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ABSTRACT

Marine is the oldest type of insurance coverage. Nevertheless, unlike cargo
and hull covers, marine liability is a rather young line of business with claims
that can have very heavy and long tails. For reinsurers, the accumulation of
losses from an event insured by various Protection and Indemnity clubs is an
additional source for very large claims in the portfolio. In this paper, we first
describe some recent developments of the marine liability market and then sta-
tistically analyze a data set of large losses for this line of business in a detailed
manner both in terms of frequency and severity, including censoring tech-
niques and tests for stationarity over time. We further formalize and examine
an optimization problem that occurs for reinsurers participating in XL on XL
coverages in this line of business and give illustrations of its solution.
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1. INTRODUCTION

Marine is the oldest line of business in insurance. It goes back to the ancient
civilizations of Babylonians, Greeks, and Romans. These societies had systems
of maritime loans to shipowners on their ships and cargo. The borrowedmoney
would then be paid back with interest in case the journey went well or the loans
would be forgiven in case of a loss of the ship. Rhodian shipowners included in
their law the principle of “general average.” This principle allowed to propor-
tionally share losses among several shipowners, when the losses were needed
to preserve the rest of the merchandise in the case of an emergency. The first
documented reinsurance contract dating from 1370 relates to the cargo of a
ship sailing from Genoa to the harbor of Sluis, for which the most dangerous
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part of the trip from Cadiz to Sluis was reinsured. For a detailed description of
the history of marine insurance, see Holland (2009), Swiss Re (2003). Marine
insurance has naturally evolved substantially since then and it is nowadays
commonly divided into four classes of business: cargo, hull, offshore energy,
and liability. Previous works as Swiss Re (2003), Farr et al. (2014), Seltmann
(2019) describe the principal features and methods used in these classes, the
marine insurance market place in general, the important role of the London
market in it, as well as the exposure management that is required to control
the potential accumulation risk of single events. Cargo traditional coverage
comprises the goods and merchandise that is carried by the vessels. Hull pro-
tects against damages happening to the structure and machinery of the vessels.
In contrast, offshore energy and liability are rather young markets in marine
insurance, appearing at the end of the nineteenth century. Offshore energy
involves the protection of platforms, semi-submersibles, and drill ships that
carry out exploration and production of oil in the sea. Finally, marine liability
provides financial support to shipowners and charterers from the risks of legal
liabilities. The difficulties that data availability can pose to price contracts in
this market are noted in Farr et al. (2014), particularly for contracts covering
the higher layers where only very limited claim experience is available.

One distinguishes two types of coverage provided in the marine liability
insurance market. On the one hand, Protection and Indemnity (P&I) clubs are
mutuals that group together shipowners, ship operators, and charterers to pool
their risks and provide coverage against their legal liabilities to third parties for
their members. Because of the high limits of liability, particularly involving
pollution, P&I clubs also pool their risks via the International Group of P&I
clubs (IGP&I), the trade association of the P&I clubs. The IGP&I coordinates
the clubs pooling agreement and administers the General Excess of Loss (IG
GXL) Reinsurance Contract on behalf of the clubs. The IG GXL is a common
reinsurance program transferred to the commercial market to cover the highest
losses to which the club members are exposed. On the other hand, commercial
(re)insurance companies additionally offer coverage for third-party liabilities
on a fixed-premium basis as well as protection for the higher layers of the
risks covered by P&I clubs (for instance, also by participating in the previ-
ously mentioned IG GXL Contract). The magnitude of total claims can be
enormous (e.g., in the case of Costa Concordia exceeding a billion US$) and
the settlement of some claims can take more than a decade.

After describing some recent developments in the marine liability insurance
market in Section 2, the focus of the remaining paper is twofold: we first give
a statistical analysis of a set of actual large losses from this line of business in
Section 3, modeling both the size of the claims and their frequency. Section 4
then describes the general framework of an insurance market in the presence
of a big reinsurance program, involving many companies, designed to cover
the largest market claims. Section 5 introduces several variants of resulting
profit optimization problems for reinsurers in this market, who participate in
a large excess of loss (XL) reinsurance contract (as the IG GXL mentioned
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above) and in addition reinsure individual cedents that also participate in it.
In Section 6, we give illustrations of possible solutions to these problems and
Section 7 concludes.

2. MARINE LIABILITY INSURANCE MARKET

During the last decade, IGP&I club premiums (known as “calls”) have rep-
resented between 61% and 67% of the total marine liability premium. They
amounted to US $3 billion in 2018 while commercial insurer’s marine liabil-
ity premiums accounted for US $1.9 billion in the same year, according to
Seltmann (2019). Marine liability coverage offered by commercial insurers on
a fixed-premium basis represented around 10% of the total P&I calls in 2011
as noted in Futterknecht et al. (2013). These figures highlight the central role
that P&I clubs play in the marine liability insurance market. In fact, P&I clubs
appeared in the second half of the nineteenth century to cover open-ended lia-
bility risks that commercial insurers were reluctant to underwrite. Nowadays,
the IGP&I gathers 13 P&I clubs and covers around 90% of the world fleet, cf.
Futterknecht et al. (2013), IGP&I (2017). The 13 clubs retain losses below an
individual club’s retention (at US $10million in 2019), while the claims between
US $10 and US $100 million are covered by Hydra, the captive of IGP&I,
and the claims above US $100 million are reinsured in the open market (see
Section 4 for further details).

Regarding the frequency of marine liability large losses, it is expected to
continue to decrease in the future. Shipping is now safer than ever, the number
of total shipping losses of vessels over 100 gross tonnage per year have fallen
from 207 in 2000 to 46 in 2018 (AGCS, 2019). In addition, ITOPF (2019) illus-
trates that the number of oil spills of more than 700 tons has also decreased
from an average of 24.5 per year in the 70s to 1.9 per year after 2010. In fact,
19 of the 20 largest spills registered since 1970 occurred before 2000 (ITOPF,
2019). This indicates that even with the relentless growth of the world fleet, not
only the relative frequency of maritime accidents, but also the absolute number
of large oil spills has dropped. Similar to motor and aviation transport, human
error is the main reason for marine casualties. Human error is the cause of
75–96% of marine incidents according to AGCS (2019) or 70–80% of incidents
according to IGP&I (2017). The arrival of autonomous vessels in the com-
ing decades could hence contribute to a further reduction of marine accidents,
much like the expected decrease in the number of automobile claims.

Conversely, the size of marine liability large losses seems to increase, see
Lloyds (2013), AGCS (2019). Firstly, vessels have been continuously increas-
ing in size. The latest container ships can carry more than 20,000 twenty-foot
equivalent units (TEU), which is more than 6 times the capacity of MV Rena
(3351 TEU), which ran aground in New Zealand in 2011 (constituting one
of the most expensive historical liability losses). These larger ships lead to
new and complex challenges regarding the evacuation and rescue in remote
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environments. They are also harder to handle and the removal of their wrecks
takes longer due to lack of salvage equipment and technology capable of
removing them. Secondly, the cost of wreck removal has risen during this
century due to various reasons such as the increase in vessel size and cargo vol-
umes. Technological advances also permit carrying out wreck removals in more
challenging and more extreme environments than before, but the costs associ-
ated with these can be immense compared to past removals. Central factors
to the cost of wreck removal are: the location of the incident, cargo recov-
ery from container ships, bunker fuel removal operations, and the influence of
government or other authorities, see Lloyds (2013). The last one, strengthened
by increasing environmental concern and media coverage, appears to be the
dominant factor. For instance, in the case of the Costa Concordia incident, the
Italian government required the wreck to be removed in one piece and to carry
out the removal work entirely in Italy which substantially increased the cost of
the operation. Finally, the most expensive marine liability losses are typically
also associated with another factor, namely the cleaning and environmental
costs when oil was spilled on the ocean. The quantity of oil spilled is relevant
but asWhite andMolloy (2003) indicate, this is not the only determining factor
to the cost of oil spills. Important in this context are also the type of oil, the
location and the characteristics of the affected area.

3. MODELING MARINE LIABILITY LARGE LOSSES

We now analyze a data set collecting the information on the most expensive
marine liability claims from eight insurance companies, that occurred between
2007 and 2017, obtained from a global reinsurance company. This set of claims
includes mainly oil spills, wreck removals, collisions of two or more vessels,
groundings, and fires on board. The amounts were reported in 2018 and have
been indexed to reflect costs at the end of that year. The consumer price index
(CPI) from the United States was used for loss indexation. Although this is a
simplified approach, US CPI was chosen as a proxy for global claims inflation
considering the global nature of the exposures in this line of business. It is in
fact challenging to find an index that reflects the different factors influencing
this line of business, the heterogeneous mix and global spread of the claims,
the effect of local court decisions and jurisdictional practice. We have infor-
mation on the date of the incidents, paid and incurred amounts. Ultimate
amounts for claims that are still open have been computed applying age-to-age
development factors following the chain-ladder method until the seventh
year of development and fitting a Weibull logarithmic curve to estimate the
loss development tail factors above the eighth year. The data set gathers
aggregate claim costs across the eight companies for each single event with
indexed incurred values above US $2.85 million. Marine liability losses caused
by natural catastrophe events such as hurricanes, earthquakes, wildfires, or
tsunamis, as well as energy liability losses involving oil rigs, are excluded
from the analysis. Natural catastrophe events are not considered because
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they are not one of the main drivers of the costliest marine liability claims as
it is the case for the cargo and hull coverages. Additionally, these risks are
usually evaluated by means of commercial catastrophe models that do not
use past claim experience per se. The data set has a total of n= 85 combined
claims of which 26 are closed. These large claims are shared among several
companies. In fact, half of the claims (43) affected at least two companies, and
four claims (among them the two most expensive, Costa Concordia and MV
Rena) even involve seven of the eight companies. In the following, we analyze
the frequency and severity of this data set of claims, using the methodology
recently described in Albrecher et al. (2017).

3.1. Frequency modeling

It is usual to examine the number of claims per year when modeling the fre-
quency of claims. In such a case, generalized linear models or generalized
additive models with a Poisson or negative binomial response are the common
choice. Nevertheless, in our case, the data set seems to be too small to provide
a useful model along these lines, given the low frequency registered over the
11-year period.

3.1.1. Homogeneous Poisson process.
We proceed to use the additional information on the exact date of the inci-
dents, to model the number of claims N(t) up to time t as a stochastic process.
We use days as the time unit, having observed 4018 days in the 11-year period.
First, we test for a homogeneous Poisson process, with estimated intensity of
λ̂ = 85/4018= 0.0212 claims per day. We test the hypotheses of exponential
inter-arrival times and of a uniform distribution of arrival times over the entire
period. These hypotheses are not rejected for this data set when the Anderson–
Darling (0.75 and 0.51 p-values) and the Kolmogorov–Smirnov (0.83 and 0.7
p-values) tests are applied, which indicates that the homogeneous Poisson pro-
cess could be seen as a reasonable model for the claim arrival process. Figure 1
shows the exponential QQ-plot of the inter-arrival times as well as the actual
claim counts over time together with the simulated 95% confidence interval
for the homogeneous Poisson process based on 10,000 realizations. Although
the tests do not reject the distributional hypotheses on the inter-arrival and
arrival times at this usual significance level, the QQ-plot still exhibits some
deviation from the exponential distribution, particularly for larger inter-arrival
times. Hence, the hypothesis of a constant intensity during the 11-year period,
a key property of the homogeneous Poisson process, still may not be the most
reasonable choice.

3.1.2. Inhomogeneous Poisson process.
We hence explore the fit of an inhomogeneous Poisson process with intensity
function λ(t) changing over time. A Gaussian kernel estimator for the intensity
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FIGURE 1: QQ-plot of the standardized inter-arrival times (left) and simulated 95% confidence intervals for
a homogeneous Poisson process with λ̂ = 0.0212 and observed cumulative count claims (right).

function using the arrival times Ti is used as, for example, proposed by Diggle
(1985)

λ̂(t)= 1
h

n∑
i=1

K
(
t−Ti

h

)
. (3.1)

Pseudodata built through reflection at the boundaries t0 = 0 and T = 4018 of
the observed arrival times (see e.g., Cowling and Hall, 1996) are used to correct
for underestimation of λ(t) near the boundaries. The bandwidth h is chosen
applying the extensively used plug-in method in Sheather and Jones (1991),
giving h= 887 as a result. Alternative plug-in and cross-validation methods
to determine the bandwidth give similar results with h ∈ [680, 970], however,
h= 360 (an annual standard deviation) and h= 180 are also considered.

A second alternative consists of using a log-linear intensity function
given by

λ̂(t)= exp (θ0 + θ1t) , (3.2)

whose maximum likelihood estimators (MLEs) are equal to θ̂0 = −3.674 and
θ̂1 = −0.00009. The negative value of the parameter θ1 suggests a decrease in the
claims frequency over time. However, when testing the null hypothesisH0 : θ1 =
0, through the likelihood ratio test with respect to the homogeneous model, we
obtain a p-value of 0.32, indicating no evidence to reject the hypothesis that the
process has constant intensity.

A third alternative consists of using a piecewise constant function com-
posed by the annual estimated intensities. Figure 2 (top left) shows the
occurrence dates of the claims (in the rug) as well as the estimated intensity
function λ̂(t) using a Gaussian kernel of the form (3.1) with the mentioned
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FIGURE 2: Estimated Poisson intensity function λ̂(t) using a Gaussian kernel with h= 180, 360, 887,
log-linear intensity and annually constant values (top left). Remaining plots: 95% confidence intervals of the
homogeneous intensity estimate λ̂ = 0.0212 and the inhomogeneous intensity estimate for each bandwidth.

values for the bandwidth (h= 180, 360, 887), the log-linear intensity in (3.2),
and the piecewise (annually) constant function. The estimated function using
the kernel exhibits a decreasing pattern over time, being monotone decreasing
for the largest bandwidth h= 887 while having additional periodic fluctuations
for the shorter bandwidths.

The confidence intervals at 95% level for the inhomogeneous intensity esti-
mators λ̂(t) in Figure 2 are computed following the procedure in Merz et al.
(2016), see also Albrecher et al. (2019). For the homogeneous intensity, the 95%
confidence interval is derived from the estimates of 10,000 samples of expo-
nential inter-arrival times with mean 1/λ̂. The confidence intervals around the
inhomogeneous intensity estimate λ̂(t) turn out to always contain the homo-
geneous estimate λ̂ = 0.0212. On the other hand, the confidence interval of the
homogeneous intensity contains the inhomogeneous estimate for h= 887, and
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FIGURE 3: QQ-plot of the standardized inter-arrival times after time change (left) and simulated 95%
confidence intervals for an inhomogeneous Poisson process with λ(t) estimated with Gaussian kernel h= 887

and observed cumulative count claims (right).

the estimates for the other bandwidths fall outside of the interval. This sug-
gests that despite a visible decreasing pattern of the intensity, the data set is
not rich enough to conclude such a decrease decisively at the usual significance
level.

For the sake of completeness, we still test in the following whether for a
given inhomogeneous Poisson estimate the inhomogeneous Poisson assump-
tion would be justified. For that purpose, we apply a deterministic time change
to the inter-arrival times using the estimated intensity λ̂(t) with bandwidth
h= 887, so that the resulting process should then follow a homogeneous
Poisson pattern, and then repeat the above tests. In this case, the hypothe-
ses of exponential inter-arrival times and uniform arrival times under the new
timescale are not rejected for both Anderson–Darling (p-values 0.82 and 0.93)
and Kolmogorov–Smirnov (p-values 0.89 and 0.94) tests. Figure 3 shows the
exponential QQ-plot of the transformed inter-arrival times and simulated con-
fidence intervals for the inhomogeneous Poisson process using λ̂(t) as in (3.1)
with h= 887, and Figure 4 depicts the corresponding results for the piece-
wise (annual) constant intensity. One observes that the QQ-plot constitutes an
improvement over the one under the homogeneous Poisson assumption in both
cases. Autocorrelation functions, partial autocorrelation functions, and Ljung
Box tests suggest also independence of the inter-arrival times.

To summarize, we observe a better fit of the inhomogeneous Poisson pro-
cess to the data set as a claim arrival model, showing a decreasing behavior
of the intensity function over time, as expected from general considerations
on decreasing likelihood of incidents in this line of business. However, there is
always a trade-off with respect to model complexity, and the statistical tests to
rule out the homogeneous Poisson process turned out not to be conclusive for
the 11 years of data available.
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3.2. Severity modeling

3.2.1. Statistical analysis for ultimates.
Given that the data correspond to the largest marine liability claims (above
US $2.85 million), one can expect them to be heavy-tailed. We examine the fit
of four different distributions: exponential, Weibull, log-normal, and Pareto,
to the ultimate values of the 85 combined claims (for the closed claims, these
coincide with the final paid amounts), cf. Albrecher et al. (2017, Chapter 4).
Figure 5 depicts the resulting QQ-plots, which show convex shapes for the
exponential, log-normal, and Weibull case, clearly indicating that the tail of
the data set is heavier than the tail of these distributions. In the Pareto QQ-
plot, one observes a linear pattern indicating that the Pareto distribution can
be a good model for the severity. This is also supported by the mean excess plot
in Figure 6 which shows an increasing linear behavior.

All this indicates that extreme value analysis should be used to further
explore the claims. In particular, we expect the extreme value index (EVI) γ

to be positive, such that one is in the Fréchet domain of attraction, see for
example Albrecher et al. (2017), McNeil (1997).

The most popular estimator of γ in this case is the Hill estimator (1975)

Hk,n = 1
k

k∑
j=1

ln (Xn−j+1,n)− ln (Xn−k,n),

where n is the sample size,Xn−k,n is the (k+ 1)-largest value in the sample, and k
is the number of largest observations used in the estimation. The Hill estimator
can be interpreted as an estimator of the slope of a strict Pareto QQ-plot or as
the MLE of the parameter 1/α based on the strict Pareto distribution given by
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FIGURE 5: QQ-plots for the ultimate values of the combined claims in excess of US $2.85 million.

F(x)= 1−
(
t
x

)α

, x> t, (3.3)

when using the Peak over Threshold (POT) approach applied to the values
Y =X/t conditional on X > t for a large t. If the actual tail is not strict Pareto,
this estimator for γ will be biased. One, therefore, often considers alternative
estimators. Among them are a biased-reduced Hill estimator designed for dis-
tributions in the Hall class (cf. Hall, 1982) and aMLE using the POT approach
based in this case on the extended Pareto distribution (EPD)

Gγ ,δ,τ (x)= 1− (x(1+ δ − δxτ ))−1/γ , x> 1, τ < 0, δ >max (− 1, 1/τ ),

(see e.g., Albrecher et al., 2017 for details on all these estimators). Figure 7
presents the Hill, the bias-reduced Hill, and the EPD estimates as a function of
k. The Hill plot exhibits a rather stable behavior, indicating an EVI around 1.
This evidences a heavy tail with even possibly infinite mean. The bias-reduced
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Hill estimator shows no bias when only the largest claims are considered, k ∈
(1, 25), while for larger values of k it evidences a slight positive bias on the Hill
estimates. The EPD estimator shows smaller values of the EVI around 0.7.

We also add an estimation of the EVI that would allow for nonpos-
itive γ values as well. The slope of the generalized QQ-plot ( log ( n+1

k+1 ),
log (Xn−k,nHk,n)), k= 1, . . . , n− 1 generalizes the Hill estimator to
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γ̂ GH
k,n = 1

k

k∑
j=1

ln (Xn−j,nHj,n)− ln (Xn−k−1,nHk+1,n).

Another generalization of the Hill estimator is the moment estimator (Dekkers
et al., 1989)

γ̂M
k,n =Hk,n + 1− 1

2

(
1− H2

k,n

H (2)
k,n

)−1

, with

H (2)
k,n = 1

k

k∑
j=1

(
ln (Xn−j+1,n)− ln (Xn−k,n)

)2
.

Assuming that the limiting distribution of the values Y =X − t conditional
on X > t for large t is a generalized Pareto distribution (GPD) with c.d.f.
Gγ ,τ (x)= 1− (1+ τx)−1/γ , 1+ τx> 0, one gets by MLE a real-valued POT
estimate of γ . Figure 8 shows the generalized QQ-plot that exhibits an increas-
ing linear pattern with a positive slope again suggesting a distribution in the
Fréchet domain of attraction and confirming the heavy tail nature of the data.
The right-hand side of the figure contains the generalized Hill, the moment,
and the GPD estimates as a function of k, all suggesting a stable behavior and
supporting a positive value of the EVI between 0.6 and 0.95, slightly smaller
than the Hill estimates and around the same value as the bias-reduced Hill and
the EPD estimates.

3.2.2. Statistical analysis with censoring.
As it is not uncommon in the industry, in the previous section, the ultimates
for the claims were treated as if they were the final values. We now would like
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FIGURE 9: Hill estimator adapted for interval censoring, with cumulative paid amounts as lower bounds
and incurred as upper bounds for claims occurred before 2012 and with Costa Concordia claim added.

to take into account the fact that most of the claims are still open and their
final value is not known yet. Concretely, we examine the estimates of the EVI
of the combined claims under interval censoring for the open claims with a
lower truncation point given by the reporting threshold of US $2.85 million
and a lower bound given by the cumulative amounts already paid. In addition,
we apply two methods used in Albrecher et al. (2017, p. 107) to specify upper
bounds for the censored claims.

In the first method, the incurred values are used as upper bounds for the
claims with at least 8 years of development (39 claims occurred before 2012, 26
of them open). The number eight is chosen because the incurred values, after
reaching the 8 years of development, turn out to be an actual upper bound of
the final payments for all the closed claims. Figure 9 presents the Hill estimator
adapted for interval censoring using this first method (see e.g., Albrecher et al.,
2017 for details). One identifies two levels of the EVI, around 1.1 for k> 12
and around 0.6 for k ∈ (1, 10). The lower level of the EVI indicates a less heavy
tail when compared to the estimators without censoring. However, this reduc-
tion of the EVI may be rather due to the exclusion of the most expensive claim
(Costa Concordia), which occurred in January 2012. In fact, if the latter is
added to the previous 39 claims in the analysis, the level of the EVI goes up
again substantially (cf. Figure 9). This highlights the extreme nature of the
Costa Concordia loss, which is by a factor three bigger than the second-largest
loss in the data set and still should not be assumed to be an outlier.

The second method for interval censoring proposed in Albrecher et al.
(2017) computes for each claim i the ratios Ri,d of the final cumulative paid
amount (registered in 2018) over the incurred value for each development year
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FIGURE 10: Boxplots of the ratios Ri,d for d = 1, 2, . . . , 12 and right endpoints estimates (left). The final
factors used to multiply the incurred values by development year are shown as dashed lines. Hill estimator
adapted for interval censoring, with cumulative paid amounts as lower bounds and incurred multiplied by

factor as upper bounds for claims occurred before 2016 (right).

d. If the ratio Ri,d is larger than 1, the incurred value in development year d
is smaller than the latest available paid amount. Thus, Ri,d gives the factor
by which we would have to multiply the incurred value to be a reliable upper
bound. The ratio is also right-censored if the claim i is still open, thus the right
endpoints of Ri,d are estimated per development year d using the 99.9% quan-
tile corrected by censoring as described in Einmahl et al. (2008). Figure 10 (left)
shows the boxplots ofRi,d and the estimated right endpoints using the quantiles
corrected by censoring, by development year. The estimated endpoints of Ri,d

of claims with three or less years of development are still not reliable, so only
claims occurred before 2016 (72 claims, 48 of them open) are used in this case.
These estimates are not strictly decreasing for higher development years as one
would initially expect; therefore, we adopt a conservative approach using the
estimate of development year 5 (2.64) also for development year 4, the esti-
mate of development year 6 (1.37) also for development years 7 and 8, and the
estimate of development year 9 (1.1) also for development years 10, 11, and
12. These incurred values scaled by the former factors are used as an upper
bound for the censored claims. The upper bounds obtained by this approach
are higher than the ultimate values for all open claims, except three claims for
which the values are at least 96% the amount of the ultimates. Figure 10 (right)
presents the Hill estimates adapted for censoring under the second method. We
can see that in this case the EVI takes again values around 1.

Hence, taking into account the censored nature of data points indicates a
value of γ around 1 or even pointing toward an infinite mean of the underlying
marine liability risk.

3.2.3. Statistical analysis of stationarity.
So far, we assumed that the severity distribution is stationary over time.
However, as mentioned in Section 2, it is expected that marine liability claims
become more expensive over the years. Hence, we apply the tests T3 and T4
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FIGURE 11: Estimated EVI γ̂i as a function of time assuming Pareto claims (left) and Pareto QQ-plot of
(Xi/M)1/γ̂i (right).

recently derived in Einmahl et al. (2016) for the hypothesis that the EVI is con-
stant over time, in the heavy-tailed case (γ > 0). In this case, n= 85 and we take
k= 25 given that it is one of the first values after which the Hill plot stabilizes;
tests T3 (with δ = 1

4 ) and T4 (with m= 4) produce p-values equal to 0.32 and
0.55, respectively. Therefore, on the basis of these tests and the available data,
one would not reject the null hypothesis of a constant EVI over time.

Alternatively, one can try to fit a time regression for the EVI of the form

γi = exp (β0 + β1Ti), i= 1, . . . , n,

assuming that the claims follow a Pareto distribution (see e.g., Beirlant and
Goegebeur, 2003). The MLEs of the parameters equal β̂0 = −0.0139 and β̂1 =
0.00007, respectively. The positive value of the parameter β1 indicates that the
EVI of the data set, and hence the heaviness of the tail, increases over time.
Fitting the regression without the Costa Concordia loss yields β̂∗

0 = −0.0566
and β̂∗

1 = 0.00007. The value of the parameter β1 remains unchanged evi-
dencing the same trend toward heavier claims over time still remains in the
absence of the most expensive claim, so the result is not an artifact of that
one huge claim. Figure 11 (left) shows the predicted values γ̂i when using the
estimated parameters above, under the two cases with all data and also with-
out Costa Concordia. We note that the EVI rises from 0.95 at the beginning
of the observed period up to more than 1.3 at the end; evidencing a signifi-
cant increment in the value of this parameter. Figure 11 (right) presents the
Pareto QQ-plot of the amounts (Xi/M)1/γ̂i which should be Pareto with tail
index 1 if the regression model is appropriate. This graph indicates a good fit
of the regression model, improving the pattern obtained for a constant EVI is
considered (cf. Figure 5 bottom right).

To summarize, we note that the EVI for this set of marine liability claim
amounts behaves consistently when bias and interval censoring corrections of
the Hill estimator are considered. The EVI seems to be located between 0.7
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and 1.15, giving clear evidence of the heavy-tailed nature of the claims for
this line of business, suggesting that the underlying variance is infinite and
even the underlying mean could possibly be infinite. One also saw that conclu-
sions are quite sensitive to the statistical method used: while the tests according
to Einmahl et al. (2016) would not significantly reject stationarity over time,
the regression approach of Beirlant and Goegebeur (2003) does indicate the
(intuitively expected) increase in the heaviness of the tail over time in a rather
convincing manner.

It is worthwhile to mention that in addition to the heavy-tailed nature of
the claims, one should also consider the effect of the accumulation and increase
in insured values and forthcoming changes in regulation and law, to properly
model future marine liability exposures.

4. MARKET EXCESS OF LOSS PROGRAM FOR EXTREME LOSSES

Let us now consider an insurance market with an XL reinsurance program
designed to cover the most extreme claims appearing in the market. This is
indeed the case for the marine liability insurance market, where since 1951
the IGP&I manages the IG GXL Reinsurance Contract (for many years, the
world’s largest reinsurance contract), to cover the highest liability losses to
which the marine industry is exposed. The structure of this contract is com-
plex and changes every year.1 Its retention has continuously increased during
recent years, passing from US $50 million in 2010 to US $100 million in 2019,
cf. IGP&I (2017). The losses above the IG GXL retention are covered in four
layers that are reinsured in the open market by dozens of insurers and rein-
surers that take different shares in each layer (according to IGP&I, 2015, 91
reinsurers worldwide participated in the contract in 2014). Some then opt to
facultatively retrocede part of their assumed exposure in order to reduce single
event exposures. It is worth noting that this type of reinsurance program also
appears in other markets, for instance, flood insurance in the United States,
where the Federal Emergency Management Agency underwrites the National
Flood Insurance Program’s Reinsurance Program (in which 28 reinsurers par-
ticipated in 2019) to cover flood claims in excess of US $4 billion.2 According
to the design of such a reinsurance program, the expected annual number of
claims to be covered is scarce while its severity is major.

Assume that the market XL reinsurance program has H different layers, of
size Lh for h= 1, . . . ,H, in excess of a retentionM, that is,

1st layer: L1 xs M,
...

...
hth layer: Lh xs (M +L1 +L2 + · · · +Lh−1),

...
...

Hth layer: LH xs (M +L1 +L2 + · · · +LH−1).
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Generally, LH < ∞, so the part of the losses in excess ofM +∑H
h=1 Lh (usually

a very large value) is not covered by the program. If LH = ∞, the program
provides unlimited coverage for every claim. To simplify notation, we denote
by Kh :=L1 + · · · +Lh the cumulative sum of the layers for h= 1, . . . ,H and
define K0 := 0.

Let the random variable N denotes the number of losses in the insur-
ance market above the threshold M > 0 and let the random variables Xi, i=
1, . . . ,N denote the size of these losses, which for the rest of the paper we
assume to be independent and identically distributed with c.d.f. FX , and N and
Xi being independent. The aggregate value of the losses then is

S=
N∑
i=1

Xi.

Due to the large size of the reinsurance program, several insurance and rein-
surance companies take parts in its different layers. We consider a reinsurer r
that participates in the different layers of the market reinsurance program, as
well as in the XL contracts of C different cedents which also participate in the
program.

Remark 1. In order to avoid confusion, from here on, we use the term program
to refer to the market XL reinsurance program and the term contract for the XL
contracts that the reinsurer r has with the C cedents. In marine liability insurance,
the cedents regularly comprise Lloyd’s syndicates, giving the important role of
the London Market in this line of business, while reinsurer r is typically a global
reinsurer.

Let δhc denote the proportion of participation of cedent c (c= 1, . . . ,C), in
layer h of the program. Then, the gross amount of each single loss Xi in excess
ofM taken by the cedent c is given by

Xc,i =
H∑
h=1

δhc [(Xi − (M +Kh−1))+ ∧Lh]

=
H∑
h=1

δhc [(Xi ∧ (M +Kh))− (Xi ∧ (M +Kh−1))] , (4.1)

where X ∧ u :=min{X , u}, (X − u)+ :=max{X − u, 0}, and the maximum gross
amount per single loss for cedent c is equal to

∑H
h=1 δhcLh.

The cedents also underwrite XL contracts to reduce the impact of sin-
gle extreme claims. These contracts are reinsured by several companies in
the market, among them the reinsurer r, who takes a share 	c ∈ [0, 1] on the
ucM xs dcM contract of cedent c, for some uc, dc > 0. Then for each single
loss Xi covered by the program, the participation of the reinsurer r due to the
portion he has to pay for the contract with cedent c is given by
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Xr,c,i =	c

[
(Xc,i − dcM)+ ∧ ucM

]
=	c

{
[Xc,i ∧ (dc + uc)M]− [Xc,i ∧ dcM]

}
=	c

{[(
H∑
h=1

δhc [(Xi ∧ (M +Kh))− (Xi ∧ (M +Kh−1))]

)
∧ (dc + uc)M

]

−
[(

H∑
h=1

δhc [(Xi ∧ (M +Kh))− (Xi ∧ (M +Kh−1))]

)
∧ dcM

]}

=	c

H∑
h=1

δhc
[(
Xi ∧ khc,2

)− (
Xi ∧ khc,1

)]
, (4.2)

with

khc,1 =min
{
max

{
M +Kh−1 , M +Kh−1 + dcM − δ1cL1 − · · · − δh−1

c Lh−1

δhc

}
,

M +Kh

}
,

khc,2 =max
{
min

{
M +Kh , M +Kh−1 + (dc + uc)M − δ1cL1 − · · · − δh−1

c Lh−1

δhc

}
,

M +Kh−1

}
.

From the above, we must require that
∑H

h=1 δhcLh > dcM, otherwise Xr,c,i = 0
and the cedent contract does not transfer any risk. In fact, from the point of
view of cedent c, it makes sense to have the XL contract such that (dc + uc)M ≤∑H

h=1 δhcLh, that is the retention plus the limit being smaller than its maximum
gross loss.

If the reinsurer participates in the reinsurance contracts of C different
cedents and also takes direct participation δhr in the program layer h, then
for each loss Xi covered by the program the amount he has to pay equals
Xr,i +∑C

c=1 Xr,c,i. Here Xr,i is given by (4.1) with δhc replaced by δhr and Xc,i

replaced by Xr,i, and Xr,c,i is given by (4.2). The total annual loss for reinsurer r
then is

SR =
N∑
i=1

[
C∑
c=1

Xr,c,i +Xr,i

]
:=

N∑
i=1

XR,i :=
C∑
c=1

Sr,c + Sr, (4.3)

where

XR,i =
C∑
c=1

Xr,c,i +Xr,i (4.4)
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FIGURE 12: Reinsurer r participation in claim X covered under the market reinsurance program (H = 3).

denotes the total amount that the reinsurer r has to pay for a single loss Xi

(from its direct participations and the contracts with the cedents),

Sr,c =
N∑
i=1

Xr,c,i (4.5)

is the total annual loss the reinsurer has to pay from the contract with cedent c
and

Sr =
N∑
i=1

Xr,i (4.6)

is the total annual loss the reinsurer has to pay from his direct participations
in the reinsurance program.

Figure 12 illustrates the participations of reinsurer r in each single loss Xi

covered under the market XL reinsurance program.
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5. OPTIMIZATION OF THE REINSURER PARTICIPATIONS IN THE
MARKET PROGRAM

5.1. Principles of premium calculation

Classical principles of premium calculation are based on the idea that the actu-
arial premium 
[X ] for a risk X should be equal to the expected loss of the
covered risk E[X ] plus a safety loading, see for example, Kaas et al. (2008)
for an extensive review. As is quite common in the market, in the following,
we base our considerations on the expected value principle and the variance
principle:

Expected value principle: For some θ ≥ 0,


[X ]= (1+ θ)E[X ], (5.1)

or
Variance principle: For some β ≥ 0,


[X ]=E[X ]+ β Var [X ]. (5.2)

5.2. Risk tolerance limits based on exceedance probabilities

Although top-tier reinsurers have well-diversified portfolios, they are required
to control the total accumulation risk originating from extreme events in spe-
cific insurance markets. One way to do this is to define risk tolerance limits that
the extreme losses cannot surpass on specific (long) return periods. For a gen-
eral discussion on calibrating risk appetite in insurance, see for example, GIRO
(2011). Given the catastrophic nature of the extreme losses covered by the rein-
surance program described in Section 4, the risk tolerance limits can be based
on a metric widely used in catastrophe modeling, the occurrence exceedance
probability (OEP), (see e.g., Mitchell-Wallace et al., 2017). This is defined as
the probability that at least one loss exceeds t, that is,

OEPN,X (t) :=P [max {X1, . . . ,XN} > t] .

The reinsurer then typically fixes a set of J risk tolerance limits t1 < · · · < tJ for
specified probabilities p1 > · · · > pJ ; the concrete values of the risk tolerance
limits and corresponding probabilities depend on the available capital, risk
appetite, and underwriting strategy of the reinsurer. Under the i.i.d. assump-
tion on the losses Xi, we then have the constraint that the OEP of tj occurs with
a probability smaller than pj equal to

1− pj ≤ P
[
max {X1, . . . ,XN} ≤ tj

]=EN

[
N∏
i=1

FXi (tj)

]
=EN

[(
FX (tj)

)N]
,
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so that P−1
N (1− pj)≤ FX (tj), j= 1, . . . , J, where PN(z)=EN

[
zN
]

is the
probability-generating function of N.

5.3. Profit optimization under risk tolerance limits for extreme losses

We now consider the optimization problem to identify the participation levels
δhr , h= 1, . . . ,H in the layers and 	c, c= 1 . . . ,C in the XL contracts with the
cedents that maximize the expected annual profit of the reinsurer r. We con-
sider a profit given by premiums minus expected losses, subject to the set of
J risk tolerance limits OEPN,XR (tj)≤ pj, j= 1, . . . , J on the aggregate risk of
the portfolio. Upper participation limits of reinsurer r in the cedents’ contracts
and the program layers are denoted by 	UP and δh,UP, h= 1, . . . ,H. These
limits are in practice determined by various factors, for example, whether rein-
surer r is a leading or a following reinsurer, how many companies take part in
the reinsurance program and how competitive the specific insurance market is.
The constrained optimization problem is then given by

max
	c,δhr


[Sr]+
C∑
c=1


[Sr,c]−
(
E [Sr]+

C∑
c=1

E
[
Sr,c
])

, c= 1, . . .C, h= 1, . . .H,

(5.3)

subject to P−1
N (1− p1)≤ FXR(t1),

...

P−1
N (1− pJ)≤ FXR(tJ),

	c ∈ [0,	UP
]
, δhr ∈

[
0, min

{
δh,UP, 1−

C∑
c=1

δhc

})
.

Remark 2. Note that the participations in the contracts with each cedent c and in
the program are priced separately through 
[Sr,c] and 
[Sr], as defined in (4.5)
and (4.6). In practice, the marine liability portfolio of cedent c is typically com-
posed of its participation in the IGP&I reinsurance program together with another
independent and less extreme marine liability business. Such independent busi-
ness must be added inside the calculation of the premium 
[Sr,c]. However, for
simplicity, we consider here that the reinsurance contract with each cedent only
involves the cedent’s participation in the IGP&I program. The risk tolerance con-
straints are fixed on the aggregate losses of the portfolio SR as defined in (4.3)
with frequency N and severity XR given by (4.4).

Remark 3. In practice, the reinsurance program and the contracts with the
cedents are priced at different dates. In marine liability, the IG GXL reinsur-
ance program is in force every year on February 20th,3 while most contracts with
commercial (re)insurers are renewed on January 1st, April 1st, or July 1st. The
optimization problem in (5.3) can be of particular interest for the underwriting
team of reinsurer r, who can evaluate before the start of an underwriting year
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which would be the optimal participations needed in the reinsurance program and
cedent contracts, based on their structure in the previous year, the anticipated
modifications, and the risk tolerance limits on the OEP according to the strategy
of the company.

It is important to note that if LH < ∞, the random variable XR cannot
exceed

MR =
C∑
c=1

[
	c

H∑
h=1

δhc
[
khc,2 − khc,1

]]+
H∑
h=1

δhr Lh,

with P[XR =MR]= 1− FX (M +KH). We then have for the constraint with the
smallest probability pJ that

FX (M +KH) ≤P−1
N (1− pJ), (5.4)

and additional constraints with smaller probabilities pj would be irrelevant.
The constraints in the optimization problem can be expressed as linear inequal-
ities of 	c and δhr , such that for τj := F−1

X

(
P−1
N (1− pj)

)
P−1
N (1− pj)≤ FXR(tj),

P−1
N (1− pj)≤ P

[ H∑
h=1

{ C∑
c=1

	cδ
h
c

[(
X ∧ khc,2

)− (
X ∧ khc,1

)]+ δhr [(X ∧ (M +Kh))

−(X ∧ (M +Kh−1))]
}

≤ tj

]
,

H∑
h=1

{ C∑
c=1

	cδ
h
c

[(
τj ∧ khc,2

)− (
τj ∧ khc,1

)]+ δhr
[(

τj ∧ (M +Kh)
)

− (
τj ∧ (M +Kh−1)

)] }≤ tj.

5.4. Profit optimization using the expected value principle

If the reinsurer uses the expected value principle (5.1) to price the contracts
he has with the cedents and its participation in the reinsurance program, the
objective function of the optimization problem (5.3) becomes


[Sr]+
C∑
c=1


[Sr,c]−
(
E [Sr]+

C∑
c=1

E
[
Sr,c
])

= (1+ θr)E[Sr]+
C∑
c=1

(1+ θc)E[Sr,c]−
(
E [Sr]+

C∑
c=1

E
[
Sr,c
])

= θrE[Sr]+
C∑
c=1

θcE[Sr,c], c= 1, . . .C, h= 1, . . .H.
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That is, the optimization problem in (5.3) is then a linear program on the vari-
ables 	c and δhr for c= 1, . . . ,C, h= 1, . . . ,H. For the general theory on linear
programming, we refer to Vanderbei (2014) and Luenberger and Ye (2008).
The optimization problem in standard form has C +H decision variables and
J +C +H constraints of the generic form

max
δ

cδT

subject to AδT ≤ bT ,
δ ≥ 0,

where
δ = (

δ1r , . . . , δ
H
r ,	1, . . . ,	C

)
, (5.5)

c= (c1, . . . , cH , cH+1, . . . , cH+C) , (5.6)

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,1 · · · · · · a1,H+C
...

. . .
...

aJ,1 · · · · · · aJ,H+C
1 0 · · · 0

0
. . .

...
... 1 0
0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5.7)

b=
(
t1, . . . , tJ , δ1,UP ∧

(
1−

C∑
c=1

δ1c

)
, . . . , δH,UP ∧

(
1−

C∑
c=1

δHc

)
,	UP

1 , . . . ,	UP
C

)
,

(5.8)

with
ci = θrE[N] [E[X ∧ (M +Ki)]−E[X ∧ (M +Ki−1)]] , i= 1, . . . ,H,

cH+i = θiE[N]

(
H∑
h=1

δhi
[
E
[
X ∧ khi,2

]−E
[
X ∧ khi,1

]])
, i= 1, . . . ,C,

aj,i =
[(

τj ∧ (M +Ki)
)− (

τj ∧ (M +Ki−1)
)]
, j= 1, . . . , J, i= 1, . . . ,H

aj,H+i =
H∑
h=1

δhi
[(

τj ∧ khi,2
)− (

τj ∧ khi,1
)]
, j= 1, . . . , J, i= 1, . . . ,C

Note that δ = 0 is always a feasible solution (no participation and no profit).
Hence, a solution to this optimization problem always exists. The dual of this
program has J +C +H decision variables and C +H constraints and can be
formulated as follows:

min
y

byT

subject to yA≥ c,
y≥ 0,
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where y= (y1, . . . , yJ+H+C). The dual optimization problem minimizes factors
on the risk tolerance constraints, maximum participations on the layers and
cedents’ reinsurance contracts, subject to the condition that the factors applied
to the maximum losses are bigger than the total profit per layer and cedent con-
tract. Depending on the number of factors on each side, the dual formulation
of the problem can be simpler than the primal formulation.

5.5. Profit optimization using the variance principle

If the reinsurer uses the variance principle (5.2) to price the contracts with
cedents and for the participation in the reinsurance program, the objective
function of the optimization problem in (5.3) becomes


[Sr]+
C∑
c=1


[Sr,c]−
(
E [Sr]+

C∑
c=1

E
[
Sr,c
])

=E[Sr]+ βr Var [Sr]+
C∑
c=1

(
E[Sr,c]+ βc Var [Sr,c]

)

−
(
E [Sr]+

C∑
c=1

E
[
Sr,c
])

= βr Var [Sr]+
C∑
c=1

βc Var [Sr,c], c= 1, . . . ,C, h= 1, . . . ,H.

In this case, the optimization problem (5.3) is a standard quadratic program on
the variables 	c and δhr for c= 1, . . . ,C and h= 1, . . . ,H. It can be expressed
with C +H decision variables and J +C +H constraints as follows:

max
δ

δDδT

subject to AδT ≤ bT ,
δ ≥ 0,

with

D=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1,1 · · · d1,H 0 · · · · · · 0
...

. . .
...

...
. . .

...
dH,1 · · · dH,H 0 · · · 0
0 · · · 0 dH+1,H+1 0 · · · 0
...

. . .
... 0 dH+2,H+2

...
...

...
. . .

...
0 · · · 0 0 · · · · · · dH+C,H+C

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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and

dj,i = βr{E[N][ Cov [X ∧ (M +Ki),X ∧ (M +Kj)]
−Cov [X ∧ (M +Ki),X ∧ (M +Kj−1)]
−Cov [X ∧ (M +Ki−1),X ∧ (M +Kj)]
+Cov [X ∧ (M +Ki−1),X ∧ (M +Kj−1)]]
+Var [N][E[X ∧ (M +Ki)] E[X ∧ (M +Kj)]
−E[X ∧ (M +Ki)] E[X ∧ (M +Kj−1)]
−E[X ∧ (M +Ki−1)] E[X ∧ (M +Kj)]
+E[X ∧ (M +Ki−1)] E[X ∧ (M +Kj−1)]]}
j, i= 1, . . . ,H

dH+i,H+i = βi

{
E[N]

[
H∑
h=1

H∑
h′=1

δhi δ
h′
i

[
Cov [X ∧ khi,2,X∧ kh

′
i,2]−Cov [X∧ khi,2,X∧ kh

′
i,1]

−Cov [X ∧ khi,1,X ∧ kh
′
i,2]+Cov [X ∧ khi,1,X∧kh′

i,1]
] ]

+Var [N]

[
H∑
h=1

H∑
h′=1

δhi δ
h′
i

[
E[X∧ khi,2] E[X∧ kh

′
i,2]−E[X∧ khi,2] E[X∧ kh

′
i,1]

−E[X ∧ khi,1] E[X ∧ kh
′
i,2]+E[X ∧ khi,1] E[X∧kh′

i,1]
] ]}

,

i= 1, . . . ,C,

and δ, A, and b defined as in (5.5), (5.7), and (5.8), respectively. As in Section
5.4, the trivial solution δ = 0 is feasible, so that a solution to this optimization
problem always exists.

6. ILLUSTRATION OF THE OPTIMIZATION FOR THE REINSURER
PARTICIPATIONS

Let us assume that the frequency and severity distributions above the retention
M = 100 are given by N ∼ Poisson(λ = 1.5) and Xi ∼ Pareto(α = 1.2, t= 100)
in (3.3). Additionally, let the reinsurance program have three layersH = 3 with
M = 100, L1 = 500, L2 = 500, and L3 = 1000, which corresponds to the struc-
ture of the IGP&I reinsurance program in 2017 without the collective overspill
layer. We consider four cedentsC = 4 with participations in the layers and rein-
surance contracts as given in Table 1, which implies the limits on the layers of
the reinsurance program as given in Table 2.
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TABLE 1

CEDENTS PARTICIPATIONS AND XL CONTRACT LIMITS.

Cedent (c) δ1c δ2c δ3c δ1cL1 + δ2cL2 + δ3cL3 dcM ucM

1 0.05 0.04 0.03 75 10 60
2 0.01 0.04 0.09 115 20 50
3 0.05 0.00 0.04 65 20 20
4 0.00 0.06 0.00 30 15 15

TABLE 2

CEDENTS LIMITS IN LAYERS.

Cedent (c) k1c,1 k1c,2 k2c,1 k2c,2 k3c,1 k3c,2
∑H

h=1 δhc
(
khc,2 − khc,1

)
1 300 600 600 1100 1100 1933 60
2 600 600 975 1100 1100 1600 50
3 500 600 600 1100 1100 1475 20
4 600 600 850 1100 1100 2100 15

Additionally, consider that the reinsurer fixes OEP constraints determined
by t1 = 50, t2 = 75, t3 = 250, p1 = 0.1, p2 = 0.04, and p3 = 0.01 and the maxi-
mum participations in the layers are δ1,UP = 0.055, δ2,UP = 0.085, and δ3,UP = 0.1
and for the cedents 	UP = 0.5. These values of δh,UP correspond to 10% of the
available market share for commercial insurers on the corresponding layers of
the IGP&I program in 2017. The results of the respective optimization problem
under the expected value principle are given below.

Assume initially the same safety loading for the layers of the reinsurance
program and the cedents θr = θ1 = θ2 = θ3 = θ4 = 0.2. Then, we have

c= (45.18, 11.97, 11.26, 1.56, 0.69, 0.41, 0.29) ,

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

500 314.49 0 27.58 0 5 3.87
500 500 915.26 60 50 20 15
500 500 1000 60 50 20 15
1 0 · · · · · · 0

0
. . .

...
... 0
0 · · · · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

b= (50, 75, 250, 0.055, 0.085, 0.1, 0.5, 0.5, 0.5, 0.5) .

The linear program can, for example, be solved with the classical simplex
method developed by Dantzig (1951). In this case, the optimal solution is a
profit of 3.659 with the following parameters:

(δ1∗r , δ2∗r , δ3∗r ,	∗
1,	

∗
2,	

∗
3,	

∗
4)= (0.055, 0.023, 0, 0.5, 0, 0.303, 0).
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FIGURE 13: Optimal profit as function of θ for θr = 0.2.

From the formulation of vector c in (5.6), it is clear that the optimal solu-
tion does not change for different safety loadings as long as they remain the
same for all cedents and the constraints are equal, only the optimal profit will
change proportionally to the change in the safety loading. However, we can
study the change of the solution if the same safety loading is kept for the direct
participation θr = 0.2, but a different safety loading is used for the contracts
with the cedents with θ1 = θ2 = θ3 = θ4 = θ . Figure 13 shows the variation of the
optimal profit and Figure 14 gives the resulting δh∗r and 	∗

c for h= 1, 2, 3 and
c= 1, 2, 3, 4 as a function of the safety loading θ ∈ [0, 0.4].We can see that when
increasing the safety loading for the contracts with the cedents from 0 to 0.4,
the direct participations of the reinsurer in the second and third layer decrease
from δ2 ∗

r = 0.072 and δ3 ∗
r = 0.013 to 0 and they get substituted by the participa-

tion on the cedents’ contracts. It is worth noting that it is never optimal to have
a participation in the contract with Cedent 2 for the entire range of the safety
loading, even if this is the cedent with the second highest profit for the reinsurer,
as the constraints also play a role in the substitution effect in this case.

We also explore the sensitivity of the solution with respect to the values
used in the risk tolerance limits tj. In this case, we define the risk tolerance lim-
its for the same value of pj as before but with t1 = 50b, t2 = 75b, and t3 = 250b.
Figure 15 shows the variation of the optimal profit and Figure 16 presents δh∗r
and 	∗

c for h= 1, 2, 3 and c= 1, 2, 3, 4 as a function of b ∈ [0.1, 2.5]. Clearly, the
profit is an increasing function of b, given that the higher the tolerance limits
are, the participations on the layers and the contracts can increase and lead to
more profits. We also observe an increasing behavior on δh∗r with respect to b,
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FIGURE 15: Optimal profit as function of b.

so that for a sufficiently high value of the tolerance limits it is optimal to par-
ticipate up to the maximum possible value in all layers. In contrast, for 	c the
maximum value 	UP is reached for all cedents for b≥ 1.9, but the relationship
among 	∗

c and b is not necessarily monotonic, as observed for Cedents 2 and 3.
Finally, we want to evaluate the sensitivity of the parameters λ and α

from the frequency and severity distributions. Figure 17 shows the variation
of the optimal profit and Figures 18 and 19 give δh∗r and 	∗

c for h= 1, 2, 3 and
c= 1, 2, 3, 4 as a function of α ∈ [0.7, 2.5] and λ ∈ [0.5, 5]. We can observe that
the profit increases for small values of α and big values of λ. In this region,
the number of effective constraints reduces to one given that FX is a decreasing
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FIGURE 16: δh∗r (left) and 	∗
c (right) as function of b.
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FIGURE 17: Expected profit for different values of the parameters α ∈ [0.7, 2.5] and λ ∈ [0.5, 5].

function of α and P−1
N increases with λ, so that equation (5.4) is only fulfilled

by p1. The direct participation of the reinsurer in the first layer is always the
maximum possible δ1,UP = 0.055, while for the other two layers it decreases to
zero in the region with fewer constraints. Nevertheless, the relationship is not
monotone, and it is influenced by the constraints and the interactions with the
cedents’ contracts. The values 	c exhibit a similar behavior without a mono-
tone pattern, for instance for 	∗

3 we can see that the maximum is attained in
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FIGURE 18: Optimal participations δh∗r for different values of the parameters α ∈ [0.7, 2.5] and λ ∈ [0.5, 5].

the region with the three constraints, it decreases and is reached again before
falling down to zero.

7. CONCLUSION

In this paper, we analyzed data from the marine liability insurance market.
For the frequency modeling, we studied both homogeneous and inhomoge-
neous Poisson processes, indicating a decreasing intensity over time as expected
from the general trend on the marine liability market. The analysis of the claim
severity clearly supports the heavy-tailedness of the marine liability line of busi-
ness. We considered various approaches for the estimation of the extreme value
index, including bias corrections and censoring techniques due to many open
claims, and the resulting estimate is typically around 1, implying a severity
distribution with infinite variance and possibly even infinite mean.

We then introduced a profit optimization problem that large reinsur-
ance companies in markets like marine liability or US flood insurance face.
The profit optimization problem becomes a linear and a quadratic program
when the reinsurer uses the expected value and the variance premium princi-
ple, respectively. We illustrated solutions for certain choices of the involved
parameters and studied the sensitivity of the optimal solution with respect to
the model parameters.
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FIGURE 19: Optimal participations 	∗
c for different values of the parameters α ∈ [0.7, 2.5] and λ ∈ [0.5, 5].

In future research, one may consider other premium principles, although
the form of the optimization problem will then typically be considerably more
complicated. Risk tolerance limits based on aggregate exceedance probabili-
ties (AEPs) instead of OEPs could also be considered, but such AEPs will lead
to nonlinearities in the constraints as well. Nevertheless, if the probability of
having two or more claims is very small, OEP and AEP values are often very
similar in any case, see for example, Homer and Li (2017). In the present paper,
the optimization problem was formulated in terms of maximizing expected
profit given OEP risk constraints. It will be interesting in future research to also
consider other tail risk measures, such as Value-at-Risk and Expected Shortfall
and investigate the effects on the optimal solutions.
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NOTES

1. The current structure of the IG GXL program can be looked up on http://www.igpandi.
org/reinsurance.

2. See http://www.fema.gov/nfip-reinsurance-program.
3. Historically, this unusual renewal date was set because it was the date when the Baltic

Sea was expected to be ice-free, an important event at the time when P&I clubs were largely
concentrated in Northern Europe.
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