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Abstract

The Severi variety Vd,n of plane curves of a given degree d and exactly n nodes admits a map to the Hilbert
scheme P2[n] of zero-dimensional subschemes of P2 of degree n. This map assigns to every curve C ∈ Vd,n

its nodes. For some n, we consider the image under this map of many known divisors of the Severi variety
and its partial compactification. We compute the divisor classes of such images in Pic(P2[n]) and provide
enumerative numbers of nodal curves. We also answer directly a question of Diaz–Harris [‘Geometry of
the Severi variety’, Trans. Amer. Math. Soc. 309 (1988), 1–34] about whether the canonical class of the
Severi variety is effective.
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1. Introduction

Plane curves are among the most classical objects in algebraic geometry. There is a
solid understanding of them; individually as well as of many of their families. The
family Vd,n parameterising irreducible nodal plane curves of degree d with precisely n
nodes is particularly interesting. This family has been extensively studied and many
of its basic properties are known [3, 4, 8]. A little less explored aspect of this family
Vd,n is the geometry described by the nodes of the curves in it. This note studies this
question.

In many cases, the nodes of the curves in the family Vd,n may simply be in general
position. This often occurs each time the dimension of Vd,n is at least 2n, which is the
dimension of the family of n points on the plane [1]. In other words, the rational map
f ∶ Vd,n ⇢ P2[n] that assigns to each curve C ∈ Vd,n its nodes is dominant. Here P2[n]

stands for the Hilbert scheme of n points on P2. Even in this case, the following is
unknown as far as we are aware: what are the loci in P2[n] that occur as the nodes of
families of irreducible curves? This note answers many cases of this question. Let us
describe the situation precisely.
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We focus on a partial compactification of Vd,n, denoted by W, studied in [3, 4].
Following these two papers, we will call W the Severi variety. This space is smooth
and one can describe readily many divisors in it. Furthermore, if D ⊂ W is an effective
divisor, then f (D) might be a divisor as well. We will compute the divisor classes
in Pic(P2[n]) of such images in the cases when the map f ∶ W ⇢ P2[n] is birational.
This will tell us the classes of divisors along the closure of the family of n points in
general position that occur as nodes of irreducible curves. Let us define the divisors in
W whose image we will compute:

• the locus CP of reduced and irreducible curves of genus g with n nodes containing
a fixed point p;

• the locus NL of reduced and irreducible curves of genus g with n nodes and one
node located on a fixed line L;

• the locus T N of reduced and irreducible curves of genus g with n − 2 nodes and
one tacnode;

• the locus TR of reduced and irreducible curves of genus g with n − 3 nodes and
an ordinary triple point;

• the locus ∆0,1 of reduced curves of geometric genus g − 1 with n + 1 nodes, having
two irreducible components, one of which maps to a line.

All of the classes computed in [3] are contained in a subspace of the Picard group
Pic(W)Q generated by the classes of these five divisors. In order to compute classes of
the images of all divisors from [3], it then suffices to compute the classes of the images
of these five generators. This is what we will do.

In order to state the theorem, we recall the standard basis of the Picard group of
P2[n]. The class H[n] ∈ Pic(P2[n]) represents the subvariety of subschemes of length n
in P2 whose support intersects a fixed line. Similarly, B[n] is the class of the family of
nonreduced subschemes of length n. The proof of the following result is presented in
the next section.

Theorem 1.1. Let W be the Severi variety of curves of degree d and n nodes. Suppose
that the forgetful map f ∶ W ⇢ P2[n], which assigns to a curve its nodes, is birational.
Then the images under f of T N, TR, CP, NL and ∆0,1 have the following classes in
Pic(P2[n]):

f∗(T N) = B[n],
f∗(TR) = 0,

f∗(CP) = (3d − 3)H[n] − 5
2 B[n],

f∗(NL) = H[n],
f∗(∆0,1) = 0.

As a corollary, we will compute the classes in Pic(P2[n]) that come from the
following subvarieties in the Severi variety W (we refer the reader to [3] for a detailed
exposition about them):
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• the locus CU of reduced and irreducible curves of genus g with n − 1 nodes and
one cusp;

• the locus T L of curves tangent to a fixed general line;
• the locus FP of curves with a flex line passing through a fixed general point;
• the locus FL of curves with a flex located somewhere on a fixed general line;
• the locus FN of curves with a flecnode;
• the locus NP of curves such that the tangent line to a branch of a node passes

through a fixed general point;
• the locus HF of curves with a hyperflex;
• the branch locus BRN of the divisor N, in the universal family of W, whose general

point consists of a curve and one of its nodes;
• the branch locus BRT of the divisor T , in the universal family of W, whose general

point consists of a curve and a point on that curve such that the tangent line at that
point passes through a fixed general point;

• the branch locus BRF of the divisor F, in the universal family of W, whose general
point consists of a curve and one of its flexes;

• the canonical divisor KW .

The computations of [3] along with Theorem 1.1 yield the classes in Pic(P2[n]) of the
images of the previous divisors. We defer the proof to the next section.

Notation 1.2. For simplicity in what follows, if D ∈ Pic(W) is a divisor class, then we
will denote its image in the Picard group of the Hilbert scheme Pic(P2[n]) by D instead
of writing f∗(D) all the time.

Corollary 1.3. Let W be the Severi variety and f the forgetful map as in Theorem 1.1.
We have the following classes in Pic(P2[n]):

• CU = (d3 + 2d2 − d − 6)H[n] − ( 5
6 d2 + 5

2 d + 2)B[n];
• TL = 2(3d2 − 6d + 2)H[n] − 5(d − 1)B[n];
• FP = ( 15

2 d3 − 30d2 + 39
2 d + 6)H[n] − 25

4 d(d − 3)B[n];
• FL = 6(3d2 − 6d + 2)H[n] − 15(d − 1)B[n];
• FN = ( 5

2 d3 + 5d2 − 5
2 d − 18)H[n] − ( 25

12 d2 + 25
4 d + 2)B[n];

• NP = 1
2(d3 + 2d2 − d − 4)H[n] − 5

12 d(d + 3)B[n];
• HF = 4(11d3 − 68d2 + 79d − 9)H[n] − 2

3(55d2 − 285d + 132)B[n];
• BRN = (d3 + 2d2 − d − 6)H[n] − 5

6 d(d + 3)B[n];
• BRT = (13d3 − 64d2 + 53d + 12)H[n] − 1

6(65d2 − 255d + 36)B[n];
• BRF = 6(13d3 − 79d2 + 83d + 2)H[n] − (65d2 − 330d + 111)B[n];
• KW = −3H[n].

Diaz and Harris following [3] computed the canonical class of W:

KW = − 3
5 A + 3

5 B + 11
12C − 13

12 ∆,
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where the classes A, B,C, ∆ are defined in the next section. In our present
circumstances, Corollary 1.3 asserts that the image of KW in Pic(P2[n]) is equal to

f∗(KW) = −3H[n] = KP2[n] .

Since this class fails to be pseudo-effective, it follows that KW cannot be effective. This
answers a question in [3, page 10] for the cases of this note.

Corollary 1.4. Let W be the Severi variety with values as in Theorem 1.1. Then KW
is not effective.

We finish this note in Section 3 with an application to enumerative geometry. We
have pushed divisors to the Hilbert scheme; thus, we can now perform intersection
theory on it. We intersect moving curves on P2[n] with the divisor classes we have
computed. These intersection numbers provide enumerative information about the
position of the nodes of irreducible curves.

2. Computations of the divisor classes

In this section we compute the classes in Theorem 1.1 and in Corollary 1.3. Let
(d, n) be integers such that the forgetful map f ∶ W ⇢ P2[n] is birational throughout.
This is true if 6n = d2 + 3d, except for (d,n) = 6,9 (see [1, 9]).

Proof of Theorem 1.1. We note that CP is precisely one of the Severi divisors defined
in [7]. In that paper, the class is computed to be CP = (3d − 3)H[n] − 5

2 B[n].
Straightforwardly, the closure of the image of ∆0,1 is the locus of collections of

points with at least d − 1 collinear points. Since d ≥ 5, this locus is not divisorial.
Thus, ∆0,1 is contracted and the class of its image is 0.

Similarly, the closure of the image of TR is the locus of collections of points
supported on at most n − 2 points. Since this locus is not divisorial in P2[n], TR is
contracted and the class of its image is 0.

The remaining two divisors do map to divisors and have not previously been
computed. Treger [9] proved that the map from the Severi variety to the Hilbert
scheme is birational into its image in our present circumstances. In fact, the map
restricted to each of these two divisors is again birational. Indeed, the map f is regular
along the divisors NL and T N (see [3, page 3]) and the Severi variety W is smooth
along these two divisors. Since containing nodes at general points or on a general
line are independent linear conditions inside the projective space of degree-d curves
(similarly, containing nodes at general points or having a tacnode at a general point
are independent linear conditions inside the projective space of degree-d curves), then
the birational map f over Vd,n extends to a birational map over NL and T N. Thus, the
pushforward class of each divisor is precisely the class of the reduced structure on the
closure of its image.

The closure of the image of T N is precisely the locus of collections of points
supported on at most n − 1 points. This closure is precisely the exceptional divisor
of the Hilbert–Chow map and so T N = B[n].
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Finally, the closure of the image of NL is the locus of collections of points with at
least one of the points on a fixed line. Thus, NL = H[n]. �

Proof of Corollary 1.3. The map f is proper between schemes and birational into its
image [9]. Moreover, it induces a morphism between Picard groups,

f∗ ∶ Pic(W)Q → Pic(P2[n])Q.

Indeed, there is an injective morphism from the Picard group to the Chow group
π ∶ PicQ(W)→ A2n−1(W)⊗Q as the space W is smooth [3]. The map f̃∗ ∶ A2n−1(W)→
A2n−1(P2[n]) is the morphism on Chow groups. Since there is an isomorphism
A2n−1(P2[n]) ⊗ Q ≅Ð→ PicQ(P2[n]), then the claim follows by taking the composition
π ○ f̃∗. Consequently, f∗(αQ +Q′) = α f∗(Q) + f∗(Q′) for any α ∈Q and classes Q,Q′

(see [5, Section 1.4]).
In [3], Diaz and Harris computed the classes of each of the divisors from the

statement of the corollary as linear combinations of the divisors A, B, C, ∆ and ∆0,1.
We have already defined ∆0,1; let us define the rest now. The class ∆ represents the
locus of reduced curves of geometric genus g − 1, having at most two irreducible
components, with n + 1 nodes. The remaining three are defined using divisors from
the universal family C over the Severi variety. The universal family comes equipped
with two projections η ∶ C → P2 and π ∶ C →W. If we let ω be the first Chern class of
the relative dualising class of C over W and D = η∗(c1(OP2(1))), then we can define
A = π∗(D2), B = π∗(D ⋅ω) and C = π∗(ω2).

Using Mathematica and Macaulay2, the divisor classes of the corollary, written in
the basis of A, B, C, ∆ and ∆0,1, can be converted to the basis of T N, TR, CP, NL and
∆0,1. The change of basis is achieved by the following matrix:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 2 4 0
0 0 9 15 0
1 2d − 3 1

6(13d − 9)(d − 6) 1
6(11d2 − 57d + 18) 0

0 −2 −5d + 18 −7d + 18 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The result follows from the linearity of the pushforward map and Theorem 1.1. �

3. Application to enumerative geometry

We may apply the results of Theorem 1.1 and Corollary 1.3 to answer enumerative
questions. To this end, we will consider the classes of closures of images f (D) of
divisors D on the Severi variety W. The intersection of such classes with curves may
occur along the closure, outside the image f (D). In order to avoid this situation, we
will consider moving curves. In other words, curve classes in the Mori cone NE(P2[n])
whose representatives cover an open dense subset of P2[n]. We know a geometric
description of some such curves due to [2, 6].

Let us define two moving curves in P2[n]. Let C1 be a curve in P2[n] defined as
the collection of points containing n − 1 general fixed points and whose final point
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Table 1. Enumerative numbers from intersecting the classes of moving curves C1 and C2 with divisor
classes computed in Theorem 1.1 and Corollary 1.3.

C1 C2

T N 0 (r − 1)(r − 2) − 2 + 2n
TR 0 0
CP 3d − 3 (3d − 3)r − 5

2 ((r − 1)(r − 2) − 2 + 2n)
NL 1 r
∆0,1 0 0
CU d3

+ 2d2
− d − 6 (d3

+ 2d2
− d − 6)r − (

5
6 d2

+
5
2 d + 2)((r − 1)(r − 2) − 2 + 2n)

T L 2(3d2
− 6d + 2) 2(3d2

− 6d + 2)r − 5(d − 1)((r − 1)(r − 2) − 2 + 2n)
FP 3

2 (5d3
− 20d2

+ 13d + 4) (
15
2 d3

− 30d2
+

39
2 d + 6)r − 25

4 d(d − 3)((r − 1)(r − 2) − 2 + 2n)
FL 6(3d2

− 6d + 2) 6(3d2
− 6d + 2)r − 15(d − 1)((r − 1)(r − 2) − 2 + 2n)

FN 1
2 (5d3

+ 10d2
− 5d − 36) (

5
2 d3

+ 5d2
−

5
2 d − 18)r − (

25
12 d2

+
25
4 d + 2)((r − 1)(r − 2) − 2 + 2n)

NP 1
2 (d3

+ 2d2
− d − 4) 1

2 (d3
+ 2d2

− d − 4)r − 5
12 d(d + 3)((r − 1)(r − 2) − 2 + 2n)

HF 4(11d3
− 68d2

+ 79d − 9) 4(11d3
− 68d2

+ 79d − 9)r − 2
3 (55d2

− 285d + 132)((r − 1)(r − 2) − 2 + 2n)
BRN d3

+ 2d2
− d − 6 (d3

+ 2d2
− d − 6)r − 5

6 d(d + 3)((r − 1)(r − 2) − 2 + 2n)
BRT 13d3

− 64d2
+ 53d + 12 (13d3

− 64d2
+ 53d + 12)r − 1

6 (65d2
− 255d + 36)((r − 1)(r − 2) − 2 + 2n)

BRF 6(13d3
− 79d2

+ 83d + 2) 6(13d3
− 79d2

+ 83d + 2)r − (65d2
− 330d + 111)((r − 1)(r − 2) − 2 + 2n)

varies on a general fixed line. In order to define the second moving curve, let us
first write n = 1

2 r(r + 1) + s with 0 ≤ s ≤ r. With this notation, a general Γ ∈ P2[n]

lies on a smooth curve C of degree r. Let us consider the curve C2 induced in
P2[n] by moving Γ in a general pencil in the linear system ∣OC(Γ)∣. In fact, if
s/r ∈ Φ = {s/r ∶ (1 +

√
5)s > 2r} ∪ { 0

1 ,
1
2 ,

3
5 ,

8
13 , . . .}, then [6] shows that these curves,

C1 and C2, generate the moving cone of curves.
We may now intersect the curves C1,C2 with the divisor classes in Theorem

1.1 and Corollary 1.3. The following intersection numbers make the computations
straightforward:

C1 ⋅ H = 1, C1 ⋅ B = 0,

and
C2 ⋅ H = r, C2 ⋅ B = 2g(C) − 2 + 2n = (r − 1)(r − 2) − 2 + 2n.

Table 1 lists the intersection numbers of C1 and C2 with each of the divisors from the
theorem and corollary, each of which is the answer to a distinct enumerative question.
Note that the conditions on d to make the forgetful map dominant guarantee that d is
divisible by three, which forces all of these values to be integers.

Example 3.1. Take Γ ∈ P2[18] generic and C a smooth curve of degree five containing
Γ. The moving curve C2 is induced in P2[18] by letting Γ vary in a general pencil
in ∣OC(Γ)∣. The number of times that 18 points in this pencil are the nodes of an
irreducible curve of degree nine with a hyperflex is C2 ⋅ HF = 2252.
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