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1. Introduction

The structure theorem for compact Kähler manifolds with semipositive bisectional

curvature was established by Howard, Smyth and Wu [26] and Mok [31] after the Frankel
conjecture (resp., the Hartshorne conjecture) was solved by Siu and Yau [38] (resp., Mori

[32]). Campana and Peternell [13] and Demailly, Peternell and Schneider [17] generalised

the Howard–Smyth–Wu structure theorem to nef tangent bundles as an algebraic analogue
of semipositive bisectional curvature, and further classified surfaces and 3-folds with nef

tangent bundle. (See [13] and [33] for the Campana–Peternell conjecture).

It is of interest to consider pseudo-effective tangent bundles as a natural generalisation

of these structure results. The theory of singular Hermitian metrics on vector bundles,
which has been rapidly developed, is a crucial tool to understanding pseudo-effective

vector bundles. Hence we first develop the theory of singular Hermitian metrics on vector

bundles (more generally, torsion-free sheaves). As one of the main applications, we obtain
the following structure theorem for projective manifolds with pseudo-effective tangent

bundle (see also see Theorem 3.12 for compact Kähler manifolds):

Theorem 1.1. Let X be a projective manifold with pseudo-effective tangent bundle. Then

X admits a (surjective) morphism φ : X → Y with connected fibre to a smooth manifold
Y with the following properties:

(1) The morphism φ : X → Y is smooth (that is, all the fibres are smooth).

(2) The image Y admits a finite étale cover A → Y by an abelian variety A.

(3) A general fibre F of φ is rationally connected.

(4) A very general fibre F of φ also has the pseudo-effective tangent bundle.

Moreover, if we further assume that TX admits a positively curved singular Hermitian

metric, then we have the following:

(5) The standard exact sequence of tangent bundles

0 −→ TX /Y −→ TX −→ φ∗TY −→ 0

splits.

(6) The morphism φ : X → Y is locally trivial (that is, all the fibres are smooth and
isomorphic).

See Definition 2.1 and Proposition 2.2 for pseudo-effective vector bundles, and see

subsection 2.1 for positively curved singular Hermitian metrics.

A similar structure theorem holds when −KX is nef [11], or more generally, when
there exists an effective Q-divisor � on X such that (X ,�) is klt and −(KX + �) is

nef [10]. Theorem 1.1 can be seen as an analogue of [9], [11] or [10] by considering the

pseudo-effective tangent bundle TX instead of −KX . By applying [18, Theorem 1.4] to
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the situation of Theorem 1.1, we can also see that the non-nef locus of −KX is dominant
over Y if it is not empty.

The proof of Theorem 1.1 is based on the strategy in [29, 30] and the theory of singular

Hermitian metrics on vector bundles developed in this paper. In particular, Theorems 1.2,
1.3 and 1.4 play an important role in the proof. Theorem 1.2, which can be seen as a

generalisation of [10], gives a characterisation of numerically flat vector bundles in terms

of pseudo-effectivity (see Definition 2.3 for numerically flat vector bundles, and [39] for

a generalisation to Kähler manifolds). The proof depends on the theory of admissible
Hermitian–Einstein metrics in [7]. Theorems 1.3 and 1.4 were proved in [25] under the

additional assumption of the minimal extension property. Our contribution is to remove

this assumption, which enables us to use the notion of singular Hermitian metrics flexibly.

Theorem 1.2. Let X be a projective manifold and let E be a reflexive coherent sheaf on
X . If E is pseudo-effective and the first Chen class c1(E) is zero, then E is locally free on

X and numerically flat.

Theorem 1.3. Let E be a vector bundle with positively curved (singular) Hermitian

metric g on a (not necessarily compact) complex manifold X . Let

0 → S → E → Q → 0

be an exact sequence by vector bundles S and Q on X . Then this exact sequence splits if

the induced quotient metric on Q is Hermitian flat on X (which is satisfied when X is

compact and the first Chern class c1(Q) is zero, by Lemma 3.5).

Theorem 1.4. Let X be a compact complex manifold and let

0 → S → E → Q → 0

be an exact sequence of reflexive coherent sheaves S, E and Q on X . If E admits a
positively curved (singular) Hermitian metric and the first Chen class c1(Q) = 0, then we

have the following:

(1) Q is locally free and Hermitian flat.

(2) E → Q is a surjective bundle morphism on XE .

(3) The exact sequence splits on X .

Here XE is the maximal Zariski open set where E is locally free.

It is natural to attempt to classify all the surfaces X with pseudo-effective tangent

bundle, as an application of Theorem 1.1. In the case where the tangent bundle is nef,

a surface X has no curve with negative self-intersection, and thus X is always minimal.
However, a surface X with pseudo-effective tangent bundle is not necessarily minimal,

which is one of the difficulties in classifying them. In this paper, we classify all the minimal

surfaces (see subsection 4.1 for more detail):
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Theorem 1.5. (1) If a (not necessarily minimal) ruled surface X → C has the pseudo-

effective tangent bundle TX , then the base C is the projective line P1 or an elliptic

curve.

(2) Further, in the case where C is an elliptic curve, the surface X is a minimal ruled

surface (that is, the ruling X → C is a smooth morphism).

(3) Conversely, any minimal ruled surfaces X → C over an elliptic curve and over the

projective line C = P1 have the pseudo-effective tangent bundle TX .

Moreover, we study the remaining problem (that is, the classification of blowups

of Hirzebruch surfaces) in detail. As a result, we determine whether the blowups of

Hirzebruch surfaces at general points have pseudo-effective tangent bundle, except for

the blowup at four general points. These studies provide nontrivial examples of pseudo-
effective or singular positively curved vector bundles.

2. Preliminaries

2.1. Singular Hermitian metrics

In this subsection, we recall the notion of singular Hermitian metrics on vector bundles

(or more generally, on torsion-free sheaves).
Let E be a (holomorphic) vector bundle on a complex manifold X . Following [25], we

first recall the definition of a singular Hermitian metric on E . A function |• | : V → [0,∞]
on a finite-dimensional vector space V is called a singular Hermitian inner product if
it satisfies the definition of seminorms and the parallelogram law (see [25, Definition

16.1] for details). Note that | • | determines the usual Hermitian inner product on V
when 0 < |v | < ∞ holds for any 0 �= v ∈ V . A singular Hermitian metric on E is a family

g := {|•|x }x∈X of singular Hermitian inner products |• |x on the vector space Ex satisfying
the following conditions:

- | • |x determines the usual Hermitian inner product outside a set of measure zero.
- The function

|u|g : U → [0,∞] defined by |u|g (x ) := |u(x )|x

is measurable for any open set U ⊂ X and any section u ∈ H 0(U ,E ).

From the definition, it directly follows that 0 < detg < ∞ holds almost everywhere, and

thus detg determines the singular Hermitian metric on detE . Further, g induces the dual

singular Hermitian metric on the dual vector bundle E∨ by g∨ = tg−1. The metric g on
E is said to be positively curved if log |u|g∨ is a psh function (that is,

√−1∂∂ log |u|g∨ ≥ 0
in the sense of currents) for any local section u of E∨.
In this paper, for a torsion-free sheaf E , we denote by XE the maximal Zariski open

set where E is locally free and denote by E∨ the dual reflexive sheaf Hom(E,OX ). These

notions can be defined also for a torsion-free sheaf E by considering them on the locally

free sheaf E |XE [25, 35].
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2.2. Positivity of torsion-free sheaves

In this subsection, we recall the notions of positivity of vector bundles and torsion-free

coherent sheaves. We first confirm the definition of a pseudo-effective coherent sheaf:

Definition 2.1. A torsion-free coherent sheaf E on a compact complex manifold X is

said to be pseudo-effective if for any integer m > 0, there exists a singular Hermitian
metric hm on Symm E such that

√−1∂∂ log |u|2h∨
m

≥ −ω on XE for any local section u of

(Symm E)∨. Here ω is a fixed Hermitian form on X and Symm E is the mth symmetric

power of E .

The notion of pseudo-effectivity is often used with a different meaning. For example, in
other papers, a vector bundle E on a projective manifold X may be called pseudo-effective

when OP(E )(1) is a pseudo-effective line bundle. Here OP(E )(1) is the hyperplane bundle

of the projective space bundle P(E ) → X (that is, the set of hyperplanes in E ). However,
our definition of pseudo-effective vector bundles is stronger: it additionally requires that

the image of the non-nef locus of OP(E )(1) be properly contained in X .

The following characterisations of pseudo-effective vector bundles may help readers

understand our definition:

Proposition 2.2 ([5, Proposition 3.1, Proposition 5.3], [27, Theorem 1.2], [35, subsection

2.3]). Let E be a vector bundle on a projective manifold X . Then the following are

equivalent:

• E is pseudo-effective in the sense of Definition 2.1.
• There exists an ample line bundle A such that Symm E ⊗A is generically globally

generated for any integer m > 0 – that is, Symm E ⊗ A is generated by global
sections at a general point.

• The non-nef locus B of the hyperplane bundle OP(E )(1) is not dominant over X –
that is, the image f (B) under f : P(E ) → X is properly contained in X .

Now we summarise the notions of positivity of vector bundles and torsion-free coherent

sheaves:

Definition 2.3 ([3, Definition 7.1], [16, Definition 6.4], [17, Definition 1.17], [34, Definition

3.20]). Let E (resp., E) be a vector bundle (resp., a torsion-free coherent sheaf) on a

projective manifold X .

(1) E is nef if OP(E )(1) is a nef line bundle on P(E ).

(2) E is numerically flat if E is nef and c1(E ) = 0, or equivalently, if both E and E∨
are nef.

(3) E is almost nef if there exists a countable family of proper subvarieties Zi of X such

that E |C is nef for any curve C �⊂ ⋃
i Zi .

(4) E is weakly positive at x ∈ X if, for any a ∈ N>0 and for any ample line bundle A
on X , there exists b ∈ N>0 such that Symab(E)∨∨ ⊗Ab is globally generated at x ,
where Symab(E)∨∨ is the double dual of the abth symmetric power of E .

(5) E is pseudo-effective if E is weakly positive at some x ∈ X .
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(6) E is big if there exist a ∈ N>0 and an ample line bundle A on X such that

Syma(E)∨∨ ⊗A−1 is pseudo-effective.

(7) E is generically globally generated if the stalk Ex at a general point x in X is
generated by global sections.

Note that the definitions of nef, big and or pseudo-effective vector bundles coincide

with the usual one in the case where E is a line bundle. Relationships among them can

be summarised by the following diagram:

numerically flat ��
nef

��

big

�� ����
����

����
����

����
���

����
����

����
����

����
���

E has a positively curved
singular Hermitian metric

(1) �� pseudo-effective
(2) ��

almost nef

E is generically
globally generated

��

Symm E is generically globally
generated for some m ∈ N>0

��

The converse implications of (1) and (2) hold when E is a line bundle (see [3, Theorem
0.2] and [14, Section 6]), but the converse of (1) is not always true in the higher-rank case

[24, Example 5.4], and the converse of (2) is unknown.

3. Proof of the main results

This section is devoted to the proof of the main results.

3.1. Numerically flat vector bundles

In this subsection, we give a proof for Theorem 1.2 after we prove Lemmas 3.1 and 3.3.

Lemma 3.1, which easily follows from the result of [17, Proposition 1.16], is quite useful
and often used in this paper.

Lemma 3.1. Let X be a projective manifold and let E be an almost-nef torsion-free

coherent sheaf on X .

(1) Any nonzero section τ ∈ H 0(X ,E∨) is nonvanishing on XE .

(2) Let S be a reflexive coherent sheaf such that detS is pseudo-effective, and let 0 →
S → E∨ be an injective sheaf morphism. Then S is locally free on XE and the

morphism is an injective bundle morphism on XE .

Proof. In [17], the same conclusion was proved for nef vector bundles. We denote by
Z a countable union of proper subvarieties of X satisfying the definition of almost-

nef sheaves. We may assume that X \ XE ⊂ Z by adding the subvariety X \ XE
into Z .
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(1) Let τ ∈ H 0(X ,E∨) be a nonzero section. For any p ∈ XE , by taking a complete

intersection of ample hypersurfaces we construct a curve C passing through p such that

C �⊂ Z . We may assume that C ⊂ XE by codim(X \XE) ≥ 2. Then E |C is a nef vector

bundle thanks to C ⊂ XE , and thus it follows from [17, Proposition 1.16] that the nonzero
section τ |C is nonvanishing. In particular, τ is nonvanishing at p.

(2) Following the argument in [17], we obtain the nonzero section

τ ∈ H 0(X ,�pE∨ ⊗detS∨)

from the induced morphism detS → �pE∨. Here p := rankS. We remark that �pE⊗detS
is also almost nef, by the assumption for S. Hence, by applying the first conclusion and
[17, Lemma 1.20] to τ we can obtain the desired conclusion.

Lemma 3.2. Let X be a compact complex manifold and let E be a pseudo-effective

torsion-free coherent sheaf on X . Then the same conclusion as in Lemma 3.1

holds.

Proof. We will prove only conclusion (1). For the metric hm on Symm E satisfying the

property in Definition 2.1, we consider the function fm on X defined by

fm := 1
m

log |τm |h∨
m .

By the construction of hm , we have

√−1∂∂fm ≥ − 1
m

ω,

and thus its weak limit (after we take a subsequence) should be zero. On the other

hand, when we assume that τ has a zero point at some point p ∈ XE , it can be shown

that the Lelong number of fm is greater than or equal to 1. This is a contradiction of
the fact that the weak limit is zero. Indeed, the section τm can be locally written as

τm = ∑
I τI eI . Here {ei }ri=1 is a local frame of E , I is a multi-index of degree m and

eI := ∏
i∈I ei . It follows that the holomorphic function τI has multiplicity ≥ m at p from

τ = 0 at p ∈ XE . It can be seen that |〈eI ,eJ 〉h∨
m | is bounded, since log |u|h∨

m is almost psh

for any local section u (see, for example, [35, Lemma 2.2.4]). Hence we can easily check

that

|τm |h∨
m ≤ C

∑
I

|τI |.

This implies that the Lelong number of fm is greater than or equal to 1.

Lemma 3.3. Let X be a projective manifold and E be a vector bundle on X . Let X0 be
a Zariski open set in X with codim(X \X0) ≥ 2+ i . Then the morphism induced by the

restriction

H j (X ,E ) → H j (X0,E )

is an isomorphism for any j ≤ i .
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Proof. The proof is given by the standard argument in terms of ample hypersurfaces and
induction on dimension.

Theorem 3.4 is a slight generalisation of [10, Proposition 2.7], and it has already been

proved in [11, Corollary 2.12] for the case where X is a surface; but we do not know

whether it can be reduced to [11, Corollary 2.12] by the argument of restriction to a
general surface. Our proof heavily depends on the theory of admissible Hermitian–Einstein

metrics developed in [7].

Theorem 3.4 (=Theorem 1.2; cf. [10]). Let X be a projective manifold and let E be a

reflexive coherent sheaf. If E is pseudo-effective and the first Chen class c1(E) is zero,
then E is locally free and numerically flat.

Proof. We will use induction on the rank r of E . Reflexive coherent sheaves of rank 1 are

always line bundles [21], and thus the conclusion is obvious in the case of r = 1. It is not
so difficult to check the numerical flatness of E if E is shown to be locally free (see the
argument to follow, or the proof in [17, Theorem 1.18]). We will focus on proving local

freeness.

We fix an ample line bundle A on X . In the case of r > 1, we take a coherent subsheaf S
with minimal rank among coherent subsheaves of E satisfying

∫
X c1(S) ·c1(A)n−1 ≥ 0. We

may assume that S is reflexive by taking the double dual if necessary. Now we consider

the following exact sequence of sheaves:

0 → S → E → Q := E/S → 0. (3.1)

The quotient sheaf Q := E/S is pseudo-effective. In particular, the first Chern class c1(Q)

is also pseudo-effective. On the other hand, we have

0 = c1(E) = c1(S)+ c1(Q).

Then it follows that c1(S) = c1(Q) = 0, since c1(Q) is pseudo-effective, and we have
∫
X

c1(Q) · c1(A)n−1 = −
∫
X

c1(S) · c1(A)n−1 ≤ 0.

By applying Lemma 3.1 to Q∨ → E∨, we can see that Q (and thus S) is a vector bundle

on XE and the morphism is a bundle morphism on XE .
We first consider the case where the rank of S is equal to r = rank E . In this case, we

obtain S = E . Indeed, it follows that S ∼= E on XE , since the bundle morphism S → E on XE
is an isomorphism. Then we can easily check S = E by reflexivity and codim(X \XE) ≥ 3.
Further, we can prove that

∫
X

c2(E) · c1(A)n−2 = 0.

Indeed, for a surface S := H1 ∩H2 ∩ ·· ·∩Hn−2 in X constructed by general members Hi

of a complete linear system A, it follows that E |S is a pseudo-effective vector bundle from

codim(X \XE) ≥ 3. Hence E |S is numerically flat on S , and thus c2(E |S ) = 0 (see [11,
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Corollary 2.12] or [17]). We can easily check that

∫
X

c2(E) · c1(A)n−2 =
∫
S
c2(E |S ) = 0.

By the assumption of c1(E) = 0 and the result of [7, Corollary 3], we can conclude that

E is a Hermitian flat vector bundle on X from the stability of the reflexive sheaf S = E .
Therefore E is locally free and numerically flat.

It remains to consider the case of rank S < rank E . We consider the surjective bundle

morphism

�m+1E ⊗detQ∨ → S

on XE . By codim(X \XE) ≥ 3 and c1(Q) = 0, the reflexive sheaf S is pseudo-effective.

Therefore we can conclude that S is a numerically flat vector bundle on X by the induction

hypothesis.
On the other hand, the reflexive hull Q∨∨ is a vector bundle on X by the induction

hypothesis. The extension class obtained from the exact sequence (3.1) on XE can be

extended to the extension class (defined on X ) of S and Q∨∨ by Lemma 3.3. The extended
class determines the vector bundle whose restriction to XE corresponds to E . This implies

that E is a vector bundle by the reflexivity of E .

3.2. Splitting theorem for positively curved vector bundles

In this subsection, we prove Theorems 1.3 and Theorem 1.4.

Lemma 3.5. Let Q be a reflexive coherent sheaf on a compact complex manifold X . If

Q admits a positively curved singular Hermitian metric gQ and c1(Q) = 0, then we have

the following:

(1) (Q,gQ) is Hermitian flat on XQ.

(2) Q is a locally free sheaf on X and gQ extends to a Hermitian flat metric

on X .

Proof. (1) The proof follows from an argument in [12] and the following lemma:

Lemma 3.6 ([36, Theorem 1.6]). Let E be a holomorphic vector bundle and hE be a

positively curved singular Hermitian metric on E . If the induced metric dethE on the
determinant bundle detE is nonsingular (that is, smooth metric), then the curvature

current
√−1�hE of hE is well defined as an End(E )-valued (1,1)-form with measure

coefficients.

In our situation, the singular Hermitian metric detgQ on the determinant bundle detQ
is positively curved. By c1(Q) = 0, the curvature

√−1�detgQ of detgQ is identically zero

on XQ. In particular, it can be seen that detgQ is nonsingular. Then, by Lemma 3.5, the

curvature current
√−1�gQ of gQ is well defined on XQ.
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The curvature
√−1�gQ is locally written as

√−1�gQ =
∑

j,k,α,β

μj kαβdz
j ∧dz keα ⊗ e∨

β ,

where (z1, . . . ,zn) denotes a local coordinate and {e1, . . . ,er } denotes a local frame of Q.

Then by
√−1�detgQ = √−1tr�gQ = 0, we obtain

∑
j,k

∑
α

μj kααdz
j ∧dz k = 0.

Since gQ is positively curved, we obtain∑
j,k

μj kααdz
j ∧dz k ≥ 0

for every α. Then we have that μj kαα = 0 for every j,k,α. For every α and β, we have

Re(ξαξ
β
∑
j,k

μj kαβv
j vk ) ≥ 0.

Hence we can conclude that μj kαβ = 0 for every j,k,α,β, and thus
√−1�gQ = 0.

(2) The vector bundle Q|XQ is a local system on XQ, since Q is Hermitian flat on
XQ. On the other hand, we have π1

(
U \ (X \XQ)

) ∼= π1(U ) for any open set U in X
by codim(X \XQ) ≥ 3. Hence Q|XQ can be extended to the local system on X , which

coincides with Q by reflexivity.

We prepare the following lemma for the proof of Theorem 1.3:

Lemma 3.7. Let (E,h) be a Hermitian flat vector bundle on a complex manifold X .

Then for any point x ∈ X and a basis {e1,x, . . . ,er,x } on the fibre Ex , there exists a local
holomorphic frame {e1, . . . ,er } near x such that ej (x ) = ej,x and 〈ei,ej 〉h is constant.

Proof. Let D be the Chern connection associated to (E,h). Then, by flatness, we can

take a local frame {ej } around x such that Dej ≡ 0. We may assume that ej (x ) = ej,x .
Since D is compatible with h, we have d〈ei,ej 〉h = {Dei,ej }h +{ei,Dej }h = 0, and thus
〈ei,ej 〉h is constant. Moreover, taking the (0,1)-part of Dej ≡ 0, we obtain ∂̄ej ≡ 0, which
says that ej is holomorphic.

Theorem 3.8 (=Theorem 1.3 Hermitian metric g). Let E be a vector bundle with

positively curved (singular) Hermitian metric g on a (not necessarily compact) complex
manifold X . Let

0 → S → E → Q → 0

be an exact sequence of vector bundles on X . Then the exact sequence splits if the induced

quotient metric on Q is Hermitian flat on X (which is satisfied when X is compact and
the first Chern class c1(Q) is zero, by Lemma 3.5).

Remark 3.9. When g is smooth, this theorem is obvious by a classical result.

Indeed, the curvature of (Q,gQ) is more positive in the sense of Griffiths than that
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of (E,g) by by the inequality of Gauss–Codazzi type. It follows that the equality of
the positivity of the curvatures actually holds from the assumptions, which leads to the

splitting. Nevertheless, this argument does not work when g is singular, because the

curvature forms or currents cannot be defined for singular Hermitian metrics.

Proof of Theorem 3.8. This proof is a generalisation of [24, Theorem 5.1]. We will
work on dual bundles. By taking the dual, we have the exact sequence

0 → Q∨ → E∨ → S∨ → 0. (3.2)

Then we have a negatively curved singular Hermitian metric h∨ whose restriction to Q∨ is

flat, by (the dual of) Lemma 3.5(1). Therefore, by Lemma 3.7, we can take a holomorphic
orthonormal frame (κα

1 , . . . ,κα
q ) of Q∨ on a small open set U α. Let εα

j be the image of κα
j

in E∨. Take εα
q+1, . . . ,ε

α
q+s such that (εα

1, . . . ,εα
q+s) is a local frame of E∨. Let σα

j be the

image of εα
j in S∨. We remark that (σ α

q+1, . . . ,σ
α
q+s) is a local frame of S∨. We will write

the transition functions of Q∨ and S∨ as follows:

κα
1 = �

Q∨,αβ
1,1 κ

β
1 +·· ·+�

Q∨,αβ
1,q κβ

q ,
...

κα
q = �

Q∨,αβ
q,1 κ

β
1 +·· ·+�Q∨,αβ

q,q κβ
q ,

σ α
q+1 = �

S∨,αβ
q+1,q+1σ

β
q+1 +·· ·+�

S∨,αβ
q+1,q+sσ

β
q+s,

...
σα
q+s = �

S∨,αβ
q+s,q+1σ

β
q+1 +·· ·+�

S∨,αβ
q+s,q+sσ

β
q+s .

The transition functions for E∨ can be written as

εα
1 = �

Q∨,αβ
11 ε

β
1 + ·· · + �

Q∨,αβ
1q εβ

q ,
...

εα
q = �

Q∨,αβ
q1 ε

β
1 + ·· · + �Q∨,αβ

qq εβ
q ,

εα
q+1 = �

E∨,αβ
q+1,1 ε

β
1 + ·· · + �

E∨,αβ
q+1,q εβ

q + �
S∨,αβ
q+1,q+1ε

β
q+1 +·· ·+�

S∨,αβ
q+1,q+sε

β
r ,

...
εα
q+s = �

E∨,αβ
q+s,1 ε

β
1 + ·· · + �

E∨,αβ
q+s,q εβ

q + �
S∨,αβ
q+s,q+1ε

β
q+1 +·· ·+�

S∨,αβ
q+s,q+sε

β
q+s .

For short, we will write the coefficient matrix as

�E∨,αβ =
(

�Q∨,αβ 0
�αβ �S∨,αβ

)
.
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Next, let hα be the matrix

hα :=
⎛
⎜⎝

〈εα
1,εα

1 〉h 〈εα
1,εα

2 〉h · · · 〈εα
1,εα

q+s〉h
...

. . .
...

〈εα
q+s,ε

α
1 〉h · · · 〈εα

q+s,ε
α
q+s〉h

⎞
⎟⎠ .

Note that the upper-left q × q matrix is constant by the choice of εα
1, . . . ,εα

q . Since h is

negatively curved, the coefficients of the lower-left s ×q matrix are holomorphic (say φα),
by [24, Proposition 5.2]. Then we can write

hα =
(
C α φα

φα ∗
)

,

where C α is a q × q matrix whose coefficients are constant on U α. By the equality

hα = �E∨,αβhβ(t�E∨,αβ),

we have

C α = �Q∨,αβC β(t�Q∨,αβ),

φα = �αβC β(t�Q∨,αβ)+�S∨,αβφβ(t�Q∨,αβ).

From these equalities, it follows that

φα(C α)−1 = �αβ(�Q∨,αβ)−1 +�S∨,αβφβ(C β)−1(�Q∨,αβ)−1.

On the other hand, the extension class of the given exact sequence can be calculated

as the cohomology class of the Čech 1-cocycle:
⎧⎨
⎩

q+s∑
λ=q+1

q∑
μ=1

�
αβ

λ,μκβ
μ ⊗ (σ α

λ )∨ ∈ H 0(Uαβ,O(Q∨ ⊗S ))

⎫⎬
⎭

αβ

=
⎧⎨
⎩

q+s∑
λ=q+1

q∑
μ=1

q∑
ν=1

�
αβ

λ,μ((�Q∨,αβ)−1)μνκ
α
ν ⊗ (σ α

λ )∨

⎫⎬
⎭

αβ

.

It is the differential of the Čech 0-cochain⎧⎨
⎩

q∑
ν=1

q+s∑
λ=q+1

(φα(C α)−1)λνκ
α
ν ⊗ (σ α

λ )∨ ∈ H 0(Uα,O(Q∨ ⊗S ))

⎫⎬
⎭

α

,

and thus the extension class is zero. Therefore sequence (3.2) splits.

Theorem 3.10 (=Theorem 1.4). Let X be a compact complex manifold and let

0 → S → E → Q → 0
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be an exact sequence of reflexive coherent sheaves S, E and Q on X . If E admits a
positively curved (singular) Hermitian metric and the first Chen class c1(Q) = 0, then we

have the following:

(1) Q is locally free and Hermitian flat.

(2) E → Q is a surjective bundle morphism on XE .

(3) The exact sequence splits on X .

Proof. Conclusion (1) follows from Lemma 3.5, and conclusion (2) from Lemma 3.1.

Also, from Theorem 3.8 it follows that there exists a bundle morphism j : Q → E on XE
such that E = S ⊕ j (Q) on XE . By taking the push-forward i∗ by the natural inclusion
i : XE → X and the double dual, we obtain

(i∗E)∨∨ = (i∗S)∨∨ ⊕ (i∗j (Q))∨∨ on X .

By codim(X \ XE) ≥ 3 and reflexivity, we have E ∼= (i∗E)∨∨, S ∼= (i∗S)∨∨ and Q ∼=
(i∗j (Q))∨∨. This finishes the proof.

3.3. Pseudo-effective tangent bundles

This subsection is devoted to the proof of Theorem 1.1.

Theorem 3.11 (=Theorem 1.1). Let X be a projective manifold with pseudo-effective

tangent bundle. Then X admits a morphism φ : X → Y with connected fibre to a smooth

manifold Y with the following properties:

(1) The morphism φ : X → Y is smooth (that is, all the fibres are smooth).

(2) The image Y admits a finite étale cover A → Y by an abelian variety A.

(3) A general fibre F of φ is rationally connected.

(4) A very general fibre F of φ also has pseudo-effective tangent bundle.

Moreover, if we further assume that TX admits a positively curved singular Hermitian
metric, then we have the following:

(5) The following exact sequence splits:

0 −→ TX /Y −→ TX −→ φ∗TY −→ 0.

(6) The morphism φ : X → Y is locally trivial (that is, all the fibres are smooth and

isomorphic).

Proof. For a projective manifold X with the pseudo-effective tangent bundle TX , we

consider an MRC fibration φ : X ��� Y to a projective manifold Y , and take a resolution

π : X̄ → X of the indeterminacy locus of φ (see [28] and [8] for MRC fibrations). Here we
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have the following commutative diagram:

X̄

π

��

φ̄

���
��

��
��

��
��

X
φ ������ Y .

(1), (3) To prove (1) and (3) using [23, Corollary 2.11], we will construct a foliation on
X (that is, an integrable subbundle of TX ) whose general leaf is rationally connected. We

will show that the relative tangent bundle TX /Y ⊂ TX (which is defined only on a Zariski

open set of X ) can be extended to a subbundle of TX on X . If it can be shown, it is

not so difficult to check that this subbundle is integrable and its general leaf is rationally
connected (that is, all the assumptions in [23, Corollary 2.11] are satisfied).

Now we have the exact sequence of coherent sheaves

0 −→ φ̄∗�Y −→ �X̄ −→ �X̄ /Y := �X̄ /φ̄∗�Y −→ 0.

Then we obtain the injective sheaf morphism 0 → π∗φ̄∗�Y → �X by taking the push-
forward. Here we use the formula π∗�X̄ = �X . By taking the dual, we obtain the exact

sequence on X

0 −→ S := Kerr −→ TX
r−−−−→ Q := (π∗φ̄∗�Y )∨. (3.3)

We remark that this sequence corresponds to the standard exact sequence of tangent

bundles on a Zariski open set where φ is a smooth morphism.
The morphism r is generically surjective, and thus the reflexive sheaf Q is also pseudo-

effective. In particular, the first Chern class c1(Q) is also pseudo-effective. On the other

hand, it follows from [3, 19] that the image Y of MRC fibrations has the pseudo-effective

canonical bundle KY . Further, Q coincides with the usual pullback of TY on X0. Here
X0 is the maximal Zariski open set where φ is a morphism. Hence, by codim(X \X0) ≥ 2,
it can be shown that

−c1(Q) = c1(π∗φ̄∗�Y ) = c1(π∗φ̄∗KY )

is pseudo-effective.

By this argument, we can see that Q is a pseudo-effective reflexive sheaf with c1(Q) = 0,
and thus we can conclude by Theorem 1.2 that Q is a numerically flat vector bundle on

X . On the other hand, we obtain the injective sheaf morphism 0 →Q∨ → �X on X from
sequence (3.3), since Q∨ is torsion-free and r is a generically surjective morphism defined

on X (not only on X0). Then by applying Lemma 3.1 to 0 → Q∨ → �X , we can see

that sequence (3.3) is a bundle morphism on X . In particular, φ is smooth on X0 (since
sequence (3.3) is not a bundle morphism on the nonsmooth locus of φ). The subbundle

S defined by the kernel corresponds to the relative tangent bundle TX /Y defined on X0.

Hence S determines the foliation on X , since TX /Y is integrable on X0 (see, for example,
[30, subsection 2.2]). Further, its general leaf is rationally connected. Indeed, there exists

a Zariski open set Y1 in Y such that φ : X1 := φ−1(Y1) → Y1 is a proper morphism, since

φ : X ��� Y is an almost-holomorphic map (that is, general fibres are compact). A general
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leaf of S corresponds to a general fibre of φ by S = TX /Y on X1, and thus it is rationally
connected. Therefore, we can choose an MRC fibration to be holomorphic and smooth by

[23, Corollary 2.11]. We use the same notation φ : X → Y for the smooth MRC fibration.

(2) By (1), we have the standard exact sequence

0 −→ TX /Y −→ TX −→ φ∗TY −→ 0,

and we have already checked that φ∗TY is pseudo-effective and c1(φ
∗TY ) = 0. The

pullback φ∗TY is numerically flat by Theorem 1.2, and thus TY is also numerically flat.
The Beauville–Bogomolov decomposition [4] asserts that there exists a finite étale cover

Y ′ → Y such that Y ′ is the product of hyper-Kähler manifolds, Calabi–Yau manifolds

and abelian varieties. Let Z be a component of Y ′ of hyper-Kähler manifolds or Calabi–
Yau manifolds. We remark that TZ is also numerically flat. In general, numerically flat

vector bundles are local systems (see, for example, [17]). Hence TZ should be a trivial

vector bundle on Z , since Z is simply connected and TZ is also numerically flat. This

is a contradiction of the definition of hyper-Kähler manifolds or Calabi–Yau manifolds.
Hence the image Y admits a finite étale cover A → Y by an abelian variety A.

(4) By considering the restriction of the standard exact sequence of the tangent bundle

to a fibre F of φ : X → Y , we obtain

0 −→ TX /Y |F = TF −→ TX |F −→ φ∗TY |F = NF/X = O⊕m
F −→ 0.

When we consider the projective space bundle f :P(TX ) → X and the non-nef locus B ⊂
P(TX ) of OP(TX )(1), it can be seen that f (B) is properly contained in X by the pseudo-
effectivity of TX (see Proposition 2.2 and its references). By the commutative diagram

P(TX |F )
� � �

f
��

P(TX )

f
��

F � � � X ,

we have OP(TX |F )(1) = OP(TX )(1)|f −1(F ). Hence we obtain

B−
(
OP(TX |F )(1)

) = B−
(
OP(TX )(1)|f −1(F )

) ⊂ f −1(F )∩B .

Here we use the fact that B−(L|Z ) ⊂ B−(L) ∩ Z holds for any line bundle L and any

subvariety Z . This implies that the image of the non-nef locus of OP(TX |F )(1) is contained

in f (B ∩ F ). The image f (B ∩ F ) is properly contained in F for a very general fibre
F . Note that B (and f (B)) is a countable union of proper subvarieties. Hence TX |F is

pseudo-effective, by another application of Proposition 2.2.

(5), (6) we finally show that the MRC fibration φ : X → Y is locally trivial if we

further assume that X admits a positively curved singular Hermitian metric. Under
the assumption of such a metric, the exact sequence of the tangent bundle splits (that

is, TX ∼= TX /Y ⊕φ∗TY ) by Theorem 1.4. Then by Ehresmann’s theorem (see also [23,

Lemma 3.19]), we can see that φ : X → Y is locally trivial.
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Theorem 3.12. Let X be a compact Kähler manifold with pseudo-effective tangent
bundle, and let φ : X → Y := Alb(X ) be its Albanese map. Then the Albanese map φ

is a surjective smooth morphism and satisfies all the conclusions in Theorem 3.11 except

(3) and (6) by replacing an abelian variety in (2) with a compact complex torus.

Proof. In the proof of Theorem 3.11, the assumption of projectivity was used only for (3)
and (6). The other arguments work even if we replace MRC fibrations with the Albanese

map. Hence it is sufficient to prove that the Albanese map φ is a surjective smooth

morphism. This is easy to check. Indeed, for a basis {ηk }qk=1 of H 0(X ,�X ), it follows that
any nontrivial linear combination of them is nonvanishing by Lemma 3.2. This implies

that φ is a surjective smooth morphism (see, for example, [13]).

It was proved in [17] that X is a Fano manifold if it is a rationally connected manifold

with nef tangent bundle. As an analogue of this result, we suggest the following problem.
We remark that the geometry of a general fibre F in Theorem 1.1 can be determined if

this problem can be affirmatively solved.

Problem 3.13. If a projective manifold X is rationally connected and has pseudo-

effective tangent bundle, is the anticanonical bundle −KX big?

4. Surfaces with pseudo-effective tangent bundle

Toward the classification of surfaces with pseudo-effective tangent bundle, we study

minimal ruled surfaces in subsection 4.1 and their blowups in subsection 4.2, which provide

interesting examples of positively curved vector bundles.

4.1. On minimal ruled surfaces

In this subsection, we consider a ruled surface φ : X → C over a smooth curve C . If TX

is pseudo-effective, the base C should be either the projective line or an elliptic curve, by

Theorem 1.1. Conversely, it follows that any minimal ruled surface φ : X → P1 over P1

(that is, a Hirzebruch surface) has the pseudo-effective tangent bundle from the following

proposition. However, such surfaces do not have nef tangent bundle except, for the case

of X = P1 ×P1, since they have a curve with negative self-intersection.

Proposition 4.1. If X is a projective toric manifold, then TX is generically
globally generated. In particular, any Hirzebruch surface has pseudo-effective tangent

bundle.

Proof. For a toric manifold X , we have an inclusion (C∗)n ⊂ X as a Zariski open
dense subset and an action (C∗)n � X . Consider a family of actions (eiθ,1, · · · ,1).

Differentiating it by θ at θ = 0, we obtain a holomorphic vector field on X . Similarly, we

can construct n vector fields which generate TX |(C∗)n , and thus TX is generically globally

generated.

Now we consider a ruled surface φ : X → C over an elliptic curve C . Thanks to

Theorem 1.1, we can see that the ruling φ : X → C should be a smooth morphism when

X has pseudo-effective tangent bundle. The minimal ruled surface X over C can be
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classified by [1, 2, 37]: X is isomorphic to Sn , A0, A−1 or a surface in S0. Here a surface

X in S0 means that the projective space bundle P(OC ⊕L) for some L ∈ Pic0(C ) and

A0 (resp., A−1) is the projective space bundle associated with a vector bundle of rank
2 that is the nonsplit extension of OC by OC (resp., OC (p)), where p is a point in

C . It can be seen that A0, A−1 and surfaces in S0 have nef tangent bundle by [13],

and thus the remaining problem is the case of X = Sn . The ruled surface Sn is the
projective space bundle associated with the vector bundle OC ⊕OC (np). Note that the

tangent bundle of S0 = P1 ×C is nef. By this observation, it is enough for our purpose to

investigate X = Sn in the case were n ≥ 1. By the following proposition, we can see that
Sn has pseudo-effective tangent bundle (which is not nef), and further that it admits no

positively curved singular Hermitian metric.

Proposition 4.2. Let φ : X → C be a minimal ruled surface over an elliptic curve C .

Then we have the following:

(1) The tangent bundle of Sn is pseudo-effective, but it does not admit positively curved
singular Hermitian metrics when n ≥ 1.

(2) The tangent bundle of S0, A0, A−1 and a surface in S0 is nef.

Proof. All the ruled surfaces with nef tangent bundle are classified in [13], which implies

that (2) holds and the tangent bundle of Sn is not nef for n ≥ 1.
From now on, let X be the projective space bundle Sn associated with the vector

bundle En := OC ⊕OC (np). We first check the latter statement in (1). If X = Sn admits

a positively curved singular Hermitian metric, the exact sequence

0 → TX /C → TX → φ∗TC → 0

splits by Theorem 1.4, and thus we have

h0(X ,TX ) = h0(X ,TX /C )+h0(X ,φ∗TC ). (4.1)

On the other hand, we have h0(X ,TX ) = n +1 from [37, Theorem 3]. Also we can easily

check that

φ∗(TX /C ) = φ∗(−KX ) = Sym2(En)⊗detE∨
n .

This implies that

h0(X ,TX /C ) = h0(C,OC (−np)⊕OC ⊕OC (np)) = n +1.

This is a contradiction of equation (4.1).

We will prove that TX is pseudo-effective. For this purpose, it is sufficient to prove that
Symm(TX ) ⊗ φ∗O(2p) is generically globally generated for any m ≥ 0. Our strategy is

to observe a gluing condition of X = Sn carefully to construct holomorphic sections that

generate Symm(TX )⊗φ∗O(2p) at general points.
Let v be a local coordinate centred at p and let V ⊂ C be a sufficiently small open

neighbourhood of p. Further, let U be the open set U := C \ {p} and u be the standard

coordinate of the universal cover C → C . The ruled surface X can be constructed by
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gluing (u,ζ ) ∈ U ×P1 and (v,η) ∈ V ×P1 with the following identification:

ζ = vnη and [u] = p + v, (4.2)

where ζ and η are the inhomogeneous coordinates of P1.

Let θ be a meromorphic section of Symm(TX ) with pole along the fibre φ−1(p) of p.
Our strategy is as follows: we first look for a sufficient condition for the pole of θ being

of order at most 2. Then we concretely construct θ satisfying this condition, which can

be regarded as a holomorphic section of Symm(TX )⊗φ∗O(2p), and we show that such
sections generate Symm(TX )⊗φ∗O(2p) on a Zariski open set.

Now θ is a meromorphic section of Symm(TX ) whose pole appears only along the fibre

φ−1(p). Hence by expanding θ on U ×P1, we have

θ =
m∑

p=0

ap(u,ζ )
( ∂

∂ζ

)m−p( ∂

∂u

)p
on U ×P1. (4.3)

Here ap is a meromorphic function on X . The gluing condition (4.2) yields

∂

∂ζ
= 1

vn

∂

∂η
and

∂

∂u
= −n

η

v
∂

∂η
+ ∂

∂v
. (4.4)

Then we can obtain the following expansion of θ on V × P1 by an involved but

straightforward computation:

θ =
m∑

�=0

{ m∑
p=�

dp,� ap(v,η)
ηp−�

vn(m−p)+p−�

}( ∂

∂η

)m−�( ∂

∂v

)�

on V ×P1. (4.5)

Here, dp,� is the nonzero constant defined by dp,� := (−n)p−�
( p
p−�

)
. The ruling X → C is

locally trivial, and sections of Symp(TF ) on a fibre F are polynomials of degree (at most)
2p. This implies that the meromorphic function am−k (u,ζ ) is a polynomial of degree 2k
with respect to ζ , and thus we can write am−k as

am−k (v,η) =
2k∑
q=0

a(q)

m−k (v)ζ q =
2k∑
q=0

a(q)

m−k (v)vnqηq, for any 0 ≤ k ≤ m, (4.6)

for some meromorphic function a(q)

m−k (v) on C with pole only at p. Here we use gluing
condition (4.2) again.

We will find a sufficient condition for a(q)

m−k (v) for guaranteeing that the coefficients in

equation (4.5) have a pole of order at most 2. We remark that the section θ satisfying this
condition determines the holomorphic section of Symm(TX )⊗φ∗O(2p). By substituting

equation (4.6) for equation (4.5) and rearranging it concerning the powers of η, we can

obtain a sufficient and necessary condition, but this method needs such complicated
computation that we want to avoid writing it down. Here, to improve our prospect, we

focus only on a sufficient condition by considering the restricted situation where a(q)

m−k = 0
for q �= k . In this situation, it is not so difficult to show that θ determines the holomorphic
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section of Symm(TX )⊗φ∗O(2p) if a(q)
m−q satisfies the condition that

q∑
p=0

dm−p,m−qa
(p)
m−p(v)

1
vq−p has a pole of order ≤ 2 at p for any 0 ≤ q ≤ m. (4.7)

See the following table for q = 0,1,2.

q = q coeff. of (∂/∂η)q(∂/∂v)m−q ∑q
p=0 dm−p,m−qa

(p)
m−p/vq−p

q = 0 coeff. of (∂/∂η)0(∂/∂v)m dm,ma(0)
m

q = 1 coeff. of (∂/∂η)1(∂/∂v)m−1 dm,m−1a(0)
m /v +dm−1,m−1a

(1)
m−1

q = 2 coeff. of (∂/∂η)2(∂/∂v)m−2 dm,m−2a(0)
m /v2 +dm−1,m−2a

(1)
m−1/v +dm−2,m−2a

(2)
m−2

To construct meromorphic functions a(p)
m−p on C satisfying condition (4.7), for every

n ≥ 2, we take meromorphic functions Pn on the elliptic curve C such that Pn has a pole

only at p and its Laurent expansion at p can be written as

Pn(v) = 1
vn +

∑
k≥n+1

ak

vk .

Note that we can easily find these functions by using Weierstrass elliptic functions and
their differentials.

We first put a(0)
m := P2/dm,m . Then the second row of the table satisfies condi-

tion (4.7) (that is, it has a pole of order at most 2) if we define a(1)
m−1 by a(1)

m−1 :=
−dm,m−1/dm−1,m−1P3. In the same way, the third row also satisfies condition (4.7) if

we define a(2)
m−2 by an appropriate linear combination of P3 and P4. By repeating this

process, we can construct meromorphic functions a(p)
m−p on C satisfying condition 4.7

by a linear combination of {P3}p+2
k=3. We denote by θ0 the holomorphic section of

Symm(TX ) ⊗ φ∗O(2p) obtained from this construction. The section θ0 generates the
vector (∂/∂η)0(∂/∂v)m on a Zariski open set, since a(0)

m = P2/dm,m is nonzero.

Now we put a(0)
m := 0 and a(1)

m−1 := P2/dm−1,m−1, so that the first and second

rows in the table have a pole of order at most 2. Then, by the same argument
as before, we can construct meromorphic functions a(p)

m−p satisfying condition (4.7)

by defining them by an appropriate linear combination of {Pk }p+2
k=3 (for example,

a(2)
m−2 := −dm−1,m−2/dm−2,m−2P3). We denote by θ1 the obtained holomorphic section

of Symm(TX ) ⊗ φ∗O(2p). By this construction, the function a(0)
m is zero and a(1)

m−1 is

nonzero. Hence it follows that the sections θ0 and θ1 generate the vectors (∂/∂η)0(∂/∂v)m

and (∂/∂η)1(∂/∂v)m−1 on a Zariski open set.
By repeating this process, we can construct holomorphic sections {θp}mp=0 of

Symm(TX )⊗φ∗O(2p) generating Symm(TX )⊗φ∗O(2p) on a Zariski open set.

In the rest of this subsection, we suggest the following problem, which seems to be

important not only for the proof of Proposition 4.2 without local coordinates but also for
the study of a gap between being almost nef and pseudo-effective:
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Problem 4.3. We consider an exact sequence of vector bundles

0 −→ S −→ E −→ Q −→ 0.

When S and Q are pseudo-effective, is E pseudo-effective?

Remark 4.4. When S and Q are nef, the extension E is also nef [17, Proposition 1.15].
Hence we can easily show that E is almost nef if S and Q are almost nef. In particular,

it can be shown that OE (1) is pseudo-effective by [3], but we do not know whether or

not E itself is pseudo-effective. The difficulty is in showing that the image of the non-nef
locus OE (1) to X is properly contained in X . If Problem 4.3 can be affirmatively solved,

the pseudo-effectivity of the tangent bundle of X = Sn is easily obtained, by applying it

to the standard exact sequence of the tangent bundle. In fact, we tried some methods

from [17, 20, 37] to solve Problem 4.3, but did not succeed. This problem seems to be
subtle, since we do not know whether there is a gap between being almost nef and pseudo-

effective.

4.2. On rational surfaces

By the results in subsection 4.1, it is enough for the classification of surfaces to determine

when the blowup of a Hirzebruch surface has pseudo-effective tangent bundle. However, it
seems to be too hard a problem to classify all the blowups completely, since X delicately

depends on the position and number of blowup points. In this subsection, we study only

blowups along general points. A complete classification cannot be achieved even in this
case, but we obtain an interesting relation between the positivity of a tangent bundle and

the geometry of Hirzebruch surfaces. The following proposition gives the requirement for

the blowup having pseudo-effective tangent bundle:

Proposition 4.5. Let φ : Fn → P1 be a Hirzebruch surface and let π : X →
Fn be the blowup along the set � of general points on Fn . Then we have the

following:

(1) If the tangent bundle TX of X is generically globally generated, then �� ≤ 2.
(2) If the tangent bundle TX of X is pseudo-effective, then �� ≤ 4.

Remark 4.6. The interesting point here is that the conclusion �� ≤ 2 in (1) is optimal,
and further, that generic global generation and pseudo-effectivity behave differently for

��. Indeed, it follows that the tangent bundle TX in the case where �� ≤ 3 is pseudo-

effective but not generically globally generated, from Proposition 4.8.

Proof of Proposition 4.5. (1) Fix a holomorphic vector field ξ on X . We will define a
holomorphic vector field θξ on P1 as follows. Let t be a local holomorphic coordinate on

U ⊂P1. By pulling back dt , we obtain a holomorphic 1-form π∗φ∗dt on U ′ := (π ◦φ)−1(U ).

Then 〈ξ,π∗φ∗dt〉 is a holomorphic function on U ′. Thus it is constant along each fibre and
defines a holomorphic function on U . Now we define the holomorphic vector field θξ on P1

to be

θξ := 〈θξ,dt〉 ∂

∂t
and 〈θξ,dt〉 := 〈ξ,π∗φ∗dt〉.
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Since we assumed that TX is generically globally generated, we can choose ξ with θξ �≡ 0
on P1.

We claim that θξ has zeros on the set φ(�) ⊂ P1. To prove the claim, we take a local

coordinate (t,s) on Fn centred at a point in � such that t is the pullback of a local
coordinate on P1. If we put v := t/s, then (v,s) is a coordinate on X . Then we have

〈ξ,π∗φ∗dt〉 = 〈ξ,d(vs)〉 = 〈ξ,sdv + vds〉.
The last term vanishes at (v,s) = (0,0), and thus 〈θξ,dt〉 = 0 at t = 0. This shows the

claim.
In the case of �� ≥ 3, the vector field θξ has at least three zeros on P1. This contradicts

the fact that degTP1 = 2, and thus we have �� ≤ 2.

(2) Since TX is pseudo-effective, we can choose an ample line bundle A and a sequence

of positively curved singular Hermitian metrics hm on (Symm TX ) ⊗ A. Fix a smooth
Hermitian metric hA on A with positive curvature. Then hm ⊗ h−1

A is a (possibly not

positively curved) singular Hermitian metric on Symm TX . Define a singular Hermitian

metric gm on π∗φ∗TP1 by the mth root of the quotient metric of hm ⊗ h−1
A induced by

the morphism Symm TX → (π∗φ∗TP1)⊗m . Since (hm ⊗ h−1
A ) ⊗ hA is positively curved,

the metric gm
m ⊗ hA is also positively curved. The curvature current

√−1�gm of gm
satisfies

√−1�gm ≥ − 1
m

ωA.

Then by taking a subsequence (if necessary), we can assume that
√−1�gm weakly

converges to a positive current T ∈ c1(π
∗φ∗TP1). By a similar argument to (1), we

obtain a d -closed positive (1,1)-current S in c1(TP1) such that T = φ∗π∗S . Hence
we have

√−1�gm → π∗φ∗S = T ∈ c1(φ
∗π∗TP1).

We take a point p ∈ � and put p0 := φ(p). We claim that the bound of the Lelong

number

ν(S,p0) ≥ 1
2
. (4.8)

We fix a local coordinate t near p0 ∈ P1. Let (t,s) be a coordinate on Fn centred at p.
As before, since v = t/s, (v,s) is a coordinate on X . Let p ′ ∈ X be a point defined by

(v,s) = (0,0). Let C be a (local) holomorphic curve on X defined by {v = s}. We will
denote C := π(C ). The defining equation of C is {t/s = s} = {t = s2}. Then we have

ν(S,p0) = 1
2
ν(φ∗S |C ,p). (4.9)

Indeed, the function φ∗γ is a local potential of φ∗S for a local potential γ of S . Note that
s is a local coordinate on C while t = s2 is a local coordinate on P1. By the formula of

Lelong numbers

ν(S,p0) = liminf
t→0

γ (t)
log |t |,
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we can obtain

ν(φ∗S |C ,p) = liminf
s→0

φ∗γ (s2,s)
log |s| = liminf

s→0

γ (s2)

log |s| = 2ν(S,p0).

This proves equation (4.9). Since the Lelong number will increase after we take the

restriction, we have

ν(φ∗S |C ,p) = ν(T |C ,p ′) ≥ ν(T,p ′).

Lelong numbers will also increase after taking a weak limit of currents, and thus we obtain

ν(T,p ′) ≥ limsup
m→+∞

ν(
√−1�gm ,p ′).

The local weight of gm is written as

1
2m

log |(π∗φ∗(dt))m |2
h−1
m ⊗hA

.

Since t = vs on X , we can calculate as follows:

|(π∗φ∗(dt))m |2
h−1
m ⊗hA

= |(vds + sdv)m |2
h−1
m ⊗hA

. (4.10)

Since h−1
m is negatively curved and hA is smooth, it follows that | · |2

h−1
m ⊗hA

≤ C0| · |2hsm for

a smooth Hermitian metric hsm and some constant C0 > 0 (both depending on m). Then
the right-hand side of equation (4.10) is bounded as

|(π∗φ∗(dt))m |2
h−1
m ⊗hA

≤C0|(vds + sdv)m |2hsm
≤C0|(v,s)|2m .

Thus, the Lelong number of
√−1�gm is bounded as

ν(
√−1�gm ,p ′) ≥ 1

2m
liminf
(v,s)→0

C0|(v,s)|2m
log |(v,s)| = 1.

This proves expression (4.8). By degTP1 = 2, the current S has at most four points at
which its Lelong number greater than or equal to 1/2. Therefore, �� ≤ 4.

We finally prove Proposition 4.8, by applying the following lemma. The lemma is useful

when we compare a vector field on a given manifold with its blowup.

Lemma 4.7. Let π : Y →C2 be the blowup at (α,β) ∈C2 with the exceptional divisor E ,

and let (x,y) be the standard coordinate of C2. We consider a holomorphic section θ of
Symm TC2 and its expansion

θ =
m∑

k=0

fk (x,y)
( ∂

∂x

)k( ∂

∂y

)m−k
.
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Then the pullback (π |Y \E )∗θ by the isomorphism π |Y \E on Y \E can be extended to the
holomorphic section of Symm TY if and only if

m∑
k=0

fk (s +α,st +β)
( ∂

∂s
− t

s
∂

∂t

)k(1
s

∂

∂t

)m−k

is holomorphic with respect to (s,t) ∈ C2.

Proof. We first remark that any holomorphic section ξ of Symm TY determines the

section θξ of Symm TC2 . Indeed, a given section ξ induces the section θξ of Symm TC2 on
C2 \ {(α,β)} via the isomorphism π |Y \E , which can be extended on C2 since the blowup

centre has codimension 2.
We describe Y and E by the coordinates

Y = {(x,y,[z : w ]) ∈ C2 ×P1 |(x −α)w = (y −β)z },
E = {(α,β,[z : w ]) | [z : w ] ∈ P1},

and put the Zariski open set Y ′ := Y ∩{w �= 0}. The following map r gives a coordinate
of Y ′, and π |Y ′ can be written as follows:

r : C2 → Y ′ π |Y ′ : Y ′ → C2

(s,t) �→ (s +α,st +β,[1 : t ]), (x,y,[z : w ]) �→ (x,y).

If (π ◦ r)∗θ is holomorphic on C2, then (π |Y \E )∗θ can be extended to the holomorphic

section of Symm TY . Indeed, in this case the section (π |Y \E )∗θ can be extended to
the holomorphic section of Symm TY ′ . Hence it can also be extended on Y , since the

codimension of E ∩{w = 0} is 2.
By calculation, we obtain

(π ◦ r)∗θ =
m∑

k=0

fk (s +α,st +β)
( ∂

∂s
− t

s
∂

∂t

)k(1
s

∂

∂t

)m−k
.

Hence (π ◦ r)∗θ is holomorphic on C2 if and only if the right-hand side is holomorphic in

(s,t) ∈ C2, which completes the proof.

Proposition 4.8. The blowup of the Hirzebruch surface Fn along one, two or three

general points has pseudo-effective tangent bundle. More precisely, the following are true:

(1) The blowup of the Hirzebruch surface Fn along one or two general points has
generically globally generated tangent bundle.

(2) The blowup of the Hirzebruch surface Fn along three general points has generically

globally generated second symmetric power of the tangent bundle.

We first show Proposition 4.8 in the simplest case, n = 0.

Proof. (1) In general, for a birational morphism f : Y → Z between projective manifolds,

we have the natural inclusion f∗TY ⊂ TZ . Since the natural inclusion is of course

generically an isomorphism, the tangent bundle TZ is generically globally generated if
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the tangent bundle TY is. Therefore, it is sufficient for the proof to treat only the blowup
π : X → F0 along two general points p1, p2.

We take a Zariski open set C×C = W0 ⊂ F0 with the local coordinate (x,y). We may

assume that p1 = (0,0) and p2 = (1,1) by using the action of the automorphism group of
F0. We define the set of holomorphic vector fields on W0:

T :=
{ 2∑

k=0

akx k ∂

∂x
+

2∑
l=0

bly l ∂

∂y

∣∣∣ak,bl ∈ C

}
.

We remark that any θ ∈ T can be extended to a global holomorphic section of TF0 . From

Lemma 4.7, for a holomorphic vector field θ := a(x )∂/∂x + b(y)∂/∂y ∈ T , the section θ

can be lifted to the holomorphic section of TF0 if and only if

1
s
(−a(s +α)t + b(st +β)

)
is holomorphic with respect to (s,t)

for (α,β) = (0,0) and (α,β) = (1,1). We choose θ1 and θ2 in T as follows:

θ1 = (x 2 −x )
∂

∂x
and θ2 = (y2 −y)

∂

∂y
.

Then we can easily see that π∗θ1 and π∗θ2 can be extended to the global holomorphic
sections of TX . For a point q = (x,y) ∈ W0 such that x �= 0,1 and y �= 0,1, the vectors

θ1(q) and θ2(q) at q give a basis of TW0,q . Therefore TX is generically globally generated.

(2) Let π : X → F0 be a blowup of F0 along three general points p1,p2,p3. Our goal in

this proof is to show that Sym2(TX ) is generically globally generated. Since p1,p2,p3 are in
general position, we may assume p1,p2,p3 ∈ W0, p1 = (0,0), p2 = (1,1) and p3 = (−1, −1)

by the action of the automorphism group of F0.

We define T by

T :=
⎧⎨
⎩

4∑
k=0

akx k
( ∂

∂x

)2 +
∑

0≤k,l≤2

bklx ky l ∂

∂x
∂

∂y
+

4∑
k=0

ckyk
( ∂

∂y

)2 ∣∣∣ak,bkl,ck ∈ C

⎫⎬
⎭ .

It is easy to show that any θ ∈ T can be extended to a holomorphic global section of

Sym2 TF0 .

By Lemma 4.7, for a holomorphic section

θ = a(x )
( ∂

∂x

)2 + b(x,y)
∂

∂x
∂

∂y
+ c(y)

( ∂

∂y

)2 ∈ T ,

the section θ can be lifted to the section of Sym2 TF0 if and only if the following are

holomorphic with respect to (s,t) ∈ C×C:

1
s
(−2a(s +α,st +β)t + b(s +α,st +β)

)
,

1
s2

(
a(s +α,st +β)t2 − b(s +α,st +β)t + c(s +α,st +β)

)
,

for (α,β) = (0,0),(1,1),(−1, −1).
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Here we set

θ1 = y2(x 2 −1)
∂

∂x
∂

∂y
+y2(y2 −1)

( ∂

∂y

)2
,

θ2 = x 2(x 2 −1)
( ∂

∂x

)2 +x 2(y2 −1)
∂

∂x
∂

∂y
,

θ3 = (x −y)2
∂

∂x
∂

∂y
.

Then π∗θ1, π∗θ2 and π∗θ3 can be extended to global holomorphic sections of Sym2 TX .

For a general point q ∈ W0, it is easy to see that θ1(q), θ2(q) and θ3(q) give a basis of

Sym2 TW0,q . Therefore Sym2 TX is generically globally generated.

As a preliminary of the proof for Fn , we prove the following claim. We regard the
Hirzebruch surface Fn for n ≥ 1 as the hypersurface in P1 ×P2:

Fn = {([X1 : X2],[Y0 : Y1 : Y2]) ∈ P1 ×P2 |Y1X n
2 = Y2X n

1 }.
We set U = {Y1 �= 0 or Y2 �= 0}. We first observe the automorphism group of Fn so that

three general points move to specific points, which makes our computation not so hard.

Claim 4.9. Three general points p1,p2,p3 ∈ U move to ([1 : 0],[1 : 1 : 0]),([1 : 1],[1 : 1 :
1]),([1 : −1],[1 : 1 : (−1)n ]) by the action of the automorphism group of Fn .

Proof. Let S,T be variables and Pn be a vector subspace of homogeneous polynomials

of degree n in C[S,T ]. The linear group GL(2,C) acts on Pn as follows: for any

(
a b
c d

)
∈

GL(2,C) and any
∑n

k=0 akS kTn−k ∈ Pn , we define the action by

(
a b
c d

)
•
( n∑

k=0

akS kTn−k
)

:=
n∑

k=0

ak (aS + bT )k (cS +dT )n−k .

This induces the semidirect product Gn := Pn �GL(2,C).

For any g =
(∑n

k=0 akS kTn−k,

(
a b
c d

))
∈ Gn, we define the action of Fn as follows:

for any q = ([X1 : X2],[Y0 : Y1 : Y2]) ∈ Fn , we define g(q) by

([aX1 + bX2 : cX1 +dX2],[Y0X n
1 +Y1

n∑
k=0

akX k
1 X n−k

2 : Y1(aX1 + bX2)
n : Y1(cX1 +dX2)

n ])

if X1 �= 0 and by

([aX1 + bX2 : cX1 +dX2],[Y0X n
2 +Y2

n∑
k=0

akX k
1 X n−k

2 : Y2(aX1 + bX2)
n : Y2(cX1 +dX2)

n ])

if X2 �= 0 (see [6, Section 6.1], [15, Theorem 4.10]).

Note that the ruling φ : Fn → P1 coincides with the first projection. We may assume

that p1, p2, p3 ∈ U , and that their images in P1 are different from each other. By the
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action of g =
(

0,
(
a b
c d

))
, we obtain

φ(g(p1)) = [1 : 0], φ(g(p2)) = [1 : 1], φ(g(p3)) = [1 : −1]

if we properly choose g . Therefore we may assume

p1 = ([1 : 0],[x1 : y1 : 0]),p2 = ([1 : 1],[x2 : y2 : y2]),p3 = ([1 : −1],[x3 : y3 : (−1)ny3]).

It follows that yk �= 0 for k = 1,2,3, since we have g ·U ⊂ U for any g ∈ Gn .
In the case of n = 1, we set

a = x1

y1
− x2

2y2
− x3

2y3
, a0 = − x2

2y2
− x3

2y3
, a1 = x1

y1
− x2

y2
.

Then p1, p2 and p3, respectively, move to ([1 : 0],[1 : 1 : 0]), ([1 : 1],[1 : 1 : 1]) and ([1 :

−1],[1 : 1 : −1]) by the action of

(
a0S +a1T,

(
a 0
0 a

))
∈ G1, since we may assume x1/y1−

x2/2y2 −x3/2y3 �= 0, since p1,p2,p3 are general points.
In the case of n ≥ 2, we set m = 2�n/2�,

a0 = x1 −y1

y1
, a1 = −x2 −y2

2y2
+ x3 +y3

2y3
, am = −x1 −y1

y1
− x2 −y2

2y2
− x3 +y3

2y3

and ak = 0 for k �= 0,1,m. Then p1, p2 and p3, respectively move to ([1 : 0],[1 : 1 : 0]),

([1 : 1],[1 : 1 : 1]) and ([1 : −1],[1 : 1 : (−1)n ]) by the action of

(∑n
k=0 akS kTn−k,

(
1 0
0 1

))
∈

Gn .

Proof of Proposition 4.8 for Fn . (1) We define the Zariski open sets Wk ∼= C×C in

Fn for k = 1,2,3 as follows:

i1 : W1 → Fn

(x,y) �→ ([1 : x ],[1 : y : xny ]),

i2 : W2 → Fn

(u,v) �→ ([1 : u],[v : 1 : un ]),

i3 : W3 → Fn

(ζ,η) �→ ([ζ : η],[1 : ζnη : η]).

We take θ = a(x,y)∂/∂x + b(x,y)∂/∂y ∈ H 0(W1,TW1). The section θ extends to a
holomorphic global section of TFn if and only if θ is holomorphic on W2 and W3, since

the codimension of Fn \∪k=1,2,3Wk is 2. A straightforward computation yields

θ = a(u,1/v)
∂

∂u
− v2b(u,1/v)

∂

∂v
on W1 ∩W2,

θ = −ζ 2a(1/ζ,ζnη)
∂

∂ζ
+

(
nζηa(1/ζ,ζnη)+ b(1/ζ,ζnη)

ζn

) ∂

∂η
on W1 ∩W3.
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Hence the section θ can be extended to a global holomorphic section of TFn if and only
if we define a(x,y) and b(x,y) to be

a(x,y) = a0 +a1x +a2x 2 and b(x,y) = (b0 −na2x )y + b1(x )y2

for some a0,a1,a2,b0 ∈ C and some b1(x ) ∈ C[x ] with deg(b1) ≤ n. We define

T :=
{
(a0 +a1x +a2x 2)

∂

∂x
+ (b0y −na2xy + b1y2 + b2xy2)

∂

∂y

∣∣∣a0,a1,a2,b0,b1,b2 ∈ C

}
.

Then it can be seen that any θ ∈ T extends to a holomorphic global section of TFn .

Let π : X → Fn be the blowup of Fn along two general points p1,p2. By Claim 4.9, we
may assume p1,p2 ∈ W1, p1 = (0,1) and p2 = (1,1). We choose θ1 and θ2 in T as follows:

θ1 = y(y −1)
∂

∂y
and θ2 = x (x −1)

∂

∂x
+nxy(y −1)

∂

∂y
.

By Lemma 4.7, the sections θ1 and θ2 can be lifted to holomorphic global sections of TX .
For any point q = (x,y) ∈ W1 such that x �= 0,1 and y �= 0,1, (θ1)q and (θ2)q give a basis

of TW1,q . Therefore TX is generically globally generated.

(2) Let π : X → Fn be a blowup of Fn along three general points p1,p2,p3. We show that
Sym2(TX ) is generically globally generated. By Claim 4.9, we may assume p1,p2,p3 ∈ W1,

p1 = (0,1), p2 = (1,1) and p3 = (−1, −1).

We take

θ = a(x,y)
( ∂

∂x

)2 + b(x,y)
∂

∂x
∂

∂y
+ c(x,y)

( ∂

∂y

)2 ∈ H 0(W1, Sym2 TW1).

First we investigate the condition when θ extends to a global holomorphic section of

Sym2 TFn . We have

θ = a(u,1/v)
( ∂

∂u

)2 − v2b(u,1/v)
∂

∂u
∂

∂v
+ v4c(u,1/v)

( ∂

∂v

)2
on W1 ∩W2 and,

θ = ζ 4a(1/ζ,ζnη)
( ∂

∂ζ

)2 +
(

−2nζ 3ηa(1/ζ,ζnη)− 1
ζn−2 b(ζ,ζnη)

) ∂

∂ζ

∂

∂η

+
(
n2ζ 2η2a(1/ζ,ζnη)+ nη

ζn−1 b(1/ζ,ζnη)+ 1
ζ 2n c(1/ζ,ζnη)

)( ∂

∂η

)2
on W1 ∩W3.

In the case of n = 1, the section θ extends to a global holomorphic section of Sym2 TFn

if we have

• a(x,y) = a0 +a1x +a2x2 +a3x3 +a4x4,
• b(x,y) = (b0 + b1x + b2x2 −2a4x3)y + (b3 + b4x + b5x2 + b6x3)y2,
• c(x,y) = (c0−(a3+b2)x +a4x2)y2+(c1+c2x −b6x2)y3+(c3+c4x +c5x2+c6x3+

c7x4)y4,

where all coefficients are constant. Here we set

• θ1 = x (x 2 −1)
( ∂

∂x

)2 +y(−3x 2 +y(x 3 +x 2 +x −1)+1)
∂

∂x
∂

∂y

+y2(2x +y2(x 2 +1)−y(x +1)2)
( ∂

∂y

)2
,
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• θ2 = x 2(−x 2 +1)
( ∂

∂x

)2 +2x 2y(x −y)
∂

∂x
∂

∂y
+x 2y2(y2 −1)

( ∂

∂y

)2
,

• θ3 = x (−x 2 +1)
( ∂

∂x

)2 +y(3x 2 +y(−x 2 −2x +1)−1)
∂

∂x
∂

∂y

+y2(−2x +y2(2x −1)+1)
( ∂

∂y

)2
.

Then using Lemma 4.7 again, the sections π∗θ1, π∗θ2 and π∗θ3 extend to holomorphic
global sections of Sym2 TX . For a general point q ∈ W1, θ1(q), θ2(q) and θ3(q) give a basis

of Sym2 TW1,q . Therefore Sym2 TX is generically globally generated.

In the case where n ≥ 2, the section θ extends to a holomorphic global section of

Sym2 TFn if

• a(x,y) = a0 +a1x +a2x2 +a3x3 +a4x4,
• b(x,y) = (b0 + b1x + b2x2 −2na4x3)y + (b3 + b4x + b5x2 + b6x3)y2,
• c(x,y) = (c0−(n2a3+nb2)x +n2a4x2)y2+(c1+c2x +c3x2)y3+(c4+c5x +c6x2+

c7x3 + c8x4)y4,

where all coefficients are constant. We set

• θ1 = xy2(x 2 −1)
∂

∂x
∂

∂y
+y3(−3x 2 +y(−x 4 +2x 3 +2x 2 −1)+1)

( ∂

∂y

)2
,

• θ2 = xy2(x 2 −1)
∂

∂x
∂

∂y
+y2(xy2(x +2)−y(x +1)2 +1)

( ∂

∂y

)2
,

• θ3 = x (x 3 −2x 2 −x +2)
( ∂

∂x

)2

+y(−2nx 3 +6x 2 +2x (n −1)−2+y(nx (n −6)+x 3(−n2 +6n −4)+2))
∂

∂x
∂

∂y

+y2(nx (nx +2n −6)+2n +1+y(−n2(x +1)2 +y(n2 +6nx −2n −1)))
( ∂

∂y

)2
.

Then π∗θ1, π∗θ2 and π∗θ3 extend to holomorphic global sections of Sym2 TX . For a

general point q ∈ W1, θ1(q), θ2(q) and θ3(q) give a basis of Sym2 TW1,q . Therefore

Sym2 TX is generically globally generated.

All surfaces with pseudo-effective tangent bundle can be classified except for the blowup
of Hirzebruch surfaces at special points if the following problem is solved:

Problem 4.10. Does the blowup of Hirzebruch surfaces at four general points have

pseudo-effective tangent bundle?

Remark 4.11. Höring, Liu and Shao found some examples of pseudo-effective tangent
bundles in [22], by a method based on varieties of minimal rational tangents, which is

rather different from our method. Note that their definition of a pseudo-effective tangent

bundle is weaker than ours.
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[35] M. Păun and S. Takayama, Positivity of twisted relative pluricanonical divisors and
their direct images, J. Algebraic Geom. 27 (2018), 211–272.

[36] H. Raufi, Singular hermitian metrics on holomorphic vector bundles, Ark. Mat. 53(2)
(2015), 359–382.

[37] T. Suwa, On ruled surfaces of genus 1, J. Math. Soc. Japan 21 (1969), 291–311.
[38] Y.-T. Siu and S.-T. Yau, Compact Kähler manifolds of positive bisectional curvature,

Invent. Math. 59(2) (1980), 189–204.
[39] X. Wu, ‘Pseudo-effective and numerically flat reflexive sheaves’, Preprint, 2020,

https://arxiv.org/abs/2004.14676v2.

https://doi.org/10.1017/S1474748020000754 Published online by Cambridge University Press

https://arxiv.org/abs/2003.09476v1
https://arxiv.org/abs/1804.02146v2
https://arxiv.org/abs/1801.09081v1
https://arxiv.org/abs/1811.04182v1
https://arxiv.org/abs/2004.14676v2
https://doi.org/10.1017/S1474748020000754

	1 Introduction
	2 Preliminaries
	2.1 Singular Hermitian metrics
	2.2 Positivity of torsion-free sheaves

	3 Proof of the main results
	3.1 Numerically flat vector bundles
	3.2 Splitting theorem for positively curved vector bundles
	3.3 Pseudo-effective tangent bundles

	4 Surfaces with pseudo-effective tangent bundle
	4.1 On minimal ruled surfaces
	4.2 On rational surfaces

	Acknowledgments 
	References 

