
Journal of the Inst. of Math. Jussieu (2009) 8(4), 743–768 c© Cambridge University Press 743
doi:10.1017/S1474748009000103 Printed in the United Kingdom

RICCI ITERATIONS ON KÄHLER CLASSES
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Abstract In this paper we consider the dynamical system involved by the Ricci operator on the space of
Kähler metrics of a Fano manifold. Nadel has defined an iteration scheme given by the Ricci operator and
asked whether it has some non-trivial periodic points. First, we prove that no such periodic points can
exist. We define the inverse of the Ricci operator and consider the dynamical behaviour of its iterates for a
Fano Kähler–Einstein manifold. Then we define a finite-dimensional procedure to give an approximation
of Kähler–Einstein metrics using this iterative procedure and apply it on CP

2 blown up in three points.
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Introduction

Let M be a Fano manifold of complex dimension n. For any Kähler metric g we denote

ω := ωg =
√

−1
2π

gij̄(z) dzi ∧ dz̄j

its corresponding Kähler form, a closed positive (1, 1)-form on M . For a Kähler form ω,
we consider the space of strictly ω-plurisubharmonic potentials

Ka[ω] = {ϕ ∈ C∞(M) : ω +
√

−1∂∂̄ϕ > 0},

and the space Kac1 of Kähler forms cohomologous to c1(M). For any Kähler metric ω,
we let

Ric(ω) = −
√

−1
2π

∂∂̄ log det(gij̄)

denote the Ricci form of ω. It is well defined globally and lies in the c1(M) > 0 class.
Following [17], if Ric(ω) is a Kähler form, we let Ric(2)(ω) denote its Ricci form, and in
a similar way, we define higher powers of the Ricci operator as long as the positivity is
preserved. The motivation for this construction comes from the simple fact that, when
they exist, Kähler–Einstein metrics are by definition fixed points for this iteration process.
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744 J. Keller

A long time ago, Nadel asked whether these are all periodic points and proved the
absence of periodic points of order 2 and 3. Furthermore, he raised the question whether
the existence of Kähler–Einstein metrics could be related to this iteration procedure. This
question is also very natural. Actually, as we will explain later, one can define an inverse
of the Ricci operator using the celebrated Calabi–Yau theorem and see its iterations as
a kind of naive discretization of the (normalized) Kähler–Ricci flow

∂wt

∂t
= − Ric(ωt) + ωt. (0.1)

We now explain the organization of this paper. We will show that some natural energy
functionals are decreasing along these iterations. This will give us a simple proof of
the non-existence of (non-trivial) periodic points and thus answer Nadel’s first question.
Then we study the question of the existence of periodic points of infinite order. The
behaviour of our dynamical system is closely tied with the existence of Kähler–Einstein
metrics on the Fano manifold. Note that a part of the results presented in §§ 2 and 3
have been published recently in [20] and we refer to this reference for more advanced
progress on that topic. Then, we generalize Nadel’s iteration scheme and define a family
of natural operators Ricε, ε � 0, and see that their behaviour is particularly simple
when the manifold is Kähler–Einstein and ε < 1. Furthermore, we relate the iteration
procedure to the notion of canonically balanced metric studied by Donaldson in [10].
This gives us an approximation procedure in a finite-dimensional setup of the Kähler–
Einstein metric (when it does exist a priori on the considered Fano manifold) which is
the main motivation of our work. We study the efficiency of this procedure in details.
Finally, we apply our techniques to the case of the Del Pezzo surface given by P2 blown
up in three points, and give a numerical approximation of the Kähler–Einstein metric
living on it. The main part of this article appeared in a preprint in early 2007, during
the stay of the author at Imperial College.

1. Positive and negative Ricci iterations

Firstly, we look for a natural way to discretize the Kähler–Ricci flow (0.1). This leads us
to consider for a given Kähler form ω0 the sequence

ωk+1 − ωj

(k + 1) − k
= − Ric(ωk+1) + ωk+1

for any integer k � 1. Of course, this can be also written as

Ric(ωk+1) = ωk. (1.1)

Our first observation lies in the fact that this last equation can always be solved. Actually,
from the Calabi–Yau theorem [26], for all k � 0, there exists a unique smooth solution
to this non-linear partial differential equation, which means that there exists a Kähler
form ωk+1 in Kac1 whose Ricci form equals ωk. This can be rephrased by saying that
there exists an inverse of the Ricci operator, that we shall denote

Ric(−1) : Kac1 → Kac1
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and hence it is natural to consider the dynamical system induced by the higher powers
Ric(−k) := Ric(−1) ◦ · · · ◦ Ric(−1) of this operator. We expect the behaviour of the iterates
of Ric(−1) to be related to the corresponding Kähler–Ricci flow (0.1).

Let us now give some notation. For a positive integer k we will denote Ka
(k)
c1 the maxi-

mal domain of definition of Ric(k). Thus, we obtain naturally a filtration of Ka
(0)
c1 = Kac1 .

We also let Ka
(k)
c1 denote the set of all metrics in Ka

(k−1)
c1 whose image under Ric(k−1)

is non-negative. We let Ka
(∞)
c1 denote the set of all L∞(M) limits limk→∞ Ric(−k) α, for

α ∈ Ka
(0)
c1 when those limits do exist. Finally, let J be the fixed complex structure on

M and G be any connected compact subgroup of the group Aut(M, J) of holomorphic
diffeomorphisms of (M, J). We denote by Ka

(G)
Ω the space of G-invariant Kähler forms

in KaΩ . Such forms exists as can be seen by averaging over orbits of G with respect to
the Haar measure of G. We notice that Ric(−1) maps Ka

(G)
c1 into itself.

2. Energy functionals on the space of Kähler potentials

In §§ 2.1 and 2.2, we present some properties of some well-known energy functionals. Let
Ω ∈ H2(M, R) denote a Kähler class. We call a function A : KaΩ ×KaΩ → R+ an energy
functional if it is zero only on the diagonal. By an exact energy functional we will mean
one which satisfies in addition the cocycle condition (see [16])

A(ω1, ω2) + A(ω2, ω3) = A(ω1, ω3).

Throughout the paper, V will denote the volume of the manifold with respect to [ω],
i.e. V =

∫
M

ωn/n! and we define ωϕ := ω+
√

−1∂∂̄ϕ for simplicity. The energy functionals
I, J , introduced by Aubin in [1], are defined for each pair (ω, ωϕ) ∈ KaΩ × KaΩ by

I(ω, ωϕ) =
1
V

∫
M

√
−1∂ϕ ∧ ∂̄ϕ ∧

n−1∑
i=0

ωi ∧ ωn−1−i
ϕ =

1
V

∫
M

ϕ(ωn − ωn
ϕ), (2.1)

J(ω, ωϕ) =
1

V (n + 1)

∫
M

√
−1∂ϕ ∧ ∂̄ϕ ∧

n−1∑
i=0

(n − i)ωi ∧ ωn−1−i
ϕ . (2.2)

We note some of their basic properties for which we refer the reader to [1,21,24]. Note
that I, J and I − J are all non-negative and equivalent. One may also define them via
a variational formula. Connect each pair (ω, ωϕ1 := ω +

√
−1∂∂̄ϕ1) with a piecewise

smooth path {ωϕt}. Then, for example, for I − J , we have for any such path

(I − J)(ω, ωϕ1) = − 1
V

∫
[0,1]×M

ϕt∆tϕ̇tω
n
ϕt

∧ dt. (2.3)

2.1. The F1 functional

Let us define

F 0(ω0, ϕ) = −(I − J)(ω0, ωϕ) − 1
V

∫
M

ϕωn
ϕ. (2.4)
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For a Kähler manifold of positive Chern class, we define the following functional on
Kac1 × Kac1

F1(ω, ωϕ) = F 0(ω, ϕ) − log
(

1
V

∫
M

efω−ϕωn

)
.

Here fω is the Ricci deviation defined up to a constant by

√
−1∂∂̄fω = Ric(ω) − ω.

The critical points of the functionals F1 are Kähler–Einstein metrics. Moreover, the
second variation of F1 at a critical point in the direction of the plane spanned by
ψ1, ψ2 ∈ TϕKa[ω] is given by the expression

1
V

∫
M

( 1
2gϕ(∇ψ1,∇ψ2) − ψ1ψ2)ωn

ϕ. (2.5)

This is non-negative and vanishes precisely when ψ1 and ψ2 are proportional and eigen-
functions of eigenvalue −1 of ∆∂̄ (see [24, p. 64]). Thus this infinitesimal variation corre-
sponds to holomorphic automorphisms and to moving within the set of Kähler–Einstein
forms.

2.2. K-energy and Ek functionals

The Chen–Tian energy functionals Ek, k = 0, . . . , n, are defined in a similar manner
by

Ek(ω, ωϕ1) =
(k + 1)

V

∫
[0,1]×M

∆ϕt
ϕ̇t Ric(ωϕt

)k ∧ ωn−k
ϕt

∧ dt

− (n − k)
V

∫
[0,1]×M

ϕ̇t(Ric(ωϕt
)k+1 − µkωk+1

ϕt
)ωn−1−k

ϕt
dt, (2.6)

where one has defined the topological term

µk =
c1(M)k+1 ∪ [ω]n−k−1([M ])

[ω]n([M ])
.

This gives rise to well-defined exact energy functionals independent of the choice of
path [6]. The K-energy, E0, was introduced by Mabuchi [16]. The following formula is
taken from [23, § 7.2].

Proposition 2.1. Let f be a function satisfying Ric(ω) − ω =
√

−1∂∂̄f . One has

E0(ω, ωϕ) =
1
V

∫
M

log
(

ωn
ϕ

ωn

)
ωn

ϕ − (I − J)(ω, ωϕ) +
1
V

∫
M

f(ωn − ωn
ϕ).

Remark that the Ek functionals vanish on pairs joined by a one parameter subgroup
of automorphisms through the identity [6, Corollary 5.5].
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Definition 2.2. We say that an exact functional F is bounded from below if F(ω, ωϕ) �
C for every ωϕ ∈ KaΩ . We say it is proper on Ka

(G)
Ω (in the sense of Tian) if there exists

a function ρ : R → R satisfying lims→∞ ρ(s) = ∞ such that

F(ω, ωϕ) � ρ((I − J)(ω, ωϕ)),

for every ωϕ ∈ Ka
(G)
Ω .

This is well defined, in other words depends only on the class [ω] since the failure
of I − J to satisfy the cocycle condition is under control with respect to the two base
metrics,

(I − J)(ω, ωϕ2) − (I − J)(ωϕ1 , ωϕ2) = (I − J)(ω, ωϕ1) − 1
V

∫
M

ϕ1(ωn
ϕ2

− ωn
ϕ1

).

2.3. A lower bound for the energy functionals

In the next three sections, we study the dynamics of the Ric−1 operator by analysing
the behaviour of the functionals that we have just introduced. Firstly, we recall a result
of non-negativity of Bando and Mabuchi.

Theorem 2.3 (Bando and Mabuchi [4, Theorem A], Bando [3, Theorem 1] and
Song and Weinkove [22, Theorem 1.2]). Let M be a Fano manifold and assume
that M carries a Kähler–Einstein metric ωKE. Then, for k = 0, 1,

Ek(ωKE, ω) � 0

for all ω ∈ Kac1 with equality if and only if ω is Kähler–Einstein. In that case there exists
a holomorphic automorphism homotopic to the identity χ such that χ�ωKE = ω.

Proof. We give a sketch of the proof for k = 0 with an emphasis on the features that
will be useful in later sections. Consider the deformation {ωϕt

} ⊆ Kac1 constructed from
two paths, solutions of the following Monge–Ampère equations

ωn
ϕt

= etf+ctωn (t ∈ [0, 1])

= ef−(t−1)ϕtωn (t ∈ [1, 2]), (2.7)

where Ric(ω) − ω =
√

−1∂∂̄f with the normalizations∫
M

etf+ctωn =
∫

M

ef−(t−1)ϕtωn = V.

Note that the first path is the one used in Yau’s continuity method proof [26]. It connects
any point ω in Kac1 to Ric(−1)(ω) in Ka

(2)
c1 . The second path, introduced by Aubin in [1],

is used to connect any point in Ka
(2)
c1 to a Kähler–Einstein metric.

The existence of the first path is equivalent to the Calabi–Yau theorem. The second
path may not exist in the presence of non-trivial holomorphic vector fields but Bando
and Mabuchi show that arbitrarily close to ω in the C∞-topology, there exist metrics for
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which such a path exists. Since the K-energy is continuous this will be sufficient for the
argument (cf. [4] and [22, § 3]).

Now, for t ∈ [0, 1] one has

Ric(ωϕt
) = (1 − t) Ric(ω) + tω (2.8)

and
∆tϕ̇t = f + ċt, (2.9)

hence

d
dt

E0(ωKE, ωϕt) = − 1
V

∫
M

ϕ̇t(Ric(ωϕt) − ωϕt) ∧ nωn−1
ϕt

= − 1
V

∫
M

ϕ̇t((1 − t)
√

−1∂∂̄f −
√

−1∂∂̄ωϕt) ∧ nωn−1
ϕt

= −(1 − t)
1
V

∫
M

ϕ̇t(∆ωϕt
ϕ̇t)2ωn

ϕt
− d

dt
(I − J)(ω, ωϕt

) (2.10)

with t ∈ [0, 1], from which we conclude

E0(ωKE, ωϕ1) � E0(ωKE, ω). (2.11)

Next, for t ∈ [1, 2],
Ric(ωϕt) = (2 − t)ω + (t − 1)ωϕt

and
∆tϕ̇t = −ϕt + tϕ̇t,

hence

d
dt

E0(ωKE, ωϕt) = − 1
V

∫
M

ϕ̇t(−(2 − t)
√

−1∂∂̄ωϕt) ∧ nωn−1
ϕt

= −(2 − t)
d
dt

(I − J)(ωKE, ωϕt) � 0

= −(2 − t)
1
V

∫
M

((∆tϕ̇t)2 + t|∂ϕ̇t|2t )ωn
ϕt

� 0, (2.12)

where t ∈ [1, 2]. The theorem now follows for E0.
Song and Weinkove extended this argument to E1 using two detailed computations.

The first shows that while Ek may not necessarily be monotone (when the path exists),
one still has Ek(ωKE, ωϕ1) � Ek(ωKE, ωϕ2) = 0. In other words, we have the following
theorem.

Theorem 2.4 (Song and Weinkove [22, Theorem 1.1]).
Let (M, ωKE) be a Fano Kähler–Einstein manifold. Then for any ω ∈ Ka

(2)
c1 and for each

k = 0, . . . , n one has
Ek(ωKE, ω) � 0,

with equality if and only if ω is Kähler–Einstein and χ�ωKE = ω with χ a holomorphic
automorphism homotopic to the identity.
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The second calculation shows that when k = 1, one has

E1(ωϕ1 , ω) � E1(ω0, ω) = 0.

Explicitly, their computation shows that

Ek(ωϕ1 , ω) =
1
V

∫
M

√
−1∂ϕ1 ∧ ∂̄ϕ1 ∧

n−1∑
i=0

aiω
i ∧ ωn−1−i

ϕ1

+ (k + 1)
1
V

∫
M×[0,1]

(1 − t)(∆ωϕt
ϕ̇t)2ωn

ϕt
∧ dt

− 1
V

∫
M

k∑
i=1

(
i + 1
k + 1

)
f(

√
−1∂∂̄f)i ∧ ωn−i, (2.13)

with

ai =

⎧⎪⎪⎨
⎪⎪⎩

(n − k)(i + 1)
n + 1

if 0 � i � k − 1,

(k + 1)(n − i)
n + 1

if k � i � n.

Since the last term is positive on Kac1 for k = 1 they conclude their proof. �

2.4. A system of Monge–Ampère equations

Now, let ω = ω0 ∈ Kac1 denote an initial Kähler metric for our iterations. We present
the iterative procedure defined by (1.1) in terms of Monge–Ampère equations. Let ϕ1 be
a Kähler potential with

Ric(ω0 +
√

−1∂∂̄ϕ1) = ω0.

By denoting f := fω0 the Ricci deviation of ω0, this equation becomes

ωn
ϕ1

= efωn

together with the volume normalization

1
V

∫
M

efωn
0 = 1.

This determines ϕ1 only up to a constant, which will be fixed in the next step. Put
ω1 = ωϕ1 . In the second step we solve

Ric(ω1 +
√

−1∂∂̄ϕ2) = ω1

and ω1 − Ric(ω1) = ω1 − ω0 =
√

−1∂∂̄ϕ1. The Monge–Ampère equation is now

ωn
ϕ1+ϕ2

= e−ϕ1ωn
ϕ1

= ef−ϕ1ωn
0 ,

with ϕ1 determined uniquely by

1
V

∫
M

ef−ϕ1ωn
0 = 1.

https://doi.org/10.1017/S1474748009000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748009000103


750 J. Keller

Iterating this procedure we have Ric(−k)(ω0) = ω0 +
√

−1∂∂̄
∑k

j=1 ϕj for each k ∈ N

where ϕk is the solution of the Monge–Ampère equation

(
ω0 +

√
−1∂∂̄

k∑
j=1

ϕj

)n

= ef−
∑k−1

j=1 ϕj ωn
0 , (2.14)

and each of the ϕj is uniquely determined by

1
V

∫
M

ef−
∑k−1

j=1 ϕj ωn
0 = 1. (2.15)

The complex Monge–Ampère system (2.14) is equivalent to (1.1). From now on we set

Φk =
k∑

j=1

ϕj

and
ωk = ωΦk

= ω0 +
√

−1∂∂̄Φk.

2.5. Monotonicity of the energy functionals

The following proposition describes the monotonicity of the K-energy and F1 along
the iteration. Note that the equivalent for the Kähler–Ricci flow is well known.

Proposition 2.5. With notation as above,

E0(ω0, ωk) = −(I − J)(ω0, ωk) − 1
V

∫
M

Φk−1ω
n
k +

1
V

∫
M

hωn
0 � 0,

F1(ω0, ωk) = F 0(ω0, Φk) � 0,

E1(ω0, ωk) � 0,

with equality if and only if ω is Kähler–Einstein.
Furthermore, all the Ej with j = 0, . . . , n decrease along the iteration starting from

the second iteration.

Proof. To prove the first inequality we note that

E0(ωk−1, ωk) =
−1
V

∫
M

ϕk−1ω
n
k − (I − J)(ωk−1, ωk) − 1

V

∫
M

ϕk−1(ωn
k−1 − ωn

k )

= −(I − J)(ωk−1, ωk) − 1
V

∫
M

ϕk−1ω
n
k−1. (2.16)

The first term is non-positive with equality if and only if ωk = ωk−1 = Ric(ωk), while
the second term is non-positive since

1 =
1
V

∫
M

ωn
k =

1
V

∫
M

e−ϕk−1ωn
k−1 � 1

V

∫
M

(1 − ϕk−1)ωn
k−1. (2.17)
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Since by the cocyclicity property

E0(ω, ωk) =
k∑

j=1

E0(ωj−1, ωj),

the conclusion follows.
The second inequality follows similarly, since

F1(ωk−1, ωk) = −(I − J)(ωk−1, ωk) − 1
V

∫
M

ϕkωn
k ,

and now one can use (2.17).
The third inequality follows from

E1(ωk−1, ωk) = 2F1(ωk−1, ωk) +
1
V

∫
M

ϕk(ωn
k + ωn−1

k ∧ ωk−1)

from the formula relating the functionals F1 and Ej . Since both summands are non-
negative (note that ωk−1 − ωk = −

√
−1∂∂̄ϕk), we are done. Finally, the decrease of the

functionals is proved using (2.11) and (2.13) and the previous steps of the proof. �

3. The dynamics of the Ricci operator

We are now ready to answer the question raised by Nadel [17]. Note that some of the
results presented in that section were discussed in detail by the author and Rubinstein.
These results have been obtained independently but with a similar approach. We refer
to [20] for further refinements in that direction.

Theorem 3.1. Let (M, ω) be a Kähler manifold with positive first Chern class. Assume
that Ric(k)(ω) = ω for some k ∈ N. Then ω is Kähler–Einstein.

Proof. Note that the nonexistence of fixed points of negative order implies that of
positive order, and vice versa. Therefore, assume that for some ω ∈ Kac1 and some l ∈ N

one has Ric(−l)(ω) = ω. By the cocycle condition we therefore have

0 = E0(ω, Ric(−l) ω) =
l−1∑
i=0

E0(Ric(−i) ω, Ric(−i−1) ω). (3.1)

On the other hand, from the first part of (2.7),

E0(ω, Ric(−1) ω) = − 1
V

∫
M×[0,1]

(1 − t)(∆ωϕt
ϕ̇t)2ωn

ϕt
∧ dt − (I − J)(ω, Ric(−1) ω).

Thus E0(ω, Ric(−1) ω) � 0, with equality if and only if Ric(−1) ω = ω. Therefore, each
of the terms in (3.1) must vanish identically and we conclude that (M, ω) is Kähler–
Einstein. �
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Proposition 3.2. Let M be as above and assume that ω ∈ Ka
(k)
c1 for all k ∈ N and that

ω is not Kähler–Einstein. Then limk→∞ Ric(k)(ω) does not exist in Ka
(0)
c1 .

Proof. If ω∞ = limk→∞ Ric(k)(ω) exists and is smooth it satisfies Ric(ω∞) = ω∞. But
E0(ω, ω∞) > 0 contradicting (2.3). �

Let G0 denote the Green function for ∆ = ∆∂̄ with respect to (M, ω0) with∫
M

G0(x, y)ωn
0 (y) = 0 and A(ω0) = − infM G0 such that

f(x) − 1
V

∫
M

fωn
0 = − 1

V

∫
M

G0(x, y)∆f(y)ωn
0 (y), ∀f ∈ C∞(M).

Then, one has the following estimate due to Bando and Mabuchi.

Theorem 3.3 (Bando and Mabuchi [4]). For ω a Kähler form, one has

A(ω) � 1
2cn diam(M, ω)2.

If Ric(ω) � εω for some ε > 0 then diam(M, ω)2 � (π2(2n − 1))/ε by Myers’s theorem.

As an immediate corollary we have the following lemma.

Lemma 3.4. Let M be a Fano manifold. Assume that the K-energy is proper. Let
(ωl)l∈N be a sequence of Kähler forms on which the K-energy is bounded from above and
such that there exists l0(ω0) ∈ N and ε > 0 with

Ric(ωl) � εωl, ∀l � l0.

Then there exists a constant C1 depending only on (M, ω0) such that

‖Φl‖C0 � C1, ∀l ∈ N,

where
ωl = ω0 +

√
−1∂∂̄Φl and

1
V

∫
M

ef−Φl
ωn

0

n!
= 1.

Proof. Let Gl be the Green function for ∆l = ∆∂̄,ωl
(i.e. the Laplacian with respect to

(M, ωl)) satisfying
∫

M
Gl(x, y)ωn

l (y) = 0. Set Al = − infM×M Gl.
Since −n < ∆1Φl and n > ∆lΦl the Green formula gives

Φl(x) − 1
V

∫
M

Φlω
n
0 = − 1

V

∫
M

G1(x, y)∆Φl(y)ωn
0 (y) � nA1, (3.2)

Φl(x) − 1
V

∫
M

Φlω
n
l = − 1

V

∫
M

Gl(x, y)∆Φl(y)ωn
l (y) � −nAl. (3.3)

Hence
oscM Φl = sup

M
Φl − inf

M
Φl � n(A1 + Al) + I(ω, ωl). (3.4)

Since E0 is proper on Ka
(G)
c1 in the sense of Tian, if E0(ω0, ·) is uniformly bounded

from above on a subset of Ka
(G)
c1 so is the functional I(ω, ·). We conclude that I(ω0, ωl) is

uniformly bounded independently of l. Finally, the proposition follows from Theorem 3.3
which provides a uniform bound for Al. �
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As a consequence of the properness of the K-energy for Fano Einstein manifolds [19,24]
we obtain the following corollary.

Corollary 3.5. Let M be a Fano Einstein manifold with no non-trivial holomorphic
vector field. Consider the sequence of Kähler metrics (ωk)k∈N defined by the iterations
(1.1) and assume that for k sufficiently large there exists a constant ε > 0 with

Ric(ωk) � εωk.

Then ωk converges to the Kähler–Einstein metric when k tends to infinity in C∞ topology.

Finally, inspired by [18], we derive the following proposition.

Proposition 3.6. Let M be a Fano manifold with G a maximal compact subgroup
of Aut(M, J). Consider the sequence of G-invariant Kähler metrics ωk defined by the
system (1.1). Assume that there exists a constant 1 > κ > 0 such that for k sufficiently
large,

(2 − κ)ωn
0 � ωn

k � κωn
0 ,

where ω0 is G-invariant Kähler metric. Then M is Kähler–Einstein and ωk converges to
a G-invariant Kähler–Einstein metric when k tends to infinity.

Proof. Thanks to the proof of Lemma 3.4 and Theorem 3.3, we are reduced to prove
an upper bound for I(ω, ωk). But if we denote Φ+

k (x) = sup{0, Φk(x)} and Φ−
k (x) =

inf{0, Φk(x)}, we obtain

I(ω, ωk) � 1
V

∫
{ωn

k �ωn
0 }

(−Φ−
k )(ωn

k − ωn
0 ) +

1
V

∫
{ωn

0 �ωn
k }

(Φ+
k )(ωn

0 − ωn
k )

� (1 − κ)
1
V

∫
M

(Φ+
k − Φ−

k )ωn
0

� (1 − κ) oscM Φk.

Together with
oscM Φk � n(A1 + Ak) + I(ω, ωk),

this gives us to the C0 bound for Φk. Now this is a standard procedure to derive the
convergence in C∞ topology [2,12,21,24]. �

The Aubin operators

For a Kähler manifold M , we consider the family of Monge–Ampère equations (2.7).
We introduce the Aubin operators Ricε by setting

Ricε(ω) = ωϕ1+ε

for each ε ∈ [0, 1] such that ϕ1+ε, a solution of (2.7), exists. Note that Ric0(ω) =
Ric(−1)(ω) and Ric1(ω) = ωKE. Formally, one can think that

Ricε =
(

1
1 − ε

(Ric −ε Id)
)−1

https://doi.org/10.1017/S1474748009000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748009000103


754 J. Keller

and that we have defined the following sequence of Monge–Ampère equations

(ω0 +
√

−1∂∂̄Φk)n = e(ε−1)Φk−1−εΦk(ω0 +
√

−1∂∂̄Φk−1)n. (3.5)

Let G ⊆ Aut(M, J) be a maximal connected compact subgroup as before. Then from
uniqueness of solutions of the family of the Monge–Ampère equations (2.7) we conclude
that Ricε maps Ka

(G)
c1 into itself.

We recall the definition of α-invariant introduced by Tian:

αM = sup
{

α � 0 : sup
ϕ∈Kac1

∫
M

e−αϕωn < ∞
}

. (3.6)

In [23] it is proved that αM is a positive holomorphic invariant of Fano manifolds.
Regarding the existence of the Aubin operators we state the following proposition.

Proposition 3.7.

(i) Assume that M is Fano. Then the operators Ricε exist for all ε ∈ [0, min{1, ((n +
1)/n)αM}) [23].

(ii) Assume in addition that the K-energy is bounded from below. Then the operators
Ricε exist for any ε ∈ [0, 1) [4, Theorem 5.7].

We now recover by a conceptually simpler method a theorem of Tian [24].

Corollary 3.8. Let M be a Fano manifold. Let G be a maximal compact subgroup of
Aut(M, J) and assume that the K-energy is proper on Ka

(G)
c1 and let ε ∈ (0, 1). Then

there exist G-invariant Kähler–Einstein metrics. All such metrics are the limit points of
the iterates of Ricε on Ka

(G)
c1 in the C∞-topology.

Proof. Since the K-energy is proper on Ka
(G)
c1 and in particular bounded from below,

Ricε are defined for each ε ∈ (0, 1). Let us denote ωk = Ric(k)
ε (ω) where ωk ∈ Ka

(G)
c1 . By

the same reasoning as in the proof of Lemma 3.4 we obtain

oscM Φk � n(A(ω0) + A(ωk)) + I(ω, ωk). (3.7)

Since by (2.11) and (2.12) the K-energy decreases along iterates we still have a uniform
bound on the functional I along the orbits.

Now, on another hand, we have a uniform bound (depending on ε) on A(ωk). Actually,
from the equality

Ric(ωk) = (1 − ε)ωk−1 + εωk,

one can apply Lemma 3.4. This gives a C0 bound on the potentials Φk.
We shall now prove that one has a C2 estimate for Φk. Since ‖Φk‖C2 � max(n+∆Φk, n),

where ∆ is the Laplacian with respect to ω0, we just need to give a bound on ∆Φk. We
follow the techniques of [5, § 4] and [2, Chapter 7]. First of all, we have the obvious bound
∆Φk > −n since ωk is Kähler. We shall prove that we have an upper bound for ∆Φk. In
local coordinates ζ ∈ Cn, we can define

u = Φk + θ,
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where θ stands for a local potential for the Kähler form ω0. Then one can define the
continuous function on M

η = max
ζ �=0

uζζ̄

θζζ̄

.

We will apply the maximum principle to the function α(p) = log η(p) − κΦk(p) where κ

is a constant that we shall fix later. Note that without loss of generality, we may assume
that uij̄ is diagonal and u11̄ � · · · � unn̄ at a point pmax where a maximum is attained.
Finally, we fix ζ such that η = uζζ̄/θζζ̄ at pmax. We will need the following technical
lemma [5, Lemma 4.2].

Lemma 3.9. Let u be a C4 plurisubharmonic function with F = det(uij̄). Then for any
direction ζ,

uij̄(log uζζ̄)ij̄ �
(log F )ζζ̄

uζζ̄

.

Thanks to the maximum principle applied at pmax, one obtains from the lemma

0 �
(log(e−(1−ε)Φk−1−εΦk det(θpq̄)))ζζ̄

uζζ̄

+ κuij̄θij̄ − nκ

� −
(1 − ε)(Φk−1)ζζ̄

uζζ̄

−
ε(Φk)ζζ̄

uζζ̄

− C0

uζζ̄

+
(

− C1 +
κ

C2

) ∑
i

1
uīi

− nκ

� −
(1 − ε)(Φk−1)ζζ̄

u11̄
− C0

u11̄
+ max(1, C0)

∑
i

1
uīi

− nκ − C3(ε),

where C0, C1, C2 depend only on ω0 and M , while κ has been chosen depending on those
three constants. Here we have used the fact that Φk is C0 bounded. On the other hand,
by the arithmetico-geometric inequality,

∑
2�i�n

1
uīi

� n − 1
(u22̄ · · ·unn̄)1/(n−1) �

(n − 1)u1/(n−1)
11̄

e−(1−ε)Φk−1−εΦk
,

which induces, using the C0 bound again, that

u
n/(n−1)
11̄ − C4u11̄ − C5 � (1 − ε)(Φk−1)ζζ̄ ,

where C3, C4, C5 are positive constants depending only on M , ω0 and ε. Finally, this
last inequality shows by taking the trace that

(∆Φk)n/(n−1) � C ′
4∆Φk + C ′

5 + C ′
6∆Φk−1.

But this means in particular that supM Φk cannot tend to +∞ when k varies. Thus,
the C2 estimate for Φk holds. In order to get a C2,β(M)-estimate, one can invoke now
directly [5, Theorem 5.1]. We may therefore extract a converging subsequence Ric(kj)

ε (ω)
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in the C2,β(M, ω)-topology whose limit ω∞ lies in C2(M). Moreover, since the K-energy
is bounded from below we have

lim
j→∞

E0(Ric(kj)
ε (ω), Ric(kj+1)

ε (ω)) = lim
j→∞

kj+1−1∑
l=kj

E0(Ric(l)
ε (ω), Ric(l+1)

ε (ω)) = 0.

As each of the summands is non-positive one has E0(ω∞, Ricε(ω∞)) = 0 and it follows
that ω∞ ∈ Ka

(G)
c1 is smooth and Kähler–Einstein by (2.11) and (2.12). Since this is true

for each converging subsequence we conclude that, in fact, the sequence of iterates itself
converges. �

In fact we also get the following theorem.

Theorem 3.10. Let M be a Fano manifold with no non-trivial holomorphic vector
field. Assume that M carries a Kähler–Einstein metric ωKE. Then for any ε ∈ (0, 1) and
ω ∈ Ka

(G)
c1 one has limk→∞ Ric(k)

ε (ω) = ωKE in the C∞-topology.

4. Applications and numerical results

4.1. The finite-dimensional picture

In [10], Donaldson introduced the notion of a ν-balanced metric for a fixed volume form ν

and proved its existence [10, Proposition 4] under some very general conditions [10, p. 10].
This gives a sequence of canonical Kähler metrics on the manifold that lie in the same
Kähler class. As we shall see now, these metrics have the properties to solve the Calabi
problem, i.e. to converge towards the Kähler metric that has volume form ν in a given
Kähler class.

Let us fix a volume form ν on a smooth projective manifold X with a polarization L,
i.e. L is an ample line bundle. Choose r ∈ N sufficiently large such that X is embedded
by the holomorphic sections of Lr := L⊗r

in the projective space PH0(X, Lr)�.

Notation. For a smooth hermitian metric h ∈ Met(L) on the line bundle L, we denote
c1(h) ∈ 2π[L] its curvature. Furthermore, we set V = [c1(L)]n(X) the volume of L, and
note

Nr = h0(X, Lr),

which is finite since X is compact. In all the following Met(Ξ) means the space of
(smooth) hermitian metrics on the vector space or bundle Ξ.

Definition 4.1. A ν-balanced metric of order r is a fixed point of the map Tν :
Met(H0(X, Lr)) → Met(H0(X, Lr)),

T (H)i,j =
Nr

V

∫
X

〈Si, Sj〉∑Nr

i=1 |Si|2
dν,

where H is a hermitian metric of H0(X, Lr) and (Si)i=1,...,Nr
is an orthonormal basis of

H0(X, Lr) with respect to H. A ν-balanced metric is unique up to action of SU(Nr).
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Donaldson’s proof shows that the dynamical system induced by the compositions of the
Tν map has a fixed attractive point in Met(H0(X, Lr)). Let us consider the Fubini–Study
map FS : Met(H0(X, Lr)) → Met(Lr) [10, p. 4, § 2.2],

FS : H �→ Nr

V

1∑Nr

i=1 |Si|2

with (Si)i=1,...,Nr ∈ H0(X, Lr) orthonormal basis with respect to H. Then a ν-balanced
metric on Met(H0(X, Lr)) induces an algebraic metric on Met(Lr) that we still call
ν-balanced.

Theorem 4.2. Let X be a smooth projective manifold and L be a polarization on X. For
r large enough, let us denote Hr ∈ Met(H0(X, Lr)) the sequence of ν-balanced metrics
of order r. Then the sequence

1
2π

c1(FS(Hr)1/r)

converges to a Kähler form ω∞ ∈ [c1(L)] in C∞ topology that satisfies

ωn
∞ = ν.

Proof. To prove this theorem, we use the powerful Calabi–Yau theorem. Hence we know
the existence of a Kähler form ω in [c1(L)] such that ωn = ν. We use Wang’s theorem [25]
with the trivial bundle and L. There is a Hermite–Einstein metric on these bundles and
the metrics Hr are ‘balanced’ with respect to ω in the sense studied by Wang. This is due
to the obvious fact that the considered bundles are Gieseker stable. Thus, one obtains
directly the convergence of the sequence of metrics FS(Hr)1/r ∈ Met(L) to the metric
hL with (1/2π)c1(hL) = ω. �

We now assume that M is a Fano manifold and consider the polarization L = −KM > 0
given by the anticanonical line bundle. Let us consider a smooth hermitian metric h0 on
L with (1/2π)c1(h0) = ω0 and let us call fω0 the Ricci deviation of ω0. Now for any
integer k � 1, we call νk the volume form induced by the Kähler metric Ric(−k)(ω0),

νk = (Ric(−k)(ω0))n.

We define for each k, the νk-balanced metric of order r in the following way.
First, we consider H̃ilbω0(〈· , ·〉) the L2-metric on the space H0(M, Lr) induced from

the metric 〈· , ·〉 ∈ Met(Lr),

H̃ilbω0(〈· , ·〉)(Si, Sj) = 〈Si, Sj〉H̃ilbω0 (〈· , ·〉) =
∫

M

〈Si, Sj〉efω0 ωn
0 .

Now, for a given hermitian metric H0 on H0(M, Lr), we define the metric FS(H0) on Lr

by
Nr∑
i=1

|Si|2FS(H0) =
Nr

V
,
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where the (Si)i=1,...,Nr
form an H0-orthonormal basis of H0(M, Lr). Then, from [10,

Proposition 4], we know that the dynamical system FS ◦ H̃ilbω0 has an attractive fixed
point hω0,r. We call

H0,r = H̃ilbω0(hω0,r) ∈ Met(H0(M, Lr)).

Moreover, we obtain a Kähler form

ω1,r =
1
2π

c1(h1/r
ω0,r) ∈ [c1(L)].

For the second step, i.e. in order to find the balanced metric hRic−1(ω0),r, we introduce
the operator H̃ilbω1,r ,

H̃ilbω1,r
(〈· , ·〉)(Si, Sj) =

∫
M

〈Si, Sj〉e−ϕ0,rωn
1,r,

where ϕ0,r is the potential of the metric h
1/r
ω0,r ∈ Met(L). Iterating this procedure leads

us to define at each step k a dynamical system

FS ◦ H̃ilbωk,r
: Met(Lr) → Met(Lr)

which has an attractive fixed point hωk,r
∈ Met(Lr) and we write hωk,r

= e−rϕk,rhω0,r
.

Hence, we have

H̃ilbωk,r
(〈· , ·〉)(Si, Sj) =

∫
M

〈Si, Sj〉e−ϕk−1,rωn
k,r (4.1)

and
Hk,r = H̃ilbωk

(hωk,r) ∈ Met(H0(M, Lr)).

Corollary 4.3. Under the above assumptions, and for r sufficiently large, the sequence

1
2π

c1(h1/r
ωk,r

)

converges when r → +∞ to the solution of the Monge–Ampère equation (2.14) in C∞

topology with exponential speed of convergence.

Conjecture 4.4. Under the above assumptions, the sequence (1/2π)c1(h
1/r
ωk,r ) converges

when k → +∞ to a Kähler metric ωr ∈ Kac1 in C∞ topology with exponential speed
of convergence. If M has a Kähler–Ricci soliton, then ωr converges to a Kähler–Ricci
soliton in the sense of Cheeger–Gromov.

Let us describe now how our discussion can be useful for numerical approximations of
Kähler–Einstein metrics on Fano manifolds. One has to notice at this stage that we can
write (4.1) as

H̃ilbωk,r
(〈· , ·〉)(Si, Sj) =

∫
M

〈Si, Sj〉
(

V

Nr

∑
i

|S̃i,k−1|2
)−1/r

, (4.2)
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where the (S̃i,k−1) ∈ H0(M, Lr) form an orthonormal basis with respect to the metric
Hk−1,r, i.e. the νk−1-balanced metric of order r. Note that the right-hand side of (4.2)
makes sense since the term (

∑
i |S̃i,k−1|2)−1 can be considered as a section of Kr

M ⊗ KM
r
.

In order to obtain the νk-balanced metric of order r, i.e. Hk,r, one needs to iterate
the operator H̃ilbωk,r

◦ FS. This gives a sequence (Hk,r,p)p∈N ∈ Met(H0(M, Lr)) and we
choose the first term to be Hk,r,0 = Hk−1,r. Hence, with our notation, Hk,r = Hk,r,∞.

We now remark that if one expects the algorithm to be convergent, and thus Hk−1,r

to be close to Hk,r for large k and r, then it is natural to assume that Hk−1,r,1 is close
to Hk−1,r,∞ = Hk,r,0, i.e. just one step is sufficient to get the νk-balanced metric. This
is precisely what is done implicitly in [10, § 2.2.2]. Thus, this justifies at least formally
the definition of Ricci∗ balanced metrics.

Definition 4.5. Let M be a Fano manifold. Fix r ∈ N∗ sufficiently large. We define the
operator T̃ : Met(H0(M, −Kr

M )) → Met(H0(M, −Kr
M )) by

T̃ (H)ij =
(

Nr

V

)1+1/r ∫
M

〈Si, Sj〉
(
∑Nr

i=1 |Si|2)1+1/r
(4.3)

for (Si) ∈ H0(M, −Kr
M ) a H-orthonormal basis. A Ricci balanced metric is a fixed point

of the operator T̃ .

When Ricci balanced metrics exist a priori, we expect their behaviour to be understood
for large r via the iterations of the Ric−1 operator, and thus to be related to the Kähler–
Ricci flow. In that direction, we obtain the following theorem.

Theorem 4.6. Assume that M is a Fano manifold with no non-trivial holomorphic vec-
tor field. If M has a Kähler–Einstein metric, then for r sufficiently large, there exists a
sequence of Ricci balanced metrics HRic,r ∈ Met(H0(M, −Kr

M )) unique up to action of
SU(Nr). Each Ricci balanced metric is an attractive fixed point of the map T̃ . Further-
more, the sequence

1
2π

c1(FS(HRic,r)1/r)

converges when r → +∞ to the Kähler–Einstein metric ωKE in C∞ topology and the
speed of convergence is O(1/r).

Proof. The proof is similar to the proof of the main result of [8,9]. Actually, a Ricci bal-
anced metric hRic,r ∈ Met(−Kr

M ) satisfies that its associated Bergman kernel is constant
on the manifold, i.e. for all p ∈ M ,

Nr∑
i=1

|Si|2hRic,r
(p) =

Nr

V
,

where the sections (Si)i=1,...,Nr
∈ H0(M, −Kr

M ) are orthonormal with respect to the
inner product

〈a, b〉 =
∫

M

(hRic,r)(r+1)/r ⊗ a ⊗ b̄,

∗ In [10], these metrics are called ‘canonically’ balanced but we consider our denomination more
enlightening on the role of the Ricci operator.
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and Nr = dimH0(M, −Kr
M ). Note that one can generalize the results of Lu [14] on the

asymptotic of the Bergman kernel in that case. The details will appear in a forthcoming
paper where the relationship with GIT stability will be studied. �

In our implementations for finding numerical approximations of Kähler–Einstein met-
rics, we use this notion and consider the iterations of the T̃ operator. Our tests on toric
manifolds have shown that the sequence of metrics defined by (4.2) and (4.3) have simi-
lar behaviours (i.e. iterating many times H̃ilbωk,r

◦ FS or just once) and converge to the
Kähler–Einstein metric when it exists a priori. These procedures have the advantage to
skip the computation of the determinant of the Fubini–Study metric as required by the
original notion of balanced metric studied in [8,15,27]. Finally, we remark that even in
the case of (CP1,O(k)), the sequence of balanced and Ricci balanced metrics converge at
different speeds towards the Fubini–Study metric [10]. We shall give now an argument
to explain this fact.

Proposition 4.7. Assume that we are under the conditions of the above theorem. Then
a sequence of iterates of the map T̃ converges with exponential speed towards the Ricci
balanced metric H∞,r. If λ1 is the smallest eigenvalue of the Laplacian ∆KE of the
Kähler–Einstein metric, then the ratio of convergence is controlled by e−λ1/(4πr) for r

large enough.

Proof. Actually, if one considers HRic,r a Ricci-balanced metric of order r, and H̃ =
HRic,r + ε another metric, then

T̃ (H̃)ij̄ =
(

Nr

V

)1+1/r ∫
M

〈Si, Sj〉
((Nr/V ) −

∑
α,β εαβ〈Sα, Sβ〉)1+1/r

,

and, up to the first order, one has

T̃ (H̃)ij̄ = (HRic,r)ij̄ +
(

1 +
1
r

)
V

Nr

∫
M

∑
α,β

〈Si, Sj〉εαβ〈Sα, Sβ〉 FS(HRic,r)1/r + O(ε2).

From the previous theorem, FS(H∞,r)1/r converges to the volume form ωn
KE of the

Kähler–Einstein metric, and the speed of convergence is in O(1/r). The operator

Q̃ : ε �→ Q̃(ε)ij̄ =
(

1 +
1
r

)
V

Nr

∫
M

∑
α,β

εαβ〈Sα, Sβ〉〈Si, Sj〉 FS(HRic,r)1/r

represents the linearization of our algorithm close to the Ricci balanced point. Now,
from [10,13], when r tends to infinity, Q̃ is a quantification of the operator(

1 + O

(
1
r

))
exp

(
− ∆KE

4πr

)
.

Thus, the speed of convergence for finding the Ricci balanced metric is controlled by(
1 + O

(
1
r

))
exp

(
− λ1

4πr

)
,

where λ1 > 0 is the smallest eigenvalue of the Laplacian ∆KE. �
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We shall now compute the complexity of our algorithm for finding Ricci balanced
metrics. Suppose we are looking for an approximation of a Kähler–Einstein metric with
a small error ε for the C∞ topology. Hence, in view of Theorem 4.6, we choose r ∼
1/((1 − λ)ε) (where 0 < λ < 1 is a constant that we shall fix later) and we compute a
Ricci balanced metric of order r. With n = dimM , one has by Riemann–Roch Nr ∼ rn.
It is necessary to fix at least Np points on our manifold M with Np > 1

2Nr(Nr + 1)
since we are looking for an hermitian metric in Met(H0(Lk)) and thus need to solve
at least 1

2Nr(Nr + 1) equations for that. We believe that Np ∼ r2n is a reasonable
choice. We do not take into account the complexity of finding the points on the manifold
since it needs to be done once for all. At each iteration of the T̃ map, we inverse a
hermitian matrix of size Nr × Nr to obtain a basis of orthonormal sections, which asks
a priori N2

r log(Nr) ∼ nr2n log(r) operations. Now, we also need to compute the Bergman
function

∑
i |Si|2 for all the Np points, and this can be considered as evaluating Nr

polynomials of degree r in n variables. Finally, each iteration of the T̃ map has complexity

C(T̃ ) ∼ nr2n log(r) + r2n

(
rn

(
n

r

))
= Θ(r4n).

Now, we have exponential speed of convergence towards the Ricci balanced metric thanks
to the previous proposition. Thus, one needs approximatively k(λ, ε) iterations of the T̃

map if we want to approximate the Ricci balanced metric with error λε where

k = Θ

(
r log

(
1
λε

))
.

Finally, the whole process has complexity

CRicci ∼ kC(T̃ ) = Θ

(
log(1/λε)

((1 − λ)ε)4n+1

)
.

Since we have freedom on the choice of λ we obtain that there exist positive constants
c1, c2 such that asymptotically when ε → 0,

c1

ε4n+1 � CRicci � c2

ε4n+2 .

For the sake of clarity, we now compare the efficiency of the algorithm for finding Ricci
balanced metrics and the algorithm for finding balanced metrics in the sense of [8,15,27].

Definition 4.8. Let X be a projective manifold and L a polarization on X. For r ∈ N∗

sufficiently large, we consider the operator T : Met(H0(X, Lr)) → Met(H0(X, Lr)),

T (H)ij =
Nr

V

∫
X

〈Si, Sj〉∑Nr

i=1 |Si|2
c1(FS(H)1/r)n (4.4)

for (Si) ∈ H0(X, Lr) a H-orthonormal basis. A balanced metric is a fixed point of the
operator T .
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Assume now that M is a Fano manifold with no non-trivial holomorphic vector field
and carries a Kähler–Einstein metric. Fixing L = −KM in the previous definition, the
main theorem of [8] shows the existence and the convergence of a sequence of balanced
metrics towards the Kähler–Einstein metric. This convergence is proved to be with speed
O(1/r). We have an analogue of Proposition 4.7.

Proposition 4.9. Let X be a smooth projective manifold, L a polarization on X such
that Aut(X, L) is discrete and there exists a constant scalar curvature Kähler metric
ω∞ in [c1(L)]. Then the iterates of the map T converge with an exponential speed of
convergence. If λ1 is the smallest eigenvalue of the Laplacian ∆∞ of the metric ω∞, then
the ratio of convergence is controlled by

(1 + 1
2nπ)e−λ1/(4πr)

for r large enough.

Proof. We do essentially the same computation as before. Close to the balanced point,
we need to compute to the linearization of the T map. If one considers Hr a balanced
metric of order r, ωr the curvature of FS(Hr)1/r and H ′ = Hr + ε another metric, then

T (H ′)ij̄ =
∫

X

〈Si, Sj〉
1 − (V/Nr)

∑
α,β εαβ〈Sα, Sβ〉

×
(

ωr +
√

−1
r

∂∂̄ log
(

1 − V

Nr

∑
α,β

εαβ〈Sα, Sβ〉
))n

,

and, up to the first order, one has

T (H ′)ij̄ = (Hr)ij̄ +
V

Nr

∫
X

∑
α,β

〈Si, Sj〉εαβ〈Sα, Sβ〉ωn
r (4.5)

+
V

Nr

∫
X

〈Si, Sj〉
1
2r

∆r

( ∑
α,β

εαβ〈Sα, Sβ〉
)

ωn
r + O(ε2). (4.6)

Here ∆r means the Laplacian with respect to the Kähler metric ωr. Since ‖ωr −ω∞‖C∞ =
O(1/r), [13] shows that the second term of the right-hand side of (4.5) is a quantification
of the operator (

1 + O

(
1
r

))
exp

(
− ∆∞

4πr

)
.

We now briefly explain what the asymptotic behaviour of the operator is:

Q∆ : ε �→ Q∆(ε)ij̄ =
V

rNr

∫
X

〈Si, Sj〉∆r

( ∑
α,β

εαβ〈Sα, Sβ〉
)

ωn
r .

In order to do that, we apply the localization techniques of [13].
Let Pr(z, z′) be the smooth kernel of the orthogonal projection from C∞(X, Lr) to

H0(X, Lr) with respect to the L2 metric induced by FS(Hr) and the volume form ωn
r .
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We are interested in the behaviour along the diagonal of the integral operator associated
to Pr(z, z′)∆rPr(z, z′), i.e.

Q∆(f)(z) �→ 1
rn+1

∫
X

Pr(z, z′)∆rPr(z, z′)f(z′)ωn
r ,

for f ∈ C∞(X) and ∆r = ∆r,z. On the other hand, we also introduce the Bergman
kernel on Cn by

P (Z, Z ′) = exp
(

− 1
2π

n∑
i=1

(|zi|2 + |z′
i|2 − 2ziz̄

′
i)

)
= e−(π/2)(|Z|2+|Z′|2−2Z∗Z′),

where Z = (z1, . . . , zn) and Z ′ = (z′
1, . . . , z

′
n) and Z ∗ Z ′ =

∑n
i=1 ziz̄

′
i. The localization

techniques of [7] show the convergence (at first order) when r → +∞,

∂|α|+|α′|

∂Zα∂Z ′α′
1
rn

Pr(Z, Z ′) → ∂|α|+|α′|

∂Zα∂Z ′α′ P (
√

rZ,
√

rZ ′),

where |Z|, |Z ′| are small enough. In particular, under the same conditions, we have the
convergence when r → +∞

1
r2n

Pr(Z, Z ′)∆ZPr(Z, Z ′) → P (
√

rZ,
√

rZ ′)∆ZP (
√

rZ,
√

rZ ′), (4.7)

and we are led to identify the right-hand side of (4.7). We denote (Zr, Z
′
r) = (

√
rZ,

√
rZ ′).

In normal coordinates at Z = 0 and with respect to

∆ = −
∑

i

∂2

∂Z2
j

we obtain

(P (Zr, Z
′
r)∆P (Zr, Z

′
r))|Z=0

= πre−πr(|Z|2+|Z′|2−2Z∗Z′)
(

n − πr

(∣∣∣∣ ∑
i

zi

∣∣∣∣2 − 2
∑
i,j

ziz̄
′
j

))
|Z=0

= πrne−πr|Z′|2 .

From [13], one knows that rn
∫

|Z′|<ε
e−rπ|Z′|2f(Z ′)ωn is a quantification of the operator

exp(−∆ωf/4πr) when r → +∞. Thus, we get now that at first order∣∣∣∣Q∆(f) − nπ exp
(

− ∆∞f

4πr

)∣∣∣∣ � C

r
‖f‖2. (4.8)

Note that we could also have derived this expression by using the Lichnerowicz formula.
Finally, with (4.5), (4.6) and (4.8), we are done. �
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Finally, we estimate the complexity Cbal of the algorithm for finding a balanced metric.
The computation is very similar to the previous case of Ricci balanced metric. The main
difference is the computation of the term giving the volume form

(
1
r

√
−1∂∂̄ log

Nr∑
i=1

|Si|2
)n

.

This requires the evaluation over Np points of Nr sections of degree r, of degree r − 2
(derivatives with respect to ∂∂̄) and of degree r − 1 in n variables (derivatives with
respect to ∂ and ∂̄). Thus, the complexity of one iteration of the T map is

C(T ) ∼ nr2n log(r) + r2n

(
rn

((
n

r

)
+ 2

(
n

r − 1

)
+

(
n

r − 2

)))
(4.9)

∼ 4C(T̃ ),

and of course
CRicci � 1

4Cbal.

4.2. The case of the projective plane blown up in three points

Let us consider the toric Fano manifold M0 given by blowing up P2 in three (non-
aligned) points. From a result of Song, its α-invariant is 1 and thus M0 possesses a
Kähler–Einstein metric (this is also a consequence of Tian’s work of classification of
Einstein Del Pezzo surfaces). Let us mention that the Kähler–Einstein metric on this
manifold has been very recently studied in [11] by simulating the Ricci flow with partial
differential equation techniques.

We implement our algorithms (i.e. in order to find balanced and Ricci balanced metrics)
using the special symmetries on M0. The computations of the points on the manifolds
are relatively quick since we are essentially reduced to a two-dimensional real manifold
and we can use the fact that the polytope has a dihedral symmetry group D6 generated
by the action of Z2 (reflections) and Z6 (rotations). The fan of this toric variety is given
by the six rays spanned by

v0 = (1, 0), v1 = (1, 1), v2 = (0, 1), v3 = (−1, 0), v4 = (−1,−1), v5 = (0,−1),

and as it is well known that the polytope is actually the hexagon. There are different
ways to choose the points on M0 but we decided to just generate the points on one of the
six affine charts associated to the cone formed by pairs of rays (vi, vi+1) (i.e. by defining
a certain cut-off function).

Our program is written in C++ (compiler gcc 3.4.6) and can be launched essentially
with four different algorithms. For each algorithm we print the scalar curvature of the
computed metric at each point of the polytope associated to M0. This gives pictures
with different colours depending on how much the scalar curvature is close to 1 (see
Figure 1). The computation of the scalar curvature is possible with exact precision (up
to the machine precision) since our metrics are all algebraic. It has the disadvantage
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Figure 1. Value of the scalar curvature for the metric obtained
after 1, 10, 20 and 40 iterations of the T̃ map over M0.

to take time since it involves derivatives of order 4, but on the other hand is necessary
to check the accuracy of our program and we will see later how this can be useful to
improve our algorithms. Some animated pictures generated by the program and the pro-
gram itself can be downloaded from the author’s website: www.latp.univ-mrs.fr/˜jkeller/
julien-keller-progs.html. (Some other programs for other Fano Einstein surfaces will be
made available at this address.) Despite this loss of time, all the four algorithms (for the
given parameters below) can be run in one minute or less on a decent desktop computer.
We now describe the results for each algorithm.

For the computation of the balanced metric as defined in [8–10], we choose the param-
eter r = 8 (see § 4.1) and compute approximatively 104 points. After 50 iterations, the
average scalar curvature on the manifold is 0.95 and the maximum error is 16%.

For the computation of the Ricci balanced metric as defined in [10] or our discretization
of the Ricci flow (4.2), we fix again r = 8 and compute approximatively 5 × 104 points.
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After 35 iterations, the average scalar curvature on the manifold is now 0.99 and the
maximum error is less than 4%.

Finally, we try to improve the our first two algorithms by using the metric of order
r to compute the metric of order r + 1. This is based on a very simple argument that
we discuss briefly. If one knows the balanced metric hr ∈ Met(Lr) (or Ricci balanced
metric) of order r, then one has in particular the relation∑

i

|Si|2hr
(p) =

Nr

V

for all the points p on the manifold. Here the sections (Si)i=1,...,Nr
form an orthonormal

basis of H0(M, Lr) with respect to the L2-metric corresponding to the choice of our
algorithm. But now, by using the asymptotic of the Bergman function (see [14]) one can
also write on this surface∑

i

|Si|2hr
(p) = r2 + 1

2r scal(c1(hr))(p) + Γ (p) + O(1/r),

where Γ (p) is a certain function which in fact is an algebraic expression of the curvature
of c1(hr) and its derivatives. Hence, once we have computed hr, it is clear that we can
deduce the value of Γ at each point of the manifold. Now at order r + 1, we look for a
metric h̃r+1 such that

Nr+1∑
i=1

|Si|2h̃r+1
(p) =

Nr+1

V
+ Γ (p)

=
1
V

(Nr+1 + 1
2r(1 − scal(c1(hr))(p)))

with respect to the corresponding L2-metric. Roughly speaking, it corresponds to force
the algorithm to get a metric with constant scalar curvature up to an error of size

O

(
1

(r + 1)2

)
, (4.10)

instead of only O(1/(r + 1)) with the previous algorithms. We apply the same trick
for both balanced and Ricci balanced metrics. We call these new sequence of metrics
one-step recursively balanced (‘1-s.bal.’ for short) or one-step recursively Ricci balanced
(‘1-s.R.bal.’). The advantage of this method is that it is particularly simple (at least for
dimension 2) to program it, since we have already coded the computation of the scalar
curvature.

Note that the computation of the scalar curvature in the process gives a complexity
similar to C(T ), see (4.9). Hence, thanks to (4.10), the complexity of the computation of
one-step recursively Ricci balanced is

C(1-s.R.bal.) �
√

C(Ricci) + 4
√

C(Ricci) � 5
√

C(Ricci).

This is particularly efficient and let us hope that it is possible to compute Kähler–Einstein
metric on 3-folds and 4-folds with reasonable precision and very few symmetries.
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Table 1. Results for the different algorithms for the third Del Pezzo surface.

Ricci
Method (r = 4) Balanced 1-s.bal. balanced 1-s.R.bal.

Average scalar curvature 0.786 0.888 0.949 0.984
Maximum scalar curvature 1.079 1.041 1.012 1.041
Minimum scalar curvature 0.618 0.717 0.820 0.867

Time (s) 9.1 16.1 8.0 15.5

Table 1 gives an overview of the results for r = 4, a choice of 104 points on the manifold
M0 and 15 iterations for each algorithm.

As an example, we obtain Figure 1 for the scalar curvature (printed in Z coordinate)
over M0 after various iterations of the Ricci balanced algorithm. Note that here r = 12
and the first metric is chosen randomly. One can see that for 40 iterations we get a metric
with scalar curvature almost equal to 1 everywhere over the hexagonal polytope. Using
this metric, we can find numerical approximations (see www.latp.univ-mrs.fr/˜jkeller/
julien-keller-progs.html) of geodesics for the Kähler–Einstein metric on M0. It seems to
give a numerical evidence that the geodesic equations on this manifold form an integrable
system.
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22. J. Song and B. Weinkove, Energy functionals and canonical Kähler metrics, Duke
Math. J. 137 (2007), 159–184.

23. G. Tian, On Kähler–Einstein metrics on certain Kähler manifolds with C1(M) > 0,
Invent. Math. 89 (1987), 225–246.

24. G. Tian, Canonical metrics in Kähler geometry, Lectures in Mathematics, ETH Zürich
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