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SUMMARY
Performing actions in a timely manner is an indispensable aspect in everyday human activities.
Accordingly, it has to be present in robotic systems if they are going to seamlessly interact with
humans. The current work addresses the problem of learning both the spatial and temporal char-
acteristics of human motions from observation. We formulate learning as a mapping between two
worlds (the observed and the action ones). This mapping is realized via an abstract intermediate
representation termed “Latent Space.” Learned actions can be subsequently invoked in the context
of more complex human–robot interaction (HRI) scenarios. Unlike previous learning from demon-
stration (LfD) methods that cope only with the spatial features of an action, the formulated scheme
effectively encompasses spatial and temporal aspects. Learned actions are reproduced under the high-
level control of a time-informed task planner. During the implementation of the studied scenarios,
temporal and physical constraints may impose speed adaptations in the reproduced actions. The
employed latent space representation readily supports such variations, giving rise to novel actions in
the temporal domain. Experimental results demonstrate the effectiveness of the proposed scheme in
the implementation of HRI scenarios. Finally, a set of well-defined evaluation metrics are introduced
to assess the validity of the proposed approach considering the temporal and spatial consistency of
the reproduced behaviors.

KEYWORDS: Human–robot interaction; Learning from demonstration; Artificial temporal cogni-
tion; Temporal planning; Latent representation.

1. Introduction
Contemporary learning from demonstration (LfD) methods have been widely employed for robotic
imitation of human action behaviors,1, 2 with corresponding implementations in various application
domains. In our recent work,3 we developed and evaluated an LfD framework, termed IMitation
Framework by Observation (IMFO), that is based on the compact, low-dimensional representation
of both human and robot arm motions, which are properly associated with facilitate learning. Similar
approaches have also been studied in refs. [4–6]. Interestingly, the compressed representation of
actions, in the so-called latent space, preserves the significant properties of the actions’ spatial trajec-
tories and facilitates mapping between an observed human action and the reproduced robotic one.7, 8

Accordingly, it allows robots to learn human-like behavioral acts by observing human demonstrators,
based on a compact association of the two acting worlds, the observed and the reproduced one.
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Despite the significant number of works exploring LfD, there are important parameters of
action implementation that have not been sufficiently studied yet. In particular, the role of tem-
poral information in the computational representation and reproduction of actions remains poorly
understood.

The execution time of activities is directly linked to the speed of action performance. The ability to
adjust speed is fundamental for humans, allowing to deal with cases where the physical properties of
manipulated objects impose constraints (e.g., slow down to move a glass full of water), or emergency-
like situations (e.g., speed up to accomplish a goal within certain time constraints). It is therefore
important to study how spatio-temporal variations affect the representation of actions considered in
LfD scenarios.

To this end, the main purpose of this work is to develop a novel LfD methodological frame-
work that relies on the compact representation of the observed behaviors and greatly facilitates
the learning of both spatial and temporal characteristics of the observed actions. Hence, it focuses
on speed adaptation in the context of IMFO, considering how speed shapes the low-dimensional
latent representation of the demonstrated actions. Specifically, the actions considered in the cur-
rent study are arm motions, although the introduced formulation can be readily generalized to other
human actions. In short, the proposed method regards augmenting the algorithm that implements
the transformation from the full configuration space to the compact latent space, with tempo-
ral information that affects execution speed. The compressed representation of similar actions
with different spatio-temporal characteristics shows that speed plays a major role in the derived
latent representation, effectively separating similar arm motions that are executed at different
speeds. Accordingly, the latter actions assume unambiguous latent space representations when
only speed of execution varies, allowing thus the accurate reproduction of acts with different
velocities.

The proposed spatio-temporal formulation of IMFO readily lends itself to integration with time-
informed planning approaches9 to effectively address temporal constraint satisfaction in real-world
scenarios. Following our previous work on latency estimation,10 the composite system is capable to
cope with cases where completion of certain behaviors is expected to be delayed. The elimination
of latency is accomplished through the estimation of a requested, reduced time for action comple-
tion. Taking advantage of LfD actions at different speeds, we select the action implementation that
best matches the requested completion time, therefore facilitating the realization of the composite
behavior within the predefined time limits.

The rest of the paper is organized as follows. Section 2 presents a brief literature review, and then
Section 3 describes the proposed LfD formulation and the time-informed planning. Experimental
results obtained with a robotic arm are presented in Section 4, and the paper concludes with a
summary and suggestions for future work in Section 5.

2. Related Work
LfD has become an important topic in robotics research with notable applications in relevant sec-
tors, such as motion behaviors, human–robot interaction, artificial intelligence, and goal-based
learning.11–14 In the current section, we briefly review and highlight representative works from
contemporary literature. Accordingly, Gupta et al.15 proposed an algorithm for policy learning and
generalization that allows complex dexterous manipulators to learn from multiple human demonstra-
tions. Additionally, Li et al. in ref. [1] learn grasp adaptation through experience and tactile sensing,
whereas Kaelbling in ref. [16] exploited hidden Markov models to plan and act in partially observ-
able stochastic domains. Evrard et al.17 adopted Gaussian mixture models to represent the variance
over time in the demonstrated trajectories to teach a humanoid physical collaborative task.

Recently, we established an LfD methodological framework for robots to expand their repertoire
of actions, by formulating a mapping between two worlds, the observed and the action one.3 This
mapping is realized via an abstract intermediate representation, termed Latent Space. Latent rep-
resentations, commonly derived from dimensionality reduction methods, have been successfully
applied in various application domains, such as computer vision for body pose tracking,18 com-
puter graphics for graphical model representation (character animation),19, 20 and machine learning
for missing data formation.21 Additionally, LfD via latent space representation has been successfully
applied for human–robot collaborative task execution in ref. [22].
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Interestingly, the topic of speed adaptation of executed actions has received rather limited atten-
tion. In ref. [5] the high-level temporal alignment of demonstrated actions is used to guide trajectory
generation in the actor space. In addition, in ref. [6] actions learned through a slow demonstra-
tion procedure are gradually self-improved to accomplish speed adaptation in action execution.
Furthermore, to the best of our knowledge, LfD and associated latent representations that com-
pactly describe spatio-temporal features have not been extensively studied to-date in a temporal
context. However, indicative works, such as those of Calinon et al. in refs. [5] and [23] have
set the basis, by formulating the well-known dynamical movement primitives (DMPs), learning
time, and space constraints during a task. Additional works24–27 by Ijspeert et al., Rozo et al., and
Ewertoneta et al. have also investigated the implementation of DMPs within multiple conditions to
reproduce force-based manipulation tasks and learn reactive and proactive behaviors in human–robot
collaboration.

Execution of learned actions is in many cases affected by temporal constraints that are externally
imposed. Processing of such constraints in planning problems has been typically based on simple
temporal networks, which are mapped on the equivalent distance graphs, to verify the existence
of no negative cycles and thus prove the consistency and dispatchability of the plan.28 Along this
line, recent works have considered back propagation rules to dynamically preserve dispatchability of
plans,29 as the implementation of the plan proceeds and time constraints are updated. However, these
works focus on specifying the start moment of a given action in relation to the others, without consid-
ering the role of speed adaptation on action synchronization and temporal constraint satisfaction. To
address this issue, we have recently proposed an interval calculus approach to estimate the expected
latency of actions which directs informed adaptations on action implementation.10 The present work
aims at combining the estimation of expected latency and the concise specification of a revised exe-
cution time, with the ability to learn by observation actions demonstrated at different speeds, in order
to implement an enhanced composite system that is capable to effectively comply with dynamically
changing temporal constraints.

3. Spatio-Temporal Representation of Actions
In this section, we formulate the methodological framework for action learning and representation
in the spatio-temporal domain. The latter effectively facilitates action reproduction in a given sce-
nario, and action execution at a speed different than the learned one. Action learning is accomplished
via a latent representation of observed actions. Such a representation achieves to compactly depict
pertinent action information and abstract from the actual kinematic configuration of a system, for
example, human demonstrator or robotic platform. Herewith, we extent the IMFO methodological
framework, introduced in ref. [3], in order to cope with the temporal aspects of human arm motions.

3.1. Learning phase
A conceptual representation of the employed methodology is depicted in Fig. 1. Henceforth, and
without loss of generality, we consider only arm motions. The spatial representation of such actions
is readily available from the trajectory of the parameters in the arm’s configuration space. The
latter parameters that convey spatial information of the executed action are augmented with times-
tamps that signify time of occurrence of the particular snapshot in the action trajectory. Effective
transformation of the spatial (configuration space) and temporal (timestamp) parameters into a
latent (compact) space establishes a unified spatio-temporal representation of the considered action,
which enables robots to execute actions at different speeds. With the above representation in
place, learning is accomplished by establishing an association across the two latent representa-
tions that correspond to the human action and the robotic one. This is presented in detail in the
following.

3.1.1. Data acquisition. Let an arm motion trajectory performed by a human actor and the corre-
sponding one by the robotic system. The former describes a trajectory in a 11D configuration space,
that is, three joints of three coordinates each, one grasp parameter, and one timestamp value. This is
termed as human action space (HAS). The coordinates for the three joints in HAS are computed as
the center points of relevant joints. For that a model-based approach has been adopted, analogous to
the approach followed in ref. [30]. Similarly, we obtain an 8D representation for robot arm actions
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Fig. 1. Schematic overview of the learning process.

Fig. 2. Grasping configuration poses, that is, grasping handle encoded as “0” (Left), “1” (Center), and “2”
(Right).

(six arm joints, one grasp parameter, one timestamp value), termed as robot action space (RAS).
The latter representation arises since we employ in this work the six-joint-arm JACO, by Kinova
Robotics. The grasp parameter introduced above assumes values 0, 1, or 2 to represent the grasping
configuration pose of the hand, as illustrated in Fig. 2. The correspondence of human and robot arm
motions is achieved by adopting kinesthetic teaching. In other words, the human demonstrator per-
forms several demonstrations that form trajectories in a rather high-dimensional actor space (HAS).
The same acts are performed by the robotic platform, physically steered by the human, formulating
an equivalent high robots space (RAS).

3.1.2. Latent space representation. In order to facilitate meaningful association across HAS and
RAS, both action spaces are transformed to analogous latent representations. To this end, we employ
the Gaussian process latent variable model algorithm, GPLVM in short,31 as formulated in ref. [3];
an algorithmic depiction of GPLVM is outlined in Algorithm 1 template.

GPLVM effectively provides an accurate representation of an abstract multidimensional space
projected to a lower dimensional one, by performing a non-linear dimensionality reduction in the
context of Gaussian processes. Hence, two latent space representations are established. The “Human
Latent Space” (HLS) is derived as a set of points XHLS ∈Rq and the “Robot Latent Space” (RLS)
as XRLS ∈Rq. Using maximum-likelihood estimation methodology,32 the optimal dimension of HLS
and RLS is determined as q= 2. The latter has also been experimentally verified.

3.1.3. Space association. Having established the two latent spaces, an appropriate geometric trans-
formation GTr that matches the corresponding points across the derived latent representations HLS
and RLS is defined. Given two sets of corresponding 2D latent variables XHLS = {XH1, . . . XHn} ∈R2
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Algorithm 1 Kernel GPLVM

1: Given a set of observations O ∈RD, N: the number of iterations.
2: Initialize latent variables X ∈R2 through PCA
3: for T Iterations do
4: Randomly Select a subset of X, xs ⊂X and find the neighbors around xs :XS =X ∈R
5: Compute the gradients: ∂L

∂XS
and ∂L

∂βS
(Optimization)

6: Update X and β by:
7: �Xt =μx�Xt−1 + nx

∂L
∂XS

8: Xt←Xt−1 +�Xt
9: �βt =μβ�βt−1 + nβ

∂L
∂βS

10: βt← βt−1 +�βt
11: end for

where, β:Kernel’s parameter and μ, n: parameters of the gradient descent process (stps 5-10)

and XRLS = {XR1, . . . XRn} ∈R2, the transformation is derived as a pair of translation t and rotation r
that minimizes the sum of squared error:

E(t, r)= 1

T

n∑
i=1

‖XHi − rXRi − t‖2 (1)

where XHi, XRi are corresponding points. The correspondence between the pairings is ensured during
the data acquisition, where the trajectories are captured by kinesthetic teaching. The iterative closest
point algorithm33 is employed to minimize Eq. (1). The resulting transformation pair GTr(t, r) can
subsequently be used to map any point from HLS to the corresponding point in RLS.

3.1.4. Inverse transformation. In order to enable the robotic arm to reproduce a demonstrated human
action, it is necessary to transform the RLS representation to the robotic physical configuration space,
namely RAS. Formally speaking, this association should be implemented as the inverse of GPLVM,
which is not analytically available. To approximate this inverse transformation (marked as INVTr),
a high-order interpolation of the training learned data is formulated, using radial basis function as
proposed in refs. [34, 35]. Here, this is addressed by computing off-line the latent representations
(RLS) of a sufficiently large population of physical configurations (RAS) of the robotic arm. In
practice, we iterate overall arm-DoFs, and for each arm configuration in RAS, the representation in
latent space (RLS) is obtained via the GPLVM.

The above iterations are performed by (a) respecting the physical limits of each arm-joint, and
(b) employing an appropriate iteration step. A small step value results in a denser representation of
the RAS–RLS pairings. For points in RLS that are not included in the above pre-computed pairs, the
corresponding points in RAS are derived by interpolation. Experimentally, it has been established that
neither the step value nor the actual method of interpolation was critical. This is due to the fact that
the employed inverse transformation should not render an accurate (exact) replica of a demonstrated
act, but rather a reproduced robotic behavior sufficiently similar to the latter.

Consequently, learning concludes with the two latent space representations (HAS→HLS and
RAS→RLS) along with the geometric transformation GTr that associates them (HLS↔RLS)
and the established inverse mapping INVTr (RLS→RAS). As already mentioned above, Fig. 1
schematically presents the learning process.

3.2. Speed inference based on temporal information
A variety of issues may affect the temporal aspects of task execution in real-world applications.
These may regard, for example, the physical properties of interacting objects (e.g., slow down to
move a glass of water) or the need to synchronize with real-world temporal constraints or ongoing
procedures (e.g., speed up to open the door after a bell-ring). However, time is a parameter that, so
far, has been rather rarely considered in robot action planning.

Recently, we introduced the Daisy Planner, in an attempt to address time-informed planning in
multi-agent setups.9 Below, we summarize the most relevant issues which are essential for the com-
pleteness of the present work. The planner uses a fuzzy number representation of time to enable
the processing of temporal information and develop time-informed multi-criteria optimized plans.
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Fig. 3. Graphical illustration of the intersection of two fuzzy intervals.

More specifically, each time interval is mapped on a trapezoidal fuzzy number that is represented
by the quadruple (p, m, n, q). For example, following this formulation, Fig. 3 depicts the time inter-
val “approximately 6–9 moments” represented as the fuzzy number TB = (3, 6, 9, 10). In the same
figure, negative values represent past time moments.

The present work exploits the fuzzy number representation of time intervals in order to (i) monitor
the temporal aspects of composite task implementation, (ii) adapt the execution of individual prim-
itive actions, and (iii) enforce the timely implementation of the overall task. In particular, using the
ordinary fuzzy calculus, it is possible to associate the temporal properties of individual actions, pre-
dict delays, and then take corrective measures that account for speed adaptations, in order to ensure
that composite behaviors are implemented on time.

As an illustrative example, we consider the case of a composite task that is based on the sequential
implementation of actions A, B, and C. The prior knowledge of the system on the completion time
of the three actions is as follows: TA = (3, 4, 7, 9), TB = (3, 6, 9, 10), TC = (5, 6, 9, 11). Using the
well-known L-R calculus,36 the total implementation time for the three actions is estimated as: Ttotal =
(11, 16, 25, 30). To clarify the concept, let a temporal constraint in the problem formulation, which
requires that the three actions should complete at a specific maximum time of Cmax = 20. The system
monitors the sequential execution of actions to ensure the timely accomplishment of the composite
task. Assuming that seven moments have been devoted to the implementation of action A, then B
and C should be implemented at a maximum time of Cmax = 13 moments. This is represented by the
fuzzy time interval (0, 0, 13, 13).

In order to find a safe completion time for action B, the time to be spend on C is subtracted from the
maximum available time. According to the L-R fuzzy calculus, this results into AB = (0, 0, 13, 13)−
(5, 6, 9, 11)= (−11,−9, 7, 8), which is the time available for B. We take the intersection of the
estimated available time AB and the actual, known by experience, implementation time TB to estimate
the available temporal flexibility for the execution of B. The intersection of AB and TB is calculated
as shown in Fig. 3. The defuzzification of this interval (implemented by the classic graded mean
integration representation37) results into the requested action B implementation time, that is, t= 6.2.

3.3. Time-informed robotic action execution
The present work considers tasks implemented as a sequence of three actions, namely reach, grasp,
and move/place. To ensure that the composite task is implemented on time, the system monitors the
execution of each action, estimates possible delays as described above, and suggests a completion
time for the action to be implemented next. The requested time is used to create an implementa-
tion of a known act within the provided time interval. The obtained, time-modulated human action
in HAS is represented through GPLVM compression to HLS. The latter is in turn transferred to
the robot’s space by means of the learned HLS–RLS mapping, and subsequently unfolded to RAS.
The robot implements the action within the requested time limits by implementing the sequence of
configurations encoded in RAS.

In particular, the framework comprises off-line (action learning) as well as on-line (action exe-
cution) modules. Accordingly, the following steps, summarized also in Fig. 4, are employed to
effectively reproduce an arm motion by the robotic system:

(a) A demonstrated action, presented as a sequence of points in HAS, namely Xtn
HAS =

{x1, x2, . . . xn}, is mapped to the corresponding one in HLS; GPLVM transforms Xtn
HAS to Xtn

HLS.
(b) Mapping to robot latent space: the GTr(t, r) mapping is used to obtain the relevant RLS

representation, XRLS.

https://doi.org/10.1017/S0263574719001449 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719001449


Speed adaptation in learning from demonstration through latent space formulation 1873

(a) (b) (c) (d) (e)

Fig. 4. Block diagram representation of time-informed robotic action execution. (a) Demonstrated action.
(b) Spatio-temporal latent representation. (c) Inverse transformation INVTr. (d) Task planning (e) Spatio-
temporal robotic action execution.

(c) Action reproduction: the formulated inverse transformation INVTr maps the XRLS to RAS,
formulating a set of points XRAS ∈R8.

(d) The planer’s output specifies the action to be implemented (i.e., reach, grasp, move), and the
requested execution times. The latter determines the speed of action execution that is low,
normal, high.

(e) Action is reproduced by the robot at the appropriate speed. Successful completion of the
action is visually verified by a human observer (e.g., successful grasp of an object). In case
of unsuccessful robotic action, the session is dropped.

4. Experimental Results
The methodological framework presented in the previous sections has been implemented and exhaus-
tively tested in order to assess its performance in realistic cases. In this section, we report relevant
results that quantify the effectiveness of action reproduction at the learned or different execution
speeds.

In the current study, the relevant experimental setup regarding the learning phase involved kines-
thetic teaching in order to demonstrate certain action behaviors to the robotic arm. In all our
experiments, a six-joint-arm manipulator was used, namely the JACO robotic arm, by Kinova
Robotics. Its joints can be controlled independently either with position-control or with torque-
control. Accordingly, the compliant mode of the JACO arm was used in order to physically steer
the arm to execute various motion trajectories.

The learning set is composed by sequences of paired poses executed by the two agents, that is,
actor human arm and JACO robot arm, respectively. More specifically, we recorded a set of 30 prim-
itive right-arm-movements of reaching, grasping, and placing an object of 100 frames each. Each
demonstrated action is performed either at low, normal, or high speed. Given that for a human actor
it is rather unrealistic to exactly perform actions at certain speeds, we employed the following conven-
tion in our experiments. At first, in an off-line session, the human demonstrator performed repeatedly
the 30 actions in order to train with respect to the execution speeds. This resulted at a consistency
in the execution times within a 20% margin. In other words, a sample reach/grasp/move action at
normal speed, after training, would have a duration of 10± 2 s. Similarly, durations at high-to-low
speed were performed on the average at 5-to-16 s, respectively. Subsequently, we used a threshold-
based categorization to assign learned actions as low, normal, or high speed ones. The corresponding
thresholds were set at durations of (a) 7 s to discriminate between high and normal speed actions,
and (b) 14 s to distinguish among normal and low speed actions. In order to end up with an un-biased
population of the demonstrated actions, out of the 30 recorded actions 1/3 were executed at each of
the three specified execution speeds.

Demonstration of the above-outlined 30 actions, and concurrent kinesthetic teaching to the JACO
arm, gave rise to the establishment of the HAS and RAS spaces that were instantiated with the
recorded samples from the actions’ configuration spaces. More specifically, both HAS and RAS
assumed 3000 configuration poses (samples) at the end of the training phase (30 actions ×100
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Fig. 5. Formulated latent space representations for human actor (left) and JACO arm (right), respectively.
Actions performed at normal speed are represented by magenta circles, whereas slow and fast actions (in low
and high speed, respectively) are depicted with cyan and yellow circles, respectively.

frames each). Following the learning phase, as described above, GPLVM was employed in order to
compress the high-dimensional acting spaces to the latent ones. As a result, HAS and RAS point
clouds have been transformed to HLS and RLS representations, respectively.

Figure 5 illustrates the resulting latent spaces. It is of utmost importance that the derived repre-
sentations in HLS and RLS reveal well-separated sectors that correspond to the three implemented
speeds. In other words, the sole information of action execution speed seems adequate to classify
the action representations in the latent space in practically non-overlapping clusters. Interestingly,
the latter holds true for both derived latent representations, namely HLS and RLS. This result should
come as no surprise since the information conveyed by speed is quite discriminative, at least as
opposed to spatial information that for the studied human actions designates small differences in the
recorded trajectories. Furthermore, each point in the latent space represents an 11D vector in the act-
ing space of human and an 8D vector for the robot case. In other words, every latent point includes
the information of the human or the robot state, the grasping configuration, and the timestamp. To
this end, it is worth noting that the formulated latent spaces feature important and at the same time
useful properties. Different actions result in well-separated trajectories in the latent space, and also
the neighboring property of a 3D trajectory is maintained given the continuous curves that are derived
in the latent space. Furthermore, actions at different speeds are depicted in distinct point clouds in
the latent space.

Besides the rather straightforward classification of actions in the latent spaces as exemplified
above, additional noteworthy remarks can also be drawn from Fig. 5. More specifically, for each
action in HAS (and its corresponding in RAS) recorded at a certain speed, we have “mentally”
derived the two analogous actions in the other two implemented speeds. As a result, the three actions
instantiated the same spatial actions at the three speeds, that is, low, normal, and high. Subsequent
derivation of the latent representations gave rise to motion paths as the ones illustrated in Fig. 5 with
the marked trajectories.

As can be observed, actions in the latent spaces are characterized by spatial continuity, that is,
neighboring points in the acting space result in neighboring points in the latent space. In other words,
the physical continuity of an action’s 3D trajectory is also maintained in the derived latent represen-
tation. This is in full accordance with the findings in our previous work,3 where we considered the
latent representations of actions at a single execution speed.
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4.1. Performance metrics
In order to quantitatively assess the proposed spatio-temporal LfD methodological framework, we
adopt in this work similar evaluation metrics as in ref. [3], that is, HLS and RLS consistency and
repeatability (EHLS, ERLS), robotic end-effector trajectory (EEF), and temporal consistency (Et). To
this end, let a novel action XN performed from the human demonstrator at normal speed. From XN , the
spatially equivalent actions at low (XL) and high (XH) speed are artificially generated. Additionally,
from each of the three actions XN , XL, and XH , a set of M actions Xi,N , Xi,L, Xi,H , i= 1, .., M is
produced by keeping the temporal components of the actions unaltered and randomly perturbing
the spatial ones. Accordingly, M action trajectories are produced for each speed category that are
variations of the same initial human action; a value of M= 50 has been used in our experiments.
Subsequently, each one is projected via GPLVM to HLS, and GTr is then employed to map the latter
representations to RLS. Finally, INVTr is invoked to inversely transform the trajectories to RAS,
effectively resulting to the motions being reproduced by the robotic arm along with their execution
times.

4.1.1. HLS consistency and repeatability—EHLS. Let the three sets of actions in HLS depicted from
sets of low, normal, and high speed, respectively, Xi,L

HLS, Xi,N
HLS, Xi,H

HLS, i= 1, .., M. Let also X̄i,L
HLS,

X̄i,N
HLS, X̄i,H

HLS be their corresponding mean trajectories. EHLS is defined as:

EHLS =E

[
1

M

M∑
i=1

∥∥∥Xi,K
HLS − X̄i,K

HLS

∥∥∥2

S−1

∣∣∣∣{K=L,N,H}

]
(2)

where distances in above Eq. 2 are Mahalanobis distances expressed in the corresponding ellipsoids
of HLS (Fig. 5 left). E[·] denotes the mean value of the three quantities that result for K values
marked as N, L, H.

4.1.2. RLS consistency and repeatability—ERLS. In a similar manner as above, ERLS is obtained as
the relevant sum of Mahalanobis distances expressed in RLS:

ERLS =E

[
1

M

M∑
i=1

∥∥∥Xi,K
RLS − X̄i,K

RLS

∥∥∥2

S−1

∣
∣
∣
∣{K=L,N,H}

]
(3)

where symbols in Eq. 3 above are interpreted as in Eq. 2.

4.1.3. Robotic end-effector trajectory—EEF. A Euclidean distance metric is calculated as an index
of imitation of the end-effector’s movement. More specifically, EEF is assumed to quantify the precise
reproduction of a demonstrated act by the robotic end-effector, and it is defined as the 3D-error in
the latter’s trajectory. By this metric, only the spatial information is isolated, as the execution time
is not considered in the relevant equation. In other words, this measure computes the Euclidean
(3D) differences in trajectories between the robotic action reproduction and the demonstrated one,
assuming the same execution times; it is obtained as:

EEF =E

[
1

M

M∑
i=1

∥∥∥Xi,K
HEF
−Xi,K

REF

∥∥∥2
∣
∣
∣
∣{K=L,N,H}

]
(4)

where Xi,K
HEF

, Xi,K
REF

indicate the end-effector trajectories of the human actor and the robotic arm,
respectively, at K speed, that is low, normal, and high.

4.1.4. Temporal consistency—Et. A final metric is evaluated to describe the differences rendered in
the execution times. More specifically, let tHAS

i,N be the normal execution time of human action Xi,N
HAS

and similarly for the execution times at low and high speeds. Let also tRAS
i,N be the execution time

of the robotic reproduced action Xi,N
RAS, with similar definitions again for reproduced actions at low
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Table I. Mean error values (μ) and standard deviation (σ ) of the
computed metrics for each group of speed, namely low (L),

normal (N), and high (H).

Low (L) Normal (N) High (H)

Metrics μ (%) σ (%) μ (%) σ (%) μ (%) σ (%)

EHLS 2.7 0.1 3.2 0.1 3.4 0.2
ERLS 2.9 0.1 4.6 0.3 5.1 0.2
EEF 2.7 0.2 3.7 0.3 4.4 0.3
Et 2.4 0.1 2.8 0.3 3.2 0.3

and high speeds. The differences in the execution times averaged over all actions at a certain speed
give rise to Et as follows:

Et =E

[
1

M

M∑
i=1

∥∥∥tHAS
i,K − tRAS

i,K
∥∥∥2

∣
∣
∣
∣{K=L,N,H}

]
(5)

The complete set of 30 demonstrated actions was employed for assessment purposes. The values
obtained in this case, for the above-described performance metrics, are summarized below in Table I
as percentage figures. Following common practice in the area,3, 5 mean values of the obtained errors
are presented, along with the relevant standard deviations.

As can be observed, all performance metrics assumed very low values, indicating accurate and
effective spatio-temporal representation and reproduction of actions. Interestingly, for the low (L)
case the errors are slightly smaller, becoming gradually larger as speed increases. This is rather
expected, since lower speed values give rise to smoother trajectories, which in turn facilitate more
accurate reproduction of relevant actions.

4.2. Use case application—Service scenario
The second category of experiments regards the validation of robotic performance in a realistic
service scenario. In particular, the available reaching, grasp, move actions are exploited to address
time-constrained tray filling. The examined scenario is inspired by restaurant standing queues with
customers served one at a time. Robot aims at filling the tray within the requested timeframe, in order
to serve humans on time. Humans are supposed to wait in front of the serving queue. The simplified
serving considered here assumes two cups and one bowl to be placed on each tray. We consider vary-
ing times of requested tray filling, centered at 2.0 min (the average period of customer arrival). In
short, when serving a customer is delayed, the system tries to compensate this latency by asking for
faster filling of future trays. Following this formulation/scenario, the repetitive tray filling task must
be implemented at varying time limits and hence robot action speeds.

We have developed a simple setup that enables tray filling in naturalistic conditions (see Fig. 6).
It is noted here that the proposed approach and the Daisy Planner in particular manage the temporal
constraints on tasks by enabling both the increment and the decrement of speed. In general, both
options are required and the proposed work provides a systematic approach to encompass both speed
adaptations, and also demonstrates the latter in real application scenarios. To this end, a service
scenario application case is used to demonstrate the validity of the approach, showing at the same
time its ability of generalization and natural flow.

Additionally, for quantitative assessment of the action execution times, we conducted 20 rep-
etitions of the tray filling task; cases where grasp failures were encountered were dropped out
and the experiment was repeated. Accordingly, we ended up with 20 successful task completions
for which we contrasted the actual execution times against the commanded ones by the planner.
Time differences above 10% were regarded as failures. Interestingly, only three executions did
not meet the latter criterion, and were marked unsuccessful. Given the complexity and variability
of the studied scenario, the accomplished result is considered highly promising and indicative of
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Fig. 6. Snapshots from the serving scenario.

the method’s potential. A better appreciation of the described experiments can be acquired by the
supplementary video in high resolution at https://youtu.be/WGG0vI6NiMU.

5. Discussion
In the current paper, we introduced a novel spatio-temporal formulation that compactly represents
spatial and temporal aspects of studied actions. The latter is accomplished by assuming latent space
representations and further combined with a time-informed task planner to effectively schedule
actions in the course of a complete task. Our examination has revealed very useful and interesting
properties of the formulated latent representations, namely (i) well-separated latent representations
for actions executed at different speeds, (ii) neighboring points in the configuration space are mapped
to neighboring points in the latent space, thereby preserving action continuity in the latent depiction,
and (iii) errors in the spatial and temporal domains due to the latent transformation are very small
and in practice do not affect the method’s performance.

The described framework has been employed in the execution of a realistic service scenario. Our
results demonstrate the successful involvement of the robotic system in the accomplishment of rele-
vant tasks, whereby learned action behaviors are appropriately executed at varying speeds. The main
contributions of the proposed method are summarized as follows:

• Enhance robots that learn from demonstration to execute actions at variable speeds;
• Provide insight to the key role of temporal information in obtaining compact, latent representations

of human arm motions;
• Demonstrate the reversibility of the spatio-temporal aspects of actions from the low-dimensional

space to the actual action space;
• Combine temporal planning with LfD.

The so far encouraging results attest for the validity and effectiveness of the proposed approach.
Nevertheless, open issues for investigation still exist. To this end, in future work, we aim at
extending this methodological framework in the case of multi-robot collaborative systems, where
time-constrained task fulfillment is a critical issue. In addition, the method’s scalability by incorpo-
rating further dynamic parameters, such as force and torque, will be examined. Finally, one of our
immediate goals for the continuation of the proposed work is to examine the capability of obstacle
avoidance and on-line motion adaptation during robotic reproduction.
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