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Generation of attached Langmuir circulations by
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In this study, we focus on Langmuir turbulence in the deep ocean with the presence
of a large macroalgal farm using a large eddy simulation method. The wave–current
interactions are modelled by solving the wave-averaged equations. The hydrodynamic
process over the farm is found to drive a persistent flow pattern similar to Langmuir
circulations but is locked in space across the farm. These secondary circulations are
generated because the cross-stream shear produced by the rows of canopy elements leads to
a steady vertical vorticity field, which is then rotated to the downstream direction under the
effect of vortex force. Since the driving mechanism is similar to the Craik–Leibovich type
2 instability theory, these secondary circulations are also termed as attached Langmuir
circulations. We then apply a triple decomposition on the flow field to unveil the underlying
kinematics and energy transfer between the mean flow, the secondary flow resulting from
the farm drag and the transient eddies. Flow visualizations and statistics suggest that the
attached Langmuir circulations result from the adjustment of the upper ocean mixed layer
to the macroalgal farm, and they will weaken (if not disappear) when the flow reaches an
equilibrium state within the farm. The triple-decomposed energy budgets reveal that the
energy of the secondary flow is transferred from the mean flow under the action of canopy
drag, while the transient eddies feed on wave energy transferred by the Stokes drift and
energy conversion from the secondary flow.

Key words: ocean processes, turbulence simulation, turbulent boundary layers

1. Introduction

Macroalgae, also known as seaweeds, are an important component in temperate marine
ecosystems (Dayton 1985; Schiel & Forster 2015). Providing shelter, food and protection
for many species of marine living creatures, macroalgae play a paramount role in
preserving biodiversity and promoting sustainable aquaculture production. Macroalgal
forest harvesting also contributes enormously to various applications, such as remediation
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of eutrophication pollution, biofuel production, food and pharmaceutical processing, etc.
The desire to increase the productivity of aquaculture spurs the growing need for aquafarm
development in the ocean, where the canopy grows near the surface and is supported
by a floating structure (Troell et al. 2009; Stevens & Petersen 2011). The macroalgal
canopy alters the surrounding flow conditions by dampening the currents and wave
motions (Rosman et al. 2007). These flow modifications have profound implications for
the nutrient uptake and associated processes of sedimentation and recruitment (Duggins,
Eckman & Sewell 1990; Plew 2011b). Therefore, understanding and quantifying the
diverse hydrodynamic processes that occur in the presence of macroalgal farms is essential
in evaluating and designing optimal farm configurations, as well as assessing their
environmental impacts.

From a hydrodynamics perspective, aquatic vegetation can be classified as submerged,
emergent or suspended based on its growth form. Submerged and emergent vegetation
are attached to the bottom floor, and occupy a fraction or all of the water depth. The
flow structures and mass transport over such canopies have been well documented (Nepf
2012a,b; Yan et al. 2017). Particular attention has been given to the shear layer turbulence
at the canopy top (for submerged canopy), which prompts the generation of canopy-scale
coherent structures that dominate the momentum and scalar exchanges between the canopy
and the free flow above. Suspended canopies, such as the macroalgal farm considered
here, extend downward from the surface and occupy the upper part of the water body
(Plew et al. 2005, 2006; Stevens & Petersen 2011). The flow and canopy interactions for
this configuration remain less explored as compared to the bottom-mounted counterpart
(Stevens & Plew 2019).

For suspended vegetation, the vertical discontinuity in drag beneath the canopy also
leads to a shear layer, which penetrates a finite distance into the canopy and mediates the
turbulent exchanges between the canopy and the underlying flow (Plew 2011a). Through
laboratory experiments of suspended canopies in shallow waters, Plew (2011a) concluded
that the additional bottom boundary layer (BBL) associated with the ocean floor affects
the penetration of the shear layer into the suspended canopy. Based on the measurements
of Plew (2011a), Huai et al. (2012) proposed a simple analytical model for the vertical
profile of streamwise velocity. While these studies focus on flow over uniform canopies
(i.e. essentially infinite size), where the flow has been fully adjusted to the canopy, common
aquaculture structures are of finite size and the corresponding canopy flow displays distinct
spatial distribution patterns.

The finite dimensions and spatial arrangement of the suspended canopy lead to flow
patterns different from the fully developed scenario (Tseung, Kikkert & Plew 2016).
According to Tseung et al. (2016) and Zhao, Huai & Li (2017), the flow over a suspended
canopy of finite size is similar to the terrestrial flow over forest patches (Belcher, Jerram
& Hunt 2003), and it can be divided into four zones of distinct mean flow behaviour in the
downstream direction: (i) the upstream adjustment zone, (ii) the transition zone, (iii) the
fully developed zone and (iv) the wake zone. The distance over which the velocity profile
reaches a fully developed state is affected by canopy geometry (e.g. plant density and stem
diameter) (Rosman et al. 2010). Zhou & Venayagamoorthy (2019) examined the effect of
a circular patch of suspended canopy on the mean flow dynamics in deep water, and found
out that the patch geometry poses another impact on the adjustment of flow pathways. In
the light of these studies, we are motivated by the water flow over an aquaculture farm
of finite size in the deep ocean, and seek to explore how the ocean mixed layer (OML)
evolves as it approaches and flows over the farm under typical ocean conditions.

In the marine environment, ocean waves have a profound influence on the water
flow and the exchange of nutrients between kelp forests and ambient water. In many
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Generation of attached Langmuir circulations

studies, this effect is characterized in terms of the Stokes drift (Gaylord et al. 2007;
Rosman et al. 2007), which refers to the net motion of fluid parcels in the direction
of wave propagation that arises from the unclosed orbital motions for finite amplitude
waves (Monismith & Fong 2004). Rosman et al. (2007) explored the effects of giant kelp
forests on ocean flows through a field experiment at the coast of Santa Cruz, California.
They highlighted the importance of the Stokes drift in cross-shore transport within the
kelp canopy. Rosman et al. (2013) conducted experiments at a scaled laboratory flume to
examine the interaction of surface waves and currents with kelp forests, and concluded that
these interactions must be taken into account when modelling flow and transport within
kelp forests.

One of the distinct features widely observed in the upper ocean is the presence of
Langmuir circulations, which consists of counter-rotating vortices near the ocean surface
roughly aligned with the wind direction (Thorpe 2004). It is well accepted that the
Langmuir circulations are generated by the interaction between the wind-driven shear
current and the Stokes drift velocity induced by the surface gravity waves through the
the Craik–Leibovich (CL) type 2 instability (Craik 1977; Leibovich 1983). The associated
ocean flows are referred to as Langmuir turbulence (McWiliams, Sullivan & Moeng
1997), which can be numerically modelled by adding a vortex force into the momentum
equation without the need to resolve the surface gravity waves (Skyllingstad & Denbo
1995; McWiliams et al. 1997; Yang et al. 2015; Chamecki et al. 2019). The increased level
of turbulence intensity promoted by Langmuir circulations is expected to affect the supply
and uptake of nutrients within the marine ecosystem (Barton et al. 2014).

In this study, we use a fine-scale large eddy simulation (LES) model to explore the
development of an OML in the presence of a large macroalgal farm under typical current
and wave regimes. The main goal of the present work is to characterize the hydrodynamics
around a macroalgal suspended farm and advance our understanding of canopy flows in
the ocean. We assume that the ocean is deep enough so that the flow is free from the
complexities of BBL. Section 2 describes the numerical approach for modelling oceanic
boundary layer flow over a macroalgal canopy. A triple-decomposition strategy is used to
separate the flow field into the contributions due to mean flow, secondary flow resulting
from the farm drag and transient fluctuations. Section 3 describes the main characteristics
of the flow field and the emergence of persistent flow structures termed ‘attached Langmuir
circulations’. Section 4 discusses the underlying mechanism of generation of attached
Langmuir circulations, and characterizes their spatial development. Section 5 describes
the energy conversion among the three components of the flow field. Conclusions are
drawn in § 6.

2. Methods

2.1. Mathematical model
For the past three decades, the LES technique has been widely adopted to study turbulence
in the OML. Detailed discussion of the LES framework and assumptions underpinning its
applicability can be found in the review paper by Chamecki et al. (2019). In the present
work, the dynamics of Langmuir turbulence in the presence of a macroalgal canopy
is captured using the LES method by solving the wave-averaged equations described
by McWiliams et al. (1997). This mathematical model is built upon the original CL
equations (Craik & Leibovich 1976) with the inclusion of planetary rotation and Stokes
drift advection of scalar fields,

∇ · ũ = 0, (2.1)
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∂ũ
∂t

+ ũ · ∇ũ = −∇Π − f ez × (̃u + us − ug
)

+ us × ζ̃ +
(

1 − ρ̃

ρ0

)
gez + ∇ · τ d − F D, (2.2)

∂ρ̃

∂t
+ (̃u + us) · ∇ρ̃ = ∇ · τρ, (2.3)

Here, the tilde indicates grid-filtered variables, ρ̃ is the filtered seawater density, ρ0 is
the reference density, Π is the generalized pressure, f is the Coriolis frequency, g =
9.81 m s−2 is the gravitational acceleration, ez is the unit vector in the vertical direction
and ũ = (̃u, ṽ, w̃) is the velocity vector represented in the Cartesian coordinate system
x = (x, y, z), with x, y and z being the downstream, cross-stream and vertical directions,
respectively. The vertical coordinate is defined positive upward with z = 0 at the ocean
surface. The geostrophic current ug = (ug, 0, 0) is driven by an external mean pressure
gradient force with magnitude fug applied in the y-direction. The canopy is treated as a
source of flow resistance, and its effect is accounted for by adding a drag force F D to the
momentum equation.

In (2.2) and (2.3), τ d is the deviatoric part of the subgrid-scale (SGS) stress tensor
τ = ũ̃u − ũu, and τρ = ũρ̃ − ũρ is the SGS buoyancy flux. We assume that the changes
in the seawater density ρ are caused by the varying potential temperature θ , and these
two variables are linearly related by ρ = ρ0[1 − α(θ − θ0)], where α = 2 × 10−4 K−1 is
the thermal expansion coefficient, and θ0 is the reference potential temperature at which
ρ0 is measured. The SGS stress tensor is modelled using the Lagrangian scale-dependent
dynamic Smagorinsky SGS model (Bou-Zeid, Meneveau & Parlange 2005). Then, the
SGS buoyancy flux is parameterized using an eddy diffusivity closure with a prescribed
value of SGS Prandtl number Prt = 0.4. The viscous force is assumed to be negligible for
the high Reynolds number flows considered in the present study.

The Stokes drift us induced by surface gravity waves is imposed in the governing
equations to reflect the time-averaged effects of the wave field on the oceanic turbulence,
since the surface wave motions are not explicitly resolved in our simulations. The third
term on the right-hand side of (2.2) is the CL vortex force us × ζ̃ (here ζ̃ = ∇ × ũ
is the vorticity field), which represents the interaction of wind-driven turbulence and
surface gravity waves. For simplicity, we only consider a steady monochromatic wave.
Assuming that the surface gravity wave propagates along the mean wind direction (i.e. the
x-direction), the Stoke drift velocity reduces to us = (us(z), 0, 0), where us is given by

us = Us e2kz, (2.4)

in which k is the wavenumber and Us is the wave-induced Stokes drift at the surface. Then,
the vortex force us × ζ̃ reduces to (0,−usζ̃z, usζ̃y). Note that the presence of the canopy
can attenuate the waves and impact the Stokes drift profile (Rosman et al. 2013). Based
on the approach developed by Dalrymple, Kirby & Hwang (1984), we have estimated the
effects of canopy drag on the surface waves for the specific canopy and wave parameters
used in this study and found only a small attenuation of approximately 3 % in wave
amplitude and 6 % in the magnitude of the Stokes drift (see Appendix B). These estimates
are consistent with those obtained in flume measurements by Rosman et al. (2013). For the
sake of simplicity, we neglect wave attenuation in this study.

Finally, there is evidence suggesting that surface waves can induce a mean current
in the direction of the wave propagation within aquatic canopies (Luhar et al.
2010, 2013; Abdolahpour, Hambleton & Ghisalberti 2017; Chen, Liu & Zou 2019;
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Figure 1. Schematic of the spatial morphology of the suspended macroalgal farm: (a) spatial arrangement of
the macroalgal farm; (b) frond area density profile for each row of macroalgal canopy, a(z), normalized by the
canopy height hMF .

van Rooijen et al. 2020). This wave-induced current is caused mainly by the reduction
of the wave orbital velocity within the canopy, and inclusion in our model would require
explicitly resolving the surface waves. We used the empirical results in the literature
(see Abdolahpour et al. 2017; Chen et al. 2019) to estimate the maximum magnitude
of this wave-induced current for the suspended farm simulated here, and found out that
it is a reasonably small fraction (approximately 20 %) of the steady geostrophic current
ug imposed in our simulations. Thus, we expect the overall effects of this wave-induced
current to be small, and we neglect them in adopting a wave-averaged approach.

2.2. Numerical representation of macroalgal farm
For the cultivation of macroalgae, the aquaculture structures being deployed in the open
ocean are varied, but common practice is to suspend seeded materials from surface buoys
and mooring structures (Charrier, Wichard & Reddy 2018). One possible configuration for
the cultivation strategy for the macroalgae of interest (giant kelp) is shown in figure 1(a).
The macroalgal farm comprises parallel lines of seeded growing ropes with a length of
WMF = 8 m coiled around a backbone (or longline). Each backbone line, with a length
LMF, is anchored at each end and connected to surface buoys (not shown). Each macroalgae
consists of 8 fronds with an average length hMF = 19 m, which are assumed to be in
an upright posture by virtue of the buoyancy provided by the gas-filled floats (called
pneumatocysts). The lateral spacing between two adjacent rows of canopy elements is
SMF = 26 m.

The frond surface area of the cultivated macroalgae species is obtained by conversion of
vertically resolved algal biomass generated from a macroalgal growth model (C. Frieder,
personal communication) using allometric relationships (Fram et al. 2008). To simplify
the numerical modelling, the frond surface area is redistributed uniformly within each
canopy row in the horizontal directions, while the spatial arrangement of the row structure
is resolved in the simulation. The fraction occupied by macroalgae has a total foliage
area density (FAD) profile denoted as a(z), which is shown in figure 1(b). FAD is the
total (one-sided) frond surface area per unit volume of space (m−1), without explicit
differentiation among blades, fronds and stipes, etc. Since our main focus here is to
examine the adjustment of OML as it flows over the farm, canopy parameters such as a(z),
hMF, SMF are kept constant (the only exception being the length LMF) and a sensitivity
study to farm design is beyond the scope of this study.
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The drag per unit mass F D in (2.2) represents the effect of the canopy as a momentum
sink for the flow field, and it is parameterized as (Shaw & Schumann 1992; Pan, Chamecki
& Isard 2014),

F D = 1
2 CDa(z)P · |̃u|̃u, (2.5)

in which CD is the drag coefficient and |̃u| is the magnitude of the resolved velocity
vector. For the sake of simplicity, the tilde symbols used to denote resolved variables are
omitted hereafter. The coefficient tensor P = Pxexex + Pxeyey + Pzezez is employed here
to account for the projection of total foliage area onto the orthogonal planes with normal
in each one of the Cartesian directions. Note that the expression for P involves the dyadic
products of the standard basis vectors ex, ey and ez, so that P is also a second-order tensor.
This projection operation is commonly used for terrestrial canopies (Legg & Powell 1979;
Aylor & Flesch 2001; Pan et al. 2014), and the coefficients Px, Py and Pz depend on the
geometry of the canopy and thus on the specific details of each plant species (Aylor &
Flesch 2001). In the absence of observational data to specify these coefficients, we make
the assumption of isotropic distribution of FAD (e.g. the fraction of FAD projected towards
each direction is always the same), which corresponds to Px = Py = Pz = 1/2.

The drag coefficient CD is a key input parameter in the drag model (2.5) that can
affect the accuracy for the prediction of turbulence statistics (Pinard & Wilson 2001).
Generally, CD is estimated from the reduced momentum balance based on experimental
measurements, where large uncertainty exists depending on the formulations of the
momentum equation being used (Cescatti & Marcolla 2004; Pan, Chamecki & Nepf 2016)
and quality of measurements (Pinard & Wilson 2001; Marcolla, Pitacco & Cescatti 2003).
Many numerical studies of atmospheric boundary layer flows used a height-averaged CD
of constant value for terrestrial canopies (Shaw & Schumann 1992; Dupont & Brunet
2008; Finnigan, Shaw & Patton 2009). For a flexible canopy like that of macroalgae, the
canopy elements can bend back and forth with the moving water, leading to reduced fluid
drag relative to the rigid and upright vegetation (Boller & Carrington 2006; Luhar & Nepf
2011). Pan et al. (2014) introduced a velocity-dependent CD in their LES study to account
for the reconfiguration of a flexible cornfield in response to the surrounding flow (Vogel
1989). However, giant kelp elements do not bend with the flowing water in the same way
as many terrestrial plants or seagrasses do, because they possess many gas-filled floats
that can keep the fronds upward to the surface via buoyancy forces (Koehl & Wainwright
1977; Henderson 2019). In our LES cases, we use the value of CD = 0.0148 reported in
the experimental study of Utter & Denny (1996), which measured the drag coefficient on
Macrocystis pyrifera fronds by towing a single plant from a boat in a field experiment. It
should be noted that Utter & Denny (1996) modelled the canopy drag by a power law of
the local velocity with an exponent of 1.6 to account for the drag reduction resulting from
plant reconfiguration, while we assume the relationship between these two variables to be
quadratic (2.5).

Apart from the fluid drag force, macroalgae are subjected to elastic and buoyant forces,
both of which act to resist bending. The subtle balance among these forces determines
the posture of macroalgae (Luhar & Nepf 2011; Henderson 2019). Estimates given in
Appendix A show that kelp stipes remain approximately upright in the flow, except for
an oscillatory motion with amplitude comparable to the wave orbital displacement. In
fact, this assumption is implicit in the parametric model for the drag force (2.5): the wave
orbital velocity is not included in the drag calculation, implying that macroalgae oscillate
with the wave orbital velocity (note that this assumption is consistent with the idea that
the macroalgal canopy does not impact the waves).
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Figure 2. Sketch of the LES computational model for Langmuir turbulence with the presence of suspended
macroalgal farm in the deep ocean: (a) side view and (b) plan view. A fringe region of length Lfr towards
the end of the domain is used to force the velocity and potential temperature back to the inflow, so periodic
conditions are satisfied in the horizontal plane.

2.3. Numerical scheme
The present LES framework employs a Cartesian grid using a vertically staggered
arrangement, with the horizontal velocity components, pressure and potential temperature
(u, v, p, θ) defined at the cell centre, while the vertical velocity component (w) is
stored at the cell face. Spatial derivatives in the horizontal directions are treated
with pseudo-spectral differentiation, while the derivatives in the vertical direction are
discretized using a second-order centred-difference scheme. Aliasing errors associated
with the nonlinear terms are removed via padding based on the 3/2 rule. Time advancement
is performed using the fully explicit second-order accurate Adams–Bashforth scheme. The
numerical code has been validated against the LES study of McWiliams et al. (1997) for
Langmuir turbulence in the deep ocean by Yang et al. (2015).

The LES domain with dimensions of Lx × Ly × Lz is shown in figure 2. For clarity, the
origin of the coordinate system is defined at the leading edge of the farm in the central
longitudinal plane, and the z-axis is pointing upward. The top boundary is specified as a
non-deforming surface exposed to wind shear stress. A sponge layer is imposed within
the bottom 20 % of the domain to damp out fluctuations of velocity and temperature, thus
avoiding the reflection of the internal gravity waves.

The backbone line is at a depth hb = 20 m below the surface while the canopy height is
hMF = 19 m, leaving a canopy-free layer at the top 1 m near the ocean surface to represent
typical harvest practices. A domain depth of Lz = 6hb is chosen to avoid interference with
the bottom boundary condition as the flow is deflected below the canopy. The cross-stream
domain size Ly = 8SMF is tailored to encompass N = 8 parallel rows of macroalgae,

915 A76-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.111


C. Yan, J.C. McWilliams and M. Chamecki

the longitudinal axes of which are aligned in the downstream direction. Periodic boundary
conditions are imposed in the horizontal directions, which will enable us to exclude the
complexities brought by the limited width of the farm. The inlet is positioned Lu = 7.5hb
upstream of the farm leading edge, and the outlet is at a distance Ld = 12.5hb downstream
of the farm trailing edge. Thus, the domain size in the downstream direction is Lx =
LMF + 20hb.

A fringe region of length Lfr = 5hb is used at the end of the domain (see figure 2) to
enable simulations of spatially evolving boundary layer flows in a periodic domain using
pseudo-spectral numerics (Stevens, Graham & Meneveau 2014). Specifically, the inflow
turbulence profile at the inlet of the domain is provided by a precursor simulation carried
out with identical conditions in the absence of the farm. After the precursor simulation
reaches a fully developed turbulence regime, a region of length Lfr is duplicated from the
precursor simulation on the fringe region of the actual simulation at the end of every time
step. Then, any variable φ (i.e. velocity and potential temperature) in the fringe region is
determined as a weighted average of fields in the precursor and actual simulations (also
see Stevens et al. 2014),

φ(x, y, z, t) = f (x) · φpre(x, y, z, t)+ [1 − f (x)
] · φact(x, y, z, t), (2.6)

in which φpre and φact are, respectively, the field in the precursor and actual domains, and
f (x) is the weighting function expressed as,

f (x) =
⎧⎨⎩

1
2

[
1 − cos

(
π

x − xs

xe − xs

)]
, xs ≤ x ≤ xe

1, x > xe.

(2.7)

Here, x represents the downstream position, xs = Lx − Lu − Lfr is the starting point of the
fringe region and xe = Lx − Lu − 1

4 Lfr is the position beyond which φ = φpre. The length
of the fringe region must be large enough to enable a smooth transition of the field φ from
the farm wake flow to the inflow condition. To avoid any possible upstream influence from
the fringe region, only solutions up to x = xs − 3hb are analysed.

2.4. Simulation parameters
Our major goal is to report new flow features that develop around suspended aquafarms
under realistic oceanic conditions. Therefore, instead of exploring the vast parameter
space of possible ocean states (e.g. varying degrees of wind, waves, currents and surface
buoyancy forcing, etc.), we only focus on one set of very typical conditions encountered in
the deep ocean. The flow is driven by two main forcings, i.e. the overlying atmospheric
flow and a geostrophic current, in a uniformly rotating environment with the Coriolis
frequency f = 1.0 × 10−4 s−1 (corresponding to a latitude of 45◦N). The simulation
parameters are chosen to be the same as those used in McWiliams et al. (1997), which
serves as benchmark case in the literature on Langmuir turbulence (Polton et al. 2008;
Skitka, Marston & Fox-Kemper 2020). A constant wind stress τw = 0.37 N m−2 is applied
at the air–sea interface and aligned with the wave field in the downstream direction. The
corresponding wind speed at 10 m height is U10 = 5 m s−1, and the friction velocity at the
ocean surface is u∗ = 6.1 × 10−3 m s−1. The wave field consists of monochromatic waves
with wavelength λ = 60 m (corresponding to a wave period Tw = 6.2 s) and amplitude
aw = 0.8 m, corresponding to Us = 0.068 m s−1. The resulting turbulent Langmuir
number Lat = √

u∗/Us = 0.3, which is typical for wind–wave equilibrium conditions in
the open ocean (Belcher 2012).
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Case Canopy Wave Lat LMF(m) Lx(m)× Ly(m)× Lz(m) Nx × Ny × Nz

CLT Yes Yes 0.3 400 800 × 208 × 120 400 × 104 × 240
CLTF Yes Yes 0.3 400 800 × 208 × 120 800 × 208 × 480
CLTL Yes Yes 0.3 800 1200 × 208 × 120 600 × 104 × 240
CST Yes No N/A 400 800 × 208 × 120 400 × 104 × 240
LT No Yes 0.3 N/A 400 × 208 × 120 200 × 104 × 240
ST No No N/A N/A 400 × 208 × 120 200 × 104 × 240

Table 1. Parameters of the LES runs.

A geostrophic current ug = 0.2 m s−1 in the downstream direction is superimposed on
the flow field to represent the effect of mesoscale flow features, which are considered
to behave as a constant flow on the time and spatial scales of interest here (5 h and a
few kilometres). The upper mixed layer is bounded by a stably stratified layer below with
a constant temperature gradient dθ/dz = 0.01 K m−1. Since surface heating or cooling
would add another layer of complexity associated with buoyancy effects on turbulence, we
assume zero buoyancy flux at the ocean surface for the simulations considered here.

Table 1 summarizes the simulation parameters and resolution of six different cases
considered here. In the table, Nx, Ny and Nz are the number of grid points in the x, y and z
directions, respectively. Simulation cases CLT/LT and CST/ST represent the modelling
of Langmuir turbulence and pure shear-driven turbulence in the presence/absence of
macroalgal farm, respectively. These four cases are carried out to evaluate the effects
of macroalgal canopy and the role of surface gravity waves on the flow features. The
shear-driven cases CST and ST are conducted in the absence of any surface wave forcing,
i.e. the wave-induced Stokes drift velocity is zero. For a boundary layer flow within and
under a suspended canopy of finite size, whether or not the boundary layer can reach a
fully developed stage depends on the length of the canopy (Tseung et al. 2016). Thus,
Langmuir turbulence in the presence of a longer farm (LMF = 800 m), referred to as case
CLTL, is performed to explore the limit of fully developed flow. We focus mostly on the
results of the CLT simulation and use CLTL only when investigating the downstream flow
development. The mesh is uniformly distributed, with a horizontal resolution Δh = 2 m
and vertical resolution of Δz = 0.5 m. To confirm that the resolution is sufficient, case
CLTF is performed under the same setup as CLT, but with finer-scale resolution (twice the
resolution) in all three directions.

Cases LT and ST are initialized with a converged solution based on a initial mixed
layer depth (MLD) of 20 m, from which the inertial oscillations have been removed. The
turbulence is confined to the upper mixed layer and the water column below is stably
stratified. Then, cases LT and ST serve as precursor simulations to provide time-varying
turbulent inflow conditions for cases CLT(F/L) and CST, respectively. The simulations
CLT(F/L) and CST are first carried out for 15 000 s to allow for the adjustment of the
surface boundary layer to the macroalgal canopy. After the turbulent flow has reached a
quasi-equilibrium state, the flow field is averaged over another 9000 s to obtain turbulence
statistics. Finally we note that even though turbulence scales with u∗/La2/3

T in Langmuir
turbulence (Grant & Belcher 2009), we use the surface friction velocity u∗ as the
scaling velocity throughout the paper to facilitate the comparison between Langmuir and
shear-driven turbulence.

A snapshot of the vertical velocity w/u∗ on a horizontal plane at z = −0.25hb for case
CLTF is shown in figure 3. The elongated streaks of downward vertical velocity readily
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Figure 3. Snapshot of the normalized vertical velocity w/u∗ on a horizontal plane (z = −0.25hb) for case
CLTF. The black dashed rectangles represent the region occupied by the macroalgal canopy. The blue and red
colours indicate downwelling and upwelling regions.

observed upstream of the farm leading edge are signatures of Langmuir circulations.
They are oriented to the right of the wind direction (i.e. x-direction), and are transient
structures that are continuously generated and dissipated. As the OML flows into the farm,
however, a persistent pattern with stronger downward and upward velocities alternating
laterally is clearly seen, roughly parallel to the canopy rows. The magnitude of w/u∗
within the farm region can be as large as 8.0 (the colour bar has been saturated), while the
typical values for Langmuir and shear turbulence in the absence of the farm for the same
ocean conditions are 1.6 and 0.75, respectively (e.g. see McWiliams et al. 1997). This
quasi-stationary pattern of alternating upwelling and downwelling regions indicates the
existence of counter-rotating cells, hereafter referred to as attached Langmuir circulations
(as discussed below). These secondary flow structures extend beyond the trailing edge in
the farm wake zone.

2.5. Flow decomposition
The statistics for cases LT and ST are obtained by averaging both temporally and
horizontally, indicated by 〈 ·̄ 〉. Note that the time average and spatial average are indicated
by an overbar and a pair of angled brackets, respectively. The physical quantities for CLT
and CST are first averaged in the temporal dimension. Because of the three-dimensional
spatial heterogeneity of the flow, these time-averaged statistics are subject to larger random
errors than the spatial-temporal averaging used for cases LT and ST. Thus, either a
spatial or phase averaging operation in the cross-stream y direction is also used, indicated
respectively by 〈 〉y or 〈 〉p. Given the idealized cross-stream canopy heterogeneity, the
cross-phase average defined here, different from the wave-phase average introduced in
deriving (2.2), corresponds to averaging over equivalent positions in cross-stream phases.
For any time-averaged field φ̄, the cross-phase averaging can be expressed as,

〈
φ̄
〉
p (x, y, z) = 1

N

N−1∑
n=0

φ̄(x, y + nSMF, z), (2.8)

where N = 8 is the number of canopy rows.
Hereafter, we use the cross-stream average to define the (primary) mean field 〈φ̄〉y(x, z),

and the deviations from the mean field are decomposed into a secondary-flow component
and a transient component. Thus, instantaneous flow quantities, such as the velocity field u,
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Generation of attached Langmuir circulations

can be represented by,
u = ū + u′ = 〈ū〉y + ūc + u′. (2.9)

Here, u′ denotes the transient fluctuation from ū, while the secondary-flow disturbance
ūc = ū − 〈ū〉y is stationary in time and represents the lateral structure of the
time-averaged velocity field induced by the farm geometry. As the transient fluctuation
and secondary-flow disturbance are uncorrelated, the covariance between the velocity
component ui and any field φ can be written as,〈

uiφ
〉
y = 〈ui〉y

〈
φ̄
〉
y + 〈ui

cφ̄c〉
y +

〈
u′

iφ
′
〉
y
. (2.10)

The three terms on the right-hand side represent the of contributions from the mean flow,
the secondary-flow part and the transient part, respectively.

Finally, in some cases we further average results in the vertical direction (depth
averaged), from the free surface z = 0 to a fixed depth z = zt with zt = −2hb, which are
then represented by

〈ū〉yz = 1
|zt|
∫ 0

zt

〈ū〉y dz. (2.11)

3. Langmuir turbulence in the presence of a canopy

3.1. Adjustment of the mean flow
The OML undergoes significant changes as it approaches and flows over the farm. Here,
we present the mean flow for case CLTL to offer a more complete picture of the spatial
development of the upper OML. Figure 4(a) shows the hodographs of the mean horizontal
velocity vector (〈ū〉y, 〈v̄〉y) at four different downstream positions. Upstream of the canopy
leading edge (x/hb = −5, purple line), the hodograph follows a typical Stokes–Ekman
spiral in Langmuir turbulence, with the cross-stream velocity pointing to the right of the
wind stress (i.e. 〈v̄〉y < 0) and most of the shear located near the surface (the horizontal
velocity is nearly uniform within most of the OML depth due to strong vertical mixing). As
the flow moves into the farm (x/hb = 10, 20, 30), the hodographs become very distorted
due to the large effect of the canopy drag. Despite the very complex behaviour of the
mean flow, some features are noteworthy. At x/hb = 20 (blue line), the cross-stream
component of the flow switches direction within the OML, and at x/hb = 30 (red line),
the cross-stream flow is completely reversed (i.e. to the left of the wind direction within
the entire depth of the OML). Also included in the figure is the downstream variation of
the depth-averaged horizontal velocity vector (〈ū〉yz, 〈v̄〉yz) (black line). Downstream of
the leading edge, we can see that the depth-averaged mean flow direction changes sign at
x/hb ≈ 18, indicating a change in the direction of cross-stream advection within the farm.

The overall change in the direction of the cross-stream flow can be understood based
on the differences of surface and bottom boundary layers in the presence of the rotation.
In the northern hemisphere, the horizontal transport is oriented to the right of the wind
stress in surface Ekman layers, and to the left of the main current in bottom Ekman layers
(McWilliams 2006). In the present case, the canopy introduces a vertically distributed
drag that is more pronounced near the bottom of the farm (where the LAD and the
mean velocities are larger). Therefore, the sign of 〈v̄〉y depends critically on the relative
importance of shear stresses at the top and bottom of the farm. Specifically, if the stress
near the ocean surface dominates over the stress around the canopy bottom, then 〈v̄〉y
is aligned to the right of the wind as in the wind-stress-driven mixed layer (McWiliams
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Figure 4. (a) Hodographs of the mean velocity vector (〈ū〉y, 〈v̄〉y) in the vertical at four different downstream
positions as noted in the legend are also included, and downstream variation of the depth-averaged mean
velocity vector (〈ū〉yz, 〈v̄〉yz) (black line); (b) profiles of the resolved momentum stress 〈u′w′〉y at these selected
downstream locations. Circles indicate values at the surface z/hb = 0, and asterisks indicate the canopy bottom
z/hb = −1.

et al. 1997); if the stress at the canopy bottom prevails, then the flow behaves more like
a BBL above the canopy bottom and 〈v̄〉y is directed to the left of the wind (right of
the bottom stress) (Taylor & Sarkar 2008). Because the former scales with u∗ and the
latter with ug, we expect the flow behaviour for a fixed canopy configuration to depend
on the ratio ug/u∗. Figure 4b shows the vertical profiles of 〈u′w′〉y at the selected four
downstream locations. It clearly shows that the turbulence within the farm has not reached
a fully developed state in the downstream direction, and the complexity of hodographs
from figure 4(a) also reflects this fact. Along the x-direction, the flow transitions from
a surface-stress-dominated regime to a bottom-stress-dominated flow, which explains the
switch in mean cross-stream flow direction shown in figure 4(a).

Figure 5 displays the mean vertical velocity 〈w̄〉y/u∗ along the x−z plane for case CLTL.
The region occupied by the macroalgal canopy is highlighted in a dashed rectangle. The
〈w̄〉y/u∗ exhibits a small value near the inlet, which implies that the macroalgal farm
poses a minor impact on the inflow. As the flow approaches the macroalgal farm, the
canopy drag obstructs the fluid. The associated pressure gradient across the leading edge
decelerates the flow within a region upstream of the canopy (termed the ‘impact region’
in Belcher et al. 2003) and induces a downward vertical motion under the canopy near
the leading edge by continuity. Similarly, the pressure drop across the trailing edge causes
the wake flow return to its inflow profile, leading to an upward motion into the wake of the
farm.

The solid line in figure 5 illustrates the downstream variation of the MLD, denoted as zi.
As it develops downstream, the shear turbulence near the bottom of the macroalgal canopy
gradually erodes the stratification by entraining denser water into the upper mixed layer.
Here, we define MLD as the location at which the potential temperature first exceeds a
certain percentage of the mixed layer temperature θML. Thus

zi = {z : 〈θ〉y(x, z)− θML = χθML}, (3.1)
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Figure 5. The time- and cross-stream-averaged vertical velocity 〈w̄〉y, normalized by u∗, for case CLTL along
the x−z plane. The black dashed rectangle represents the location where the macroalgae are planted. The black
solid line marks the MLD, which is defined as the position where the temperature exceeds a certain percentage
of the mixed layer value.

where χ is a predefined constant. This definition is adapted from the potential temperature
contour method in Sullivan et al. (1998). The downstream evolution of the MLD indicates
that, for the present configuration in which the MLD is comparable to the depth of the
backbone line, the shear layer at the bottom of the farm creates a local perturbation in the
depth of the OML, which seems to recover downstream of the farm.

3.2. Attached Langmuir circulations
Figure 6 shows the contours of the secondary-flow part of the vertical velocity 〈w̄c〉p/u∗
for case CLT in the cross-sections noted in the caption. In the figure, we can observe
a regular pattern of 〈w̄c〉p alternating between positive and negative values along the
cross-stream direction, indicating the steady upwelling and downwelling motions induced
by the presence of the canopy. This organized pattern is the signature of pairs of steady
counter-rotating circulatory flows with axis approximately aligned in the streamwise
direction. These upwelling and downwelling regions extend to the bottom of the OML.
We infer that these flows are primarily driven by the wave–current interaction since these
features are not observed in the shear-driven case CST (not shown). We refer to these
flow structures as attached Langmuir circulations because (i) their position is determined
by the spatial structure of the canopy, and (ii) their formation depends critically on the
wave-induced Stokes drift via a mechanism that resembles the CL type 2 instability, which
will be described in § 4.

While the standard Langmuir circulations appear as unsteady structures that move
around in the flow (see figure 3), the attached Langmuir cells are more steady and regularly
spaced. For the present canopy configuration, the separation between neighbouring pairs
of attached Langmuir cells is determined by the lateral spacing between consecutive rows
of canopy elements, but test runs suggest that this could change if the distance between
canopy rows is significantly larger (not shown). As the flow moves downstream, the
strength of the canopy-induced Langmuir circulations exhibits a non-monotonic variation.
The downwelling velocity reaches its maximum value at x ≈ 7.5hb with a magnitude of
approximately 8u∗ (figure 6b). The cell pattern then gradually decays until x ≈ 12.5hb
(figure 6c), and recovers at a lower level further downstream towards the trailing edge of
the farm (figure 6d). The orientation of Langmuir cells can be identified by the elongated
downwelling streaks. Owing to the non-zero component in the mean cross-stream velocity
(see figure 4a), the canopy-attached Langmuir circulations are oblique to the downstream
direction. The upwelling and downwelling bands are mildly deflected to the right of the
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Figure 6. The normalized secondary-flow part of vertical velocity 〈w̄c〉p/u∗, averaged over time and
cross-phase, for case CLT on a x–y plane at z = 0.5hb (a), and y–z planes (facing upstream) at x = 2.5hb
(b), x = 7.5hb (c), x = 12.5hb (d) and x = 17.5hb (e). The black solid line marks the MLD. The black dashed
rectangles represent the location where the macroalgae are planted. The velocity has been cross-phase averaged
and remapped to the entire plane. The extreme colours of the colour bar are saturated to highlight the spatial
variation of the strength of the cell pattern.

wind for x/hb < 10.0, and then aligned somewhat to the left of the wind for x/h > 10.0,
in agreement with the change in cross-stream velocity discussed in the previous section.
This complex pattern is discussed further in § 4, where results for the long farm case (case
CLTL) are presented.

As clearly seen in figures 3–6, the flow field has not reached a fully developed state at
the trailing edge of the farm (true for both the short and long farms). For canopy flows, the
canopy-drag length is defined as Lc = (1

2 CDā)−1 where ā = WMF/(SMFhb)
∫ 0
−hb

a(z)Px dz
is the effective FAD. This length scale neglects the vertical and horizontal structure of the
canopy, and characterizes the distance over which the flow adjusts to the mean drag of
canopy elements (Belcher et al. 2003; Rominger & Nepf 2011). The values reported in
§ 2 yield āhb ≈ 7.0 and Lc ≈ 19.2hb. Note that the short and long farms have lengths of
approximately equal to Lc and 2Lc, suggesting that the upper mixed layer flow does not
fully adjust to the canopy in these two cases.

To quantify the strength of the attached Langmuir circulations, we focus on the three
components of velocity variances due to the contribution from the secondary flow. Figure 7
shows the downstream variation of the depth-averaged mean velocity variances for cases
CLT and CST. The results from CLTF are also included to examine the sensitivity to
grid resolution. The comparison shows that the finer resolution simulation (CLTF) yields
relatively larger variances than CLT in all three velocity components, but the overall
variations observed in CLTF conform qualitatively to those in CLT. Thus, we consider the
simulations with moderate resolution (CLT and CST, etc.) to be a good starting point to
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Figure 7. The cross-stream- and depth-averaged secondary-flow part of velocity variances for CLT (solid lines)
and CST (dashed lines), together with the results from CLTF (dash-dotted line). The vertical dotted lines mark
the leading and trailing edges of the farm.

explore Langmuir turbulence in the presence of marine plants. It is interesting to note that
〈ūcūc〉yz shows negligible differences within the farm between CLT and CST, suggesting
that the canopy effect on the streamwise velocity component of the secondary flow is
not impacted by the surface waves. This also indicates that 〈ūcūc〉yz is dominated by the
lateral variation in mean velocity due to the spatially varying drag. For case CST, the
magnitudes of 〈v̄cv̄c〉yz and 〈w̄cw̄c〉yz within the canopy exceed their upstream levels by
roughly an order of magnitude, suggesting that the presence of canopy rows leads to
some secondary circulations driven by adjustment to the canopy drag, which may also
be impacted by spatial variation in the turbulent stresses (i.e. Prandtl’s secondary flow of
the second kind) (Bradshaw 1987). In the simulation with the Stokes drift (case CLT),
however, 〈v̄cv̄c〉yz and 〈w̄cw̄c〉yz are approximately two orders of magnitude greater than
that in the Stokesless simulation (case CST). The downstream enhancement and reduction
of 〈v̄cv̄c〉yz and 〈w̄cw̄c〉yz within the canopy for case CLT are consistent with the pattern of
the vertical velocity in figure 6. Therefore, we conclude that, for the present configuration,
the presence of Stokes drift is a key factor enabling the mean streamwise flow structure
induced by the farm drag to develop into strong secondary circulations. As discussed
above, these eddies are roughly two-dimensional with centrelines approximately aligned
in the downstream direction, justifying the nomenclature ‘attached Langmuir circulations’.
Based on these results, hereafter, we interpret the streamwise component of the secondary
flow as a product of the spatial structure of the canopy drag, and the cross-wise and vertical
components of the secondary flow in simulations with Stokes drift as attached Langmuir
circulations.

3.3. Langmuir turbulence intensity
Langmuir turbulence intensity is often characterized by large vertical velocity variance.
Our interest is centred on how the macroalgal farm alters the spatial evolution of turbulence
levels and associated turbulent mixing efficiency. In the figure 8, we plot the time-
and cross-phase-averaged vertical velocity variance due to transient eddies 〈w′w′〉1/2

p /u∗
for case CLT. Similar to that in standard Langmuir turbulence, the vertical intensity
〈w′w′〉1/2

p /u∗ peaks at a subsurface level, even in the presence of a shear layer near
the surface due to canopy discontinuity (top 1 m). In the near field downstream of the
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Figure 8. The transient part of the vertical velocity variance 〈w′w′〉1/2
p /u∗ for case CLT in the x−y plane at

z = 0.5hb (a), and y–z planes at x = 2.5hb (b), x = 7.5hb (c), x = 12.5hb (d) and x = 17.5hb (e).

leading edge (0 < x/hb < 4), 〈w′w′〉1/2
p /u∗ is decreased within the canopy and increased

near the canopy bottom (figure 8a,b). This is because the canopy drag dampens the
vertical kinetic energy within the canopy, but the shear layer at the canopy bottom can
inject additional energy from the mean flow via shear production (see § 5). Further
downstream, 〈w′w′〉1/2

p /u∗ first increases, with the maximum value occurring at 9 <
x/hb < 11 (figure 8a), and then decreases towards the trailing edge. The energetics of
the upper mixed layer, which will be covered in § 5, suggest that the enhancement
and reduction of 〈w′w′〉1/2

p /u∗ are mainly determined by two processes: (i) the energy
exchanges with the attached Langmuir circulations and (ii) the shear production associated
with the lateral/vertical shear in streamwise velocity caused by the canopy structure.
In the downstream cross-section (figure 8c,d), a clear pattern emerges with increased
〈w′w′〉1/2

p /u∗ at the bottom and outer edge of the canopy rows and reduced intensity in
the lower half of the canopy row where the leaf area density is high (figure 1b).

Figure 9 shows the comparison of the root mean square of the transient vertical
velocity fluctuation 〈w′w′〉1/2

y /u∗ between Langmuir (case CLT, panel a) and shear
turbulence (case CST, panel b). Upstream of the leading edge, 〈w′w′〉1/2

y from case CLT is
approximately twice as large as that from case CST. This is because Langmuir turbulence
yields significantly higher vertical velocity intensity compared to the pure shear-driven
turbulence scenario (McWiliams et al. 1997; D’Asaro 2001; Harcourt & D’Asaro 2008).
In the absence of surface wave forcing (figure 9b), the contour of 〈w′w′〉1/2

y /u∗ is similar
to what is expected for open-channel flow over a suspended canopy (see figure 16(e) in
Tseung et al. 2016). The shear layer at the canopy bottom grows continually downstream
and penetrates upward into the canopy, leading to the augmentation of 〈w′w′〉1/2

y within
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Figure 9. The transient part of the vertical velocity standard deviation 〈w′w′〉1/2
y /u∗ for CLT (a) and CST (b)

in the x–z plane. The black solid line marks the MLD.

the growing shear layer. Towards the end of the farm, the shear layer penetrates over the
entire canopy depth, a phenomenon that usually occurs for sparse canopies (Nepf 2012a).
Interestingly, in the simulation that includes the wave-induced Stokes drift (figure 9a),
the shear layer turbulence seems to merge with Langmuir turbulence at around x/hb ≈ 4,
and the turbulence levels near the ocean surface are further enhanced within the canopy
(for 6 < x/hb < 12) as compared to the Stokesless counterpart (figure 9b). This can be
attributed to the presence of attached Langmuir circulations described above in § 3.2. This
difference between the two cases also confirms that the enhancement of 〈w′w′〉1/2

p /u∗ in
figure 8 is due to the turbulence modulation by the attached Langmuir circulations.

Since transient eddies and attached Langmuir circulations coexist as the fluid impinges
upon and flows over the farm (figure 3), it is desirable to compare the energy associated
with transient eddies to that of attached Langmuir circulations. In figure 10, we plot the
vertical velocity variances due to the contribution from the transient eddies and attached
Langmuir circulations, as noted in the caption. Again, only some minor differences exist
between CLT and CLTF within the farm region, building confidence in the use of the
coarser simulations to analyse the flow. To evaluate if the flow has fully adjusted to the
canopy towards the end of the farm in case CLT, the results from CLTL are also shown. The
discrepancies between cases CLT and CLTL (black and red lines) are mainly located near
the end of the farm in CLT (x/hb = 20) due to the trailing edge effect. As the farm extends
further downstream (case CLTL, LMF = 40hb), 〈w̄cw̄c〉CLT

yz does not become uniform but
still evolves in the streamwise direction within the farm (black solid line). It is observed
that the attached Langmuir circulations gradually attenuate in strength from x/hb ≈ 20 and
eventually fade away at x/hb ≈ 32 (black solid line). This suggests that their existence is a
result of flow adjustment to the suspended farm of finite size rather than a fully developed
state. While the attached Langmuir circulations disappear, the vertical velocity variance of
transient eddies for case CLTL 〈w′w′〉CLTL

yz is increasing from x/hb ≈ 30 towards the end
of the farm (black dashed line). The enhanced 〈w′w′〉CLTL

yz of transient eddies is mainly
attributed to the canopy shear in the horizontal direction, which no longer assists the
generation of attached Langmuir circulations as the flow has reached an equilibrium state.
Except in the near field downstream of the leading edge, 〈w′w′〉CLT

yz is much larger than
〈w̄cw̄c〉CLT

yz throughout the remaining part of the farm.
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Figure 10. Downstream variations of 〈w′w′〉yz/u2∗ (dashed line) and 〈w̄cw̄c〉yz/u2∗ (solid line) for CLT (red),
CST (blue), CLTF (green) and CLTL (black). The end of the farm is located at x/hb = 20 for CLT/CST/CLTF,
and x/hb = 40 for CLTL. The grey dotted lines mark the values of the depth-averaged vertical velocity variance
for normal Langmuir turbulence (case LT, upper line) and pure shear-driven turbulence (case ST, lower line).

3.4. Comparison with standard Langmuir circulations
To compare the attached Langmuir cells with the traditional Langmuir cells that appear
in the absence of the farm, we employ a conditional sampling approach for the LES
solutions to educe the coherent structure of both fields (also see McWiliams et al. 1997;
Kukulka et al. 2010; Van Roekel et al. 2012; Shrestha & Anderson 2019). Based on the
preconception of the form of cell structure, we identify the Langmuir cells by searching
for the strong downwelling motion. The conditioning event E is defined as all (xs, ys, t)
instances that satisfy w(xs, ys, z∗, t) ≤ −σw|max, where σw is the root mean square of
transient vertical velocity and z∗ is the depth at which σw attains its maximum value,
denoted as σw|max. The ordered pair (xs, ys) represents a set of grid points in the horizontal
space. For case LT, σw = 〈w′w′〉1/2 and (xs, ys) enumerates the entire horizontal domain;
while for case CLT, σw = 〈w′w′〉1/2

y is a function of xs, and (xs, ys) only contains grid
points at the centre of the canopy spacing along the x-direction. Thus, the conditional
average for any quantity, denoted as φ̂, is obtained with

φ̂(xs, ys, x′, y′, z, t) = 〈φ(xs + x′, ys + y′, z, t)
∣∣E 〉 . (3.2)

It should be noted that (x, y) is the absolute coordinate in the horizontal plane based on
the Cartesian system defined in figure 2, while (xs, ys) denotes the reference point with
(x′, y′) being the distance from (xs, ys) in the horizontal direction. Only when the flow
is horizontally inhomogeneous should (xs, ys) be equal to (x, y). To reduce the sampling
error, the sampled flow field for case CLT is then further smoothed by a moving average
with window size in the streamwise direction given by xs − hb/2 < x < xs + hb/2.

Figure 11 shows the contour plots of ŵ/u∗ in y′–z planes for cases LT and CLT, as noted
in the caption. Note that the mean vertical velocity 〈w̄〉y has been removed for the case CLT
before conditional averaging operations to better compare the distinct attached Langmuir
circulations against standard Langmuir circulations (e.g. 〈w̄〉y is identically zero for LT but
not for CLT). In both cases (LT and CLT), the Langmuir cells extend down to the bottom
of the OML. The Langmuir cell pattern for LT (figure 11a) appears asymmetrical about
the longitudinal plane because of the Ekman shear. The row spacing happens to be very
close in width to the natural lateral size of the downwelling region in standard Langmuir
circulations, and this may be related to the geometric characteristics of the attached
Langmuir cells presented here. This canopy row spacing also plays a role in determining
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Figure 11. Contour plots of the conditional-averaged transient vertical velocity ŵ′/u∗ in y–z planes for case
LT (a), and case CLT at different downstream locations (b) xs = 2.5hb, (c) xs = 7.5hb, (d) xs = 12.5hb and
(e) xs = 17.5hb. The black solid line marks the MLD.

the separation between neighbouring attached circulations, as described above, and the
effects of varying row spacing should be explored in the future. The downwelling velocity
is greater than the upwelling velocity for both cases, but the upwelling motions increase
by an order of magnitude in the presence of the canopy. This is partly caused by the fact
that the obstruction of farm rows constrains the lateral extension of upwelling regions
compared to standard Langmuir turbulence regime, producing stronger upwelling to
conserve mass.

4. Mechanism for attached Langmuir circulations

The standard Langmuir cells in a horizontally uniform OML (e.g. case LT) are generated
through the CL type 2 instability, which is triggered by the wave-induced Stokes drift
velocity acting upon a cross-stream perturbation in an otherwise horizontally uniform
current (Craik 1977; Leibovich 1983; Suzuki & Fox-Kemper 2016). The instability arises
from the torques produced by the variations of vortex force us × ζ̃ that appears in (2.2),
which leads to overturning cellular motions with downstream vorticity (Leibovich 1977,
1983). This flow pattern drives the well-known Langmuir circulations that are transient in
nature in the sense that they can survive for long periods of time but they also occasionally
merge and disappear (McWiliams et al. 1997).

In the presence of a suspended farm with row structure (cases CLT and CLTL),
the canopy drag acts within the fraction of volume occupied by the canopy elements,
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Figure 12. Sketch illustrating the mechanism for attached Langmuir circulations generated due to the presence
of a farm in the upper ocean. The cross-varying current excited by the farm is rotated by the Stoke drift,
producing the attached Langmuir circulations (black solid curves) that persist across the farm.

thus decelerating the fluid within the farm rows and accelerating the fluid in the spacing
between rows due to continuity (figure 12). The cross-stream variation of the current
produced by the farm generates a persistent vertical vorticity field ζz that interacts with
the wave-induced Stokes drift in a way similar to the CL type 2 instability. Specifically,
the vertical component of vorticity ζz associated with the cross-stream anomaly introduces
a cross-stream vortex force −usζz that carries fluid parcels towards the planes of local
maximum u where fluid sinks due to continuity (Leibovich 1983; Thorpe 2004). Because
the horizontal shear is persistent within the farm and the Stoke drift associated with the
waves is horizontally uniform, such interaction gives rise to the formation of attached
Langmuir circulations that are stationary and stable within the farm. This leads to
downwelling regions in the high velocity regions between the canopy rows and upwelling
regions within the rows of canopy elements. A schematic diagram illustrating the
generation of such circulations is shown in figure 12. The black closed curves provide
an illustration of the swirling streamlines in the plane perpendicular to the canopy axis.

Figure 13(a,b) shows the cross-stream and vertical components of vortex force, i.e.
−us〈ζz〉p and us〈ζy〉p respectively, in the x−y plane at z = −0.5hb for the CLTL case.
In terms of magnitude, the cross-stream component −us〈ζz〉p dominates over the vertical
component us〈ζy〉p down to approximately x/hb ≤ 30, while they are both negligibly small
towards the end of the longer farm. Consistent with the pattern of the coherent part of
vertical velocity 〈w̄c〉p/u∗ (figure 13c), the vortex force alternates in sign periodically
across the farm, forming pairs of equal magnitude, oppositely directed forces in the
cross-stream direction. Very close to the leading edge (0 < x/hb < 2), as the flow just
enters the farm, −us〈ζz〉p is positive (pointing in the positive y−direction) and negative
(pointing in the negative y−direction) near the left and right edges of the canopy rows,
respectively. In consequence, the action of −us〈ζz〉p drives upwelling motions within
the farm rows and downwelling motions in the spacing (see figure 13c), as illustrated
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Figure 13. The time- and cross-phase-averaged vortex force: (a) cross-stream component −us〈ζz〉p · hb/u2∗ and
(b) vertical component us〈ζy〉p · hb/u2∗; and (c) secondary-flow part of the vertical velocity 〈w̄c〉p/u∗ for case
CLTL at z = −0.5hb.

in figure 12. This pattern is clearly disrupted downstream of the leading edge, as discussed
below.

To further characterize the flow structure associated with the attached Langmuir
circulation, we look at the streamwise vorticity ζx. Figure 14 plots the contours of 〈ζx〉p
for case CLTL at several cross-sections, as noted in the caption. As described above, it is
the Stokes drift rotation of vertical vorticity ζz that produces downstream vorticity ζx of
alternating signs in the cross-stream direction. Although the heterogeneous canopy in the
absence of the Stokes drift (case CST) also generates turbulence-driven secondary flows
(because of spatial variability of the turbulent stresses), it fails to yield any regular patterns
in the streamwise vorticity as those shown in figure 14 (not shown).

To better visualize the overturning circulations, we plot streamlines on y–z
cross-sections in figure 14(b–d) (Akselsen & Ellingsen 2019, 2020). We determine the
streamlines as isolines of the non-divergent two-dimensional streamfunction ψ computed
from

∂2ψ

∂y2 + ∂2ψ

∂z2 = −ζx. (4.1)

The streamlines in figure 14 portray pairs of counter-rotating vortices, with the axes
aligned to the right of the wind for 0 < x/hb < 10 and tilted to the left of the wind after
x/hb ≈ 10. Since the attached Langmuir cells are not strictly aligned with the x-direction,
the use of 〈ζx〉p only captures the largest downstream component of the three-dimensional
vortices, and thus documents weaker overturning motions relative to the full form of
coherent circulations. The variations of 〈ζx〉p resemble that of the secondary-flow part
of vertical velocity in figure 6(a), with the maximum magnitude appearing in the near
field downstream of the leading edge (x = 2.5hb ∼ 7.5hb). Towards the end of the farm,
the negative downstream vortices vanish and only the weak positive vortices are left. This
is mainly because the cross-stream vortex force there is not strong enough (figure 13a) to
sustain a downstream counter-rotating vortex pair.

In an idealized configuration in which the incoming mean flow is perfectly parallel to the
farm rows, we would expect an organized flow structure similar to that shown in figure 12.
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Figure 14. The time- and cross-phase-averaged downstream vorticity 〈ζx〉phb/u∗ with overlaid horizontal
velocity vector (a scale factor of 1/5 is applied to 〈ū〉p for better visualization) for case CLTL at z = −0.5hb
(a), and in the y−z plane at four different downstream locations (b) x = 2.5hb, (c) x = 7.5hb, (d) x = 12.5hb
and (e) x = 17.5hb, overlying the two-dimensional streamfunction 〈ψ̄〉p (grey lines) computed from ζx.

However, as is clearly seen in figures 6, 13 and 14, the patterns that emerge from the
simulation are far more complex. The attached Langmuir cells meander in the cross-stream
direction and their amplitude changes in a non-monotonic way as a function of distance
from the leading edge of the farm. These departures from the idealized scenario are mostly
caused by the cross-stream advection, as seen by the superposition of horizontal velocity
vectors onto the streamwise vorticity in figure 14(a). In particular, the shift in cross-stream
velocity from negative to positive around x/hb ≈ 15, discussed in § 3.2, produces a similar
change in the effect of advection, causing the upwelling motions to be displaced to the
right of the farm row in the region near the leading edge (i.e. up to x/hb ≈ 10) and to the
left of the row for x/hb > 18.

The same pattern observed in the upwelling/downwelling regions is clearly seen in the
streamwise vorticity, as the two quantities are tied together by the overturning structure of
the flow. However, the advection of the vertical and cross-stream components of vorticity
is less effective, as clearly seen in the patterns of the vortex force (which reflect the
patterns of 〈ζz〉 and 〈ζy〉). This is mostly because the canopy drag continues to generate
lateral shear at the canopy edges, strongly influencing the position of 〈ζz〉 and 〈ζy〉. As a
consequence, in the region between 10 < x/hb < 15, the upwelling/downwelling branches
of the attached Langmuir cells no longer coincide with the divergence/convergence of the
cross-stream vortex force (compare figures 13(a) and 13(c)), leading to the weakening
of the attached Langmuir cells around x/hb = 12 followed by a restrengthening at the
more favourable position with the upwelling within the canopy row. This process appears
mostly as an abrupt left shift of the flow structure at x/hb ≈ 12. Towards the end of
the farm, −us〈ζz〉p is significantly reduced, and is no longer capable of driving clear
attached Langmuir circulations (see figures 13(c) and 14), which is also consistent with
the decay of the vertical variance for the secondary-flow component of the flow seen in
figure 10.

915 A76-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.111


Generation of attached Langmuir circulations

5. Mixed layer energetics

In this section, we examine the budget of the kinetic energy in the mixed layer, which
will reveal the energy source for the secondary flow in our LES solutions. Following
the decomposition strategy described in § 2.5, the total kinetic energy (K = 〈uiui〉y /2)
is composed of contributions due to the mean flow, secondary flow and transient eddies
as,

K = 1
2 〈uiui〉y = 1

2 〈ui〉y 〈ui〉y︸ ︷︷ ︸
KM

+ 1
2

〈
ui

cui
c〉

y︸ ︷︷ ︸
KSE

+ 1
2

〈
u′

iu
′
i

〉
y︸ ︷︷ ︸

KTE

. (5.1)

Here, KM represents the mean kinetic energy, KSE is the kinetic energy of the secondary
mean flow (which includes lateral variations in the flow produced by the spatial structure of
the farm and the attached Langmuir circulations) and KTE is the turbulent kinetic energy.
By manipulating the governing equations (2.1) and (2.2), the transport equations for KM ,
KSE and KTE can be obtained as follows:

DKM

Dt
= −CM-SE − CM-TE + SM + BM + εM + DM + TM + RM, (5.2a)

DKSE

Dt
= CM-SE − CSE-TE + SSE + BSE + εSE + DSE + TSE, (5.2b)

DKTE

Dt
= CM-TE + CSE-TE + STE + BTE + εTE + DTE + TTE, (5.2c)

in which the material derivative D/Dt = ∂/∂t + 〈uj
〉
y ∂/∂xj + us∂/∂x. Note that the

prescribed wave and current conditions, namely ug = (ug, 0, 0) and us = (us(z), 0, 0),
have been invoked in deriving these equations. The first two terms on the right-hand
sides of (5.2) represent the magnitude of energy conversion between KM , KSE and KTE
as implied in the subscripts, and are given by

CM-SE = − 〈ui
cuj

c〉
y

∂〈ui〉y

∂xj
,

CM-TE = −
〈
u′

iu
′
j

〉
y

∂〈ui〉y

∂xj
,

CSE-TE = −
〈
u′

iu
′
j
∂ui

c

∂xj

〉
y
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.3)

Note that the Einstein summation convention is used. As an example, CM-SE > 0
represents the rate of production of KSE at the expense of KM , as this term appears as
a source in the equation for KSE (5.2b) and a sink in the equation for KM (5.2a). Thus, it
represents the energy transfer rate from the mean flow to the secondary flow.

The third terms on the right-hand sides of (5.2) are the Stokes production terms that
reflect the energy conversion between the waves and the decomposed field,

SM = − 〈ū〉y 〈w̄〉y ∂us/∂z, SSE = − 〈ūcw̄c〉
y ∂us/∂z, STE = −

〈
u′w′

〉
y
∂us/∂z.

(5.4a–c)
Interestingly, the Stokes production, which only makes a contribution to the turbulent
kinetic energy in a horizontally homogeneous OML, now also appears in the budget
equation of mean kinetic energy in our LES experiments because of a non-zero and
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spatially evolving mean vertical velocity 〈w̄〉y field. The fourth term is the buoyancy
production term,

BM = αg 〈w̄〉y

(〈
θ̄
〉
y − θ0

)
, BSE = αg

〈
w̄cθ̄c〉

y , BTE = αg
〈
w′θ ′

〉
y
. (5.5a–c)

Here, BM represents an exchange of mean kinetic energy KM with the potential energy.
The fifth term in (5.2) is the SGS dissipation term,

εM = − 〈τij
〉
y ∂〈ui〉y/∂xj, εSE = − 〈τij

c∂ui
c/∂xj

〉
y , εTE = −

〈
τ ′

ij∂u′
i/∂xj

〉
y
. (5.6a–c)

In light of the energy cascade phenomenology (Pope 2000), we expect most of the
energy dissipation occurs in the small-scale transient eddies, while the energy loss of the
large-scale mean flow and secondary flow to direct SGS dissipation effects is negligible,
i.e. εM, εSE � εTE. Thus, we will assume ε ≈ εTE in interpreting the LES solutions, and
do not partition the total dissipation ε into three components as in (5.6a–c). The sixth term
in (5.2) is the canopy destruction term,

DM = − 〈ui〉y
〈
FD,i

〉
y , DSE = −

〈
ui

cFD,i
c
〉
y
, DTE = −

〈
u′

iF
′
D,i

〉
y
, (5.7a–c)

which represents the energy gain/loss of each component of the flow field (i.e. mean flow,
secondary flow and transient eddies) due to the action of canopy drag. The terms in flux
form are grouped together as a transport term in (5.2),

TM = ∂

∂xj

[
〈ui〉y

〈
τij
〉
y + 〈uj

〉
y 〈ū〉y us − 〈uj

〉
y

〈
Π̄
〉
y

− 〈ui〉y
〈
ui

cuj
c〉

y − 〈ui〉y

〈
u′

iu
′
j

〉
y

]
, (5.8a)

TSE = ∂

∂xj

〈
ui

cτij
c − 1

2
ui

cui
cuj

c − uj
cΠ̄c − u′

iu
′
jui

c + uj
cūcus

〉
y
, (5.8b)

TTE = ∂

∂xj

〈
u′

iτ
′
ij − u′

iu
′
iu

′
j/2 − u′

jΠ
′ + u′

ju
′us − 1

2
uj

cu′
iu

′
i

〉
y
, (5.8c)

which represents the transport of kinetic energy (KM , KSE or KTE) through resolved
momentum stresses, SGS stresses and pressure. The last term on the right-hand side
of (5.2a) represents the effect of Coriolis force associated with the Stokes drift and
geostrophic current,

RM = f 〈v̄〉y (ug − us) (5.9)

which transfers energy from surface waves and external larger-scale field to the mean flow
(Suzuki & Fox-Kemper 2016).

Figure 15(a) shows the downstream variation of the depth-averaged kinetic energy for
the triply decomposed field. Within the canopy region (0 < x/hb < 40), KM decreases
because the farm drains the mean kinetic energy by decelerating the time-mean flow.
As the OML flow impinges upon the farm, both KSE and KTE increase in the near field
downstream of the leading edge. While KTE maintains at a high level after that, KSE
gradually decreases towards the end of the farm. This suggests that, in the presence
of a suspended farm, the flow within the canopy region is in a highly turbulent state
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Figure 15. Budget terms of the depth-averaged kinetic energy in the upper surface layer for case CLTL:
(a) downstream variation of the triply decomposed kinetic energy; and partition of conversion, Stokes
production, buoyancy production and canopy destruction for (b) KM , (c) KSE and (d) KTE. The terms are
normalized by hb/u3∗.

but the organized secondary circulations become less intense as the fluid moves further
downstream. The downstream variations of the various production and destruction terms
in the kinetic energy budget equation (5.2) for the mean flow, secondary flow and
transient eddies are depicted in figure 15(b–d), respectively, using u∗ and hb as the scaling
parameters (transport terms are not shown). To facilitate interpretation, the curves are
colour coded according to the diagram depicting energy exchanges shown in figure 16,
which provides a summary of the energy budget for the three components of the flow
integrated over the entire farm.

The Stokes production SM is the main source for KM (figure 15b), except it is
negative after x/hb ≈ 32, mainly because of the upward deflection near the trailing
edge, i.e. 〈w̄〉y > 0 that makes SM = −〈ū〉y 〈w̄〉y ∂us/∂z < 0. Contrary to expectations,
the energy conversion term −CM-TE is mostly positive along the farm (green dashed
line in figure 15b,d), indicating that the transient eddies lose kinetic energy to the
mean flow. The canopy destruction term DM is the primary sink term for KM as the
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Figure 16. Schematic diagram of the depth-averaged energy budget for the mean flow, secondary flow and
transient eddies. The arrow lines represent the transfer of energy integrated over the entire farm length, with
the direction of net energy flow indicated by heavy arrowheads. The number alongside each arrow line is the
farm-averaged value of the corresponding term, normalized by hb/u3∗. Note that the transport terms are not
included here, thus the energy budget for each component is not closed.

hydrodynamic drag imparted by the farm consistently removes the momentum from the
flow (e.g. ∂〈ū〉y/∂x < 0). The energy conversion term CM-SE (red solid line in figure 15b,c)
constitutes the secondary energy sink for KM , i.e. energy is transferred from the mean
flow to the secondary flow. This is mainly because the leading-order term of CM-SE in
(5.3) is −〈ūcūc〉y ∂〈ū〉y/∂x > 0. Since the geostrophic current and Stokes drift velocity
are prescribed, the sign of Coriolis-related term RM in (5.9) is directly determined by
the cross-stream velocity 〈v̄〉y, which goes to the right of the wind (i.e. 〈v̄〉y < 0) as in
standard Langmuir turbulence before x/hb ≈ 18 and then turns to the left of the wind (i.e.
〈v̄〉y > 0) after that (not shown). The flow veering is largely caused by the modification of
the suspended farm on the vertical momentum transfer, given that f 〈v̄〉y ∼ ∂〈u′w′〉y/∂z as
yielded from a reduced form of (2.2).

In terms of the secondary flow, the canopy-related term DSE is a major source term
for KSE (black dotted line in figure 15c), mainly because it is the spatial arrangement of
the farm that leads to persistent variations in the streamwise flow across the farm. Apart
from the energy conversion from the mean flow CM-SE, another important source term
for the secondary mean flow is the Stokes production SSE, which is the main source of
energy to the attached Langmuir circulations. This is true everywhere except for the region
9 < x/hb < 12, where SSE is negative. In this local range, SSE serves as a sink of KSE
and the energy transferred from the mean flow CM-SE is also decreasing (red solid line),
which to some extent explains the local attenuation of attached Langmuir circulations at
x/hb = 12.5 (figure 6d). For x/hb > 32, SSE is approximately zero because the coherent
vertical velocity w̄c almost vanishes (figure 10) and hence the momentum stress due to the
secondary flow 〈ūcw̄c〉y in (5.4a–c) is negligibly small. These three source terms (DSE,
SSE and CM-SE) are responsible for the maintenance of secondary flow (including the
attached Langmuir circulations) in the adjustment region downstream of the leading edge,
whereas the exchange with the transient eddies CSE-TE constantly extracts energy from the
secondary flow to support the turbulence level (purple dashed line in figure 15c).

As shown in figure 15(d), the transient eddies feed on wave energy transferred by the
Stokes drift shear (blue dash-dotted line) and energy conversion from the secondary flow.
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The transient eddies lose energy mostly via three processes: (i) energy transfer to the mean
flow; (ii) energy removal due to the canopy drag; and (iii) energy dissipation at the small
scales (represented by the SGS dissipation). As Langmuir turbulence in the presence of
canopy features strong shear layers and wave forcing, and we assume no incoming or
outgoing buoyancy flux at the surface, the buoyant production terms for the secondary
flow and transient eddies (BSE and BTE) are negligibly small in comparison.

6. Conclusions

In this study, a fine-scale LES model is used to explore how Langmuir turbulence in
the deep ocean evolves as it flows over and through a row-structured macroalgal farm.
The ocean flow is driven by a constant wind stress and a geostrophic current, under the
influences of surface gravity waves, planetary rotation and stable interior stratification.
The effects of Langmuir turbulence are accounted for by adding the CL vortex force to the
momentum equation without explicitly resolving the surface waves. For the case studied
here, the drag force at the bottom of the farm becomes dominant over the wind forcing at
the surface with increasing distance downstream of the leading edge. As a result, the mean
horizontal flow switches from the canonical surface forced Ekman layer to a regime that
resembles a bottom Ekman layer. This transition is evident in the change of direction of
the mean current perpendicular to the wind.

Following a triple-decomposition technique, the turbulent transport is divided into
contributions from the mean flow, secondary flow and transient fluctuations. We find
out that the row structure of the farm causes the cross-stream variation of the current
that ultimately leads to the formation of coherent circulations via a mechanism similar
to CL type 2 instability theory. Specifically, the vertical vortex lines associated with this
cross-varying current are tilted by the Stokes drift, driving the formation of downstream
vortices that are stationary in time, phase locked in space, and periodically alternating in
sign across the lateral direction. Thus, we also refer to these coherent structures as attached
Langmuir circulations.

The attached Langmuir circulations are unique to the upper OML in the presence
of aquacultural farms (or other distributed roughness elements) since the cross-stream
variation of the current is excited by the canopy. They are roughly oriented along the
rows of canopy elements, which are aligned with the wind direction within the present
numerical framework. The vertical extent of attached Langmuir circulations can occupy
the entire OML, with the lateral scale of the associated downwelling regions comparable
to the row spacing in the farm. The potential impact of varying farm geometry and ocean
conditions on these circulations is out of the scope here, but should be explored in the
future.

Because the associated upwelling motions are concentrated in regions occupied by
macroalgae, these attached Langmuir circulations are conducive to vertical mixing and
could increase nutrient availability within macroalgal farm environments. The strength
of transient eddies, characterized by cross-stream and vertical turbulence intensities (i.e.
〈v′v′〉1/2

y and 〈w′w′〉1/2
y ), is much larger under the effect of Stokes drift associated with

the surface waves (case CLT) compared to the pure shear-driven scenario (case CST),
which is also consistent with previous studies in the absence of the canopy (McWiliams
et al. 1997; D’Asaro 2001). For both cases, the suspended farm prompts a shear layer
development near the canopy bottom and deepens the mixed layer as the flow moves
downstream. For the simulation with Stokes drift (case CLT), in the near field downstream
of the leading edge, the canopy drag dampens the turbulence, leading to the reduction of
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〈w′w′〉1/2
p /u∗ for 0 < x/hb < 4. Further downstream, the attached Langmuir circulations

promote strong enhancement of turbulence. This enhancement slowly fades as the flow
adjusts to the canopy and the strength in the secondary flow decays (figure 10). The
presence of the canopy leads to the formation of the attached Langmuir circulations and
to local enhancement of the turbulence. Both flow modifications are expected to enhance
vertical mixing within the OML and possibly help the entrainment of nutrients from the
pycnocline.

Analysis of kinetic energy budget shows that, as the flow moves downstream of the
canopy leading edge, the canopy drag acts as an energy sink for the mean flow and transient
fluctuations, while serving as a major source for the kinetic energy of the secondary mean
flow. If the canopy is long enough, the secondary-flow pattern vanishes when the oceanic
turbulence is fully adjusted to the macroalgal farm. Therefore, this flow feature arises from
the adjustment of the upper mixed layer to the aquafarm.

The conclusions drawn here are valid for conditions in which the effect of Stokes drift
dominates over that of wind stress and external pressure gradient forcing (i.e. the solutions
are posed in the Langmuir turbulence regime). Despite the simplification made here (e.g.
plant reconfiguration, monochromatic waves, etc.), we are optimistic that the findings
presented above are relevant to realistic practice, and could serve as guidance for the design
of large-scale macroalgae systems. Still, the attached Langmuir circulations from our LES
solutions and their potential implication on nutrient uptake by aquaculture farms await
field observations to confirm their veracity.

From a fluid dynamics perspective, the physical flow presented here encompasses a
variety of processes (stratification, Coriolis acceleration, wave-driven transport and a
canopy, etc). One of our main goals is to make it clear that these flow features are important
in practice, in conditions under which macroalgal farms are deployed. As it turns out, most
of the complexity involved in our setup is essential for the attached Langmuir eddies to
develop (waves, mean current, non-uniform canopy and downstream flow development).
There are some possible simplifications that would allow us to reduce the parameter space
and simplify the problem, bringing it to a more manageable fundamental configuration
(e.g. removing the effects of planetary rotation and stratification). The results in this paper
warrant further investigation of a more fundamental nature in simplified conditions, which
could help reconcile a bit the complexity of the flow features we discovered with a more
traditional fluid dynamical investigation of the parameter space.
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Appendix A. Motion of buoyant, flexible macroalgae in upper OML

The stipe reconfiguration in response to the flowing water depends on the ocean parameters
(wave amplitude, wave period and current) and the mechanical properties of macroalgae
(stipe length, Young’s modulus, density and buoyancy). We decompose the upper OML
flow into two parts, i.e. the steady flow (geostrophic current) and oscillatory flow
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Generation of attached Langmuir circulations

(wave orbital velocity), and analyse the motion of buoyant, flexible macroalgae with
respect to flow components separately. For each plant, the stipe bundles are simplified
to have a circular cross-section, with length ls = 20 m, radius rs = 0.1 m (corresponding
second moment of area I = πr4

s /4), Young’s modulus E = 1 × 107 Pa and density ρs =
595 kg m−3 (properties taken from Utter & Denny 1996; Henderson 2019).

In a unidirectional steady current (e.g. ug = 0.2 m s−1), the key parameters determining
the form of macroalgae in sustained flow conditions are the dimensionless Cauchy number
Ca (fluid drag/elastic force) and buoyancy number B (buoyancy force/elastic force) defined
as (Luhar & Nepf 2011),

Ca = 1
2

ρCDrslsu2
g

EI/l2s
, (A1)

B = (ρ − ρs) gπr2
s ls

EI/l2s
, (A2)

in which ρ = 1010 kg m−3 is the density of water. The ratio Ca/B measures the relative
importance of fluid drag and buoyancy force. Note that the flexibility of blades is
neglected, because the blades can fold and rotate in the water, while the stipe bundles
constitute the essential part governing the bending of macroalgae. As such, only the
fluid drag on the stipe bundles (denominator in (A1)) is considered instead of (2.5).
From the values of parameters given above, the resulting Ca/B = 2.3 × 10−3 � 1 (Ca =
304.5, B = 1.3 × 105), and the bending angle of the stipe bundles ξ = 0.13◦ (estimated
by (12) in Luhar & Nepf 2011), suggesting the buoyancy force dominates over the fluid
drag and the stipe bundles deform very little relative to its vertical position.

For wave-induced oscillatory flows, such as a sinusoidal wave with surface elevation η =
aw cos (kx − σ tw), Henderson (2019) introduced a new dimensionless buoyancy number β
and stiffness number S,

β = (ρ − ρs) grstw
ρCDlsuw

, (A3)

S = EItw
ρCDrsl4s uw

. (A4)

Here, σ = 2π/aw is the angular frequency, tw = 2π/
√

gk and uw = σaw are the wave
period and orbital velocity scale, respectively. Based on the monochromatic wave
parameters reported in § 2.4 (tw = 6.2 s, uw = 0.81 m s−1), the resulting β = 1.06 and
S = 3.2 × 10−5. The relative magnitude of buoyancy and elasticity scales with γ =
β/S1/2 = 184 � 1, which suggests that the elasticity plays a negligible role here. As β is
of order unity, the stipe displacement and the wave-induced water motion are comparable,
i.e. the stipe bend with the waves. Note that our estimates of S and β are different from
those in Henderson (2019) because different values of wave (e.g. period and amplitude)
and canopy parameters (e.g. length and drag coefficient) are used here.

Appendix B. Deep-water wave attenuation by suspended canopies

Surface waves propagating through marine plants lose energy due to the drag exerted
by the canopy, leading to attenuation in wave heights (Dalrymple et al. 1984).
Canopyp configuration (submerged, emergent, suspended) and the associated spatial
distribution patterns exert a major impact on wave attenuation (Chen et al. 2019).
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The following mathematical derivation is based on the work of Dalrymple et al. (1984)
for damping by rigid cylinders in coastal regions, and considers suspended macroalgal
farms in deep water (described previously in the main text).

Assuming that energy dissipation is dominated by the canopy drag force, the
conservation of wave energy equation is

∂
(
Ewcg

)
∂x

= −αDεD, (B1)

in which Ew = 1
2ρga2

w is the energy density per unit area of sea surface waves, aw is the
wave amplitude and cg = 1

2
√

g/k is the wave group velocity. The prefactor αD accounts
for the reduction in dissipation arising from the motion of buoyant, flexible macroalgae,
and it is a function of β and S defined in Appendix A and expressed as (Henderson 2019)

αD =
[

CSS + Cββ2

1 + CSS + Cββ2

]1/4

, (B2)

in which CS = 1/4 and Cβ = 1/16. For the highly flexible macroalgae (β = 1.06 and S =
3.2 × 10−5 in Appendix A), the value of αD is 0.51. Here, εD is the mean depth-integrated
wave dissipation due to canopy drag force,

εD =
∫ 0

−hb

Dxux dz, (B3)

in which the overline denotes averaging over a complete wave period, ux =
σa ekz cos (kx − σ t) is the horizontal velocity due to wave orbital motions, σ = √

gk is
the angular frequency and Dx = 1

2ρCD〈a〉yPx|ux|ux is the wave drag force on the canopy
with 〈a〉y being the lateral-averaged FAD. Substituting (B3) into (B2) yields,

1
2

gcg
∂a2

w

∂x
= −Ga3

w, (B4)

in which

G = 4
3αDCDPxσ

3
∫ 0

−hb

a e3kz dz. (B5)

The solution of (B4) is

aw

a0
w

=
(

1 + Ga0
w

gcg
x
)−1

, (B6)

in which a0
w (=0.8 m here) is the incident wave amplitude before entering the macroalgal

canopy. From the values of parameters reported above, the wave height decay over an
800 m (400 m) long farm is approximately 2.9 % (1.4 %), and the corresponding decay in
Stokes drift velocity is 5.7 % (2.8 %).
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