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We consider axially uniform, two-phase flow through a rigid curved tube in which
a fluid (air) core is surrounded by a film of a second, immiscible fluid (water): a
simplified model for flow in a conducting airway of the lung. Jensen (1997) showed
that, in the absence of a core flow, surface tension drives the system towards a
configuration in which the film thickness tends to zero on the inner wall of the bend.
In the present work, we demonstrate that the presence of a core flow, driven by
a steady axial pressure gradient, allows the existence of steady states in which the
film thickness remains finite, a consequence of the fact that the tangential stresses
at the interface, imposed by secondary flows in the core, can oppose the surface-
tension-driven flow. For sufficiently strong surface tension, the steady configurations
are symmetric about the plane containing the tube’s centreline, but as the surface
tension decreases the symmetry is lost through a pitchfork bifurcation, which is closely
followed by a limit point on the symmetric solution branch. This solution structure
is found both in simulations of the Navier–Stokes equations and a thin-film model
appropriate for weakly curved tubes. Analysis of the thin-film model reveals that the
bifurcation structure arises from a perturbation of the translational degeneracy of the
interface location in a straight tube.

Key words: pulmonary fluid mechanics, thin films

1. Introduction
The bifurcating network of airways in the lung is lined with a liquid film that

serves to protect and hydrate the airway epithelium and is also involved in various
mechanisms for the removal of foreign particles. The effective biological function of
the lining depends on its distribution throughout the airways, which is influenced
by surface tension at the air–liquid interface and the geometry of the airways.
Understanding the respective roles of these physical influences is, therefore, important
in order to obtain a complete understanding of the physiology and pathology of the
lung.

For a straight tube of circular cross-section in the absence of gravity, a static,
uniform film is a trivial equilibrium configuration. However, this solution has a
translational degeneracy because the circular interface can be located anywhere
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(b)(a)

FIGURE 1. (Colour online available at journals.cambridge.org/flm) Principal mechanisms
driving axially uniform flows within a liquid film that surrounds an air core in a curved
tube: (a) differences in mean interface curvature between the regions near the inner (I) and
outer (O) wall of the curved tube drive a surface-tension-induced flow towards the outer wall;
(b) secondary flows in the core drive a flow towards the inner wall.

within the tube’s cross-section. The introduction of centreline curvature breaks the
degeneracy, but in general a uniform film is no longer an equilibrium state: if the
tube’s centreline is curved, the mean curvature of an air–liquid interface bounding a
film of constant thickness varies around the perimeter within the tube’s cross-section.
Assuming a constant air (core) pressure, the corresponding surface-tension-induced
pressure gradient within the fluid film drives a flow towards the outer wall of the
bend: see figure 1(a). Hence, the air core moves towards the inner wall. Jensen (1997)
considered the evolution of a thin film of incompressible Newtonian fluid that lines a
uniform, weakly curved circular tube, and showed that the film approaches a ‘dry spot’
solution in infinite time. In the late stages of the evolution, the inner wall remains wet
and is covered by a vanishingly thin fluid layer, while a near-equilibrium lobe forms
on the outer wall. Jensen’s study neglected the influence of any air flow on the liquid
film, however.

In general, axially uniform flow, driven by a steady pressure gradient along a curved
tube, is accompanied by secondary flow within the tube’s cross-section, and Dean
(1928) determined the direction of the secondary flows across the centre of the tube
to be from the inner to the outer wall of the bend (irrespective of the direction of the
axial flow), as shown in figure 1(b). The secondary flows within the air core exert a
tangential shear stress on the air–liquid interface in the cross-sectional plane, which
drives the lining fluid towards the inner wall of the bend. The redistribution of a thin
liquid film by azimuthal shear stresses in a straight tube was considered by Band
et al. (2009). They showed that for a prescribed interfacial shear-stress distribution
corresponding to the secondary flows calculated by Dean (1928), an initially uniform
film of incompressible Newtonian fluid also approaches a ‘dry spot’ solution in infinite
time; but in this case, the lobe forms on what would be the inner wall.

In the present contribution, we consider the interaction of these two competing
mechanisms by considering the fully developed, co-axial flow of two incompressible,
immiscible, Newtonian fluids through a uniformly curved tube. We formulate the
general problem in § 2.1 in terms of two Navier–Stokes equations coupled by a
common interface. In § 2.2 we also derive a simplified evolution equation for the
thickness of the fluid film in the limit in which the film is thin and the curvature
of the tube is weak. In § 3, we present results from numerical simulations of the
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FIGURE 2. (Colour online) Sketch of the problem: a uniformly curved tube has a circular
cross-section of radius a and contains a layer of incompressible Newtonian fluid of thickness
H0 surrounding a core that consists of a second immiscible, incompressible Newtonian fluid.
The tube’s centreline is planar and has a radius of curvature R. A curvilinear coordinate
system is defined by plane polar coordinates (r, θ) within the tube’s cross-section and an axial
coordinate s along the tube’s centreline.

system of coupled Navier–Stokes equations for a set of parameters, appropriate for
the tenth-generation conducting airways of the lung. In § 4, we demonstrate that the
thin-film model reproduces the salient features of the system and use it to examine the
origin of the observed behaviour in detail. Finally, we draw our conclusions in § 5.

2. The model
We consider the co-axial flow of two immiscible, incompressible Newtonian fluids

within a curved tube of radius a whose centreline is planar and has curvature 1/R.
An inner (core) fluid (fluid 1) is surrounded by a film of an outer fluid (fluid 2) as
shown in figure 2. The flow is driven by a constant pressure gradient G∗ along the
curved tube. In what follows, subscripts will be used to distinguish the two fluids
and a superscript ∗ will be used to indicate dimensional quantities, as opposed to
their dimensionless equivalents, where required. Throughout this paper we neglect the
influence of gravity and assume that the flow is fully developed so that the fluid
velocities and the pressure gradient are independent of the axial coordinate.

2.1. Navier–Stokes model
We denote the velocities and pressures in the two fluids by u∗i and p∗i , respectively,
and assume that the interface between the two fluids (of mean curvature κ∗) is
parametrised by a time-dependent position vector, r∗. We non-dimensionalise all
quantities using the density and viscosity of the core fluid, ρ1 and µ1, respectively,
the magnitude of the imposed pressure gradient, G∗, and the tube radius, a. Thus,
r∗ = a r, p∗i = G∗a pi, u∗i = (G∗a2/µ1) ui, κ∗ = (1/a) κ , and we non-dimensionalise time
by t∗ = (µ1/(G∗a)) t.

The flow in each of the two fluids is then governed by the non-dimensional
Navier–Stokes equations

ρi

ρ1
Re

(
∂ui

∂t
+ ui · ∇ui

)
= ŝ−∇pi + µi

µ1
∇2ui, ∇ · ui = 0, (2.1)

where we have introduced the driving pressure gradient as a body force, acting in the
direction of the unit vector ŝ along the tube’s curved centreline.

The flow is subject to a no-slip boundary condition, u2 = 0, at the tube wall. At the
interface we impose the continuity of velocity, as well as the kinematic and dynamic
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boundary conditions,

u1 = u2, (2.2)

u1 · n̂= ∂r
∂t
· n̂, (2.3)

(Σ1 −Σ2) · n̂= κ

Ca
n̂, (2.4)

where n̂ is a unit vector normal to the interface and directed into the core, and the
non-dimensional stress tensors Σi =Σ∗i /(G

∗a) are defined by

Σi =−pi I+ µi

µ1

[
∇ui + (∇ui)

T
]
. (2.5)

The governing parameters are the Reynolds number Re = ρ1G∗a3/µ2
1, which is

a dimensionless measure of the driving pressure gradient; the capillary number
Ca = G∗a2/γ , which reflects the magnitude of the driving pressure gradient (and
hence secondary flows) relative to the constant surface tension, γ , of the interface;
and the ratios of physical properties of the two fluids: the viscosity ratio µ2/µ1 and
the density ratio ρ2/ρ1. The curvature ratio δ = a/R enters the problem through the
domain geometry.

2.2. Thin-film model
Under normal physiological conditions, the liquid lining in the pulmonary airways is
relatively thin and so we shall also employ a thin-film model to describe its evolution.
Suppose the typical thickness of the lining fluid is H0. We define ε = H0/a, and
consider the case where 0< ε� 1. In the absence of both centreline curvature and the
core fluid, the dimensional time scale, T ∗, governing the film rearrangement follows
from a balance between the azimuthal viscous shear stress gradient of O(µ2U /(a2ε2)),
and the driving azimuthal pressure gradient of O(εγ /a2), where the velocity scale is
given by U = a/T ∗. Hence, T ∗ = 3µ2a/(ε3γ ) (where the factor of 3 is introduced
for later convenience). In terms of the non-dimensionalisations given in § 2.1, the
appropriate dimensionless time scale is T = (G∗a/µ1)T ∗ = 3Caµ2/(ε

3µ1). We set
t =T t and assume that T � 1 in the analysis that follows.

We choose a curvilinear coordinate system (r, θ, s), where (r, θ) are polar
coordinates in the plane of cross-section and s is the distance along the centreline,
as shown in figure 2. The origin of the polar coordinate system is located on the tube’s
centreline and θ = 0 is chosen to correspond to the outer wall of the bend; again see
figure 2. We denote the fluid velocity components in the directions of the unit vectors
(r̂, θ̂, ŝ) by (Ui,Vi,Wi), respectively, and the pressure by Pi (= pi). The interfacial
position is given by r = 1 − εH(θ, t), and H is assumed to be of O(1). To derive an
evolution equation for the interfacial position, we make the further assumption that the
tube is weakly curved (δ� 1) and then solve for the flows in both the core and thin
film in turn, coupling them via the interfacial boundary conditions.

2.2.1. Core-fluid governing equations
Assuming fully developed flow in a weakly curved tube, we neglect terms of O(δ)

in the Navier–Stokes equations, but assume that δ Re remains finite as δ→ 0. These
standard assumptions lead to retention of the centrifugal force terms (proportional
to W2

1 ) at leading order in the radial and azimuthal equations below ((2.7) and
(2.8)), which drive the secondary flows. The governing equations in the core are
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then (Pedley 1980)

∂U1

∂r
+ U1

r
+ 1

r

∂V1

∂θ
= 0, (2.6)

Re

(
1
T

∂U1

∂t
+ U1

∂U1

∂r
+ V1

r

∂U1

∂θ
− V2

1

r
− δW2

1 cos θ
)

=−∂P1

∂r
− 1

r

∂

∂θ

(
1
r

(
V1 + r

∂V1

∂r
− ∂U1

∂θ

))
, (2.7)

Re

(
1
T

∂V1

∂t
+ U1

∂V1

∂r
+ V1

r

∂V1

∂θ
+ U1V1

r
+ δW2

1 sin θ
)

=−1
r

∂P1

∂θ
+ ∂

∂r

(
1
r

(
V1 + r

∂V1

∂r
− ∂U1

∂θ

))
, (2.8)

Re

(
1
T

∂W1

∂t
+ U1

∂W1

∂r
+ V1

r

∂W1

∂θ
+ δW1(U1 cos θ − V1 sin θ)

)
= 1+ 1

r

∂

∂r

(
r
∂W1

∂r

)
+ 1

r2

∂2W1

∂θ 2
. (2.9)

Continuity of velocity at the fluid interface r = 1− εH implies that, to leading order in
ε,

U1 = V1 =W1 = 0 at r = 1, (2.10)

because the velocity components in the liquid lining are much smaller than those in
the core fluid; the liquid-lining velocity scales are given in § 2.2.2 below, and their
validity may be confirmed a posteriori. Neglecting the time-dependent inertia terms
(because T � 1), we seek solutions in powers of δ Re. The flow in the core is then
the standard Dean flow (Dean 1928),

U1 = δ Re2932
(1− r2)2(4− r2) cos θ + · · · , (2.11)

V1 =− δ Re2932
sin θ(1− r2)(4+ 7r4 − 23r2)+ · · · , (2.12)

W1 = 1
4
(1− r2)+ · · · . (2.13)

2.2.2. Lining-fluid governing equations
In addition to surface-tension-generated pressure gradients, the flow in the thin film

is driven by the tangential stresses at the interface generated by the core flow, and
we choose the scale for the velocities in the thin film from the tangential stress
balance at the interface. From (2.12) the azimuthal core velocity is of O(δ Re) with
corresponding tangential stresses of O(µ1δ Re/a). Denoting the azimuthal velocity
scale in the thin film by V , the tangential stress is given by µ2V /(aε) and balancing
these stresses gives the azimuthal velocity scale in the thin film as V ∼ εµ1δ Re/µ2.
Similarly, the axial velocity scale is chosen to ensure continuity of tangential stress
at the interface and is εµ1/µ2. The continuity equation then gives the radial velocity
scale as ε2µ1δ Re/µ2. The pressure scale is chosen to ensure a balance between the
azimuthal pressure gradient and viscous shear stress, and is O(δRe/ε). Motivated by
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these considerations, we rescale the variables as follows:

r = 1− εr, (U2,V2,W2)= µ1ε

µ2
(εδ ReU2, δ ReV2, W2), P2 = δ Re

ε
P2. (2.14)

We substitute these scalings into the equivalent of (2.6)–(2.9) for the lining fluid, and
make the usual lubrication assumption that we can neglect inertia, which corresponds
to the reduced Reynolds number (which here is given by δ Re2ε3µ2

1/µ
2
2) being small

(Oron, Davis & Bankoff 1997; Myers 1998). Retaining leading-order terms (with
respect to ε), the reduced governing equations are then

−∂U2

∂r
+ ∂V2

∂θ
= 0,

∂P2

∂r
= 0, −∂P2

∂θ
+ ∂

2V2

∂r2 = 0,
∂2W2

∂r2 = 0. (2.15a–d)

These equations must be solved subject to U2 = V2 =W2 = 0 on r = 0. We must also
apply the boundary conditions on the interface, located at r = 1 − εH, or r = H. The
tangential components of the dynamic boundary condition (2.4) become

−∂W2

∂r

∣∣∣∣
r=H

= ∂W1

∂r

∣∣∣∣
r=1

, −δ Re ∂V2

∂r

∣∣∣∣
r=H

= r
∂

∂r

(
V1

r

)
+ 1

r

∂U1

∂θ

∣∣∣∣
r=1

. (2.16a,b)

The normal component of the dynamic boundary condition (2.4) gives that

P2 =− 1
128C

(
1
ε
+ δ
ε

cos θ + H + ∂
2H

∂θ 2

)
(2.17)

where

C = Ca δ Re

128ε2
, (2.18)

is the thin-film capillary number, and characterises the ratio of viscous effects to
surface tension effects (the factor of 1/128 is introduced for later convenience).
Finally, the kinematic condition (2.3) becomes

U2 =− 1
384C

∂H

∂t
− V2

∂H

∂θ
at r = H. (2.19)

2.2.3. Thin-film equation
Equations (2.15b,c), together with (2.16b) and the no-slip condition, give

V2 = 1
2
∂P2

∂θ
r(r − 2H)+ 1

192
r sin θ, (2.20)

where P2 is given by (2.17). Integrating equation (2.15a) with respect to r between 0
and H, applying the no-slip and the kinematic condition (2.19) results in the following
evolution equation for the film thickness:

∂H

∂t
+ ∂Q

∂θ
= 0, (2.21)

where the flux Q is

Q=
(
−δ
ε

sin θ + ∂H

∂θ
+ ∂

3H

∂θ 3

)
H

3 + C sin θH
2
. (2.22)

The terms multiplied by δ/ε and C represent the effects of centreline curvature and
the azimuthal shear stresses, respectively.
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3. Navier–Stokes simulations
We solve the governing equations (2.1)–(2.4) in an axisymmetric, cylindrical polar

coordinate system using an ALE-based finite element method, implemented within
the software library oomph-lib (Heil & Hazel 2006). The computational domain,
the cross-section of the tube, is discretised using P+2 P−1 (Crouzeix–Raviart) triangular
elements (see e.g. Gresho & Sani 1998). These elements approximate the velocity
components using globally continuous quadratic interpolation, with cubic bubble
enrichment on each element to ensure LBB stability (see the discussion in Gresho
& Sani 1998, pp. 593–613). We employ a discontinuous, piecewise linear interpolation
for the fluid pressure to allow for the pressure jump across the curved interface
between the two fluids. The initial mesh is created using Triangle (Shewchuk 1996),
followed by an adjustment of the nodal positions to respect the curvilinear boundaries,
such that the interface between the two fluids coincides with the edges between
adjacent elements. During the computations, the position of the nodes within the
finite element mesh is continuously updated by treating the mesh as a pseudo-elastic
solid body. The unknown nodal positions are determined by solving the equations of
large-displacement elasticity, subject to the kinematic boundary condition (2.3), which
is imposed using Lagrange-multiplier-like variables to apply a normal force on the
pseudo-solid along the interface; see Cairncross et al. (2000).

The choice of discretisation ensures that the kinematic boundary condition (2.3) and
the constraint on the continuity of the velocity (2.2) at the interface are automatically
satisfied. The dynamic boundary condition (2.4) is directly incorporated into the weak
form of the Navier–Stokes equations, and, as usual, we simplify the curvature term via
the surface divergence theorem (Ruschak 1980). The flow is enclosed, which means
that a reference pressure must be specified, and we set a single pressure value within
the fluid film to be zero. In unsteady calculations, conservation of mass ensures that
the volume of fluid does not change during the time evolution; it is set by the initial
condition. For steady calculations, the volume of fluid contained in the core region
(or, equivalently, in the liquid lining) must be imposed explicitly, which is achieved by
exploiting the (mathematically equivalent) freedom to specify the value of a pressure
at a single point within the core region. We use the volume constraint as the equation
that determines the selected pressure value.

In time-dependent simulations the time-derivatives are discretised using a second-
order accurate backward differentiation formula (BDF2). After a specified number of
time steps, typically two or three, the domain is re-meshed to avoid the occurrence
of excessively distorted elements, and the solution is transferred to the new mesh
by projection. The size of the elements in the new mesh is guided by error
estimates obtained from the ZZ flux-recovery error estimator (Zienkiewicz & Zhu
1992) to ensure that the error remains equipartitioned between the elements, whilst
also maintaining element quality.

The algorithm is found to be very robust and allows us to reliably compute a wide
range of solutions with film thicknesses down to O(10−3). The typical number of
elements used is between 2000 and 7000; the greater number of elements is required
when the film becomes relatively thin. The accuracy of the computational results
was assessed by repeating selected computations using a finer error tolerance in the
adaptive remeshing step. This resulted in an approximate doubling of the number of
elements but did not change the results to within graphical accuracy. Further validation
is provided by the comparisons against the predictions from the thin-film model
discussed below.
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I O

FIGURE 3. Contours of axial velocity (lower half) and secondary-flow streamlines (upper
half), computed by direct integration of the velocity field, for the symmetric steady state
obtained after time evolution from an initial film thickness ε = 0.1 for Ca = 0.1, Re = 100,
δ = 0.1, ρ2/ρ1 = 830 and µ2/µ1 = 55. The region occupied by the lining fluid is shaded.

3.1. Parameter values
We shall concentrate on physical parameters appropriate for the conducting airways
of the lungs: an air core surrounded by a film of aqueous liquid. Using physical
properties for air and water at a nominal temperature of 20 ◦C gives ρ2/ρ1 ≈ 830
and µ2/µ1 ≈ 55. We present results for a Reynolds number of 100 and a curvature
ratio of δ = 0.1, appropriate for an airway in the tenth generation of the lung (Pedley
1977), although we find that the qualitative behaviour of the system is unchanged
under variations in δ and Re; see § 3.3. The capillary number Ca = Reµ2

1/(ρ1γ a),
and in a tenth-generation airway Ca ≈ 10−5 Re, assuming a surface tension of
γ = 7.0 × 10−2 N m−1, appropriate for water. The presence of pulmonary surfactant
can reduce the surface tension by almost two orders of magnitude, however, giving a
nominal range of 10−3 < Ca< 10−1 at Re= 100.

3.2. Results
Following Jensen (1997), we first consider the system’s time evolution from an initial
(non-equilibrium) state, in which the fluid is at rest and the lining fluid is contained
in a film of uniform thickness ε = 0.1, after the impulsive application of the driving
axial pressure gradient at t = 0. The simulations demonstrate that for sufficiently small
values of the capillary number, Ca, the system evolves towards a steady state in which
the film thickness remains finite. To obtain the actual steady solution we used the flow
field obtained at large times as the initial guess for the solution of the steady equations
by Newton’s method.

A representative steady solution is illustrated in figure 3, which shows contours of
the axial velocity (lower half) and streamlines of the secondary flow (upper half) for a
capillary number of Ca = 0.1. The secondary flow field is symmetric about the tube’s
horizontal line of symmetry and the air core is located near the inner bend of the
tube. The flow in the air core is approximately the same as the flow in a curved tube
with the appropriate (smaller) radius and radius of curvature. Although the boundary
condition at the interface is one of tangential slip, rather than no slip, the velocities at
the interface between the fluids are sufficiently small that their effect on the flow is
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Δh
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0.05 0.10 0.15 0.20 0.25 0.30 0.35

Ca
0 0.40

FIGURE 4. Symmetric and asymmetric steady states represented by the difference between
the film thickness on the inside (θ = π) and outside (θ = 0) of the bend, 1h, plotted against
capillary number, Ca. The solid lines denote stable solutions; the dotted line denotes solutions
that are stable to symmetric perturbations only; the dashed line denotes solutions that are
unstable. Cross-sections of the solution are shown at Ca = 0.02 (lower branch), Ca = 0.18
(near limit point), Ca = 0.13 (upper branch) at Ca = 0.36 (asymmetric branch) in which the
liquid film is shaded black. The two conjugate solutions are shown at Ca = 0.36 and are
related by reflection about the horizontal line of symmetry of the cross-section. The other
parameters are fixed at Re= 100, δ = 0.1, ε = 0.1, ρ2/ρ1 = 830, µ2/µ1 = 55.

minimal. Indeed, (2.10) indicates that the velocities on the interface are zero to leading
order within the thin-film model. The secondary flow in the liquid film consists
of two symmetric recirculation zones, but the magnitude of the secondary flows is
approximately 1000 times smaller than that in the core. The liquid film has a finite
thickness along the entire perimeter of the tube, indicating that the azimuthal shear
stress induced by the secondary flows is strong enough to counteract the tendency of
surface tension to redistribute the fluid in the liquid film towards the outer wall.

Having obtained a steady solution at a fixed value of Ca, we use continuation to
extend the steady solution branch. Figure 4 shows the behaviour of the computed
solutions, characterised by the difference between the film thicknesses on the inner
(θ = π) and outer (θ = 0) walls, 1h, as a function of the capillary number. At small
capillary numbers, the solid part of the solution curve represents solutions for which
surface tension is so strong that most of the fluid in the liquid lining is driven
towards the outside of the bend, resulting in 1h < 0. An increase in capillary number
corresponds to a reduction in surface tension which allows the azimuthal shear stresses
to redistribute more and more fluid towards the inner wall, resulting in an increase
in 1h with Ca. The steady symmetric solutions exist for a limited range of Ca and
we find a limit point at Ca ≈ 0.1823, close to the point where the air–liquid interface
is approximately centred within the cross-section and 1h ≈ 0. The dashed line in
figure 4 represents further (unstable) steady solutions. Along this solution branch the
air core continues to move towards the outer wall and appears to approach a solution
with zero film thickness on the outer wall at finite capillary number.

In addition, we find a branch of asymmetric solutions that emanates from a
supercritical pitchfork bifurcation at Ca ≈ 0.1816, just before the limit point. Thus,
increasing Ca beyond the limit point causes the air core to move towards the outer
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I IO O

(a) (b)

FIGURE 5. Contours of axial velocity (a) and secondary-flow streamlines (b) for the
asymmetric steady state at Ca = 0.23 with ε = 0.1, Re = 100, δ = 0.1, ρ2/ρ1 = 830 and
µ2/µ1 = 55. The region occupied by the lining fluid is shaded.

wall of the tube but also away from the tube’s horizontal line of symmetry. There are
two conjugate solution branches: one in which the core moves up and the other in
which it moves down. Since both solutions have the same value of 1h (which only
characterises the core’s horizontal position within the tube’s cross-section) they cannot
be distinguished by the plot in figure 4.

A representative asymmetric solution at Ca = 0.23 is illustrated in figure 5, again
showing contours of axial velocity (figure 5a) and secondary flow streamlines
(figure 5b). The air core is located nearer the lower wall, but the flow within the
core is not significantly changed from that of the symmetric solution shown in figure 3.
The secondary flow within the fluid film is somewhat different from that of the
symmetric solution, however, with a single asymmetric recirculation zone above the
core and streamlines that completely encircle the core, indicating the presence of a net
azimuthal flow around the film.

The (inferred) stability of the various steady solutions is confirmed by computing
the system’s time evolution after a perturbation to the steady state. The symmetric
solutions on the lower branch, and the asymmetric solutions that emerge from the
pitchfork bifurcation, are indeed stable. In the small region between the pitchfork
bifurcation and the limit point, 0.1816 . Ca . 0.1823, indicated by the dotted line in
figure 4, the symmetric solution is stable to symmetric perturbations, but unstable to
asymmetric perturbations. Beyond the limit point, the symmetric solutions are unstable
to any form of perturbation, and the system evolves towards a solution in which a dry
spot appears to develop on the outer wall.

3.3. Parameter studies
The steady solution structure is robust and is qualitatively unchanged under variations
in Re, film thickness, ε, and tube curvature, δ. Increasing Re, reducing ε or increasing
δ all lead to increases in the magnitude of the secondary flows, which shifts the entire
solution structure to the left because relatively higher surface tension (lower Ca) is
required to balance the increased tangential stresses. In order to understand the origin
of the solution structure we next examine the thin-film model developed in § 2.2,
which is sufficiently simple to facilitate asymptotic investigation.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

34
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.346


On the liquid lining in fluid-conveying curved tubes 223

4. Analysis of the thin-film model
4.1. Comparison with Navier–Stokes simulations

We first demonstrate that the thin-film model developed in § 2.2 does actually
reproduce the key features observed in the Navier–Stokes simulations. Our first
observation is that the thin-film equation (2.21) has an obvious steady solution in
which the film has a constant scaled thickness H = εC /δ. For a given non-dimensional
film thickness ε and curvature δ, this solution is realised for a scaled capillary number
C = δ/ε. To compute steady solutions at other capillary numbers we solved the steady
equation

S (H,Q)=
(
−δ
ε

sin θ + dH

dθ
+ d3H

dθ 3

)
H

3 + C sin θH
2 − Q= 0 (4.1)

by representing H using a Fourier expansion,

H(θ)=
Nf∑
j=0

H
[c]
j cos( jθ)+

Nf∑
j=1

H
[s]
j sin( jθ), (4.2)

and determining the 2Nf + 2 unknown coefficients (H
[c]
0 , . . . ,H

[c]
Nf
,H
[s]
1 , . . . ,H

[s]
Nf
,Q)

from the solution of the nonlinear equations∫ 2π

0
S (H,Q) cos( jθ) dθ = 0 for j= 0, . . . ,Nf , (4.3)

∫ 2π

0
S (H,Q) sin( jθ) dθ = 0 for j= 1, . . . ,Nf , (4.4)

and the constraint ∫ 2π

0
H dθ = 2π, (4.5)

which ensures that the volume of fluid in the liquid film is conserved. The branch
of steady solutions is then computed by continuation from the constant-film-thickness
solution.

Figure 6 shows a comparison between the steady solution branches computed from
simulations of the Navier–Stokes equations and thin-film model for ε = δ = 0.01
and Re = 100. We observe excellent qualitative agreement between the bifurcation
structures and reasonable quantitative agreement; the relative error in the critical
capillary number at the pitchfork bifurcation is approximately 3 %.

4.2. The stability of the symmetric steady states
Next we employ the thin-film model to assess the stability of the symmetric steady
states that exist for C < δ/ε. We use the moving-mesh scheme described and validated
in Band et al. (2009), which is a modified version of the MOVCOL4 scheme developed
by Russell, Williams & Xu (2007). Figures 7(a) and 7(b) illustrate the evolution of
the film thickness H(θ, t) for C = 0.01 and δ/ε = 1, starting from an initial condition
close to the stable (lower) symmetric solution branch. The solid lines show the film
thickness at t = 10n for n = 0, 1, . . . , 6; we note that the profiles for t = 106 and
t = 107 (not shown) are indistinguishable. The film evolves towards a steady state in
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FIGURE 6. Steady solutions of the Navier–Stokes equations (dashed line) and thin-film
model (solid line) represented by the difference between the film thickness on the inside
and outside of the bend, 1h, plotted against capillary number, Ca. The inset shows a detail of
the solution structure (computed with the thin-film model) near the limit point. The markers
identify (from left to right) the axisymmetric solution, the bifurcation to the asymmetric
solution and the limit point on the symmetric solution branch. The other parameters are fixed
at Re= 100, δ = ε = 0.01, ρ2/ρ1 = 830 and µ2/µ1 = 55.

which the film thickness is finite. The film thickness is greatest on the outer wall
(at θ = 0) and decreases in the azimuthal direction until a sharp local minimum near
θ ≈ 4π/5; beyond this minimum the film thickness increases rapidly and then remains
approximately constant on the inner wall (in the vicinity of θ = π).

Figures 7(c) and 7(d) illustrate the system’s behaviour for the same value of δ/ε
computed using the same scheme, but for an initial condition close to the end of the
unstable (upper) solution branch at C = 0.77104; we note that the profiles for t = 100

and t = 101 are indistinguishable. In this case the film thins on the outer wall with a
spatial structure similar to the one observed above: in the vicinity of θ = 0 the film
thickness only varies very gently; this region is bounded by a sharp local minimum at
θ ≈ π/30 beyond which the film thickness increases towards its maximum on the inner
wall (at θ = π). However, in this case, the film continues to thin and appears to evolve
towards a dry spot on the outer wall.

To explain the difference in the system’s behaviour on the two solution branches,
we consider the evolution of the film thickness on the outer (or inner) wall when
H(θ = 0, t)� 1 (or H(θ = π, t)� 1). Given that the numerical simulations show that
in the thin-film regions the film thickness only varies very gently, we neglect the
spatial derivatives in the flux (2.22) and approximate the governing equation (2.21) by

dH

dt
=±

(
δ

ε
H

3 − C H
2
)
, (4.6)

where the plus (minus) sign applies on the outer (inner) wall where θ = 0 (θ = π).
Hence, if a steady state exists the film thickness on the outer (or inner) wall is either
given by Hunif = C ε/δ or by the dry-spot solution H = 0. The film thickness Hunif is
shown by the horizontal dot-dashed line in figure 7(a).
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FIGURE 7. Time evolution of the thin-film equation (2.21) for δ/ε = 1 with symmetry
boundary conditions at θ = 0, π. (a,b) C = 0.01 (Ca = 0.000128), starting from an
initial condition close to the stable (lower) symmetric solution branch in figure 6. (c,d)
C = 0.77104 (Ca = 0.00987), starting from the initial condition close to the unstable
(upper) symmetric solution branch in figure 6. (a,c) Film thickness H(θ, t) for t = 10n

for n = 0, . . . , 6. (b,d) Time evolution of the minimum film thickness (solid) and the film
thickness on the outer (b) or inner (d) wall (dashed). The horizontal dot-dashed line in (a)
shows the theoretical prediction for the steady-state film thickness, Hunif ; the dashed line
shows the shape of the steady lobe predicted by (4.9).

To assess the stability of these solutions we note that, for sufficiently thin films, the
second term on the right-hand side of (4.6) is greater in magnitude than the first. A
straightforward stability analysis based on the approximate equation (4.6) demonstrates
that steady solutions on the upper branch (where H � 1 on the outer wall) are
unstable; in particular, negative perturbations to the steady finite-thickness solution
H = Hunif result in continued thinning of the film with H = O(1/t) as t→∞, i.e. the
evolution is towards a dry spot and the asymptotic structure is the same as in the
case examined by Band et al. (2009). Conversely, perturbations to the steady solution
on the lower solution branch (where H� 1 on the inner wall) decay and the system
returns to the finite-film thickness solution, H→ Hunif as t→∞.

4.3. The structure of the steady symmetric solution for C � 1
Even though the presence of the azimuthal shear stress generated by the core flow
results in a fundamental change to the behaviour found by Jensen (1997) in the
case C = 0, there remain certain similarities to the present case C > 0 on the stable
symmetric branch of solutions. In particular, while the film thickness decreases (either
to zero or towards a finite value) on the inner wall, the fluid lining the outer wall
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redistributes to form a steady lobe of relatively large thickness. For sufficiently small
values of the interfacial shear stress (small values of C ) the lobe must be bounded by
an interface of (approximately) constant mean curvature. Hence for C � 1, we expect
the steady film thickness in the region occupied by the lobe to be well approximated
by H = h(θ), where h(θ) satisfies

d3h

dθ 3
+ dh

dθ
− δ
ε

sin θ = 0. (4.7)

We follow Jensen (1997) and assume that the symmetric lobe occupies a finite region
| θ |< θ∗, meeting the wall at θ = θ∗ with zero apparent contact angle, and that the
entire volume of fluid is contained within the lobe. The shape of the lobe can then be
determined by solving (4.7) in the region 0 6 θ 6 θ∗, subject to the constraints

dh

dθ
(0)= h(θ∗)= dh

dθ
(θ∗)= 0 and

∫ θ∗

0
h(θ) dθ = π. (4.8)

The solution is given by

h(θ)= δ

2ε
(cos θ∗ + θ∗cosec θ∗ − (1+ θ∗cot θ∗) cos θ − θ sin θ), (4.9)

where θ∗ is the unique root of the equation

θ∗ cos θ∗ + (θ∗)2 cosec θ∗ − 2 sin θ∗ = 2πε
δ
. (4.10)

This is the same as Jensen’s (1997) solution for the lobe shape when C = 0. In this
case (C = 0), the thin-film region on the inner wall continues to thin indefinitely while
the lobe remains approximately steady, whereas for C > 0 the thin-film region also
approaches a steady state. We note that it is possible to employ matched asymptotic
expansions to match the solution (4.9) for the film thickness in the lobe region to
the constant-thickness solution on the inner wall (where H = Hunif ). This requires the
use of two intermediate regions to describe the behaviour in the vicinity of the sharp
minimum in the film thickness shown in figure 7(a). The matching provides the formal
justification for assuming a zero apparent contact angle at θ = θ∗ and is described
briefly in the Appendix. Here we simply note that figure 7(a) demonstrates that h(θ)
(represented by the dashed line) provides an excellent prediction for the steady film
thickness on the outer wall.

4.4. Weakly nonlinear analysis

Finally, we employ the thin-film model to analyse the solution structure in the vicinity
of the limit point on the symmetric solution branch shown in figure 6. For this
purpose we consider (2.21) in the regime in which 0 < δ/ε � 1. As already noted,
when C = δ/ε, the equations admit the uniform solution H = 1 and the numerical
evidence indicates that the uniform solution, limit point and pitchfork bifurcation all
occur within a very small range of C ; see figure 6. In the static, straight-tube limit
in which C = δ/ε→ 0, the translational degeneracy of the interface position means
that the uniform solution is neutrally stable. For small, but finite, values of δ/ε and C ,
the uniform solution is near-neutrally stable and we can develop a weakly nonlinear
analysis using its near-neutral eigenfunctions to explore the nearby solution structure.
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We consider the linear stability of the uniform state by posing H = 1+ (δ/ε)Ĥ1(θ, t),
which gives the equation governing the perturbation as

∂Ĥ1

∂t
+L Ĥ1 = 0, (4.11)

where

L = ∂2

∂θ 2
+ ∂4

∂θ 4
. (4.12)

Equation (4.11) admits solutions of the form Ĥ1 = A cos θ + B sin θ , where A and B
are constants, which corresponds to a rigid-body displacement of the interface (the
translational degeneracy), and the solution is neutrally stable (to this order). We next
consider a small perturbation to C = δ/ε, and determine the evolution of perturbations
to the uniform solution on the long time scale t = (ε2/δ2) T . Specifically, we consider

C = δ
ε
+ Ĉ

576
δ3

ε3
, (4.13)

where Ĉ is a measure of the deviation from the uniform state, and seek solutions of
the form

H = 1+ δ
ε

H1(θ,T)+ δ
2

ε2
H2(θ,T)+ · · · . (4.14)

As expected, at O(δ/ε) we find L H1 = 0, which has solution

H1 = A(T) cos θ + B(T) sin θ, (4.15)

where the amplitude functions A(T) and B(T) will be determined at higher order.
At O(δ2/ε2), the governing equation is

L H2 = ∂

∂θ
(H1 sin θ), (4.16)

which has solution

H2 = 1
12 A(T) cos(2θ)+ 1

12 B(T) sin(2θ). (4.17)

At O(δ3/ε3), the governing equation is L H3 =F , where

F =−dH1

dT
+ ∂

∂θ

(
sin θ(H2 + 2H

2
1)− 3H1

(
∂H2

∂θ
+ ∂

3H2

∂θ 3

)
− Ĉ

576
sin θ

)
. (4.18)

The Fredholm alternative theorem states that a solution H3 exists if and only if∫ 2π

0
F cos θ dθ =

∫ 2π

0
F sin θ dθ = 0, (4.19)

because the differential operator L is self-adjoint. We use (4.19) to eliminate secular
terms, and obtain the following coupled amplitude evolution equations:

dA

dT
= 3

4
B2 − 1

4
A2 − 1

24
A− Ĉ

576
,

dB

dT
=−B

(
A+ 1

24

)
. (4.20)

These equations describe a (truncated) normal form associated with an
unfolded, codimension-two point known as a fold-Hopf, saddle-node-Hopf or
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FIGURE 8. Sketch of the dynamics in the phase plane corresponding to the amplitude
equations (4.20) for (a) Ĉ < 3/4, (b) Ĉ = 3/4, (c) 3/4 < Ĉ < 1, (d) Ĉ = 1, (e) Ĉ > 1.
Solutions that lie on the horizontal axis are symmetric.

Guckenheimer–Garilov bifurcation (see e.g Kuznetsov 1998). In the present context,
the codimension-two point corresponds to the translational degeneracy in the straight
tube limit at which symmetric and antisymmetric neutral modes coexist. The initial
perturbation in the normal form is then induced by the weak curvature.

Equations (4.20) admit the steady-state solutions

(A,B)=
(
−1±

√
1− Ĉ

12
, 0

)
,

(
− 1

24
,± 1√

432

(
Ĉ − 3

4

)1/2
)
, (4.21)

and the phase plane can be classified according to the value of Ĉ , as illustrated
by figure 8. For Ĉ < 3/4, figure 8(a), there are two symmetric (B = 0) equilibrium
solutions: one stable node and one unstable node. The case Ĉ = 0 shows that the
uniform-film solution is the stable node, in agreement with the numerical simulations.
The case Ĉ = 3/4, figure 8(b), corresponds to the pitchfork bifurcation where the
stable node becomes degenerate with a zero eigenvalue. In the region 3/4 < Ĉ < 1,
figure 8(c), there are two stable foci, the asymmetric equilibria, an unstable symmetric
node and a symmetric saddle. At Ĉ = 1, figure 8(d), the unstable node and saddle
annihilate each other in a saddle-node (limit point) bifurcation. Finally, for Ĉ > 1,
figure 8(e), there remain only two stable asymmetric foci.

The weakly nonlinear analysis thus reproduces the sequence of events observed in
both the Navier–Stokes and thin-film simulations under reduction in surface tension
(increase in Ca or C ): a stable (approximately) uniform-film solution, followed by
a symmetry-breaking pitchfork bifurcation and then a limit point on the symmetric
solution branch. Moreover, the prediction that the distance between the uniform
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FIGURE 9. Time evolution of the thin-film equation (2.21) with periodic boundary conditions
from a small perturbation to H = 1 for δ/ε = 1 and (a) C = 0.5, (b) C = 1.5, (c) C = 2.1,
computed using the finite difference scheme described and validated in Band et al. (2009).
(The scheme is second-order accurate in space and uses MATLAB’s ODE15s to time step.)

solution and pitchfork bifurcation is three times the distance between the bifurcation
and the limit point is in quantitative agreement with the numerical results for the
thin-film model shown in the inset in figure 6, despite the fact that δ/ε = 1 in this case.
In addition, the analysis reveals that the asymmetric solutions are foci, suggesting that
the time evolution towards these states will be oscillatory. This behaviour is confirmed
by simulating the time evolution of the film thickness at three values of C following
a perturbation of the uniform state. Figure 9(a) shows that for C = 0.5 (below the
pitchfork bifurcation) the system evolves monotonically towards the stable, steady
symmetric solution for which the point of minimum film thickness is on the inner wall
at θ = π. For C = 1.5, beyond the pitchfork bifurcation, figure 9(b) shows that the
system initially approaches the symmetric draining solution (with the minimum film
thickness on the outer wall at θ = 0), but then evolves towards the steady asymmetric
solution in an oscillatory fashion, as predicted. Finally, for C = 2.1, again after a long,
near-symmetric evolution, the system develops a sustained limit cycle oscillation (see
figure 9c), which presumably arises through a Hopf bifurcation from the asymmetric
solution, as found in the normal form analysis presented by Kuznetsov (1998).

A similar oscillatory evolution to the asymmetric steady state is also observed in the
Navier–Stokes simulations, but we were unable to compute the evolution towards the
limit cycle because we could not resolve the extremely thin films that occur before the
limit cycle develops; see figure 9(c).
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5. Discussion
In this paper, we have investigated a particular two-phase flow in which an air core

surrounded by an immiscible, liquid film is driven though a rigid, curved tube by a
constant imposed axial pressure gradient. The system is a simplified model for the
flow in the conducting airways of the lung. In the limit when the film is thin compared
to the radius of the tube, Jensen (1997) showed that, in the absence of core flow, there
is no stable steady solution of finite-film thickness and the air core continually moves
towards the inner wall of the bend approaching a ‘dry spot’ steady solution. Also in
the thin-film limit, Band et al. (2009) showed that no steady solution of finite-film
thickness is possible if a stress distribution corresponding to the core flow in a curved
tube is imposed at the air–liquid interface of a film lining a straight cylindrical tube. In
the latter case, however, the air core is driven towards what would be the outer wall of
the curved tube. The principal aim of the present work was to examine the behaviour
of the system when both centreline curvature and a core flow are present. The relative
importance of the core flow is governed by a capillary number, Ca, which we interpret
as the ratio of the magnitude of the driving pressure gradient relative to the pressure
difference induced by surface tension acting at the curved air–liquid interface.

Using simulations of the Navier–Stokes equations and a thin-film model, we
demonstrated that it is possible to find steady solutions of finite-film thickness in
which the tangential stresses imposed by the secondary flows in the core are exactly
balanced by the surface-tension-driven flows induced by the non-uniform curvature of
the air–liquid interface. Indeed, we find an entire family of steady solutions that are
symmetric about the plane containing the tube’s centreline. These symmetric steady
solutions lose stability through a limit point at finite Ca and the solutions on the
upper (unstable) branch then approach the ‘dry spot’ solution of Band et al. (2009),
where the branch terminates. This solution branch will always exist, provided that the
secondary flows are of standard Dean (1928) form and that the tube has non-negligible
centreline curvature.

In addition, we find a branch of asymmetric solutions arising from a pitchfork
bifurcation that occurs shortly before the limit point in the symmetric solution branch.
The asymmetric solutions persist for values of Ca beyond the limit point in the
symmetric-solution branch, and appear to approach an asymmetric ‘dry spot’ solution.
A weakly nonlinear analysis of the thin-film equations showed that the bifurcation
structure arises from a particular degeneracy present in a perfectly straight tube:
a cylindrical air–liquid interface can be located anywhere within the tube’s cross-
section. The degeneracy can be interpreted as a codimension-two point at which both
symmetric and antisymmetric neutral eigenfunctions are present. The unfolding of
this so-called saddle-node-pitchfork bifurcation by adding weak centreline curvature
explains the origin of the observed solution structure.

In order to reduce the complexity of the model, we have neglected the effects of
gravity and have not considered any axial variations in the system. Weak gravity acting
in any direction other than the plane containing the tube’s centreline will unfold the
pitchfork bifurcation into a single connected stable solution branch and a disconnected
branch that loses stability through a limit point, but will not dramatically change the
observed behaviour. Gravity acting in the plane of the tube’s centreline will not alter
the solution structure, but will alter the critical values depending on whether it acts
to enhance or oppose the surface-tension-driven flow. Jensen (1997) showed that the
thin-film system can be unstable to axial perturbations in the absence of core flow,
and related core-annular flows in straight tubes are known to exhibit a wide variety of
instabilities in the axial direction (Joseph et al. 1997). We expect all these instabilities
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to occur in the present system, but have not attempted to determine their location in
the solution structure. We have also neglected the dynamic role of surfactant, assuming
the surface tension to be constant. In fact, the interaction of insoluble surfactant and
interfacial shear can lead to new mechanisms of instability, as shown by Halpern &
Frenkel (2003). For core-annular flow in straight tubes, Wei & Rumschitzki (2005)
have demonstrated that Marangoni forces induced by the redistribution of insoluble
surfactant by an interfacial shear can destabilise or stabilise the interface depending on
the parameter regime. It is likely, therefore, that the presence of surfactant will affect
the critical capillary numbers determined in the present study.

The calculated solution structure depends on the form of the core flow, for which
the standard two-vortex (Dean 1928) flow is not necessarily the only possibility.
The flow of a single fluid in a curved pipe has been extensively studied; see
reviews in Pedley (1980), Berger, Talbot & Yao (1983) and Ito (1987). The main
governing parameter is the Dean number, D = 2Re

√
2δ, and a large number of

alternative solutions exist at large Dean number (Daskopoulos & Lenhoff 1989). In
the single-phase problem, the alternative solutions appear to be disconnected branches,
suggesting that these branches will remain disconnected in the two-phase problem.
Furthermore, in the physiological context, these flows are likely to be realised only
in the very largest airways. Nonetheless, complete characterisation of the solution
structure, even in single-phase flow, remains an open problem.

Our assumption of a steady driving pressure gradient is only appropriate if the time
scale for fluid redistribution is much faster than that of the breathing cycle. When
the driving pressure gradient is unsteady and of sufficiently high frequency, the core
flow will be modified (see Lyne 1971, Siggers & Waters 2008 and references therein),
and steady solutions are not possible. Siggers & Waters (2008) observed complex
behaviour of the periodic solutions for single-phase flow in a curved pipe driven by an
oscillatory pressure gradient. The complete characterisation of these solutions and their
relation to those in the two-phase problem remain challenges for the future.

M.H. and A.L.H. would like to acknowledge the contributions of Benjamin Metz
and Luigi Colucci to the development of oomph-lib’s unstructured meshing and
re-meshing capabilities. S.L.W. is grateful to EPSRC for funding in the form of an
Advanced Research Fellowship. Finally, the authors would like to dedicate this work to
Professor T. J. Pedley on the occasion of his 70th birthday. As his research students,
M.H., S.L.W. and A.L.H. were all supported, guided and inspired by Tim to pursue
research careers in biological fluid mechanics. Thank you.

Appendix. Details of the matching process for the symmetric, steady thin-film
solution

In this appendix we describe the two intermediate regions near θ = θ∗ required to
match the leading-order lobe and inner-wall solutions in § 4.3 in the symmetric-steady-
state regime in which the film thickness H(θ) is governed by (4.1), with Q = 0 and
δ/ε = O(1) as C → 0.

A local analysis of the leading-order lobe solution (4.6) near the apparent contact
point θ = θ∗ shows that h(θ) ∼ A (θ − θ∗)2 as θ ↑ θ∗, where A = δ(θ∗cosec θ∗ −
cos θ∗)/4ε is a positive constant, the lobe having zero contact angle at θ = θ∗.
Thus, the leading-order lobe solution (4.6) (valid for 0 < θ < θ∗) does not match
directly with the leading-order solution Hunif = C ε/δ in the thin-film region (in which
θ∗ < θ < π). The matching requires two intermediate regions, in both of which the
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resulting boundary value problems for the film thickness are exactly the same as in
§ 2.8 of King & Bowen (2001), with n= 1 in their notation. The matching is therefore
the same as in King & Bowen (2001), while numerical solutions of the two boundary
value problems are reported in Bowen (1998), so we describe here only the relevant
scalings and new physics.

In the first intermediate region, the previously neglected tangential shear stress
enters: there is a balance between the third and fourth terms in S (H, 0) in (4.1) and
matching with the leading-order solution (4.6) in the lobe leads to the scalings

θ = θ∗ + C sin θ∗

A 2
ξ, H = C 2sin2θ∗

A 3
η. (A 1)

Here, we have introduced the constants A and sin θ∗ to simplify the resulting
boundary value problem for η(ξ), the rescaled film thickness, which, at leading order
in C , is given by

η
d3η

dξ 3
=−1 for −∞< ξ <∞, η ∼ ξ 2 as ξ →−∞, η ∼

(
8
3

)1/2

ξ 3/2 as ξ →∞,
(A 2)

where the boundary condition at ξ = ∞ follows from matching with the second
intermediate region below. As reported in King & Bowen (2001), η(ξ) is uniquely
determined up to translations in ξ . The numerical solution in Bowen (1998) shows that
the film thickness has a unique minimum in this region. The rapid change in curvature
is supported at leading order by the shear stress exerted on the free surface by the
secondary flow in the core.

In the second intermediate region, the axial curvature of the interface again plays a
role: there is now a balance between the first, third and fourth terms in S (H, 0) in
(4.1) and matching with the leading-order solution in the thin-film region leads to the
scalings

θ = θ∗ +
(

ε2C

δ2 sin θ∗

)1/3

ξ̂ , H = Hunif η̂, (A 3)

where Hunif = C ε/δ is the uniform-film-thickness solution determined in § 4.1. Here,
we have again scaled both the dependent and independent variables in order to
simplify the resulting boundary value problem for η̂(ξ̂ ), which, at leading order in
C , is given by

η̂
d3η̂

dξ̂ 3
= η̂ − 1 for ξ̂ > 0, η̂ ∼

(
8
3

)1/2

ξ̂ 3/2 as ξ̂ → 0, η̂→ 1 as ξ̂ →∞, (A 4)

where the boundary condition at ξ̂ = 0 follows from matching with the first
intermediate region above. As reported in King & Bowen (2001), the film thickness
η̂(ξ̂ ) is uniquely determined. The numerical solution in Bowen (1998) shows that,
as ξ̂ increases from ξ̂ = 0 to ξ̂ =∞, the film thickness initially overshoots the far-
field value of unity by a factor of approximately six. The far-field value is attained
after some much smaller capillary ripples that arise because the competing effects of
centre-line curvature and of the secondary flow are felt at leading order in this region.
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