar2b · · · bar`+1+πm
= p · r

= p ∨ q

= q · s = aq1 b · · · aqk′baυ
′

bas2b · · · bas`′+1+π
′m,

for pk+1 + r1 = πm + υ and qk′+1 + s1 = π
′m + υ ′. By assumption p1 + · · · + pk+1 ≥

m1, q1 + · · · + qk′+1 ≥ m1 and k, k′ ≥ m2. Uniqueness of the expansion of p ∨ q gives
that

pi = qi for i = 1, . . . ,min{k, k′}.

First we show that k = k′. If k > k′ then let p′ = a p1b · · · ba pk′+1 for which we get that
p′ < p. Moreover,

p1 + · · · + pk′+1 = q1 + · · · + qk′+1 ≥ m1
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and therefore we deduce that ϑ(p′)= (q1 + · · · + qk′+1, k′)≥ (m1, m2). But this
contradicts minimality of p in ϑ−1([(m1, m2),∞]). By symmetry we also have that k 6< k′

and thus k = k′. Now if qk+1 < pk+1 then q < p, which is a contradiction; likewise if
qk+1 > pk+1. Therefore, we get the required p = q. �

6.2. Semi-direct products. Let (G, P) and (H, S) be quasi-lattice ordered groups and
let an action α : H → Aut(G) such that α|S : S→ Aut(P) restricts to automorphisms
of P . Then we can form the semi-direct products G oα H and P oα S with respect to
the relations αh(g)h = hg.

The condition on αmakes P · S a sub-semigroup of the semi-direct product, and the pair
(G oα H, P oα S) is quasi-lattice ordered. Indeed, recall that every element x ∈ G oα H
has a form as x = gh for unique g ∈ G and h ∈ H . Suppose thus that g1h1 and g2h2 have
a common upper bound in P oα S. Hence there are r1, r2 ∈ G and t1, t2 ∈ H such that

(g1αh1(r1))(h1t1)= (g1h1)(r1t1)= (g2h2)(r2t2)= (g2αh2(r2))(h2t2). (6.1)

Uniqueness of the form shows that g1 ∨ g2 <∞ in P and h1 ∨ h2 <∞ in S. Therefore,
g1, g2 have a least common upper bound, say p ∈ P , and h1, h2 have a least common
upper bound s ∈ S. We can apply equation (6.1) in reverse using the r1, r2 and t1, t2 that
satisfy

g1αh1(r1)= p = g2αh2(r2) and h1t1 = s = h2t2,

and we derive that ps is the least common upper bound in P oα S. In particular, this shows
that (g1h1) ∨ (g2h2) if and only if g1 ∨ g2 <∞ and h1 ∨ h2 <∞, in which case we get

(g1h1) ∨ (g2h2)= (g1 ∨ g2)(h1 ∨ h2). (6.2)

Now suppose that (G, P) admits a controlled map ϑN in (ZN , ZN
+) and (H, S) admits a

controlled map ϑM in (ZM , ZM
+ ). In order for the semi-direct product to inherit the obvious

controlled map on (ZN+M , ZN+M
+ ) it is necessary that α is ϑN -invariant in the sense that

ϑNαh = ϑN for all h ∈ H . We can then define the homomorphism

ϑ : (G oα H, P oα S)→ (ZN+M , ZN+M
+ ) such that ϑ(gh)= (ϑN (g), ϑM (h)).

PROPOSITION 6.2. If the maps ϑN : (G, P)→ (ZN , ZN
+) and ϑM : (H, S)→ (ZM , ZM

+ )

have the minimality property and ϑNαh = ϑN for all h ∈ H, then the induced map

ϑ : (G oα H, P oα S)→ (ZN+M , ZN+M
+ )

satisfies the ZN+M
+ -minimality property.

Proof. Let p1h1 and p2h2 be minimal in ϑ−1([(n, m),∞]) with (p1h1) ∨ (p2h2) <∞,
for (n, m) ∈ ZN

+ × ZM
+ . Then p1 ∨ p2 <∞ and h1 ∨ h2 <∞. It also follows that p1, p2

are minimal in ϑ−1
N ([n,∞]) and h1, h2 are minimal in ϑ−1

M ([m,∞]). Indeed, if p1 is
not minimal in ϑ−1

N ([n,∞]) then let r ∈ ϑ−1
N ([n,∞]) so that p1 = rr ′. This gives the

contradiction that p1h1 = rr ′h1 = rh1α
−1
h1
(r ′) with

ϑ(rh1)≥ (ϑN (r), 0)+ (0, ϑM (h1))≥ (n, m).
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Likewise if h1 is not minimal in ϑ−1
M ([m,∞]) then write h1 = t t ′ with ϑM (t)≥ m. But

then we get the contradiction p1h1 = (p1t)t ′ with

ϑ(p1t)≥ (ϑN (p1), 0)+ (0, ϑM (t))≥ (n, m).

As p1 ∨ p2 <∞, h1 ∨ h2 <∞ and they are minimal we have that p1 = p2 and h1 = h2,
giving that p1h1 = p2h2. �

6.3. Graph products. Let 0 be an undirected finite graph such that there is at most
one vertex between any two vertices, and it has no loops. Let (G I , PI ) be a quasi-
lattice ordered group for each vertex I ∈ 0. The graph product G ≡ G0 is then the group
generated by

⊔
I∈0 G I subject to identifying the units eI and to allowing commutation of

elements between G I and G J if and only if the vertices I and J are adjacent. By letting
P be the subgroup generated by the PI in G one obtains a pair (G, P). Crisp and Laca
[5] showed that (G, P) is a quasi-lattice ordered group. When (G I , PI )= (Z, Z+) for all
I then we get a right-angled Artin group on the graph 0. We will show that Theorem 5.5
accommodates such settings.

Green [12] has shown that an element p ∈ P admits a reduced expression p =
pI1 · · · pIk such that if Ii = I j then there exists a k between i and j such that Ik is not
adjacent to Ii . A syllable pIi 6= eIi is called initial if Ii is adjacent to all I j for j < i .
The vertex Ii is called initial and we write 1(p) for the set of all initial vertices of p.
As reduced expressions are shuffle equivalent, it follows that 1(p) (and thus pI ) does not
depend on the reduced form of p. For p ∈ P and I ∈ 0 let

p(I ) :=

{
pI if I ∈1(p),

e = eI otherwise.

For convenience we will also write

C(p) := {I ∈ 0 | I is adjacent to all vertices on p}.

Let p, q ∈ P and write p = p(I )p′ and q = q(I )q ′ for a fixed I ∈ 0. Crisp and Laca
[5, Definition 12] define p, q ∈ P to be I -adjacent if:
(i) p ∨ q <∞;
(ii) either p(I )= p(I ) ∨ q(I ) or I ∈ C(p(I )−1 p);
(iii) either q(I )= p(I ) ∨ q(I ) or I ∈ C(q(I )−1q).
Then in [5, Proposition 13] it is shown that p ∨ q <∞ if and only if they are I -adjacent
and p′ ∨ q ′ <∞, in which case

p ∨ q = (p(I ) ∨ q(I )) · (p′ ∨ q ′).

Passing now to controlled maps, suppose that every (G I , PI ) obtains a controlled map
over (ZNI

+ , Z
NI
+ ). By taking the completion of 0, Crisp and Laca [6] show that the graph

product (G, P) obtains a controlled map over (ZN , ZN
+) for N :=

∑
I NI . We will write

m I ∈ ZNI for the I -part of m ∈ ZN . By using the embeddings ZNI ↪→ ZN we may write
m =

∑
I∈0 m I .
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PROPOSITION 6.3. Let (G, P) be the graph product of the quasi-lattices (G I , PI ). If
the maps ϑI : (G I , PI )→ (ZNI , ZNI

+ ) have the minimality property then so does the
completion map

ϑ : (G, P)→ (ZN , ZN
+) for N :=

∑
I

NI .

Proof. We start by noticing that if p = xy is minimal in ϑ−1([m,∞]) then y is minimal
in ϑ−1([(m − ϑ(x)) ∨ 0,∞]). Thus we can reduce by deleting common left parts.

Let p, q ∈ P such that p ∨ q <∞. Start with I ∈1(p) \ C(p) and apply part (ii) of
[5, Proposition 13] to get that pI ∨ q(I )= pI 6= eI . If I /∈ C(q(I )−1q) then q(I )= pI ,
otherwise q(I )≤ pI . Now [5, Proposition 13] asserts that (p−1

I p) ∨ (q(I )−1q) <∞. We
continue until we exhaust subsequent initial vertices to obtain r, s ∈ P with

p = pI1 · · · pIk r and q = q(I1) · · · q(Ik)s

so that the vertices I1, . . . , Ik /∈ C(p), the r is on C(p), and with q(Ii )= pIi when Ii is not
in C(q(Ii−1)

−1
· · · q(I1)

−1q) and q(Ii )≤ pIi when I is in C(q(Ii−1)
−1
· · · q(I1)

−1q)⊇
{Ii , . . . , Ik}. Therefore

q(I1) · · · q(Ik) · x(I1) · · · x(Ik)= [q(I1)x(I1)] · [q(I2)x(I2)] · · · [q(Ik)x(Ik)]

= pI1 · · · pIk

for

x(Ii ) :=

{
e if Ii /∈ C(q(Ii−1)

−1
· · · q(I1)

−1q),

q(Ii )
−1 pIi if Ii ∈ C(q(Ii−1)

−1
· · · q(I1)

−1q).

Thus q(I1) · · · q(Ik)≤ pI1 · · · pIk so that we can delete the smaller part. Now we repeat
for q in place of p. Hence without loss of generality we can write

p = p′ p′′ and q = q ′q ′′

where p′′ is on C(p) with p′′I = pI and q(I )= e for all vertices I in p′. Likewise for the
vertices for q ′ and q ′′ and so ϑ(p′) ∧ ϑ(q ′)= 0.

Case 1. Suppose first that p = p′′ and q = q ′′. We will show that p = q. To this end write

p = pI1 · · · pIk and q = qJ1 · · · qJ`

such that Ii ∈ C(p) and J j ∈ C(q). Without loss of generality suppose that I1 /∈

{J1, . . . , J`} so that pI1 > eI1 = q(I1), and write

p = pI1 · · · pIk and q = eI1qJ1 · · · qJ` .

Clearly q(I1) 6= pI1 ∨ q(I1) and we may invoke part (iii) of [5, Proposition 13] to deduce
that I1 must be adjacent to all J1, . . . , J`. Continuing inductively, we get that Ii and J j

are adjacent when Ii 6= J j . Therefore, we can write

p = p(I1) · · · p(In) and q = q(I1) · · · q(In)

such that all I1, . . . , In are adjacent, but with the understanding that now some of the
elements may be the identity. By [5, Proposition 13] we have that

p(Ii ) ∨ q(Ii ) <∞ for all i = 1, . . . , n.
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Let us write m =
∑n

i=1 m Ii by using the embeddings ZNI ↪→ ZN . If p(I1) is not minimal
in ϑ−1

I1
([m I1 ,∞]) then we can write p(I1)= r(I1)r ′(I1) with ϑ(r(I1))≥ m I1 . But then

we would have that

p = r(I1)r ′(I1)p(I2) · · · p(In)= (r(I1)p(I2) · · · p(In)) · r ′(I1),

as the Ii are all adjacent, and with

ϑ(r(I1)p(I2) · · · p(In))= ϑ(r(I1))+ ϑ(p(I2))+ · · · + ϑ(p(In))

≥m I1 + m I2 + · · · + m In = m.

This contradicts minimality of p. Likewise for q(I1). Therefore p(I1) and q(I1) are
minimal in ϑ−1([m I1 ,∞]). However, as p(I1) ∨ q(I1) <∞ and (G I1 , PI1) has the
minimality property, we get that p(I1)= q(I1). Since all Ii are adjacent, we may apply the
same argument for Ii in the place of I1 and thus get that p(Ii )= q(Ii ) for all i = 1, . . . , n,
giving the required p = q .

Case 2. Let us now pass to the general case for p = p′ p′′ and q = q ′q ′′ with p′′ on C(p),
q ′′ on C(q) and ϑ(p′) ∧ ϑ(q ′)= 0. Write

p = p′′ p′ and q = q ′′q ′.

As p ∨ q <∞ we get that p′′ ∨ q ′′ <∞ and the first part of case 1 gives that the vertices
on p′′ and q ′′ are adjacent. We can use that every I on p′′ is in C(p) and so

m I ≤ ϑ(p)I = ϑI (pI )= ϑI (p′′I )= ϑ(p
′′)I for all I ∈ C(p).

Now proceed as in case 1 to show that p′′I is minimal in ϑ−1([m I ,∞]). Likewise for
q ′′(I ) and applying the same argument for all vertices in C(p) ∪ C(q) gives that p′′ =
q ′′ =: s. By deleting this left common part we get that p′ and q ′ are minimal in ϑ−1([(m −
ϑ(s)) ∨ 0,∞])with p′ ∨ q ′ <∞. But recall that ϑ(p′) and ϑ(q ′) are supported in disjoint
directions and so

(m − ϑ(s)) ∨ 0≤ ϑ(p′) ∧ ϑ(q ′)= 0.

Thus p′ and q ′ are minimal in ϑ−1([0,∞]) and so p′ = q ′ = e. Consequently, p = p′′ =
q ′′ = q, and the proof is complete. �
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