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Robust and fast near-field antenna
measurement technique

po-jui chiu, wei-chung cheng, dong-chen tsai and zuo-min tsai

Traditional near-field antenna measurements use the sampling theorem to reconstruct the antenna pattern perfectly.
However, a large number of measurement points are required for this approach. To address this problem, in this study,
we propose a technique to accelerate the near-field antenna measurement, which is achieved by sparse E-field sampling in
the region where the E-field changes smoothly and dense sampling in the region where the field changes rapidly. Further,
our approach ensures robustness of measurement; the E-field information need not be known before carrying out measure-
ments. Our experimental results demonstrate that our technique can reduce the number of measuring points by at least 64.9%
when measuring two different patterns (15-GHz horn antenna with u ¼ 08 and 108).
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I . I N T R O D U C T I O N

Antenna pattern measurement forms a critical task in the
testing and characterization of antennas. In general, the far-
field [1] and near-field [2] approaches are used to measure
antenna patterns. Far-field measurement is commonly used
because it is the most direct way to obtain an antenna
pattern. However, according to the definition of the far-field
[3], the distance between the receive antenna and the
antenna under test (AUT) should be greater than 2D2/l,
where D denotes the maximum size of the antenna and l

denote the wavelength. If the size of the antenna is consider-
ably larger than the wavelength, the space required to perform
the far-field antenna measurement is large. On the contrary, in
the near-field approach, when the E-field in the near-field
region is measured, there is no requirement of a large space
to satisfy the far-field condition. Therefore, near-field meas-
urement is practically useful for large-sized-antenna
measurement.

The near-field antenna measurement system comprises a
scanning plane, a received antenna, and an AUT. If the scan-
ning plane is planar, the E-fields emitted by the AUT on the
scanning plane are measured by moving the received
antenna along the horizontal (left to right) and vertical
(upward and downward) directions in a step-by-step
manner until the entire region in the scanning plane is
covered. Using these measured E-fields, the antenna pattern
can be reconstructed by the transformation from the near-
field measured data to the far-field pattern [4]. To accurately

obtain the measurement pattern, near-field antenna measure-
ment requires measuring the E-fields of the AUT with a spec-
tral spacing smaller than l/2 as per the sampling theorem [4].
Therefore, using the near-field method to measure a large-size
antenna is time-consuming because the scanning plane is
usually considerably larger than the wavelength. Thus, a
large number of data points are required. For example, in
[5], 2601 measurement points were required with a spectral
spacing of 0.15 cm for measuring a 74-GHz horn antenna.
If each point takes approximately 1 s to be measured, the
total measuring time works out to about 43 min.

In this context, researchers have proposed certain methods
to reduce the number of data measurements [6, 7]. In [6], a
model builder was used to generate the near-field/far-field
bases, and subsequently, these generated bases were utilized
to match the measurement results. Although using this
method can reduce the number of measurement points
from 60 000 to 505 with the use of a simple model and
from 60 000 to 205 with a complete model, the drawback is
that a complete simulation model requires 15 h for its con-
struction, and a complete basis requires the construction of
42 simulation models. In other words, this method may
need more time to complete the measurement if the simula-
tion time is taken into consideration. In [7], the scanning
plane is divided into m, m + 1, m + 2 . . . , m + n rings.
Using the measured data in ring m, the extrapolated data
for ring m + 2 is evaluated. If the differences between the
extrapolated and measured data in ring m + 2 are large, the
data in ring m + 1 is measured. Otherwise, the data of ring
m + 1 need not be measured. Because certain data points
are not measured, the number of measurements time
reduces. Although this method can reduce the number of
measuring points by 70.7%, the E-field information in the
near-field requires to be known before commencing the
measurement.
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In [8], a basic concept to accelerate the speed of the near-
field antenna measurement is proposed. This is achieved by
sparse E-field sampling in the region where the E-field
changes smoothly and dense sampling in the region where
the E-field changes rapidly. The use of the method proposed
in this study can reduce the number of measuring points by
�69% while yielding a pattern similar to that obtained with
the sampling theorem. Because an iterative approach is
used, there is no requirement to determine the E-field infor-
mation before measurement. Therefore, this measurement
method is suitable to measure different kinds of antenna
patterns.

It is noticeable that the complete measured data following
the sampling theorem is used to verify the concept in [8]. The
result shows that a portion of data from the complete mea-
sured data is required to reconstruct the accurate pattern.
However, it is necessary to provide a demonstration of meas-
uring the antenna by using this acceleration concept. Thus, in
this paper, a near-field system is built for the demonstration.
The complete details of the method based on the concept of
[8] are presented. To verify the robustness of the proposed
method, we examine a 15-GHz horn antenna with main
beam angle u ¼ 108. Our results show a 64.9% reduction in
the number of measuring points, and we further verify the
robustness of this method.

I I . P R O B L E M S T A T E M E N T

In general, the antenna pattern can be perfectly reconstructed
with the sampling theorem of l/2. However, the use of this
theorem typically requires a large number of measurement
points; the E-field must be measured for every step of l/2 in
the scanning plane. For instance, the measurement of a
15-GHz horn antenna with aperture size of 15.5 × 13 cm2

along with the far-field antenna pattern in the range from
2608 to 608 corresponds to scanning plane dimensions of
51 × 51 cm2 and a l/2 spectral spacing of 1 cm. Thus, meas-
uring the pattern of this horn antenna requires 2601 measure-
ment points. If each point requires approximately 1 s of
measurement time, the total measuring time of measuring
this pattern is about 43 min.

To address this time-consuming problem, we propose a
technique to accelerate the near-field antenna measurement.
The acceleration is achieved by sparse E-field sampling in
the region where the E-field changes smoothly and dense sam-
pling in the region where the E-field changes rapidly. For
example, Fig. 1 shows the measured near-field data of a
15-GHz horn antenna. The E-field changes smoothly in
region A, and thus, sampling here is sparse. On the other
hand, the E-field changes rapidly in region B, and thus,
dense sampling is performed. Because large sections of the
near-field exhibit smooth E-fields, the number of data points
effectively reduces.

Figure 2 shows the schematic of our proposed system along
with the relevant parameters. We consider the position of the
AUT to be the point of origin in this system. Parameters x, y,
and z denote the coordinates of the received antenna, u and f

denote the two components formed by the original point, x-
and y-axes, respectively, and h denotes the distance between
the received antenna and the AUT. Further, the rectangles
bounded by the minimum x and y values (xmin and ymin)
and maximum x and y values (xmax and ymax) represent the

scanning plane of the received antenna. In the following dis-
cussion, we assume that the E-field is measured for a fixed h
value. Although the E-field sampled at (x, y) varies with h,
the reconstructed antenna pattern does not change because
of the equivalence principle [9]. In this measurement, h is
fixed to a value that is suitable to recover the antenna patterns.

The transformation from the near-field measured data to
the far-field pattern is obtained as below. Let PB(x, y) denote
the E-field measured at (x, y) when for a suitable h. Further,
let EAUT

u and EAUT
f denote the u and f components, respect-

ively, of far-field radiation patterns of the AUT, and Er
u and

Er
f denote the u and f components, respectively, of the

E-fields of the received antenna in far-field. According to
the method described in [4], EAUT

u and EAUT
f can be calculated

using PB(x, y), Er
u, and Er

f as follows:

EAUT
u (u, f)Er

u(u,−f) − EAUT
f (u, f)Er

f(u,−f) =

C cos uejkh cos u ×
∫1

−1

∫1

−1

PB(x, y)ejkx sin u cosf+jky sin u sinfdxdy.

(1)

Here, C denotes a constant determined by v and the free space
wave number is denoted by k ¼ 2p/l.

Fig. 1. Measured near-field data of a 15-GHz horn antenna.

Fig. 2. Schematic of proposed system with relevant parameters.
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I I I . P R O P O S E D M E T H O D

The concept underlying the proposed method is the determin-
ation of whether the interpolated data in a rectangular block
formed by any four adjacent measured points in the scanning
plane can accurately represent the measured data required to
reconstruct the antenna pattern. If the data are sufficiently
accurate, measuring additional points within the block is
unnecessary.

The flowchart of the proposed method is shown in Fig. 3.
The approach comprises an initialization and four steps.
The initialization includes initial block selection, rectangular
interpolation, and division of the initial block. Step 1 describes
the procedure for block selection. In Step 2, the rectangular
interpolation technique is used to approximate the data neces-
sary for reconstructing the antenna pattern. Step 3 involves
checking whether the interpolated data is sufficient for recon-
struction. Step 4 provides the necessary information for the
block selection in Step 1. These four steps are repeated until
all the interpolated data can accurately represent the measured
data required to reconstruct the antenna pattern.

Before describing details of the steps, the variable “layer”
needs to be defined in the context of the study. The value of
the layer (which can be considered as the “level” of scanning

plane) is initialized to be one at the beginning of the measure-
ment. It takes on a value of plus one if the interpolated data in
the selected block do not converge, and it takes on minus one
if the interpolated data in the selected block converge and the
selected block is the last block in this layer. The measurement
is complete if the value of the layer becomes one again. The
details of the steps are described as follows:

In Step 1, the block required for the interpolation is
selected according to the information from Step 4. This “selec-
tion mechanism” follows two rules: (1) the first block formed
by four measured points at the corner of the scanning plane is
initialized and this selected block is the biggest block, and (2)
the blocks are selected in terms of reducing size (from large to
small) and from the top-left block to the bottom-right block.
The block selection in our proposed method includes three
different parts: (1) the selected block is subdivided into four
smaller blocks and the top-left block is selected to continue
the procedure if the data in the selected block are not conver-
ging. Figure 4 provides an example in this regard. The data in
the selected block (Block 1) are not converging, and therefore,
Block 1 is subdivided into Blocks 1–1, 1–2, 1–3, and 1–4, and
the top-left block (Block 1–1) is selected to continue the pro-
cedure. (2) The next block is selected for continuation of the
procedure if the data in the selected block are converging

Fig. 3. Flowchart of proposed method.
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and this selected block is not the last block in this layer. For
example, the data in the selected block (Block 1–1) are conver-
ging, and this selected block is not the last block in this layer,
and therefore, the next block (Block 1–2) is selected to con-
tinue the procedure. (3) The next block of the previous layer
is selected to continue the procedure if the data in the selected
block are converging and this selected block is the last block in
this layer. When the data in the selected block (Block 1–4)
converge and with selected block being the last block in this
layer, the next block in the previous layer (Block 2) is selected
to continue the procedure.

Without loss of generality, Blocks 1 and 4 in Fig. 4 can be
individually divided into smaller Blocks 1–1 to 1–4 and 4–1 to
4–4 because the interpolated data in Blocks 1 and 4 are insuf-
ficient to represent the measured data required to reconstruct
the antenna pattern. The order of block selection is as follows:
Blocks 1–1, 1–2, 1–3, 1–4, 2, 3, 4–1, 4–2, 4–3, and 4–4.

In Step 2, the Lagrangian basis functions for rectangle is
used [10] to perform the interpolation of the measured data
in a block. In general, any four points in space can constitute
a surface. If the positions of these four points (x1, y1, PB1) to
(x4, y4, PB4) are known, the interpolation coefficients a, b,
g, and d can be calculated by using the following matrix:

pB(x1, y1)
pB(x2, y2)
pB(x3, y3)
pB(x4, y4)

⎡
⎢⎢⎣

⎤
⎥⎥⎦ =

1 x1 y1 x1y1

1 x2 y2 x2y2

1 x3 y3 x3y3

1 x4 y4 x4y4

⎡
⎢⎢⎣

⎤
⎥⎥⎦

a

b

g

d

⎡
⎢⎢⎣

⎤
⎥⎥⎦. (2)

Here, (x1, y1) to (x4, y4) denote the positions of the four points
and PB(x1, y1) to PB(x4, y4) denote the E-fields measured at
positions (x1, y1) to (x4, y4) in that order.

Any E-field PB(x, y) in a selected space can be calculated by
using the expression

PB(x, y) = a+ bx + gy + dxy, (3)

where (x, y) denote the position of this E-field and a, b, g, and
d denote the interpolation coefficients.

In Step 3, the convergence of the interpolated data in the
selected block is determined by using (4)

t =

																																				∑
x

∑
y |PBr (x, y) − PBr−1 (x, y)|2

√
∑

x

∑
y PBr−1 (x, y) , (4)

where PBr21(x, y) denote the interpolated data calculated in
the previous layer and PBr(x, y) denote the interpolated data
calculated in the current layer. Again, in Fig. 4, PBr21(x, y)
denote the interpolated data calculated in the block formed
by points S1, S3, S7, and S9, and PBr(x, y) denote the interpo-
lated data calculated in the block formed by points S1, S2, S4,
and S5. If the calculated error (t) in (4) is larger than the
threshold (T ) setting at the beginning of the whole measure-
ment, the data in the selected block does not converge, and the
selected block needs to be divided into four smaller blocks. In
contrast, if t is smaller than T, the data in the selected block
converge and there is no need to further subdivide the selected
block. The procedure is complete when all of the interpolated
data can accurately represent the measured data required to
reconstruct the antenna pattern.

I V . E X P E R I M E N T A L R E S U L T S

The measurement system used in our study is shown in Fig. 5.
The system comprises a personal computer (PC), vector
network analyzer (VNA), two-axis planar positioner, received
antenna, and the AUT. The PC is used to control the position-
er to scan the E-field of the AUT on the scanning plane by
moving the received antenna. The AUT and the received
antenna are connected to the VNA to measure the S param-
eter S21. The PC is connected to the VNA to download the
measured S21 value. The program including the instrument
control, proposed algorithm, and the near field to far field
transformation are implemented in Matlab. In this study, we
measured a 15-GHz horn antenna by using the measurement
system as shown in Fig. 5.

For the absolute gain measurement, the direct gain meas-
urement method in [11] is adopted. First, two test ports of
the vector network analyzer are directly connected and the
S21 is measured as S21A. The two test ports are then connected
to the AUT and the received antenna separately. Placing the
received antenna in the center of the AUT, the S21 is measured
as S21B. Because the AUT is close to the received antenna,
S21A/S21B is approximated to the ratio of the antenna aperture
between the two antennas. Since the antenna aperture is pro-
portional to the absolute gain of the main beam, the absolute
gain of the AUT can be evaluated as GrS21A/S21B, where Gr is
the main beam absolute gain of the received antenna. Gr is
known because the standard antenna is selected as the
received antenna. With the evaluated absolute gain of the
main beam and the normalized pattern measured by the near-
field measured system, the entire absolute gain of the antenna
can be achieved.

To verify the robustness of the proposed method, it is
required to compare the measurement results of different
near-field data. Therefore, a 15-GHz horn antenna with differ-
ent values of u (08 and 108) under constant f (f ¼ 08) are
measured to obtain different near-field data. According to
the sampling theorem, measuring this horn antenna requires

Fig. 4. Example of block selection.
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2601 data points for a 51 × 51 cm2 scanning plane. In
Fig. 6(a), we note that the position of the antenna main
beam is in the middle of the scanning plane when u is 08.
On the other hand, the position of the antenna main beam
is on the right-hand side of the scanning plane when u is
108, as shown in Fig. 6(b). These two near-field data points

form the baseline to verify the “data-point reduction” that
can be achieved by using the proposed method with different
near-field data.

Figure 7 shows the simulated and measured absolute radi-
ation patterns. The measured results for u ¼ 08 in both the
E-plane (f ¼ 908) and the H-plane (f ¼ 08) are close to the

Fig. 5. Photograph of measurement system used in our study.

Fig. 6. Measured near-field data with 2601 data points for a 15-GHz horn antenna for u values of (a) 08 and (b) 108.

Fig. 7. Simulated and measured absolute radiation patterns of 15-GHz horn antenna in (a) H-plane and (b) E-plane.
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corresponding simulated results. Thus, the baseline measure-
ment results are validated. In Fig. 7(a), it is obvious that the
main beam is shifted by 108 for an AUT angle of u ¼ 108.

The proposed method is subsequently applied to measure
the near-field data. Figure 8 illustrates the near-field and the
far-field data errors for the AUT at different u values (08
and 108) under constant f (f ¼ 08) with respect to the corre-
sponding values of the measured points, respectively. The
near-field and far-field data errors are calculated using (5),

data error =

																																				∑
x

∑
y |Dn(x, y) − Dn−1(x, y)|2

√
∑

x

∑
y Dn−1(x, y) , (5)

where Dn21(x, y) denotes the data obtained by using the sam-
pling theorem and Dn(x, y) denotes the interpolated data
obtained by using our method. The near-field and far-field
data errors are 0% when the number of measured points is

2601 because all the measured points in the scanning plane
are covered when following the sampling theorem. If a larger
data error is acceptable, then the number of measuring points
can be correspondingly reduced. In the case with u ¼ 08,
when measuring 781 points, the near-field data error is �1.7%
and the far-field data error is �1.1%. The sampling points are
subsequently reduced from 2601 to 781. In the case with u ¼

108, when measuring 912 points, the near-field data error is
about 1.6% and the far-field data error is about 1.1%. The sam-
pling points then reduce from 2601 to 912. In these two cases, the
required measurements can be reduced by over 64.9%.

Figure 9 shows the measured near-field data obtained with
and without using the proposed method. It is observed that
upon using the proposed method, the measured near-field
pattern (using less data points) is nearly identical to that
obtained with the sampling theorem for both cases.

To discuss the difference on far-field pattern using different
number of data points, the normalized radiation patterns are

Fig. 8. (a) Near-field and (b) far-field data errors as functions of number of measured points.

Fig. 9. Measured near-field data alone with number of sampling points used as obtained by using (a) the sampling theorem and (b) the proposed method.
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compared. The reference for the normalization is the
maximum measured far-field pattern of u ¼ 08 using 2601
data points. All the pattern using the same reference for the
normalization, therefore, the normalized radiation patterns
are sufficient to verify the effect with different number of
data points. Figure 10 shows the measured normalized radi-
ation patterns for u ¼ 08 and 108. The results obtained
using three different numbers of data points are included to
examine the effect of reducing the number of data points on
the resulting antenna pattern. It is observed that the radiation
patterns for the three cases are similar; this is because the far-
field error is ,1.1%, as shown in Fig. 8(b).

Figure 11 shows the data point distribution for u values of
08 and 108. In comparison with the near-field distribution in
Fig. 9, we observe that the measured points are dense (a
large number of measurements) in the regions where the
E-field varies rapidly (region A). In contrast, the measured

points are sparse (fewer points) in the regions where the
E-field changes smoothly (region B). Because a large portion
of the measurement plane only requires sparse sampling, the
number of measurement points significantly reduces.

Fig. 10. Measured normalized radiation patterns of antenna for u value of (a) 08 and (b) 108.

Fig. 11. Data point distribution obtained using the proposed method for u value of (a) 08 and (b) 108.

Table 1. Performance summary of measured results.

15-GHz horn
antenna (u 5 088888)

15-GHz horn
antenna (u 5 1088888)

Number of data points
(using sampling theorem)

2601 2601

Number of data points
(using the proposed
method)

781 912

Reduction in the number of
data points

70.0% 64.9%
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Table 1 summarizes the measured results. Upon comparing
the numbers of data points required between the proposed
method and sampling theorem, we note that the data point
reduction is .64.9% with the proposed method. The reduc-
tion in the number of data points still only corresponds to
near-field data variation (u ¼ 08 and u ¼ 108) of ,5%,
which indicates that the performance of the proposed
method does not change for two different patterns. This vali-
dates the robustness of our method.

V . C O N C L U S I O N

In this study, we proposed a technique to reduce the time
taken for near-field antenna measurements by reducing the
number of measured points. The robustness of our method
was validated with our measurement of a 15-GHz horn
antenna oriented at different u values (08 and 108) under con-
stant f (f ¼ 08). In the two corresponding measurement
cases, the numbers of measured points were demonstrated
to reduce from 2601 to 781 and from 2601 to 912. The reduc-
tion in the number of data points was .64.9%. Moreover, the
data error between the measurement results obtained with the
sampling theorem and the proposed method was below 1.7%.
Thus, our proposed method can significantly reduce the
number of data points to be measured while retaining the
accuracy of the measured near-field data.
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