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Although topographic mapping missions and geological surveys carried out by Autonomous
Underwater Vehicles (AUVs) are becoming increasingly prevalent, the lack of precise navi-
gation in these scenarios still limits their application. This paper deals with the problems of
long-term underwater navigation for AUVs and provides new mapping techniques by develop-
ing a Bathymetric Simultaneous Localisation And Mapping (BSLAM) method based on graph
SLAM technology. To considerably reduce the calculation cost, the trajectory of the AUV is
divided into various submaps based on Differences of Normals (DoN). Loop closures between
submaps are obtained by terrain matching; meanwhile, maximum likelihood terrain estimation
is also introduced to build weak data association within the submap. Assisted by one weight
voting method for loop closures, the global and local trajectory corrections work together to
provide an accurate navigation solution for AUVs with weak data association and inaccurate
loop closures. The viability, accuracy and real-time performance of the proposed algorithm are
verified with data collected onboard, including an 8 km planned track recorded at a speed of 4
knots in Qingdao, China.

K E Y W O R D S

1. AUVs. 2. Navigation. 3. Graph SLAM. 4. Terrain estimation.
5. Weight voting method.

Submitted: 13 July 2017. Accepted: 2 April 2019. First published online: 5 July 2019.

1. INTRODUCTION. With the increasing demand of marine exploration and the
development of seabed topographic mapping methods (such as bathymetry systems), a
significant amount of work has been done to produce high-resolution maps of the seabed
(Doble et al., 2009; Wang et al., 2017a). However, because the map resolution for shipborne
bathymetry systems is proportional to the water depths, shipborne bathymetry systems
cannot not meet the requirements of high-resolution mapping in deep waters. Due to
their ability to operate close to the seafloor regardless of depth, Autonomous Underwa-
ter Vehicles (AUVs) have become important mapping platforms for topography missions
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and geological surveys such as searching for manganese nodules, hydrothermal vents and
remains of vessels.

The accuracy of a bathymetric map depends on the accuracy of navigation of the AUV.
Global Navigation Satellite Systems (GNSSs), Dead Reckoning (DR), Ultrashort-Baseline
(USBL), and Long-Baseline (LBL) acoustic positioning systems all provide options for
improving navigational accuracy, with various levels of attainable precision (Paull et al.,
2014). GNSS observations can provide accurate locations, but this requires the AUV to
surface. DR navigation error is related to the total distance travelled, which means it is
unsuitable for a long-term underwater navigation scenario without other precise auxiliary
means of positioning. Although USBL and LBL could provide a bounded navigation error,
support vessels or acoustic arrays are necessary, and this would limit the operating range
of the AUV.

As a more recently developed approach to provide accurate navigation solution for
AUVs without any aids, the Simultaneous Localisation And Mapping (SLAM) technique
has been introduced. The SLAM technique makes it possible for a vehicle to incrementally
build a map of an unknown environment with consistency while simultaneously determin-
ing its location within this map (Durrant-Whyte and Bailey, 2006). Many breakthroughs in
the development of the SLAM technique have been made in Unmanned Ground Vehicles
(UGVs) (Ila et al., 2017; Dellaert and Kaess, 2006) and Unmanned Aerial Vehicles (UAVs)
(Kownacki, 2016). Underwater SLAM algorithms for AUVs have also been developed,
and most of them are applied using a camera (Kim and Eustice, 2013), a mechanically
scanned imaging sonar (Mallios et al., 2014; Ribas et al., 2008) and Forward-Looking
Sonar (FLS) (Hurtós et al., 2015; Johannsson et al., 2010). However, the use of a camera
is limited to applications in which the vehicle navigates in clear water and very near to
the seafloor (Ribas et al., 2008), and SLAM techniques with mechanically scanned imag-
ing sonars cannot be applied in unstructured environments. As imaging the same scene
from two different vantage points can cause significant alterations in the measurement, the
forward-looking sonar SLAM can only register images that differ in small orientations, and
this makes it difficult to obtain loop closures (Hurtós et al., 2015). Compared with the tech-
niques listed above, Bathymetric SLAM (BSLAM) is more flexible and has little restriction
in terms of water clarity, environment and vantage points. The major limitation of BSLAM
is that the best navigation results can only be provided when the depth profile of the seabed
varies significantly (Barkby et al., 2009). However, with a prior bathymetric map with a
much lower resolution (such as a map resolution of 500 metres), it is possible to calculate
the corresponding terrain information such as the terrain entropy and choose some areas
which satisfied the entropy condition (for one area including 20 × 20 points, its entropy
should be no less than two according to Feng (2004)) to conduct the BSLAM process as
a benchmark, while the remaining areas could be mapped via topographic expansion sur-
veys. Accordingly, building a bathymetric map and then simultaneously locating using it is
more reliable than the above techniques using vision, mechanically scanned imaging sonar,
or forward-looking sensors in most cases.

BSLAM has received great attention. Barkby et al. (2012) proposed a Bathymetric Parti-
cle filter SLAM (BPSLAM) to help locate the position of the AUV in real time without loop
detection. This algorithm applied a Gaussian process and a Rao–Blackwellized particle fil-
ter to calculate SLAM solutions, and an ancestry tree was used to reduced computation.
Regrettably, the computational efficiency of the BPSLAM still limits its real-time perfor-
mance. Palomer et al. (2013) improved the Extended Kalman Filter (EKF) SLAM using
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an octree-established point-cloud sampling model and applied an Iterative Closest Point
(ICP) algorithm for terrain matching. However, this method can only correct the overall
position of each submap and the location errors within the submap were neglected. Roman
and Singh (2010) proposed a SLAM method including map registration and pose filtering,
and experiment results have shown its significant improvements in map quality. In addition,
within the loop closures detection technique in BSLAM, a terrain matching technique has
also been developed over a long period and has now been applied successfully in AUVs
(Ånonsen et al., 2013). For example, based on a Particle Filter (PF), Donovan (2012) pro-
posed a Three-Dimensional (3D) terrain matching method considering tide correction and
presented a novel PF-resampling technique to consistently recover a position fix over a
search area of several kilometres without significantly increasing the number of particles
used, and also proved the algorithm’s robustness.

Until recently, some difficulties have not been fully solved in BSLAM. They include
the obvious overlap of the bathymetric data that could not be obtained for adjacent time
periods, and this makes it difficult to measure the inter-frame motion. Also, loop closures
obtained by terrain matching have a great impact on navigation results. Navigation results
for vehicles are inaccurate if inaccurate loop closures cannot be identified.

To overcome these difficulties, the BSLAM algorithm based on the graph method is
proposed. To estimate the inter-frame motion, the BSLAM algorithm constructs weak data
association by comparing prior estimation and measurement, and estimation is obtained
by a maximum likelihood terrain estimation approach. A weighted voting method for the
loop closures has also been proposed to identify inaccurate loop closures. In contrast to the
filter BSLAM methods proposed by Barkby et al. (2012) and Palomer et al. (2013), our
proposed algorithm does not need to make strong assumptions of state transfer and mea-
surement functions, and this means the modelling errors caused by hydrodynamic force
coefficients and complex measurement noise would have little impact on the BSLAM solu-
tions. Meanwhile, the BSLAM algorithm calculates a posterior probability over the entire
path along with the map instead of just the current pose-like filter methods (Thrun et al.,
2005).

An experiment using a shipborne bathymetry system was conducted. On board data
was collected, including an 8 km planned track recorded at 4 knots, and a high-resolution
bathymetric map of around 0·56 km2 was built. Using this data, a playback experiment
was conducted to verify the validity and real-time performance of the BSLAM algorithm,
and the experiment results verified the viability, accuracy and real-time performance of the
BSLAM.

The rest of paper is organised as follows. An overview of the BSLAM algorithm is intro-
duced in Section 2. A description of the graph construction algorithm is given in Section 3.
The graph optimisation algorithm is proposed in Section 4 and the playback experiment
and its results are discussed in Section 5. Finally, the conclusions are given in Section 6.

2. OVERVIEW OF THE BSLAM ALGORITHM. Similar to graph SLAM, the
BSLAM algorithm also consists of both graph construction and optimisation. In the graph
construction, the trajectory of the AUV is divided into various submaps, and loop closures
between submaps are detected. AUV motion between adjacent frames is estimated via
weak data association. Meanwhile, all loop closures are identified via the weighted voting
method, and then the pose graph is built using AUV states, odometry constraints, weak

https://doi.org/10.1017/S0373463319000286 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463319000286


NO. 6 AUV BATHYMETRIC SLAM USING GRAPH METHOD 1605

data associations and loop closures. In the graph optimisation process, all frames associ-
ated with loop closures are named as key frames. AUV states on key frames are corrected
via global trajectory correction and all of the rest states are modified in the local trajectory
correction process. The main BSLAM framework is shown as Algorithm 1.

Algorithm 1 BSLAM FRAMEWORK

1 Do
2 Import DR data, bathymetric data and Store them to submap i
3 Build weak data association
4 If the Difference of Normals (DoN) value or length of the submap i satisfies the

conditions
5 Store submap i, and build submap i + 1
6 Detect loop closures and Judge all of them via weighted voting method
7 If new loop closure is detected
8 Do global trajectory correction
9 Do local trajectory correction

10 end if
11 end if
12 Until mission complete

As shown in Algorithm 1, the main steps of the BSLAM are:

(1) Graph Construction (Line 2 to 6 in Algorithm 1):
(a) The navigation and bathymetric data is obtained via the DR and bathymetry

systems, respectively, and they are divided into various submaps; (Section 3.1)
(b) Weak data association construction; (Section 3.2)
(c) Loop closures between the current submap and all historical submaps are

detected by terrain matching technique, and inaccurate loop closures can be
identified via a weighted voting method; (Section 3.3)

(2) Graph Optimisation (Line 8 to 9 in Algorithm 1):
(a) Combined with the loop closures and weak data association, the purpose of the

global trajectory correction is to find the solution of the SLAM least squares
problems. (Section 4.2.1)

(b) After obtaining the global trajectory correction results, local trajectory correction
modifies the local trajectory with the aid of weak data association. (Section 4.2.2)

Moreover, in the BSLAM process, the vehicle track is designed to achieve the best
results from both vehicle navigation and topographic mapping. As shown in Figure 1, our
planned track for the AUV looks like a Chinese knot to obtain more loop closures. Later, we
adopted this track pattern during the experiment, and results show the BSLAM algorithm
performs well when using this track.

3. GRAPH CONSTRUCTION. The purpose of graph construction is to build the pose
graph. As shown in Figure 2, the pose graph of the BSLAM consists of the vehicle states
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Figure 1. Planned track of the BSLAM process.

Figure 2. Schematic diagram of pose graph construction.

( ), odometer constraints ( ), weak data association ( ) and loop closures ( ). The odome-
ter constraint can be obtained from the navigation system, and the weak data association

is obtained using maximum likelihood terrain estimation. The loop closure is detected
by terrain matching techniques, and this closure is also called a loop closing constraint
(Rosen et al., 2012).

3.1. Generation of submaps. In BSLAM, the first and most basic step is to log bathy-
metric data. The bathymetric data can be obtained by combining the Two-Dimensional
(2D) swaths from a bathymetry system and vehicle trajectory from a DR system.
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(a) (b)

Figure 3. The measurement model of the AUV (a) Measurement model (b) 2D measurement model.

As shown in Figure 3, for one measurement point in the 2D swath, the bathymetry
system would return the beam length r and the echo angle β. The corresponding trajectory
point is X = (x, y, z,ϕ, θ ,ψ), where x, y, z are the position in XG (east), YG (north) and SG
(vertical) -axes in a geodetic coordinate system, and ϕ, θ , ψ denote the rotation around
XG, YG and ZG -axes, respectively. Combined with the trajectory data, the corresponding
bathymetric data XM = (xM , yM , zM ) in the geodetic coordinate system can be obtained via
Equation (1):⎡
⎢⎢⎣

xM
yM
zM
1

⎤
⎥⎥⎦ = R

⎡
⎢⎢⎣

0
r sinβ
r cosβ

1

⎤
⎥⎥⎦

where

R =

⎡
⎢⎢⎣

cos θ cosψ + sinϕ sin θ sinψ cosϕ sinψ − sin θ cosψ + sinϕ cos θ sinψ x
− cos θ cosψ + sinϕ sin θ sinψ cosϕ cosψ − sin θ sinψ + sinϕ cos θ cosψ y

sin θ cosψ − sinϕ cos θ cosψ z
0 0 0 1

⎤
⎥⎥⎦
(1)

It must be noted that, due to the measurement errors of a bathymetry system, noise would
affect the bathymetric data and some outliers would be produced. To deal with this prob-
lem, the automatic processing algorithm proposed by Chen (2016) is applied to detect the
outliers of bathymetric data in the process of bathymetric data acquisition. This algorithm
uses the Alpha-Shapes model to detect the outliers in 2D swaths efficiently, and its viability
and accuracy have been proved with both flat and complex terrain. In addition, although
systematic errors of attitude and heading would also influence the bathymetric data, these
impacts are negligible because the measurement error of the Fibre Optic Gyrocompass
(FOG) used in this paper is less than 0·1◦.

During the topographic mapping mission, the trajectory and the corresponding bathy-
metric data is constantly divided into various submaps considering the time-consumption
problem (Palomer et al., 2016). Submaps are created on the basis of the trajectory length
and the amount of information in the bathymetric data. The minimum and maximum
lengths of the submap are set according to the actual situation. Considering the amount
of information in the bathymetric data, Palomer et al. (2015) proposed a method using
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DoN to identify the object when the measurement noise is not only considerably high, but
also more scattered. DoN provides a multi-scale approach to process large unorganised
Three-Dimensional (3D) point clouds for detecting the areas where the point cloud has sig-
nificant changes, and it has been proven to be a computationally efficient method. Thus, in
this study, DoN is introduced to represent the amount of information in bathymetric data,
and the DoN value in measurement point i can be calculated as:

�n̂i(p , r1, r2) =
n̂i(p , r1) − n̂i(p , r2)

2
(2)

where, �n̂i(p , r1, r2) represents the DoN value, p denotes the point cloud of bathymetric
data. n̂i(p , r1) and n̂i(p , r2) are the normal with support radius r1 and r2(r1 < r2) at time
I , and they are estimated by finding the tangent plane using the principal components of
the points lying within a sphere of a fixed support radius. In this paper, we define the DoN
value of one submap includes n measurement points as:

DoN = 2·
n∑

i=1

doni (3)

where:

doni =

{
1 �n̂i(p , r1, r2) > 0·5
1 �n̂i(p , r1, r2) ≤ 0·5 (4)

An increase in the DoN value means a clear change in the terrain is observed. When the
DoN value of current submap is higher than the threshold and the minimum patch size has
been reached, the current submap is stored and a new submap is started (Roman and Singh,
2010).

3.2. Weak data association. While obtaining and storing the bathymetric data, weak
data association at adjacent time periods is constantly built to estimate the inter-frame
motion. The weak data association is the likelihood that the measurement matches the
prior estimation, and this can be calculated by a comparison of the measurement and a
prior estimation of it.

As shown in Figure 3, the measurement model of bathymetry system at time i is:

Z+
i = h(Xi) + ei (5)

where Z+
i is measured terrain elevation, and ei denotes measured noise of bathymetric data

with a distribution of N(0, 0·4) according to the parameter of GS+ wide-swath bathymetry
system used in this paper.

The prior estimation can be obtained with a maximum likelihood terrain estimation
algorithm we have previously proposed, called the Terrain Elevation Measurement Extrap-
olation Estimation (TEMEE) (Li et al., 2017). By combining the historical data including
Xi−n, Z+

i−n, . . . , Z+
i−1, and the current vehicle state Xi, the estimated measurement Z−

i can
be obtained via the TEMEE algorithm. The details of the prior estimation are long and
therefore omitted here for brevity.
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Then the weak data association between time i − 1 and i can be expressed as:

likelihood = p(Xi|Xi−1) ∝ p(Z+
i − Z−

i )

=
1√

(2π )N det(Ce)
exp

(
−1

2
(Z+

i − Z−
i )TC−1

e (Z+
i − Z−

i )
)

=
1

(2πσ 2
e )N/2 exp

(
− 1

2σ 2
e

N∑
k=1

(Z+
i [k] − Z−

i [k])2

) (6)

where Ce = diag(σ 2
1 , σ 2

2 , σ 3
1 , . . . , σ 2

k ) is a diagonal matrix consisting of the variance compo-
nents of each sampling point, N represents the number of measurement points and Z[k] is
the elevation of the k-th measurement point. As the measurements of all the sampling points
are considered independent of the others, assuming that measurement variance is the same
in all beams, we can simply make Ce = σ 2

e I and σ 2
e = 0·4 according to ei in Equation (5)

(Nygren, 2005).
3.3. Loop closure detection.
3.3.1. Terrain matching. Different from weak data association, loop closures have

a high confidence level and they are detected by terrain matching techniques between
submaps. Whenever a new submap is stored, the terrain matching procedure runs between
the current submap and all the historical submaps in its search circle. The radius of the
circle is the maximum navigation error in the current submap.

As shown in Figure 4, it is assumed that submap 1 is in the search circle of submap 2,
then submap 2 would be divided into match units as shown in Figure 4, and each match
unit looks for the most similar area in submap 1. For match unit unit_k in submap 2 and all
M match units in submap 1, the likelihood function Lk is given as follows:

Lk = max

(
1

(2πσ 2
g )N exp

(
−

N∑
n=1

(unit_kn − unit_ln)2/2σ 2
g

))
(l = 1, 2, 3, . . . , M ) (7)

where σg represents the covariance matrix of the measurement noise in the grid map (Zhou
et al., 2017), but here it could be calculated as the average residual of the match unit, as
well as N is the same as the corresponding values in Equation (6). If Lk is more than the
matching-threshold, the terrain information would judge the correctness of the matching
result. Here the terrain entropy is applied to represent the terrain information because it is
insensitive to measurement noise. In the map with elevation value h(i, j ) at (i, j ), terrain
entropy HT can be described as:⎧⎪⎨

⎪⎩
P(i, j ) =

h(i, j )∑m
i=1
∑n

j =1 h(i, j )

HT =
1

mn
∑m

i=1
∑n

j =1 P(i, j ) ln[P(i, j )]
(8)

Making m and n equal to 20, if the current terrain information HT is no less than 2, this
matching result is valid and we denote the corresponding loop closure as lk (Feng, 2004).
Finally, to reduce the computation, only one loop closure l1 with maximum likelihood
function is retained in one matching procedure. The number of other loop closures which
have the same value or slight difference with l1 is used to express the reliability of this
retained loop closure.
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Figure 4. Calculation of confidence.

(a) (b) (c)

Figure 5. Network of combination of two loop closures (a) Network 1 (b) Network 2 (c) Network 3.

3.3.2. Weighted voting method. In the marine environment, the bathymetric data is
influenced by the vehicle pose, reverberation and other environmental characteristics, and
it can result in inaccurate loop closures (Nygren and Jansson, 2004; Wang et al., 2017b).
If the inaccurate loop closures cannot be identified for a long time, the effectiveness of
the BSLAM algorithm will be significantly affected. Thus, a weighted voting method is
proposed to judge whether the loop closures are accurate.

In this method, each loop closure provides scores for each of the remaining closures in
the survey process according to the corresponding combination of these two closures.

As shown in Figure 5, there are three kinds of possible networks for the combinations.
is the vehicle state, and the black line connecting state Xi and Xj describes the loop closure
with value DS

ij and information matrix S−1
ij , and the black dotted line connecting the same

states denotes the odometer constraint with value Do
ij and information matrix O−1

ij .
For Network 1, the derived estimates of X3 and its information matrix C−1

3 are:

X3 = (S−1
01 + O−1

01 )−1(S−1
01 Ds

01 + O−1
01 Do

01) + Do
12 + (S−1

23 + O−1
23 )−1(S−1

23 Ds
23 + O−1

23 Do
23)

C−1
3 = [(S−1

01 + O−1
01 )−1 + O12 + (S−1

23 + O−1
23 )−1

(9)
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For Network 2, the corresponding values are:

C′
0123 = O01 + (S−1

12 + O−1
12 )−1 + O23

D′
0123 = Do

01 + (S−1
12 + O−1

12 )−1(S−1
12 Ds

12 + O−1
12 Do

12) + Do
23

X3 = (C′−1
0123 + S−1

03 )−1(C′−1
0123D′

0123 + S−1
03 Ds

0123)

C−1
3 = C′−1

0123 + S−1
03 .

(10)

Network 3 is in the form of a Wheatstone bridge, the variables X3 can be solved from
the linear system GX=B where X = {X1, X2, X3}:

G =

⎡
⎢⎣

O−1
01 + O−1

12 + O−1
23 −O−1

12 −S−1
13

−O−1
12 S−1

02 + −O−1
12 + −O−1

23 −O−1
23

−S−1
13 −O−1

23 −S−1
13 + −O−1

23

⎤
⎥⎦

B =

⎡
⎢⎣

O−1
01 Do

01 + O−1
12 Do

12 + S−1
13 Ds

13

S−1
02 Ds

02 + O−1
12 Do

12 + O−1
23 Do

23

S−1
13 Ds

13 − O−1
23 Do

23

⎤
⎥⎦

(11)

The corresponding information matrix C−1
3 is:

C−1
3 = [O−1

12 S−1
13 ]

[
O−1

12 + O−1
23 + S−1

24 −O−1
23

−O−1
23 O−1

23 + O−1
34 + S−1

13

][
S−1

24

O−1
34

]
(12)

As S−1 is far greater than W−1, information matrices of these networks can be simplified
as:

Network 1: C−1
3 = (S01 + O12 + S23)−1

Network 2: C−1
3 = (O01 + S12 + O23)−1 + S−1

03

Network 3: C−1
3 = [O−1

12 S−1
13 ]

[
S−1

24 O−1
23

−O−1
34 S−1

13

] [
S−1

24
O−1

34

]

= O−1
12 S−2

24 + O−1
34 S−2

13 − O−1
23 S−1

13 S−1
24 − O−1

12 O−1
23 O−1

34

(13)

The assumptions of the odometer constraint and loop closures have to be made in order
to calculate C−1

3 . Referring to EKF theory, for a linear system without considering heading
error, the observation update is omitted because there is no observation. The time update
function of odometry is:

Ok = Fk−1Ok−1FT
k−1 + Qk−1 (14)

in which Fk−1 is the Jacobian matrix of the vehicle state transfer function. Hence, the
increase of odometer covariance matrix O is achieved by a development of time t, and
this means the odometer information matrix O−1 decreases as time goes on. O−1

ij can be
represented as 1/(tj − ti). For S−1

ij , let S−1
ij = 1,000 simply due to S−1

ij being much bigger
than the odometer information matrix. Finally, the corresponding C−1

3 value of network 1,
2 and 3 can be obtained according to Equation (13).
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Now, combined with the DR location X dr
3 , the likelihood of X3 can be calculated as:

likelihood = P(X3) =
C−1

3√
2π

exp(−C−1
3 ‖X3 − X dr

3 ‖2) (15)

Considering confidence, the score from Ds
1 to Ds

2 (or from Ds
2 to Ds

1) is:

score1,2 = (confidence(1) + confidence(2)) − C−1
3√
2π

exp(−C−1
3 ‖X3 − X dr

3 ‖2) (16)

Algorithm 2 alg2

1 repeat
2 Calculate Scoret =

∑n
i=1,i 	= t scoret,i, t = 1, 2, . . . , n

3 t min = find(Scoret min == min(Scoret))
4 if Scoret min < thre-2
5 Delete Scoret min,i, i = 1, 2, . . . , n
6 Delete Scorei,t min, i = 1, 2, . . . , n
7 end if
8 until Scoret min ≤ thre-2

As shown in Algorithm 2, the threshold thre-2 of the weighted voting method is the
additive combination of the average value of Scoret(t ∈ [1, n]) and the corresponding stan-
dard deviation. If the smallest score is smaller than thre-2, this closure with the smallest
score is judged as an inaccurate one. This method can delete all scores related to the closure
with smallest score immediately, and in the next loop, voting results will not be influenced
by the inaccurate one which has been identified.

4. GRAPH OPTIMISATION. Once the new loop closure is detected, the graph optimi-
sation process optimises the pose graph using global and local trajectory corrections.

4.1. State transfer and measurement functions. The precondition of the optimisation
process is to select the appropriate state transfer and measurement functions. There are
many ways to generate the state transfer function of the AUV. Roman and Singh (2010)
proposed the vehicle state model with six degrees of freedom. Stuckey (2012) proposed a
state transfer function based on hydrodynamic coefficients. A simplified motion function
has also been established to derive the weighted voting method.

The traditional SLAM algorithms, such as the EKF SLAM, predict Xi through the
calculation of fi(Xi−1, ui) (Durrant-Whyte and Bailey, 2006). However, the state transfer
function fi(Xi−1, ui) is not accurate whether we use the simplified state model or nonlinear
state model based on the hydrodynamic coefficient. In fact, it is very difficult to build an
accurate model of the vehicle state because of the influence of the coupled hydrodynamic
coefficients. Thus, the state transfer function is replaced by the offset continuity function in
BSLAM.

In the offset continuity function, the AUV states with loop closures are extracted accord-
ing to the time order, and these states are call key states. DR errors of key states are defined
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as �Xkey = {�X key
0 ,�X key

1 , . . . ,�X key
n ,�X key

n+1 } , in which �X key
i (i = 1, 2, . . . , n) is the

error of all n key states during the mission. Meanwhile �X key
0 and �X key

n+1 are the error at
the start and end points, respectively. It is important to note that vehicle states mentioned
in Section 4.1 are all key states.

The offset of key states is accumulated over time because the DR error is accumulated.
Therefore, we represent the current DR offset using the previous and subsequent ones.
Assuming that the DR error at time i is expressed by DR errors at times i − 1 and i + 1,
so fi(X

key
i−1 , ui) − X key

i is represented by ai�X key
i−1 + (1 − ai)�X key

i−1 −�X key
1 . ai is calculated

using all vehicle states instead of only key states. If X key
i−1 , X key

i and X key
i−1 are denoted as

Xk, Xk+m and Xk+m+n, combined with weak data association p(Xj |Xj −1):

ai =

∑k+m
j =k+1 1/p(Xj |Xj −1)∑k+m+n
j =k+1 1/p(Xj |Xj −1)

(17)

Please note that we assume the initial position of the AUV is accurate.

�X key
0 = 0 (18)

The offset continuity function of key state i is:

�X key
i =

[
ai 0

0 1 − ai

][
�X key

i−1

�X key
i−1

]
(19)

We can express the offset continuity function in a matrix form as:

�Xkey = H�Xkey (20)

where �X key is a vector which is the concatenation of �X key
0 ,�X key

1 , . . . ,�X key
n+1 and H

denotes the incidence matrix with all entries being a, 1 − a, or 0. In addition, the relation-
ship between DR offsets �X key

n+1 with other offsets need to be determined to fill the n+1 line
in matrix H. When the time interval between�X key

n and�X key
n+1 is quite short (less than 120

seconds), just make �X key
n+1 equal to �X key

n , otherwise, make no assumption of �X key
n+1 and

set all the elements of the n+1 line in H to 0.
On the other hand, the measurement function of loop closures is:

DS
ij =

[
1 0

0 −1

][
�X key

i

�X key
j

]
(21)

With loop closure lij obtained in the terrain matching process, an observation of DS
ij is

modelled as:

D̄S
ij = DS

ij + D̂S
ij = �X key

i �X key
j = lij + D̂S

ij (22)

where D̂S
ij is a random Gaussian error with zero mean and known covariance matrix Sij .

Given a set of measurements D̄S
ij , our goal is to derive the optimal estimate of all key states.
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We can express the measurement function in a matrix form as:

DS = HS�Xkey (23)

where DS represents the concatenation of all the position differences of DS
ij ,�X key denotes

the concatenation of �X key
1 ,�X key

2 ,�X key
3 , . . . , and HS is the incidence matrix with all

entries being 1, -1, or 0.
4.2. Optimisation algorithm.
4.2.1. Global trajectory correction. Combining the state transfer function (Equation

(20)) and measurement function (Equation (23)), the BSLAM problem is transformed into
a least squares problem:

�X key∗ = arg min

×
⎧⎨
⎩

M∑
i=1

∥∥∥ai�X key
i−1 + (1 − ai)�X key

i+1 −�X key
i−1

∥∥∥2
+

N∑
j =1

∥∥∥�X key
j ,1 −�X key

j ,2 − lj
∥∥∥2

cj

⎫⎬
⎭
(24)

where �X key∗ are the modified AUV key states, �X key ∈ Rm denotes the DR offset of
vehicle key states (m = Mdx and dx represents the dimensions of the vehicle state), as well
as �X key

j ,1 and �X key
j ,2 are two key states associated with the loop closure lj . We then collect

the coefficients of �X key into a large but sparse measurement matrix A ∈ Rm×n where m =
(M + N )dX , and collecting the vectors l into the bottom of d ∈ Rn. Equation (24) can be
represented as:

�X key∗ = arg min ‖A�Xkey − b‖2 (25)

Therefore, the least squares problem can be simplified as follows:

A�Xkey = b (26)

Kaess et al. (2008) applied the standard QR decomposition to matrix A to solve Equation
(26); however, the state model is linear in this study. Hence, we use the normal equation:

ATA�Xkey = ATb (27)

to solve this problem. Accordingly:

�Xkey = (ATA)−1ATb (28)

4.2.2. Local trajectory correction. After obtaining the global correction results, all
vehicle states between two adjacent key states are represented as a local trajectory. In the
local trajectory with offsets of key points�Xi and�Xi+end, the DR offset�Xi+j at time i + j
can be calculated as follows:

�Xi+j = �Xi +

( j∑
n=1

an/

end∑
n=1

an

)
.(�Xi+end −�Xi). (29)
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Figure 6. Sea Trial area around Zhongsha Jiao.

5. PLAYBACK EXPERIMENT. To test the algorithm, a simulation system was built
in MATLAB to read time-stamped historical vehicle and sensor data log files and generate
sequences of input data messages for the BSLAM algorithm.

5.1. Acquisition of experimental data. As shown in Figure 6, to obtain the bathy-
metric and navigation data, a sea trial experiment was conducted around Zhongsha Jiao
in October 2016. In this experiment, a GS+ wide-swath bathymetry system was installed
beneath the ship. This system was aided by a sonar altimeter (to provide depth gauge
data) and a Mini-Sound Velocity Sensor (SVS) (to provide acoustic velocity data) from
Valeport Company, and finally the bathymetry system provided the bathymetric data. The
vehicle states were provided by a Global Positioning System (GPS) receiver (longitude
and latitude) and a FOG (heading, pitch and roll). The data collected on board includes
an 8 km planned track recorded at a speed of 4 knots. (Figure 7(a) shows the V-plate with
transducers and Mini-SVS, and Figures 7(b) and (c) show the main module and FOG,
respectively.)

The DR data XDR was simulated using GPS data XGPS along with the white noise, that is:

XDR = XGPS + Q, (30)

where Q is the random drift with a distribution of p(Q) = N(0, 2). It is believed that the
FOG is always accurate in the experiment to decrease computation so make θDR = θGPS .
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(a) (b) (c)

Figure 7. Devices used in the sea trial experiment (a) V-plate with transducers and Mini-SVS (b) Main module
of GS+ (c) Fibre optic gyrocompass.

Figure 8. The architecture of the BSLAM simulation system.

5.2. BSLAM experiment. The simulation experiments were conducted using the sim-
ulation system based on MATLAB and running on a computer with an Intel I5 3210M CPU
and 4 GB of memory.

As shown in Figure 8, the data collected on board was used to update the navigation
bathymetric data at a frequency of 1 Hz in the simulation system, and the BSLAM result
was exported at the same frequency.

The submap division results are shown in Figure 9(a). The X-axis is marked as the
starting time for each new submap, and the Y-axis shows the swath length. The minimum
and maximum lengths of the submap are set to 40 and 102 seconds and we set the DoN
threshold to 300. It is obvious that the lengths of submaps are relatively short in the region
with complex terrain changes in Figure 9(a).

In the loop closure detection procedure, the matching-threshold was set to 0·06 accord-
ing to the measurement noise of the GS+. As shown in Figure 9(b), denotes the vehicle
key point connected by the blue line in the time order, and the black line represents the con-
nection from the key point to its matching point. The green and red dashed lines indicate
the correct and wrong loop closures identified by the weighted voting method, respectively,
where their confidences are represented by the width. The number i on the red line indi-
cates that the corresponding loop closure was identified as invalid in the i-th iteration in the
weighted voting algorithm.
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(a) (b)

Figure 9. Graph construction results (a) Results of submap division (b) Results of weighted voting method.

It can be seen that all the inaccurate loop closures have been identified and the validity
of the weighted voting method has been proved. However, there are still some problems,
for example, a few accurate loop closures such as red line 3 have also been identified by
mistake if they are close to some inaccurate ones, because these inaccurate loop closures
could not be identified in time. However, in general, the weighted voting algorithm helps
achieve the desired results, and the accurate loop closures can be used to build the pose
graph.

Figures 10(a), (c) and (e) show the bathymetric maps built by DR, incomplete BSLAM
(BSLAM without local trajectory correction, and this means all of the weak data asso-
ciations p(Xi|Xi−1) are set to 1 in Equation (17)) and the BSLAM, respectively. The
corresponding registration error histograms are shown in Figures 10(b), (d) and (f). The
error histograms are drawn by counting all measurement point registration errors, and for
each individual measured point, the registration error can be calculated as:

Ei =
√

(xi
SLAM − xi

GPS)2 + (yi
SLAM − yi

GPS)2 (31)

where xi
GPS is the truth location for measured point I , and xi

SLAM defines the point position
corrected using the BSLAM result in the easting-northing surface.

As shown in Figure 10, the average of the registration errors in the maps produced by
DR, incomplete BSLAM and the BSLAM were calculated as 72·62, 13·74 and 12·25 m,
respectively. The corresponding median values were 65·98, 12·68 and 11·27 m. The exper-
iment results prove that both the global and local trajectory corrections in the BSLAM have
a clear effect on the mapping results. Compared with incomplete BSLAM, the local trajec-
tory correction helps reduce the mean error by 10·82% and median error by 8·87%. The
BSLAM algorithm helps reduce the mean error by 83·13% and median error by 82·92%
compared to the DR results.

To verify the real-time performance of the BSLAM algorithm, a playback experiment
with the input of the bathymetric and navigation data was conducted online, and this means
all parts of the BSLAM including graph construction and optimisation were performed in
real time.

Figure 11 shows the real-time registration errors of DR and BSLAM. Although the first
loop closure was detected at A, the error did not decrease because of insufficient association
and lack of information. Due to the same reason, the error decreased at B but the decrease
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Graph optimisation results in the BSLAM (a) DR bathymetric map (b) DR error history (c)
Incomplete BSLAM (without weak data association) bathymetric map (d) Incomplete BSLAM (without
weak data association) bathymetric map (e) BSLAM bathymetric map (f) BSLAM error history.

was slight. The loop closure between the current state and the initial state was detected at
C, so the registration error reduced rapidly and converged to 10 m after state D. When the
trajectory is associated with the initial state, the overall error converges to an acceptable
range.

In addition to the real-time registration error, the time consumed is also an important part
in judging the real-time performance of the BSLAM. First, we define that a good real-time
performance of BSLAM is when BSLAM can complete the calculations including graph
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Figure 11. Registration error in real time.

construction and optimisation of all historical submaps before the next submap is stored.
We describe the time period to build a submap #i as calculation period #i.

As shown in Figure 12(a), the available time is the whole length of current period, and
terrain matching (which is the most time consuming), graph construction (except terrain
matching) and graph optimisation constitute the process of the BSLAM.

Time consumed in terrain matching is quite small at the beginning owing to the small
search circle, but with the time increasing, the search circle expands so the matching time
consumed also increases. In the MATLAB environment, the terrain matching is quite time
consuming, but in practical engineering applications, real-time terrain matching has been
proved by Hagen and Ånonsen (2014).

For the other part of graph construction, time consumed accounts for only 2·9% of
the total length of the current period. Figure 12(b) shows the time consumed for graph
optimisation. After the first data association, the time consumed increases but the maximum
value is still less than 0·09 seconds per second of the BSLAM mission.

In summary, BSLAM time consumption increases with time but is still obviously less
than the available time for most periods. Although there is 7·8, 32·4 and 12 seconds delay
at periods #48, #49 and #50, all the time delay disappears at period #51. Hence, it is proved
that the BSLAM has a good real-time performance.

6. CONCLUSIONS. In this paper, a BSLAM algorithm including graph construction
and optimisation is proposed, and a play-back experiment has proved the validity, real-
time performance and high mapping precision of BSLAM. The following conclusions can
be made:

(1) Although local trajectory correction only provides corrections on the basis of the
global trajectory correction results, it is an essential part and has a great impact on
the final navigation and mapping results.
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(a)

(b)

Figure 12. Time consumed results (a) Total time consumed in the BSLAM (b) Time consumed in graph
optimisation.

(2) The BSLAM registration error is convergent after obtaining sufficient data associa-
tions. The error in the whole trajectory is related to the error at the first key state;
hence, the minimum error and best mapping effect will be obtained when the loop
closure between the current state and the initial one is detected.

(3) Time consumed by BSLAM is obviously less than the available time for most calcu-
lation periods and nearly no time delay exists after the vehicle has sailed around 8 km
during one hour, and this result proves the real-time performance of the BSLAM.
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