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We study inversion of the spherical Radon transform with centres on a sphere (the data

acquisition set). Such inversions are essential in various image reconstruction problems arising

in medical, radar and sonar imaging. In the case of radially incomplete data, we show that

the spherical Radon transform can be uniquely inverted recovering the image function in

spherical shells. Our result is valid when the support of the image function is inside the data

acquisition sphere, outside that sphere, as well as on both sides of the sphere. Furthermore, in

addition to the uniqueness result, our method of proof provides reconstruction formulas for

all those cases. We present a robust computational algorithm and demonstrate its accuracy

and efficiency on several numerical examples.

Key words: spherical Radon transform, medical imaging, spherical harmonics, Volterra integ-

ral equations, truncated singular value decomposition

1 Introduction

The spherical Radon transform (SRT) maps a function of n variables to its integrals

over a family of spheres in �n. Such transforms naturally appear in mathematical

models of various imaging modalities in medicine [10, 24, 27, 33, 35, 36, 40, 43, 44, 48],

geophysical applications [16, 32], radar [15], as well as in some purely mathematical

problems of approximation theory [1, 3, 30], PDEs [1, 2, 17–19, 25, 28, 29] and integral

geometry [5–8, 11, 12, 20, 22, 34, 41, 42].
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One of the most important questions related to SRT is the possibility of its stable

inversion. Since the family of all spheres in �n has n + 1 dimensions, the problem

of inversion from the set of integrals along all spheres is overdetermined. Hence, it is

customary to consider the problem of inverting the SRT from the restriction of the full

set of integrals to an n-dimensional subset. While one can come up with several different

choices of such subsets, a common approach (especially in imaging applications) is to

restrict the centres of integration spheres to a hypersurface in �n.

For example, a simple model of thermoacoustic tomography can be described as follows.

A biological object under investigation is irradiated with a short pulse of electromagnetic

waves. Certain part of that radiation gets absorbed in the body heating up the tissue

leading to its thermoelastic expansion. The latter generates ultrasound waves, which

propagate through the body and are registered by transducers placed on its surface.

Under a simplifying assumption of constant speed c of ultrasound waves in the tissue, at

any moment of time t, a single transducer records a superposition of signals generated

at locations that are at the fixed distance ct from the transducer. In other words,

the transducer measurements can be modelled as integrals of a function along spheres

centred at the transducer location and of different radii (depending on time). By moving

the transducer around the surface of the object (or equivalently using an array of such

transducers), one can essentially measure a three-dimensional family of spherical integrals

of the unknown image function. Hence, to recover the image in this simple thermoacoustic

tomography model, one would need to invert the SRT in the setup described above. Similar

mathematical problems arise also in various models of ultrasound reflection tomography,

as well as in sonar and radar imaging.

While our work is motivated by its potential applications in imaging problems, we

study the SRT in �n for any n � 3. We discuss the inversion of SRT from integrals of

a function f along spheres whose centres lie on the surface of the unit (data acquisition)

sphere1. With the additional restriction on the set of radii of integration spheres, we prove

the uniqueness as well as derive reconstruction formulas for f from such data. We provide

several results that hold for the cases when the support of f is inside, outside or on both

sides of the unit sphere. More precisely, for the case when the support of a function f

is inside the unit sphere, our result shows that in order to reconstruct f in the spherical

shell {r < |x| < 1} for any r < 1, we only need SRT data with centres on the unit sphere

and for all radii ρ such that 0 < ρ < 1 − r. Analogous statements can be made for the

case when the support of f is outside or on both sides of the unit sphere. In connection

with this, we mention the result [18, Theorem 5], where it was shown that for a bounded

open connected set D in �n for n odd, a function f supported in D can be reconstructed

from SRT data with centres on ∂D and all radii ρ such that ρ ∈ [0, diam(D)/2]. One

of the consequences of our work is a generalization of this result for the case of even

dimensions, as well as when the support of the function lies inside, outside or on both

sides for the case when D is a sphere. We emphasize here that the uniqueness result

[17, Theorem 5] was already generalized for variable sound speeds in [43] in all space

dimensions; see Proposition 2 in that paper. If one is interested in uniqueness results

1 Our results carry over with little difficulty when the centres of the SRT data lie on a sphere of

radius R.
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alone, unique continuation arguments as in [43] or analytic micro-local analysis methods

as in [4, 39] could be used2, although to the best of our knowledge, even for the case of

spherical acquisition surface and for functions supported outside or on both sides of the

sphere, such results have not been published. The advantage of our work, in the specific

setting where the acquisition geometry is the unit sphere, is that it provides in addition to

uniqueness results, inversion formulas using radially partial data.

The paper is organized as follows. The main results are stated in Section 2 and the

proofs are presented in Section 3. In Section 4, we write down the inversion formulas for

the special case of n = 3. In Section 5, we discuss the numerical algorithm based on the

product integration method. In Section 6, we provide numerical examples illustrating the

accuracy and efficiency of the proposed inversion algorithms.

2 Main results

We consider the usual spherical coordinate system:

x1 = r cosϕ1,

x2 = r sinϕ1 cosϕ2,

x3 = r sinϕ1 sinϕ2 cosϕ3,

...

xn−1 = r sinϕ1 sinϕ2 · · · sinϕn−2 cosϕn−1,

xn = r sinϕ1 sinϕ2 · · · sinϕn−2 sinϕn−1,

where 0 � ϕi � π for 1 � i � n − 2 and 0 � ϕn−1 � 2π. For simplicity, from now on,

we will denote ϕ = (ϕ1, . . . , ϕn−1). Let us consider the unit sphere centred at the origin in

�n and fix an arbitrary point C on this sphere. We will denote C in the above spherical

coordinates by α, where α = (α1, . . . , αn−1). The Cartesian coordinates of the point C will

then be

(cos α1, sin α1 cos α2, . . . , sin α1 sin α2 · · · sin αn−2 cos αn−1, sin α1 sin α2 · · · sin αn−2 cos αn−1).

Let f : �n → � be a continuous function of compact support. Consider a sphere

S(ρ, α) of radius ρ centred at C . The SRT of f along the sphere S(ρ, α) for ρ > 0 and

α = (α1, . . . , αn−2, αn−1) ∈ [0, π] × · · · × [0, π] × [0, 2π] is defined as

Rf(ρ, α) = g(ρ, α) =

∫
S (ρ,α)

f dΩ, (2.1)

where dΩ is the usual surface measure on the sphere S(ρ, α).

Finally, let us denote by A(R1, R2) the spherical shell lying between the spheres of radii

R1 and R2 centred at the origin. Expressing in Cartesian coordinates:

A(R1, R2) = {x ∈ �n : R1 < |x| < R2}.
2 We thank Plamen Stefanov for bringing this as well as the result stated in the previous sentence

to our attention.

https://doi.org/10.1017/S0956792517000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792517000250


Image reconstruction from radially incomplete spherical Radon data 473

 

 
 
 

(a)

 

 

  

(b)

 

 

    

(c)

Figure 1. Sketches illustrating the setups of Theorems 2.1 in (A), 2.2 in (B), 2.3 in (C). The shaded

area contains the support of f(r, ϕ) and the smaller dashed circle represents the data acquisition

surface.

Note that this spherical shell can also be expressed in spherical coordinates by

A(R1, R2) = {(r, ϕ) : R1 < r < R2, 0 � ϕi � π for 1 � i � n− 2 and 0 � ϕn−1 � 2π}.

We now state the main results.

Theorem 2.1 (Exterior support) Let f(r, ϕ) be a C∞ function supported inside A(1, 3) (see

Figure 1 (A)). If Rf(ρ, α) is known for all (ρ, α) with 0 < ρ < R1 where 0 < R1 < 2 and

α ∈ [0, π]× · · · × [0, π]× [0, 2π], then f(r, ϕ) can be uniquely recovered in the spherical shell

A(1, 1 + R1) with an iterative reconstruction procedure.

Theorem 2.2 (Interior support) Let f(r, ϕ) be a C∞ function supported inside A(ε, 1) (see

Figure 1 (B)). If Rf(ρ, α) is known for all (ρ, α) with 0 < ρ < 1 − ε, where 0 < ε < 1 and

α ∈ [0, π]× · · · × [0, π]× [0, 2π], then f(r, ϕ) can be uniquely recovered in the spherical shell

A(ε, 1) with an iterative reconstruction procedure.

Theorem 2.3 (Interior and exterior support) Let f(r, ϕ) be a C∞ function supported inside

the ball B(0, R2) centred at the origin and of radius R2 > 2 (see Figure 1 (C)). Define

R1 = R2 − 2. If Rf(ρ, α) is known for all ρ with R2 − 1 < ρ < R2 + 1 and α ∈ [0, π]× · · · ×
[0, π] × [0, 2π], then f(r, ϕ) can be uniquely recovered in the spherical shell A(R1, R2) with

an iterative reconstruction procedure.

3 Proofs

Let {Yl} be the full set of spherical harmonics forming an orthonormal basis for L2

functions on �n−1. We expand f and g into a series involving {Yl}. We have

f(r, ϕ) =

∞∑
l=0

fl(r)Yl(ϕ), (3.1)

g(ρ, α) =

∞∑
l=0

gl(ρ)Yl(α). (3.2)
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Due to rotational invariance of the SRT, the spherical harmonics expansion of f and

g leads to diagonalization of the transform, that is, for each fixed l � 0, the coefficient

gl(ρ) depends only on fl(r). Our main goal in the following calculations is to find that

relationship, and express fl(r) through gl(ρ).

Using (3.1) in (2.1), the SRT is expressed as

g(ρ, α) =

∫
S (ρ,α)

f dΩ =

∫
S (ρ,α)

∞∑
l=0

fl(r)Yl(ϕ) dΩ.

Since f is a C∞ function of compact support, by straightforward modifications of the

arguments in [26]3, we have that the spherical harmonics series of f converges uniformly

to f. Hence, we can interchange the sum and the integral, and we have

g(ρ, α) =

∞∑
l=0

∫
S (ρ,α)

fl(r)Yl(ϕ) dΩ. (3.3)

We denote by �C1 the vector pointing from the origin to the fixed point C on the

unit sphere in �n. Let us fix an orthonormal coordinate system for the plane �C⊥
1 ,

which we denote by �C2, . . . , �Cn. Reordering the vectors if necessary, we assume that

(�C1, . . . , �Cn−1, �Cn) is an oriented orthonormal coordinate system for �n. We can consider

spherical coordinates with respect to this coordinate system, and denote them by (̃r, ϕ̃)

where ϕ̃ = (ϕ̃1, . . . , ϕ̃n−1).

The surface measure dΩ on the sphere S(ρ, α) in this coordinate system is

dΩ = ρn−1 sinn−2 ϕ̃1 sinn−3 ϕ̃2 · · · sin2 ϕ̃n−3 sin ϕ̃n−2dϕ̃1 · · · dϕ̃n−1. (3.4)

Our next goal, which we state as Proposition 3.3 below, is to find the above surface

measure dΩ in the spherical coordinate system (r, ϕ). To this end, we first prove a lemma.

Let us consider an arbitrary point P in the coordinate system (r, ϕ) and denote it as

r�P with �P ∈ �n−1. We recall the orthonormal coordinate system (�C1, . . . , �Cn−1, �Cn) with

respect to the arbitrary fixed point C ∈ �n−1 introduced above and define

Ai = �P · �Ci for 1 � i � n. (3.5)

Lemma 3.1 We have the following formula:

det

⎛⎜⎝ ∇ϕA1

...

∇ϕAn−1

⎞⎟⎠ =
(
�P · �Cn

)
sinn−2 ϕ1 sinn−3 ϕ2 · · · sin2 ϕn−3 sinϕn−2dϕ1 · · · dϕn−1. (3.6)

3 The result in [26] shows that the spherical harmonics series of a sufficiently smooth function h

on the unit sphere converges uniformly to h. One can adapt the same arguments to show that the

spherical harmonics series of a compactly supported smooth function f on (0,∞)×�n−1 converges

uniformly to f in the radial and angular variables.
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The proof of the above lemma relies on the following result due to Cauchy and

Binet.

Theorem 3.2 (Cauchy–Binet) Let A be an m× n and B be an n× m matrix. Then,

det(AB) =
∑
J

det(A(J)) det(B(J))

with

J = j1, j2, . . . , jm, 1 � j1 < j2 · · · < jk � m

and A(J) denotes the matrix formed from A with the columns J with the order preserved
and B(J) denotes the matrix formed from B with the rows J with the order preserved.

Proof of Lemma 3.1 Since Ai = �P · �Ci, we have that⎛⎜⎝ ∇ϕA1

...

∇ϕAn−1

⎞⎟⎠ =

⎛⎜⎝
�C1

...
�Cn−1

⎞⎟⎠ (
∂�P t

∂ϕ1
· · · ∂�P t

∂ϕn−1

)
.

We are interested in calculating the determinant of (n− 1)× (n− 1) matrix that is written

as a product of (n− 1) × n matrix with an n× (n− 1) matrix (the first matrix comprising

of �Ci and the second one involving the derivatives with respect to ϕ of �P ).

We have (
∂�P t

∂ϕ1
· · · ∂�P t

∂ϕn−1

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

− sinϕ1 0 · · · · · · 0

cosϕ1 cosϕ2 − sinϕ1 sinϕ2 · · · · · · 0

cosϕ1 sinϕ2 cosϕ3 sinϕ1 cosϕ2 cosϕ3 − sinϕ1 sinϕ2 sinϕ3 · · · 0

.

.

.
.
.
.

.

.

.
. . . 0

cosϕ1 sinϕ2 · · · sinϕn−2 cosϕn−1 · · · · · · · · · − sinϕ1 · · · sinϕn−1

cosϕ1 sinϕ2 · · · sinϕn−1 · · · · · · · · · sinϕ1 · · · sinϕn−2 cosϕn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The determinant of this matrix is

= sinn−2 ϕ1 sinn−3 ϕ2 · · · sinϕn−2 det
(
v1 v2 · · · vn−1

)
with the vectors vi for 1 � i � n − 1 being an orthonormal collection of n − 1 vectors

perpendicular to the vector �P . Note that each of these vectors is perpendicular to �P

because each vi is obtained by differentiating �P with respect to ϕi.

Now, we have

det
(
v1 · · · vn−1

�P
)

= ±1,

since the matrix belongs to O(n). We can write the above determinant as

n∑
i=1

(−1)n+i�Pi ·Min = ±1,

where �Pi denotes the ith component of i and Min denotes the corresponding minor.
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Since
(
v1 · · · vn−1

�P
)
∈ O(n), this implies that

(
(−1)1+nM1n, . . . , (−1)2nMnn

)
= ±�P .

Since �Ci for 1 � i � n− 1 are orthonormal and oriented, we have that

det

⎛⎜⎜⎜⎜⎝
�C1

...
�Cn−1

�Cn

⎞⎟⎟⎟⎟⎠ = 1.

The same argument as above shows that the vector with the minors M̃ni coming from this

matrix satisfies (
(−1)1+nM̃n1, . . . , (−1)2nM̃nn

)
= ±�Cn.

Now using Cauchy–Binet theorem, (3.6) is proved. �

Now, we find the surface measure (3.4) with respect to the coordinate system (r, ϕ).

Proposition 3.3 The surface measure dΩ on the sphere S(ρ, α) with respect to the spherical

coordinate system (r, ϕ) is given by

dΩ =
ρn−2r2

|r − A1|
sinn−2 ϕ1 · · · sinϕn−2dϕ1 · · · dϕn−1,

where A1 is defined in (3.5).

Proof We have

dΩ = ρn−1 sinn−2 ϕ̃1 sinn−3 ϕ̃2 · · · sin2 ϕ̃n−3 sin ϕ̃n−2dϕ̃1 · · · dϕ̃n−1.

We express cos ϕ̃i for 1 � i � n− 1 in terms of the coordinates (ϕ1, . . . , ϕn−1).

We have

cos ϕ̃1 =

(
r�P1 − �C1

)
· �C1

|r�P − �C1|
=

r�P1 · �C1 − 1

ρ
=

rA1 − 1

ρ
.

Furthermore, it is easy to see that

⎛⎜⎝ cos ϕ̃1

...

cos ϕ̃n−1

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
rA1−1

ρ
A2√
1−A2

1

...
An−1√

1−(A2
1+···+A2

n−2)

⎞⎟⎟⎟⎟⎟⎠ .

Let us compute the determinant of the Jacobian of the transformation

(ϕ1, . . . , ϕn−1) → (cos ϕ̃1, . . . , cos ϕ̃n−1). (3.7)
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Since

ρ2 = r2 + 1 − 2rA1, (3.8)

differentiating this equation, we get

∂r

∂ϕi

=
r

r − A1

∂A1

∂ϕi

.

The Jacobian matrix of (3.7) is

⎛⎜⎜⎜⎜⎜⎝
r2

ρ(r−A1)
∇ϕA1

1√
1−A2

1

∇ϕA2 + A1A2

(1−A2
1)

3/2 ∇ϕA1

...
1√

1−(A2
1+···+A2

n−2)
∇ϕAn−1 +

A1An−1∇ϕA1+···+An−2An−1∇ϕAn−1

(1−(A2
1+···+A2

n−2)
3/2

⎞⎟⎟⎟⎟⎟⎠
Here, ∇ϕ denotes the (n− 1)-vector ( ∂

∂ϕ1
, . . . , ∂

∂ϕn−1
).

The determinant of the matrix above is the same as the determinant of the matrix

r2

ρ(r − A1)

1√
1 − A2

1

· · · 1√
1 − (A2

1 + · · · + A2
n−2

⎛⎜⎝ ∇ϕA1

...

∇ϕAn−1

⎞⎟⎠ .

Recall that we are interested in expressing

sinn−2 ϕ̃1 · · · sin ϕ̃n−2dϕ̃1 · · · dϕ̃n−1

in terms of dϕ1 · · · dϕn−1. Using Lemma 3.1, we have

(sin ϕ̃1 · · · sin ϕ̃n−1) dϕ̃1 · · · dϕ̃n−1 =
r2

ρ(r − A1)

1√
1 − A2

1

· · · 1√
1 − (A2

1 + · · · + A2
n−2)

×
(
�P · �Cn

)
sinn−2 ϕ1 · · · sinϕn−2dϕ1 · · · dϕn−1. (3.9)

Note that

sin ϕ̃n−1 =
�P · �Cn√

1 − (A2
1 + · · · + A2

n−2)
.

Therefore, we have

(sin ϕ̃1 · · · sin ϕ̃n−2) dϕ̃1 · · · dϕ̃n−1 =
r2

ρ(r − A1)

1√
1 − A2

1

· · · 1√
1 − (A2

1 + · · · + A2
n−3)

× sinn−2 ϕ1 · · · sinϕn−2dϕ1 · · · dϕn−1.
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Hence, √
1 − A2

1 · · ·
√

1 − (A2
1 + · · · + A2

n−3) (sin ϕ̃1 · · · sin ϕ̃n−2) dϕ̃1 · · · ϕ̃n−1

=
r2

ρ(r − A1)
sinn−2 ϕ1 · · · sinϕn−2dϕ1 · · · dϕn−1. (3.10)

Now, we have ∣∣∣∣∣∣
√

1 − (A2
1 + · · · + A2

n−3)√
1 − (A2

1 + · · · + A2
n−4)

∣∣∣∣∣∣ = |sin ϕ̃n−3| .

Multiplying and dividing the left-hand side of (3.10), by
√

1 − (A2
1 + · · · + A2

n−4) and then

by (1 − (A2
1 + · · · + A2

n−5)) and continuing this way, we get

sinn−2 ϕ̃1 sinn−3 ϕ̃2 · · · sin ϕ̃n−2dϕ̃1 · · · dϕ̃n−1

=
r2

ρ(r − A1)
sinn−2 ϕ1 · · · sinϕn−2dϕ1 · · · dϕn−1. (3.11)

Since we are interested in the absolute value of the determinant of the Jacobian of the

transformation in (3.7), we finally have

ρn−1 sinn−2 ϕ̃1 sinn−3 ϕ̃2 · · · sin ϕ̃n−2dϕ̃1 · · · dϕ̃n−1

=
ρn−2r2

|r − A1|
sinn−2 ϕ1 · · · sinϕn−2dϕ1 · · · dϕn−1.

This completes the proof. �

3.1 Exterior problem

In this section, we prove Theorem 2.2.

We have

g(ρ, α) =

∞∑
l=0

gl(ρ)Yl(α)

and

g(ρ, α) =

∞∑
l=0

∫
S (ρ,α)

fl(r)Yl(ϕ) dΩ.

Using Proposition 3.3, we can write the above surface measure dΩ = ρn−2r2

|r−A1| dΩ(ϕ), where

dΩ(ϕ) = sinn−2 ϕ1 · · · sinϕn−2dϕ1 · · · dϕn−1. Then,

g(ρ, α) =

∞∑
l=0

∫
�n−1

fl(r)Yl(ϕ)
ρn−2r2

r − A1
dΩ(ϕ).
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The integrand in (3.12) is to be interpreted as 0 outside a suitable range of ϕ. Now

since r = A1 +
√
A2

1 + ρ2 − 1, we have

g(ρ, α) =

∞∑
l=0

∫
�n−1

fl(A +
√

A2 + ρ2 − 1)
ρn−2

(
A +

√
A2 + ρ2 − 1

)2

√
A2 + ρ2 − 1

× Yl(ϕ)dΩ(ϕ).

Now we apply Funk–Hecke theorem.

Theorem 3.4 (Funk–Hecke) If

1∫
−1

|F(t)|(1 − t2)
n−3

2 dt < ∞,

then ∫
�n−1

F
(
〈σ, η〉

)
Yl(σ)dσ =

∣∣�n−2
∣∣

C
n
2−1

l (1)

⎛⎝ 1∫
−1

F(t)C
n
2−1

l (t)(1 − t2)
n−3

2 dt

⎞⎠Yl(η),

where |�n−2| denotes the surface measure of the unit sphere in �n−1 and C
n
2−1

l are the

Gegenbauer polynomials.

Using this theorem, we have

gl(ρ) =

∣∣�n−2
∣∣

C
n
2−1

l (1)

1∫
1− ρ2

2

fl(x+
√

x2 + ρ2 − 1)
ρn−2

(
x +

√
x2 + ρ2 − 1

)2

√
x2 + ρ2 − 1

C
n
2−1

l (x)(1−x2)
n−3

2 dx.

Making the change of variables r = x +
√
x2 + ρ2 − 1, we have

gl(ρ) =
ρn−2

∣∣�n−2
∣∣

C
n
2−1

l (1)

1+ρ∫
1

fl(r)r

(
C

n
2−1

l

(
r2 − ρ2 + 1

2r

))(
1 −

(
r2 − ρ2 + 1

2r

)2
) n−3

2

dr

=
ρn−2

∣∣�n−2
∣∣

C
n
2−1

l (1)

ρ∫
0

fl(r + 1)(r + 1)

(
C

n
2−1

l

(
r2 + 2r − ρ2 + 2

2r + 2

))

×
(

1 −
(
r2 + 2r − ρ2 + 2

2r + 2

)2
) n−3

2

dr.

This can be written in the form

gl(ρ) =

ρ∫
0

Kl(ρ, r)Fl(r)dr,
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where

Kl(ρ, r) =
ρn−2

∣∣�n−2
∣∣

C
n
2−1

l (1)
(r+1)

(
C

n
2−1

l

(
r2 + 2r − ρ2 + 2

2r + 2

)) (
1−

(
r2 + 2r − ρ2 + 2

2r + 2

)2
) n−3

2

,

Fl(r) = fl(r + 1).

This is a Volterra integral equation of the first kind (see [46]). The kernel Kl(ρ, r) is

continuous together with its first derivatives and Kl(ρ, ρ) 	= 0 on the interval (0, R1), where

0 < R1 < 2. Equations of this type have a unique solution, which can be obtained through

modification to a Volterra equation of the second kind, and then using a resolvent kernel

given by Picard’s process of successive approximations (see [38, 45]). This completes the

proof of Theorem 2.1.

3.2 Interior problem

Next, we prove Theorem 2.2.

Our starting point is

g(ρ, α) =

∞∑
l=0

∫
�n−1

fl(r)
ρn−2r2

|r − A1|
Yl(ϕ)dΩ(ϕ).

We split the integral∫
�n−1

fl(r)
ρn−2r2

|r − A1|
Yl(ϕ)dΩ(ϕ) =

∫
�n−1

+

fl(r)
ρn−2r2

|r − A1|
Yl(ϕ)dΩ(ϕ)

+

∫
�n−1
−

fl(r)
ρn−2r2

|r − A1|
Yl(ϕ)dΩ(ϕ),

where �n−1
± corresponds to those points on the unit sphere such that the line passing

through it and the origin intersects a point on the sphere S(ρ, α) corresponding to

r = A1±
√
A2

1 + ρ2 − 1. Let us denote the right-hand side of the above equation as I1 + I2.

We have

I1 =

∫
Sn−1

+

fl

(
A1 +

√
A2

1 + ρ2 − 1

) ρn−2(A1 +
√

A2
1 + ρ2 − 1)2√

A2
1 + ρ2 − 1

Yl(ϕ)dΩ(ϕ).

Applying Funk–Hecke theorem, this integral is

I1 =

∣∣�n−2
∣∣

C
n
2−1

l (1)

×

⎛⎜⎜⎝
1∫

1− ρ2

2

fl(x +
√

x2 + ρ2 − 1)
ρn−2

(
x +

√
x2 + ρ2 − 1

)2

√
x2 + ρ2 − 1

C
n
2−1

l (x)(1 − x2)
n−3

2 dx

⎞⎟⎟⎠Yl(α).
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Similarly,

I2 =

∣∣�n−2
∣∣

C
n
2−1

l (1)

×

⎛⎜⎜⎝
1− ρ2

2∫
√

1−ρ2

fl(x−
√

x2 + ρ2 − 1)
ρn−2

(
x−

√
x2 + ρ2 − 1

)2

√
x2 + ρ2 − 1

C
n
2−1

l (x)(1 − x2)
n−3

2 dx

⎞⎟⎟⎠Yl(α).

Making the change of variables r = x +
√
x2 + ρ2 − 1 in I1 and r = x −

√
x2 + ρ2 − 1

and summing up the two integrals, we get

gl(ρ) =
ρn−2

∣∣�n−2
∣∣

C
n
2−1

l (1)

1∫
1−ρ

fl(r)r

(
C

n
2−1

l

(
r2 − ρ2 + 1

2r

))(
1 −

(
r2 − ρ2 + 1

2r

)2
) n−3

2

dr,

=
ρn−2

∣∣�n−2
∣∣

C
n
2−1

l (1)

ρ∫
0

fl(1 − r)(1 − r)

(
C

n
2−1

l

(
r2 − 2r − ρ2 + 2

2 − 2r

))

×
(

1 −
(
r2 − 2r − ρ2 + 2

2 − 2r

)2
) n−3

2

dr.

This is of the form

gl(ρ) =

ρ∫
0

Kl(ρ, r)Fl(r)dr,

where

Kl(ρ, r) =
ρn−2

∣∣�n−2
∣∣

C
n
2−1

l (1)
(1 − r)

(
C

n
2−1

l

(
r2 − 2r − ρ2 + 2

2 − 2r

))

×
(

1 −
(
r2 − 2r − ρ2 + 2

2 − 2r

)2
) n−3

2

,

Fl(r) = fl(1 − r).

Note that Kn(ρ, ρ) does not vanishes in the interval (0, 1 − ε) and its derivatives exist and

are continuous. The rest of the proof follows exactly as in Theorem 2.1.

3.3 Interior/exterior problem

Finally, we prove Theorem 2.3.

Since the argument is exactly as in Theorems 2.1 and 2.2, we will only give the final

integral identity. Assume that the function f is supported inside the ball B(0, R2) centred

at the origin and of radius R2, where R2 > 2 and R1 = R2 − 2. Suppose the SRT data is

known along all spheres of radius ρ centred on the unit sphere with R2 − 1 < ρ < R2 + 1,
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then we have the following Volterra-type integral equation:

gl(ρ) =
ρn−2

∣∣�n−2
∣∣

C
n
2−1

l (1)

R2∫
ρ−1

fl(r)r

(
C

n
2−1

l

(
r2 − ρ2 + 1

2r

)) (
1 −

(
r2 − ρ2 + 1

2r

)2
) n−3

2

dr

=
ρn−2

∣∣�n−2
∣∣

C
n
2−1

l (1)

R2+1−ρ∫
0

fl(R2 − r)(R2 − r)

(
C

n
2−1

l

(
(R2 − r)2 − ρ2 + 1

2(R2 − r)

))

×
(

1 −
(

(R2 − r)2 − ρ2 + 1

2(R2 − r)

)2
) n−3

2

dr.

Making a change of variable ρ̂ = R2 + 1 − ρ, we get

Gl(ρ̂) =

ρ̂∫
0

Kl(ρ̂, r)Fl(r)dr,

where

Kl(ρ̂, r) =
(R2 + 1 − ρ̂)n−2

∣∣�n−2
∣∣

C
n
2−1

l (1)
(R2 − r)

(
C

n
2−1

l

(
(R2 − r)2 − (R2 + 1 − ρ̂)2 + 1

2(R2 − r)

))

×

⎛⎝1 −
(

(R2 − r)2 − (R2 + 1 − ρ̂)2 + 1

2(R2 − r)

)2
⎞⎠

n−3
2

,

Fl(r) = fl(R2 − r), Gl(ρ̂) = gl(R2 + 1 − ρ̂).

The rest of the proof follows exactly as before.

4 Three-dimensional case

In the numerical simulations below, we specialize to the case of three dimensions. There-

fore, in this section, we give the formulas derived earlier for the case of n = 3.

In this section, for the sake of convenience, we rename the vector α as (α, β) and the

vector ϕ as (ϕ, θ). Thus, in this section and the next, the point C will be denoted by

(α, β), more precisely, the Euclidean coordinates of the point C on the unit sphere will be

denoted by (cos α, sin α cos β, sin α sin β). A point P on the sphere S(ρ, α, β) will be denoted

by (r cosϕ, r sinϕ cos θ, r sinϕ sin θ).

Here, the spherical harmonics for f and Rf = g are expanded as

f(r, ϕ, θ) =

∞∑
l=0

l∑
m=−l

fml (r)Y m
l (ϕ, θ), (4.1)

g(ρ, α, β) =

∞∑
l=0

l∑
m=−l

gml (ρ)Y m
l (α, β). (4.2)
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In the case of three dimensions, we have that C
( 1

2 )

l (x) = Pl(x), where Pl(x) are the

Legendre polynomials and C
( 1

2 )

l (1) = 1. Therefore, the relation between the spherical

harmonics coefficients in the three cases are as follows:

(Exterior case)

gml (ρ) =

∫ ρ

0

Fm
l (r)Kl(ρ, r)dr,

Kl(ρ, r) = 2πρ(r + 1)

(
Pl

(
r2 − ρ2 + 2r + 2

2(r + 1)

))
, (4.3)

Fm
l (r) = fml (r + 1).

(Interior case)

gml (ρ) =

∫ ρ

0

Fm
l (r)Kl(ρ, r)dr,

Kl(ρ, r) = 2πρ(1 − r)

(
Pl

(
r2 − ρ2 + 2 − 2r

2(1 − r)

))
, (4.4)

Fm
l (r) = fml (1 − r).

(Interior/exterior case)

Gm
l (ρ) =

∫ ρ

0

Fm
l (r)Kl(ρ, r)dr,

Kl(ρ, r) = 2π(R2 + 1 − ρ)(R2 − r)

(
Pl

(
(R2 − r)2 + 1 − (R2 + 1 − ρ)2

2(R2 − r)

))
, (4.5)

Fm
l (r) = fml (R2 − r), Gm

l (ρ) = gml (R2 + 1 − ρ).

Note that in all three cases, the kernel Kl(ρ, r) is bounded and has a continuous first

derivative on the support of (corresponding) Fm
l , and Kl(ρ, ρ) � 0. Hence, these Volterra

equations of the first kind can be transformed into equations of the second kind and

solved using a resolvent kernel given by Picard’s process of successive approximations

(see [38, 45]).

5 Numerical algorithm

5.1 Generating the Radon data

We consider a generic sphere of integration S(ρ, α, β) to be centred at C = (a1, b1, c1) and

radius ρ where the centre (a1, b1, c1) lies on the sphere of radius R. For the interior and

exterior cases, we choose R = 1 and thus use the formulas (4.3) and (4.4) derived in the

previous sections. For the combined interior and exterior case, we use R = 1.49 and note

that (4.5) can be easily generalized for acquisition spheres of radius R. We consider test

phantoms f to be disjoint unions of characteristic functions of balls. To find the SRT of

f, we need to find the surface area of intersection of S(ρ, α, β) with f. This is equivalent

to summing up the surface area of intersection of S(ρ, α, β) with characteristic function of
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each ball. Thus, in the forthcoming calculations, we consider a ball B centred at (a2, b2, c2)

and radius a.

The sphere S(ρ, α, β) and the ball B intersect only when the following conditions do not

occur: √
(a1 − a2)2 + (b1 − b2)2 + (c1 − c2)2 > (ρ + a)

and √
(a1 − a2)2 + (b1 − b2)2 + (c1 − c2)2 < ρ− a.

To compute the surface area of intersection of S(ρ, α, β) with B in these cases, we first

determine the centre of the circle of intersection of S and B, denoted by (xc, yc, zc). The

equation of the plane P passing through the intersection S and B is given as follows:

(a2 − a1)x + (b2 − b1)y + (c2 − c1)y =
ρ2 − a2 + a2

2 + b2
2 + c2

2 − a2
1 − b2

1 − c2
1

2
.

The equation of the straight line passing through (xc, yc, zc) and perpendicular to the

plane P is given as follows:

x− a1

a2 − a1
=

y − b1

b2 − b1
=

z − c1

c2 − c1
= t, t ∈ �.

We then can compute

xc =
(ρ2 − a2)(a2 − a1)

2Z
+

a1 + a2

2
,

yc =
(ρ2 − a2)(b2 − b1)

2Z
+

b1 + b2

2
,

zc =
(ρ2 − a2)(c2 − c1)

2Z
+

c1 + c2

2
,

where Z = (a1 − a2)
2 + (b1 − b2)

2 + (c1 − c2)
2. Let d be the distance between (xc, yc, zc)

from the centre of S . Then, by an elementary calculation, the surface area of intersection

of S(ρ, α, β) with B, denoted by S , is given as

S = 2πρ(ρ− d).

Thus,

S = 2πρ2 − 2πρ · |ρ
2 − a2 + (a1 − a2)

2 + (b1 − b2)
2 + (c1 − c2)

2|
2
√

(a1 − a2)2 + (b1 − b2)2 + (c1 − c2)2
.

5.2 Evaluating the spherical harmonics coefficients of the Radon data

After obtaining the Radon data g(ρ, α, β), we need to determine gml (ρ), l = 0, . . . ,∞,

m = −l, . . . , l given by

gml (ρ) =

∫ 2π

0

∫ π

0

g(ρ, α, β)Ȳ m
l (α, β)dαdβ,
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where Ȳ m
l (α, β) = (−1)−mY −m

l (α, β). This is done numerically by following the method

employed in [13]. Given g(ρ, α, β) at αj = πj/2N, βk = πk/N, j, k = 0, . . . , 2N − 1, we

compute

gml (ρ) =
1

N

√
π

2

2N−1∑
j=0

2N−1∑
k=0

ajg(ρ, αj , βk)Ȳ
m
l (αj , βk),

where

aj =

√
2

N
sin

(
πj

2N

) N−1∑
p=0

1

2p + 1
sin

(
(2p + 1)

πj

2N

)
.

5.3 Inversion of the integral equations (4.3)–(4.5)

To solve the integral equations numerically, we use the product trapezoidal method

as found in [37, 40, 47]. In this method, the integral equations are discretized and the

integrands are approximated by product trapezoidal rule. This in turn leads to matrix–

vector equations and thus, we obtain discrete solutions of the discretized integral equations,

provided the matrices are invertible. In the following section, we provide the corresponding

matrix–vector equations for solving (4.3)–(4.5) corresponding to the exterior, interior and

the combined interior/exterior problems, respectively and prove their invertibility.

5.3.1 Exterior case

We rewrite (4.3) as

gml (ρ) =

∫ ρ

0

fml (r + 1)(1 + r)K̃l(ρ, r)dr,

where

K̃(ρ, r) = 2πρPl

(
r2 − ρ2 + 2r + 2

2r + 2

)
, 0 < ρ < 1.

We discretize ρ ∈ (0, 1) into M+1 equidistant points of interval length h as ρi, i = 0, . . . ,M.

The corresponding matrix–vector equation is given as follows:

AE
�fml =�gml , (5.1)

where

�fml =

⎛⎜⎝ fml (1 + ρ0)
...

fml (1 + ρM)

⎞⎟⎠ , �gml =

⎛⎜⎝ gml (ρ0)
...

gml (ρM)

⎞⎟⎠
and AE = (aik) where

aik =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

K̃l(ρi, ρ0)
[
h(ρ1+ρ0)

6
+ hρ0

6
+ h

2

]
, k = 0

K̃l(ρi, ρk)
[
h(ρk−1+4ρk+ρk+1)

6
+ h

]
, 1 � k � i− 1

K̃l(ρi, ρi)
[
h(ρi+ρi−1)

6
+ hρi

6
+ h

2

]
, k = i

0, k > i.
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Note that AE is a lower triangular matrix, and since

a00 =K̃l(ρ0, ρ0)

[
h(ρ1 + ρ0)

6
+

hρ0

6
+

h

2

]
= 2πρ0

[
h(ρ1 + 2ρ0 + 3)

6

]
> 0, if ρ0 > 0.

aii =K̃l(ρi, ρi)

[
h(ρi + ρi−1)

6
+

hρi

6
+

h

2

]
= 2πρi

[
h(2ρi + ρi−1 + 3)

6

]
> 0,

(5.2)

we have that AE is invertible.

5.3.2 Interior case

We again discretize ρ ∈ (0, 1) into M + 1 equidistant points as ρi, i = 0, . . . ,M and obtain

the following matrix–vector equation

AI
�fml =�gml , (5.3)

where

�fml =

⎛⎜⎝ fml (1 − ρ0)
...

fml (1 − ρM)

⎞⎟⎠ , �gml =

⎛⎜⎝ gml (ρ0)
...

gml (ρM)

⎞⎟⎠
and AI = (aik) where

aik =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

K̃l(ρi, ρ0)
[
−h(ρ1+ρ0)

6
+ −hρ0

6
+ h

2

]
, k = 0

K̃l(ρi, ρk)
[
−h(ρk−1+4ρk+ρk+1)

6
+ h

]
, 1 � k � i− 1

K̃l(ρi, ρi)
[
−h(ρi+ρi−1)

6
+ −hρi

6
+ h

2

]
, k = i

0, k > i.

Therefore, if ρ0 > 0,

a00 =K̃l(ρ0, ρ0)

[
−h(ρ1 + ρ0)

6
+

−hρ0

6
+

h

2

]
= 2πρ0

[
−h(ρ1 + 2ρ0 − 3)

6

]
> 0,

aii =K̃l(ρi, ρi)

[
−h(ρi + ρi−1)

6
+

−hρi

6
+

h

2

]
= 2πρi

[
−h(2ρi + ρi−1 − 3)

6

]
> 0.

(5.4)

Thus, AI is invertible.

5.3.3 Interior/exterior case

In a similar way as in the previous two cases, we discretize ρ ∈ (0, 2R) into M + 1

equidistant points as ρi, i = 0, . . . ,M to obtain the following matrix–vector equation:

AIE
�fml =�gml , (5.5)
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where

�fml =

⎛⎜⎝ fml (R2 − ρ0)
...

fml (R2 − ρM)

⎞⎟⎠ , �gml =

⎛⎜⎝ gml (ρ0)
...

gml (ρM)

⎞⎟⎠
and AIE = (aik) where

aik =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

K̃l(ρi, ρ0)
[
−h(ρ1+ρ0)

6
+ −hρ0

6
+ hR2

2

]
, k = 0

K̃l(ρi, ρk)
[
−h(ρk−1+4ρk+ρk+1)

6
+ hR2

]
, 1 � k � i− 1

K̃l(ρi, ρi)
[
−h(ρi+ρi−1)

6
+ −hρi

6
+ hR2

2

]
, k = i

0, k > i.

Therefore, if ρ0 > 0,

a00 =K̃l(ρ0, ρ0)

[
−h(ρ1 + ρ0)

6
+

−hρ0

6
+

hR2

2

]
= 2πρ0

[
−h(ρ1 + 2ρ0 − 3R2)

6

]
> 0,

aii =K̃l(ρi, ρi)

[
−h(ρi + ρi−1)

6
+

−hρi

6
+

hR2

2

]
= 2πρi

[
−h(2ρi + ρi−1 − 3R2)

6

]
> 0.

(5.6)

Thus, AIE is invertible.

The following theorem states the error estimate for the numerical solution of the integral

equations (4.3)–(4.5) which follows from [31, Theorem 7.2].

Theorem 5.1 (Error estimates) Let fm,exact
l be the C3 solution of (4.3), (4.4), (4.5) in [0, R]

and fml be the solution to 5.1 [or (5.3) and (5.5) resp.]. Then,

‖fm,exact
l − fml ‖2 = O(h2), (5.7)

where ‖·‖2 represents the discrete version of the continuous L2 norm in [0, R] (see for

e.g., [14, Ch. 4]).

To solve the matrix equations (5.1), (5.3) and (5.5), we need to invert the matrices

AE, AI , AIE . It turns out that the condition numbers of these matrices are greater than

104 for almost all values of l, m. It is well known that numerically inverting a matrix

with condition number10r leads to a loss of r digits of accuracy [23]. Thus, for inversion,

we use the technique of Truncated Singular Value Decomposition, originally proposed

in [21]. See also [9, 40].

6 Numerical results

In this section, we show the results of the numerical computations performed for the

inversion of spherical transforms described in Section 2 with functions supported in

interior, exterior and both interior and exterior of the acquisition sphere. We discretize

ρ ∈ [ε, R − ε], with ε = 0.001, into 50 equally spaced grid points, α, θ ∈ [0, π] and

β, φ ∈ [0, 2π] into 100 equally spaced grid points for all our computations. As mentioned
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Figure 2. Results for spherical Radon transform data for a function supported inside the acquisition

sphere. Panels (a) and (b) represent the horizontal and the vertical views of the actual phantom.

Panels (c) and (d) show the horizontal and vertical views of the reconstructed images.

before, for the interior and the exterior cases, the value of R = 1, whereas for the combined

interior and exterior case, the value of R = 1.49.

6.1 Functions supported inside the acquisition sphere

Figures 2(a) and (b) show the horizontal and vertical cross-sections of a phantom rep-

resented by a ball centred at (0.5, 0, 0) and radius 0.3. Figures 2(c) and (d) shows the

horizontal and the vertical cross-sections of the reconstructed phantom. We note the good

recovery in this case.

To demonstrate the robustness of our algorithm, we also tested it on the spherical

Radon data with 5% multiplicative Gaussian noise. The results are shown in Figures 3(a)

and (b). We again note the good recovery in presence of noisy data.

We also applied our reconstruction algorithm to a phantom whose support is inside

the acquisition sphere and contains the origin. Notice, that our result about uniqueness
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Figure 3. Results for spherical Radon transform data with 5% multiplicative Gaussian noise for a

function supported inside the acquisition sphere. Panels (a) and (b) show the horizontal and vertical

views of the reconstructed images.
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Figure 4. Application of the algorithm to a function supported inside the acquisition sphere with

support containing the origin. Panel (a) shows the horizontal view of the actual phantom. Figure

(b) shows the horizontal view of the reconstructed image. Panel (c) shows the cross-sectional view

of the reconstructed phantom along the x -axis.

of the inversion (Theorem 2.2) does not cover this case, since here the kernels Kl(ρ, r)

of the integral equations appearing in the proof vanish, when ρ = r = 1 (see equation

(4.4)). Hence, one may not expect stable recovery in the numerical method. And indeed,

the reconstructed image in Figure 4(b) shows instability near the origin.

6.2 Functions supported outside the acquisition sphere

Figures 5(a) and (b) show the horizontal and vertical cross-sections of a phantom repres-

ented by two balls centred at (−1.5, 0, 0) and (1.5, 0, 0) with radius 0.2 and 0.3, respectively.

Figures 5(c) and (d) show the horizontal and the vertical cross-sections of the reconstruc-

ted phantom. Micro-local analysis arguments show that the entire spherical shell of the

balls cannot be constructed stably with the given SRT data. We see the presence of an
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Figure 5. Results for spherical Radon transform data for a function supported outside the ac-

quisition sphere. Panels (a) and (b) represent the horizontal and the vertical views of the actual

phantom. Panels (c) and (d) show the horizontal and vertical views of the reconstructed images.

increased number of artefacts in contrast to the interior case. The reconstructions are

consistent with this analysis.

6.3 Functions supported on both sides of the acquisition sphere

Figure 6(a) shows the horizontal cross-section of a phantom represented by two balls

centred at (−2, 0, 0) and (0.5, 0, 0) with radius 0.2 and 0.3, respectively. The balls lie on

either side of the acquisition sphere, which is centered at the origin and has radius

1.49. Figure 6(b) shows the horizontal cross-section of the reconstructed phantom. Again

by microlocal analysis arguments, the ball outside the acquisition sphere cannot be

constructed stably, whereas the ball inside the acquisition sphere can be constructed

stably. This is depicted in the reconstructions.

7 Conclusion

We studied the problem of inverting the SRT in spherical geometry of data acquisition

with incomplete radial data. Such problems arise in image reconstruction procedures in
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Figure 6. Results for spherical Radon transform data for a function supported on both sides of

the acquisition sphere. Panel (a) represents the horizontal view of the actual phantom. Panel (b)

shows the horizontal view of the reconstructed image.

photo and thermoacoustic tomography, ultrasound reflection tomography as well as in

radar and sonar imaging. We considered three distinct scenarios of the location of the

support of the image function: strictly inside the acquisition sphere (interior problem),

strictly outside (exterior problem) and both inside and outside (interior/exterior problem).

For all three cases, we provided a constructive proof of the uniqueness of inversion of

SRT from incomplete radial data and obtained an iterative procedure to recover the

image function. We presented a robust computational algorithm based on our inversion

procedure and demonstrated its accuracy and efficiency on several numerical examples.
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