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Abstract In this paper, we consider the problem −Δu = −u−βχ{u>0} + f(u) in Ω with u = 0 on ∂Ω,

where 0 < β < 1 and Ω is a smooth bounded domain in R
N , N ≥ 2. We are able to solve this problem

provided f has subcritical growth and satisfy certain hypothesis. We also consider this problem with

f(s) = λs + s
N+2
N−2 and N ≥ 3. In this case, we are able to obtain a solution for large values of λ. We

replace the singular function u−β by a function gε(u) which pointwisely converges to u−β as ε → 0. The
corresponding energy functional to the perturbed equation −Δu + gε(u) = f(u) has a critical point uε

in H1
0 (Ω), which converges to a non-trivial non-negative solution of the original problem as ε → 0.
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1. Introduction

In this paper, we show that the problem

⎧⎨⎩−Δu = −u−βχ{u>0} + f(u) in Ω
u ≥ 0, u �≡ 0 in Ω
u = 0 on ∂Ω,

(1)

has a non-negative solution when f has subcritical growth. The expression χ{u>0} denotes
the characteristic function corresponding to the set {x ∈ Ω : u(x) > 0} and by conven-
tion u−βχ{u>0} = 0 if u = 0. Hereafter, Ω ⊂ R

N , N ≥ 2, is a bounded smooth domain,
0 < β < 1 and 2∗ = 2N

N−2 for N ≥ 3.
By a solution of problem (1), we mean a function u ∈ H1

0 (Ω) such that

u−βχ{u>0} ∈ L1
loc(Ω)
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and ∫
Ω

∇u∇ϕ =
∫

Ω∩{u>0}

((−u−β + f(u)
)
ϕ
)

for every ϕ ∈ C1
c (Ω).

Here, C1
c (Ω) stands for the functions belonging to C1(Ω) with compact support.

We consider the perturbed problem⎧⎨⎩−Δu+ gε(u) = f(u) in Ω
u ≥ 0, u �≡ 0 in Ω
u = 0 on ∂Ω,

(2)

where the perturbation gε is given by

gε(s) =

⎧⎨⎩
sq

(s+ ε)q+β
for s ≥ 0

0 for s < 0,
(3)

and 0 < q < 1
2 . We say that uε ∈ H1

0 (Ω) is a weak solution of problem (2) if∫
Ω

∇uε∇v +
∫

Ω

gε(uε)v =
∫

Ω

f(uε)v for all v ∈ H1
0 (Ω). (4)

We define the functional Iε : H1
0 (Ω) → R associated to problem (2) by

Iε(u) =
1
2

∫
Ω

|∇u|2 +
∫

Ω

Gε(u) −
∫

Ω

F (u), (5)

where Gε(s) =
∫ s

0
gε(t) dt and F (s) =

∫ s

0
f(t) dt. It turns out that certain solutions of

problem (2) converge to a solution of problem (1). Initially, we make the following
assumptions on f .

f is of class C1,ν(0,∞) ∩ C[0,∞) and sup
s∈[0,1]

s1−q1 |f ′(s)| <∞, (6)

for some 0 < ν < 1 and 0 < q1 < 1, and

f(s) = 0 for s ≤ 0. (7)

We also assume that there exist constants 0 < ε0, δ < 1 such that

gε0(s) ≥ f(s) for all s ≤ δ, (8)

and that there exists a constant C > 0 such that

|f(s)| ≤ C(1 + sp) for all s ≥ 0, (9)

where 0 < p < 2∗ − 1 (0 < p <∞ when N = 2). We also assume that there exists
constants 0 < θ < 1/2, R > 0 and c > 0 such that

(1 − θ)f(s) ≤ θsf ′(s) − c for s ≥ R, (10)
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and that there exists φ0 ∈ H1
0 (Ω) ∩ L∞(Ω) such that

Iε(φ0) < 0 for all 0 < ε < ε0. (11)

Condition (11) holds provided

lim
s→∞

F (s)
s2

= ∞.

Assumptions (6) and (9) imply that Iε is of class C1 and

I ′ε(u)(v) =
∫

Ω

∇u∇v +
∫

Ω

gε(u)v −
∫

Ω

f(u)v, for all u, v ∈ H1
0 (Ω). (12)

Our first result is as the following

Theorem 1.1. Assume that (6)–(11) hold. Then, problem (1) has a non-trivial
non-negative solution.

Examples: Let λ > 0 and μ ≥ 0 be constants. Conditions (6)–(11) hold for the
following examples of f .

•f(s) = λsp ± μsq with 0 < q < p < 2∗ − 1 and p > 1;

•f(s) = λsp ± μsq with N = 3, 0 < q < p and 1 < p < 5;

•f(s) = λsp ± μsq with N = 2, 0 < q < p <∞ and p > 1;

•f(s) = λsp ± μsq log s with 1 < p < 2∗ − 1 and 0 < q < p;

•f(s) = λsp log s± μsq with 1 < p < 2∗ − 1 and 0 < q < p.

Indeed, condition (10) will hold for 1
1+p < θ < 1/2 and condition (8) will hold because

for each λ > 0 and 0 < τ < 1 there exists 0 < δτ,λ < 1 and 0 < ετ,λ < 1 such that

gε(s) ≥ λsτ for 0 ≤ s ≤ δτ,λ and 0 < ε < ετ,λ,

provided 0 < q < τ in (3).
Next, we study problem (1) with N ≥ 3 and f(s) = λs+ s2

∗−1, where λ > 0. We prove

Theorem 1.2. Assume that N ≥ 3 and f(s) = λs+ s2
∗−1. Then, there exists λ0 > 0

such that problem (1) has a non-trivial non-negative solution for all λ > λ0.

We recall the works of [1, 5], where the authors studied the problem⎧⎨⎩−Δu = λup + u2∗−1 in Ω
u > 0 in Ω
u = 0 on ∂Ω.

(13)

In [5], it was assumed that 1 < p < 2∗ − 1 in (13). They proved that problem (13) has
a positive solution for every λ > 0 provided N ≥ 4. The same result holds if N = 3
and 3 < p < 5. In the case N = 3 and 1 < p ≤ 3, the authors proved in [5] that (13)
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possesses a positive solution provided λ > 0 is sufficiently large. In [1], the authors stud-
ied problem (13) when 0 < p < 1. They showed that there exists a constant Λ1 > 0
such that problem (13) has at least two solutions if 0 < λ < Λ1 and has no solution
for λ > Λ1. In [12], the authors studied the problem −Δu = −u−β + f(x) in Ω, u = 0
in ∂Ω, the sub-supersolution method was used and positive solutions were obtained.
Equation −Δu+K(x)u−β = λup with 0 < p < 1 and zero boundary condition was stud-
ied in [27], where K was assumed to be of class C2,α(Ω). For more on singular problems
with sublinear nonlinearities, see [23, 30]. Theorem 1.1 asserts that the problem⎧⎨⎩−Δu = −u−βχ{u>0} + λup ± μuq in Ω

u ≥ 0, u �≡ 0 in Ω
u = 0 on ∂Ω,

(14)

is solvable for each λ > 0 and μ ≥ 0, provided 0 < q < p < 2∗ − 1 and p > 1. Problems
(13) and (14) are similar in essence, the latter being a singular version of the former.
Theorem 1.1 should also be compared with the results of [10, 22], where the authors
studied the problem ⎧⎨⎩−Δu = −u−βχ{u>0} + λup in Ω

u ≥ 0, u �≡ 0 in Ω
u = 0 on ∂Ω,

(15)

with λ > 0. In [10], the authors assumed that p > 1 and they obtained one solution of (15)
for each λ > 0. The case p = 1 was also studied in [10], and they obtained one solution
for λ > λ1, where λ1 is the first eigenvalue of −Δ. In [22], the authors assumed that
0 < p < 1 and they obtained two distinct solutions of (15) for large values of λ. See also
[9], where the authors obtained sharper regularity results for solutions uλ of problem (15)
with 0 < p < 1. In this work, we consider general nonlinearities f with subcritical growth,
and we do not make use of parameters. Observe also that in Theorem 1.1, we make no
assumptions on the sign of f .

Theorem 1.2 should be compared with the results of [14], where the authors studied
the problem ⎧⎨⎩−Δu = −u−βχ{u>0} + λup + u

N+2
N−2 in Ω

u �≡ 0 in Ω
u = 0 on ∂Ω.

(16)

When 0 < p < 1 in (16), the authors obtained a constant Λ0 > 0 such that problem (16)
has two distinct non-trivial and non-negative solutions for 0 < λ < Λ0. If 1 < p < N+2

N−2 ,
the authors obtained a constant Λ∗

0 > 0 such that problem (16) admits a solution provided
λ > Λ∗

0. Theorem 1.2 addresses the case p = 1 in (16).
Problems similar to (1) and (2) arise in the context of heterogeneous catalysis. Consider

a reaction R which converts a given gas to useful products, and suppose that R occurs
only in the presence of a catalyst that comes in the form of a porous pellet Ω. For the pellet
to be useful, the gas must diffuse inside it. In this context, two entities arise: the rate of
reaction kR and the rate of diffusion kD of the gas in regions of Ω. If kD is large compared
to kR, then the reaction occurs throughout Ω and no free boundary arises. However, when
kD is small compared to kR, then there are zones within Ω in which no reaction takes
place, these are known as dead cores. The rates of adsorption ka and desorption kd of gas
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in the surface of the pellet must also be considered, for the equilibrium is reached when
ka equals kd. Let A1, A2, . . . AS be chemical species involved in the reaction

S∑
j=1

αjAj = 0,

where αj denote the number of molecules of Aj being formed (αj > 0) or consumed
(αj < 0) in Ω. Then, under certain assumptions about the mechanism of the reaction,
the concentration cj = cj(x) of Aj at x ∈ Ω satisfies the following elliptic equation{

DjΔcj + αjπSkR = 0 in Ω
cj = cjs on ∂Ω,

for each j ∈ {1, 2, . . . , S}. Here, Dj denotes the diffusion coefficient of Aj and πS the
catalytic area per unit volume. At equilibrium, the reaction rate kR can be calculated as
a function of the concentrations cj . Using a suitable change of variables (see [3], p.168),
we get an equation of the form {

Δu = λ2R(u) in Ω
u = 1 on ∂Ω, (17)

where λ > 0 is a constant called Thiele Modulus, R : R → R is a rational function and
0 ≤ u ≤ 1 represents a ‘normalized dimensionless concentration’. We see that equations
(2) and (17) are similar in essence.

For more applications in catalysis and in other fields of research, such as biochemistry,
see [3, 11]. See [15, 26] for studies of the free boundary of solutions of some elliptic
equations.

Singular equations are related to phase field models, see [6, 8, 13, 16]. For more results
on singular elliptic equations, see [2, 4, 17, 19, 21, 24, 25, 28].

Our paper is organized as follows. In § 2, we give some preliminary results. Next, we
study problem (2) by considering two different scenarios; in § 3, we consider the subcritical
case and in § 4, we study problem (2) with f(s) = λs+ s

N+2
N−2 . In both cases, we show

that the associated functional satisfy the assumptions of the Mountain Pass Theorem.
We thus obtain solutions of problem (2). These solutions will be shown to be bounded in
H1

0 (Ω) by a constant that does not depend on ε. Such an estimate will be crucial in § 5,
where we will establish regularity results for the solutions of problem (2) obtained in § 3
and § 4. In § 6, we prove Theorems 1.1 and 1.2.

2. Preliminary results

First, we show that critical points of the functional Iε defined in (5) must be non-negative.

Lemma 2.1. Assume that (6), (7) and (9) hold. Let uε be a critical point of the
functional Iε defined by (5). Then uε ≥ 0 and uε is a weak solution of problem (2).
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Proof of Lemma 2.1. Let u−ε = max{−uε, 0}. Taking v = u−ε in (12) and using (7),
we obtain

0 = I ′ε(uε)(u−ε ) = −‖u−ε ‖2
H1

0 (Ω).

Hence, uε ≥ 0 and

0 = I ′ε(uε)(v) =
∫

Ω

∇uε∇v +
∫

Ω

gε(uε)v −
∫

Ω

f(uε)v, for all v ∈ H1
0 (Ω).

Hence, (4) holds. This proves Lemma 2.1. �

We will need estimates of the perturbation gε defined in (3). Note that

gε(s) =
sq

(s+ ε)q+β
≥ sq

(s+ 1)q+β
=

sq− 1
2

(s+ 1)q+β
s

1
2 for s ≥ 0.

Hence,

gε(s) ≥ 1
2q+β

sq− 1
2 s

1
2 for 0 ≤ s < 1.

Therefore, from the fact that 0 < q < 1
2 , it follows that, for each M > 0, there exists

δ = δ(M) < 1 such that

gε(s) ≥Ms for 0 ≤ s < δ < 1.

We thus obtain

Gε(s) =
∫ s

0

gε(t) dt ≥
∫ s

0

Mtdt =
M

2
s2 for 0 ≤ s < δ < 1. (18)

Observe that

g′ε(s) =
qsq−1(s+ ε)q+β − (q + β)sq(s+ ε)q+β−1

(s+ ε)2(q+β)
.

Hence,

sg′ε(s) =
qsq

(s+ ε)q+β
− (q + β)sq+1

(s+ ε)q+β+1
. (19)

The following lemma will play a crucial role in § 4.

Lemma 2.2.

Gε(s) ≥ 1
2
gε(s)s, for every s ≥ 0.
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Proof of Lemma 2.2. Indeed, let B̃ε(s) = Gε(s) − 1
2gε(s)s. We have that Bε(0) = 0

and

B̃′
ε(s) = gε(s) − 1

2
gε(s) − s

2
g′ε(s) =

1
2

(gε(s) − sg′ε(s)) .

Therefore, B̃′
ε(s) ≥ 0 if and only if

gε(s) ≥ sg′ε(s).

From (19), this inequality will be true if

sq

(s+ ε)q+β
≥ qsq

(s+ ε)q+β
. (20)

Since q < 1/2, (20) holds for each s ≥ 0. This proves Lemma 2.2. �

Now, we show that a version of the Ambrosetti–Rabinowitz condition holds. We define

jε(s) = f(s) − gε(s) for s ∈ R.

Consequently,

Iε(u) =
1
2

∫
Ω

|∇u|2 −
∫

Ω

Jε(u),

where Jε(s) =
∫ s

0
jε(t) dt. For simplicity of notation, we denote Jε and jε merely by J and

j respectively.

Lemma 2.3. Suppose that (6) and (10) hold. Let 0 < θ < 1/2 be given by (10). There
exists a constant R > 0 such that

J(s) ≤ θsj(s) for s ≥ R.

Proof of Lemma 2.3. Let Bε(s) = J(s) − θsj(s). We have

B′
ε(s) = (1 − θ)j(s) − θsj′(s).

Hence,

B′
ε(s) = −(1 − θ)gε(s) + θsg′ε(s) + (1 − θ)f(s) − θsf ′(s).

From (19) we obtain

|sg′ε(s)| ≤ q|s|−β + (q + β)|s|−β → 0 as s→ ∞.

It is also clear that

(1 − θ)gε(s) → 0 as s→ ∞ uniformly for ε.

Hence, for each 0 < τ < 1 there exists Rτ > 0 that does not depend on ε such that

|(1 − θ)gε(s)| + |sg′ε(s)| < τ for s ≥ Rτ .
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Therefore,
B′

ε(s) < τ + (1 − θ)f(s) − θsf ′(s). for s ≥ Rτ .

Consequently, from (10), we get

B′
ε(s) < τ − c for s ≥ max{R,Rτ},

where c > 0 and R > 0 are given by (10). Choosing τ = c/2, we get

B′
ε(s) < − c

2
for s ≥ R2, (21)

where
R2 = max{R,Rc/2}.

Note that
Bε(R2) ≤ C1

where
C1 = |F (R2)| + |θR2f(R2)| + θR1−β

2 .

Therefore, (21) implies that there exists a constant T > 0 such that

Bε(s) ≤ −cs
2

+ T for s ≥ R2.

Hence, Bε(s) ≤ 0 for s ≥ max{R2, 2T/c}. This proves Lemma 2.3. �

Let φ0 ∈ H1
0 (Ω) ∩ L∞(Ω) be given by (11). We have

Lemma 2.4. Assume that (6), (9) and (11) hold. There exist a constant a2 > 0 that
does not depend on ε such that

sup
0≤s≤1

Iε(sφ0) < a2 for every 0 < ε < ε0. (22)

Proof of Lemma 2.4. We have

Iε(sφ0) ≤ s2

2
‖φ0‖H1

0 (Ω) +
∫

Ω

Gε(sφ0) −
∫

Ω

F (sφ0) dx, for every s ≥ 0.

Consequently, we get

Iε(sφ0) ≤ s2

2
‖φ0‖H1

0 (Ω) +
1

1 − β

∫
Ω

|sφ0|1−β −
∫

Ω

F (sφ0) dx, for every s ≥ 0.

We conclude that
sup

0≤s≤1
Iε,λ(sφ0) < a2,

where

a2 =
1
2
‖φ0‖H1

0 (Ω) + |Ω|
(

supΩ |φ0|1−β

1 − β
+ sup

0≤s≤sup φ0

|F (s)|
)
.

This proves (22). We have proved Lemma 2.4. �

https://doi.org/10.1017/S0013091522000268 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091522000268


660 M. F. Stapenhorst

3. Existence of solution of the perturbed subcritical problem

Throughout this section, we will assume that f satisfies (9) with 0 < p < 2∗ − 1. Our aim
is to show that problem (2) has a non-negative non-trivial solution. We recall that given
a Banach space E and a functional Ψ ∈ C1(E; R), we say that a sequence (un) in E is a
Palais–Smale sequence of Ψ if there exists c ∈ R such that Ψ(un) → c and ‖Ψ′(un)‖ → 0
as n→ ∞. We say that Ψ satisfies the Palais–Smale condition if every Palais–Smale
sequence of Ψ has a convergent subsequence.

Lemma 3.1. Assume that (6)–(10) hold. Fix 0 < ε < 1 and let (uε
n) be a Palais–Smale

sequence for Iε in H1
0 (Ω). Assume that there exists a constant C > 0 that does not depend

on ε such that

|Iε(uε
n)| < C for all n ∈ N. (23)

Then, there exists D > 0 that does not depend on ε such that

‖uε
n‖H1

0 (Ω) < D for all n ∈ N. (24)

Furthermore, there exists uε ∈ H1
0 (Ω) such that, up to a subsequence, uε

n → uε strongly
in H1

0 (Ω). Consequently, uε is a critical point of Iε.

Proof of Lemma 3.1. Throughout this proof, we denote ‖ · ‖H1
0 (Ω) by ‖ · ‖. Let

(uε
n)n∈N be a Palais–Smale sequence for Iε satisfying (23). Consequently,

1
2
‖uε

n‖2 ≤ C +
∫

Ω

J(uε
n) dx for all n ∈ N, (25)

and there is a sequence τn → 0 such that∣∣∣∣∫
Ω

∇uε
n∇w dx−

∫
Ω

j(uε
n)w dx

∣∣∣∣≤ τn‖w‖ for each w ∈ H1
0 (Ω). (26)

Let 0 < θ < 1/2 be given by (10). From Lemma 2.3, there is a constant R > 0 that does
not depend on ε such that

J(t) ≤ θtj(t) for t ≥ R.

Since there exists D1 > 0 that does not depend on ε such that

sup
0≤s≤R

max{|J(s)|, |sj(s)|} < D1,

we may find a constant D2 > 0 such that

J(uε
n) < D2 + θuε

nj(u
ε
n).

We know from (25) that there is a constant D3 > 0 such that

1
2
‖uε

n‖2 ≤ D3 + θ

∫
Ω

uε
nj(u

ε
n) dx.
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Taking w = uε
n in (26), we also conclude that∫

Ω

j(uε
n)uε

n dx < ‖uε
n‖2 + τn‖uε

n‖.

Hence,
1
2
‖uε

n‖2 < D3 + θ‖uε
n‖2 + τnθ‖uε

n‖.
Since 0 < θ < 1

2 , (24) follows. Consequently, there exists uε ∈ H1
0 (Ω) such that uε

n ⇀ uε

weakly in H1
0 (Ω). Since Jε has subcritical growth at infinity (see [7], Theorem 3.4 and

Remark 2.2.1), we conclude that, up to a subsequence, uε
n → uε strongly in H1

0 (Ω). Since
I ′ε(u

ε
n) → 0 as n→ ∞ and Iε is of class C1, we conclude that I ′ε(uε) = 0. This proves the

result. �

Now, we obtain one solution for problem (2).

Proposition 3.2. Assume that (6)–(11) hold and let a2 > 0 be given by Lemma 2.4.
Then, there is a non-negative solution uε of problem (2) and there exist constants a1 > 0
and D > 0 that do not depend on ε such that

0 < a1 ≤ Iε(uε) ≤ a2,

and

‖uε‖H1
0 (Ω) < D.

Proof of Proposition 3.2. Let δ > 0 and ε0 be given by (8). Note that

Iε(u) =
1
2

∫
Ω

|∇u|2 +
∫
{u≤δ}

(Gε(u) − F (u)) dx

+
∫
{u>δ}

(Gε(u) − F (u)) dx for every u ∈ H1
0 (Ω).

The fact that gε is monotone in ε implies that

gε(s) ≥ f(s) for all 0 ≤ s < δ and 0 < ε < ε0.

Using the fact that Gε ≥ 0, we get

Iε(u) ≥ 1
2

∫
Ω

|∇u|2 −
∫
{u>δ}

F (u) for every u ∈ H1
0 (Ω).

From (9), we have

|F (s)| ≤
∫ s

0

|f(t)|dt ≤ C

∫ s

0

(1 + tp) dt = Cs+
Cs1+p

1 + p
.

Consequently,

Iε(u) ≥ 1
2

∫
Ω

|∇u|2 − C

∫
{u>δ}

u− C

1 + p

∫
{u>δ}

up+1 for every u ∈ H1
0 (Ω).
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We conclude that there exists C̃ > 0 such that

Iε(u) ≥ 1
2

∫
Ω

|∇u|2 − C̃

∫
Ω

|u|σ for every u ∈ H1
0 (Ω),

where σ > 2 is chosen such that 1 + p < σ < 2∗. The Sobolev embedding implies that
there is a constant C3 > 0 such that

Iε(u) ≥ 1
2
‖u‖2

H1
0 (Ω) − C3‖u‖σ

H1
0 (Ω).

Therefore,

Iε(u) ≥ 1
4
‖u‖2

H1
0 (Ω) for ‖u‖H1

0 (Ω) ≤ ρ,

where

ρ =
(

1
4C3

) 1
σ−2

.

Also,

Iε(u) ≥ a1 for ‖u‖H1
0 (Ω) = ρ,

where

a1 =
ρ2

4
.

Let φ0 be given by (11) and Γ = {γ ∈ C([0, 1], H1
0 (Ω)) : γ(0) = 0, γ(1) = φ0}. We know

from (23) that Iε(φ0) < 0. Consequently, we may apply the Mountain Pass Theorem [29],
page 12) to conclude that there is a Palais–Smale sequence (uε

n for Iε in H1
0 (Ω) and a

number

cε = inf
γ∈Γ

sup
s∈[0,1]

Iε(γ(s)),

such that

lim
n→∞ Iε(uε

n) = cε and lim
n→∞ I ′ε(u

ε
n) = 0.

From Lemma 2.4, we know that a1 ≤ cε ≤ a2. From Lemma 3.1, we conclude that there
exist D > 0 (that does not depend on ε) and uε ∈ H1

0 (Ω) such that, up to a subsequence,
uε

n → uε strongly in H1
0 (Ω) and

‖uε‖H1
0 (Ω) < D.

Consequently, I ′ε(uε) = 0 and

a1 ≤ Iε(uε) < a2.

This proves the result. �
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4. Existence of solution of the perturbed problem when p = 2∗ − 1

In this section, we study problem (2) with f(s) = λs+ s2
∗−1 for s ≥ 0. We assume that

f(s) = 0 for s ≤ 0. This function satisfies (6), (7), (8) and (10). The difficulty here is that
f no longer satisfies (9), so that Lemma 3.1 does not hold. The associated functional then
becomes

Iε,λ(u) =
∫

Ω

|∇u|2 dx+
∫

Ω

Gε(u) − λ

2

∫
Ω

(u+)2 dx− 1
2∗

∫
Ω

(u+)2
∗

defined for u ∈ H1
0 (Ω),

(27)

where u+ = max{u, 0}. The functional Iε,λ is of class C1 and

I ′ε,λ(u)(v) =
∫

Ω

∇u∇v dx+
∫

Ω

gε(u)v dx

− λ

∫
Ω

(u+)v dx−
∫

Ω

(u+)2
∗−1v dx for all u, v ∈ H1

0 (Ω). (28)

The same argument given by Lemma 2.1 implies that critical points of Iε,λ are non-
negative solutions of problem (2). Observe also that zero is a local minimum of the
functional Iε,λ. Indeed, let 0 < δ < 1 be given by (18). Note that

Iε,λ(u) ≥ 1
2

∫
Ω

|∇u|2 +
∫
{u<δ}

Gε(u) − λ

2

∫
Ω

(u+)2 − 1
2∗

∫
Ω

(u+)2
∗

for every u ∈ H1
0 (Ω)

Choosing M = λ in (18), we obtain

Iε,λ(u) ≥ 1
2

∫
Ω

|∇u|2 − λ

2

∫
{u>δ}

u2 − 1
2∗

∫
Ω

(u+)2
∗
for every u ∈ H1

0 (Ω).

Observe that there exists a constant C1 > 0 such that

s2 ≤ C1s
2∗

for s ≥ δ.

Hence, there exists a constant C2 > 0 such that

Iε,λ(u) ≥ 1
2
‖u‖2

H1
0 (Ω) − C2

∫
Ω

|u|2∗
for every u ∈ H1

0 (Ω).

Consequently, the Sobolev embedding implies that

Iε,λ(u) ≥ 1
2
‖u‖2

H1
0 (Ω) − C3‖u‖2∗

H1
0 (Ω) for all u ∈ H1

0 (Ω)

We conclude that

Iε,λ(u) ≥ 1
4
‖u‖2

H1
0 (Ω) for ‖u‖H1

0 (Ω) ≤ ρ,

where

ρ =
(

1
4C3

) 1
2∗−2

.
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Also,
Iε,λ(u) ≥ a1 for ‖u‖H1

0 (Ω) = ρ, (29)

where

a1 =
ρ2

4
.

We now show that there exists φ ∈ H1
0 (Ω) ∩ L∞(Ω) such that

Iε,λ(φ) < 0.

Indeed, let φ1 ∈ H1
0 (Ω) be the first eigenfunction of the operator −Δ with ‖φ1‖H1

0 (Ω) = 1.
We have

Lemma 4.1. There exist constants N0 > 0, a2 > 0 and b1 > 0 such that

Iε,λ(N0φ1) < −b1 < 0, for every 0 < ε < 1, (30)

and

sup
0≤s≤1

Iε,λ(sN0φ1) < a2 for every λ > 0, 0 < ε < 1. (31)

Moreover, these constants do not depend on λ.

Proof of Lemma 2.4. For each t > 0, we have

Iε,λ(tφ1) =
t2

2
+
∫

Ω

Gε(tφ1) − λt2

2

∫
Ω

φ2
1 dx− t2

∗

2∗

∫
φ2∗

1 dx.

From the fact that Gε(s) ≤ s1−β

1−β for all s ≥ 0, we get

Iε,λ(tφ1) ≤ t2

2
+

t1−β

1 − β

∫
Ω

φ1−β
1 − t2

∗

2∗

∫
φ2∗

1 dx. (32)

Since 2∗ > 2 > 1 − β, inequality (30) then follows by taking t large enough in (32). We
also have

Iε,λ(sN0φ1) ≤ s2N2
0

2
+
∫

Ω

Gε(sN0φ1) − s2
∗
N2∗

0

2∗

∫
φ2∗

1 dx, for every s ≥ 0.

Consequently, we get

Iε,λ(sN0φ1) ≤ s2N2
0

2
+
s1−βN1−β

0

1 − β

∫
Ω

φ1−β
1 , for every s ≥ 0.

We conclude that
sup

0≤s≤1
Iε,λ(sN0φ1) < a2,

where

a2 =
N2

0

2
+
N1−β

0

1 − β

∫
Ω

φ1−β
1 .

This proves (31). We have proved Lemma 4.1. �
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Lemma 4.1, (29) and the Mountain Pass Theorem imply that there is a sequence (uε
n)

in H1
0 (Ω) and a number

cε,λ = inf
γ∈Γ

sup
s∈[0,1]

Iε,λ(γ(s)), (33)

such that
lim

n→∞ Iε,λ(uε
n) = cε,λ and lim

n→∞ I ′ε,λ(uε
n) = 0, (34)

where Γ = {γ ∈ C([0, 1], H1
0 (Ω)) : γ(0) = 0, γ(1) = N0φ1}. It is clear that the function

f(s) = λs+ s2
∗−1 satisfies (10). Consequently, the same computations developed in the

proof of Lemma 2.3 imply that there exists 0 < θ < 1/2 such that

J(s) ≤ θsj(s),

where j(s) = λs+ s2
∗−1 − gε(s) and J(s) =

∫ s

0
j(t) dt. Consequently, by a similar argu-

ment given in the proof of Lemma 3.1, we obtain a constant D > 0 such that

‖uε
n‖H1

0 (Ω) < D for all n ∈ N, 0 < ε < 1. (35)

Furthermore, we have

Lemma 4.2. Let cλ,ε be given by (33). Then

lim
λ→∞

cλ,ε = 0 uniformly on 0 < ε < 1. (36)

Proof of Lemma 4.2. Fix 0 < ε < 1 and let tλ,ε ≥ 0 be such that

Iε,λ(tλ,εφ1) = max
0≤t≤1

Iε,λ(tN0φ1).

From Lemmas 2.4 and (29), we get

Iε,λ(tφ1) > 0 for 0 < t < ρ and Iε,λ(N0φ1) < 0.

Hence, 0 < tλ,ε < 1. Consequently,

d

dt
Iε,λ(tN0φ1)

∣∣∣∣
t=tλ,ε

= 0.

Equivalently, from (28),

0 = I ′ε,λ(tλ,εN0φ1)(N0φ1) = N2
0 tλ,ε

∫
Ω

|∇φ1|2 +N1+q
0 tqλ,ε

∫
Ω

φ1+q
1

(N0tλ,εφ1 + ε)q+β

−N2
0λtλ,ε

∫
Ω

φ2
1 −N2∗

0 t2
∗−1

λ,ε

∫
Ω

φ2∗
1 .

(37)

Fix a sequence (λn) in R such that λn → ∞. Since 0 < tλn, ε < 1, we know that for each
0 < ε < 1 there exists an element 0 ≤ t0,ε ≤ 1 such that

tλn,ε → t0,ε as n→ ∞.
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We will show that t0,ε = 0. Indeed, from (37) there exists a constant M0 > 0 that does
not depend on λ nor on ε such that

λnt
2
λn,ε

∫
Ω

φ2
1 ≤ t2λn,ε

∫
Ω

|∇φ1|2 + t1−β
λn,ε

∫
Ω

φ1−β
1 ≤M0. (38)

Letting n→ ∞ in (38), it follows that tλn, ε → 0 as n→ ∞ uniformly on ε. Hence, t0,ε = 0.
Consequently,

0 < cλn,ε ≤ max
0≤t≤1

Iε,λn
(tN0φ1) = Iε,λn

(tλn,εφ1) ≤ t2λn,ε

∫
Ω

|∇φ1|2 dx+ t1−β
λn,ε

∫
Ω

φ1−β
1 dx.

Letting n→ ∞, we obtain

lim
n→∞ cλn,ε = 0 uniformly on 0 < ε < 1.

Since the sequence (λn) was arbitrarily chosen, (36) follows. �

Consequently, there exist λ0 > 0 and 0 < ε0 < 1 such that

cλ,ε <

(
1
2
− 1

2∗

)
S

N
2 for all λ > λ0, 0 < ε < ε0, (39)

where

S = inf
u∈H1

0 (Ω)\{0}

∫
Ω

|∇u|2 dx(∫
Ω

|u|2∗
dx
) 2

2∗
. (40)

We now obtain the main result of this section.

Proposition 4.3. Let a1 > 0, a2 > 0 and λ0 > 0 be given by (29), Lemmas 4.1 and
(39), respectively. If λ > λ0, then problem (2) has a non-negative solution uε such that

0 < a1 ≤ cλ,ε = Iε,λ(uε) ≤ a2,

where cλ,ε is given by (33). Furthermore, there exists a constant D > 0 that does not
depend on ε such that

‖uε‖H1
0 (Ω) < D for all 0 < ε < 1.
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Proof of Proposition 4.3. Inequality (35) implies that there is uε ∈ H1
0 (Ω) with

‖uε‖H1
0 (Ω) < D such that, up to a subsequence,

uε
n ⇀ uε weakly in H1

0 (Ω), uε
n → uε in Lr(Ω) for all 1 ≤ r < 2∗, uε

n → uε a.e in Ω.
(41)

We claim that ∫
Ω

((uε
n)+)2

∗ →
∫

Ω

((uε)+)2
∗

as n→ ∞. (42)

To do this, we use the ideas given in [14]. Note that there exist positive measures μ, ν in
Ω such that

|∇(uε
n)+|2 ⇀ |∇u+

ε |2 + μ and ((uε
n)+)2

∗
⇀ (u+

ε )2
∗

+ ν

Using the concentration-compactness principle due to Lions (cf. [18], Lemma 1.1), we
obtain at most a countable set of indexes denoted by Λ, sequences xi ∈ Ω, μi, νi ∈ (0, ∞)
such that

ν =
∑
i∈Λ

νiδxi
, μ ≥

∑
i∈Λ

μiδxi
and Sν

2
2∗
i ≤ μi,

for every i ∈ Λ, where S is given by (40). Now, for every σ > 0 and i ∈ Λ, we define

ψσ,i(x) = ψ

(
x− xi

σ

)
,

where ψ ∈ C∞
c (Rn) is a function satisfying

0 ≤ ψ ≤ 1, ψ ≡ 1 in B1(0), ψ ≡ 0 in R
n \B2(0) and ‖∇ψ‖L∞(Rn) ≤ 2.

Since the function ψσ,i(uε
n)+ is bounded in H1

0 (Ω), we know that I ′λ,ε(un)(ψσ,i(uε
n)+) → 0

as n→ ∞. Hence, ∫
Ω

∇uε
n∇(ψσ,i(uε

n)+) +
∫

Ω

gε(uε
n)ψσ,i((uε

n)+)

= λ

∫
Ω

((uε
n)+)2ψσ,i +

∫
Ω

((uε
n)+)2

∗
ψσ,i + on(1).

Consequently,∫
Ω

|∇(uε
n)+|2ψσ,i +

∫
Ω

(uε
n)+∇uε

n∇ψσ,i ≤ λ

∫
Ω

((uε
n)+)2ψσ,i +

∫
Ω

((uε
n)+)2

∗
ψσ,i + on(1).

(43)

Note that

lim
n→∞

∫
Ω

((uε
n)+)2

∗
ψσ,i =

∫
Ω

(u+
ε )2

∗
ψσ,i +

∫
Ω

ψσ,i dν.

Hence,

lim
σ→0

lim
n→∞

∫
Ω

((uε
n)+)2

∗
ψσ,i = νi.
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It is also clear that

lim
σ→0

lim
n→∞

∫
Ω

((uε
n)+)2ψσ,i = lim

σ→0

∫
Ω

(u+
ε )2ψσ,i = 0

and

lim
σ→0

lim
n→∞

∫
Ω

|∇(uε
n)+|2ψσ,i ≥ μi.

We claim that

lim
σ→0

lim
n→∞

∫
Ω

(uε
n)+∇uε

n∇ψσ,i = 0. (44)

Indeed,

|(uε
n)+∇uε

n∇ψσ,i| ≤ ((uε
n)+)2|∇ψσ,i|2

2
+

|∇(uε
n)+|2
2

Therefore,

lim
n→∞

∫
Ω

(uε
n)+∇uε

n∇ψσ,i ≤ J1,σ + J2,σ

where

J1,σ =
1
2

∫
Ω

(u+
ε )2|∇ψσ,i|2 and J2,σ =

1
2

∫
{σ<|x−xi|<2σ}

|∇u+
ε |2 +

∫
{σ<|x−xi|<2σ}

dμ.

Using the Lebesgue Differentiation Theorem and the bound on ∇ψ, we obtain

2 lim
σ→0

J1,σ ≤ lim
σ→0

4
σ2

∫
{σ<|x−xi|<2σ}

(u+
ε )2 ≤ CN lim

σ→0
σN−2 1

V (B2σ(xi))

∫
B2σ(xi)

(u+
ε )2 = 0,

where V (B2σ(xi)) denotes the volume of the ball B2σ(xi). Hence, limσ→0 J1,σ = 0. It
is also clear that limσ→0 J2,σ = 0. This proves (44). Letting n→ ∞ and σ → 0 in (43),
we get

μi ≤ νi for every i ∈ Λ.

Hence,

ν
2
N
i ≥ S for each i ∈ Λ.

Since

Iε,λ(uε
n) =

1
2

∫
Ω

|∇uε
n|2 +

∫
Ω

Gε(uε
n) − λ

2

∫
Ω

((uε
n)+)2 − 1

2∗

∫
Ω

((uε
n)+)2

∗
.

and

I ′ε,λ(uε
n)(uε

n) =
∫

Ω

∇uε
n∇uε

n +
∫

Ω

gε(uε
n)uε

n − λ

∫
Ω

(uε
n)+uε

n −
∫

Ω

((uε
n)+)2

∗−1uε
n,

it follows that

Iε,λ(uε
n) − 1

2
I ′ε,λ(uε

n)(uε
n) =

∫
Ω

(
Gε(uε

n) − 1
2
gε(uε

n)uε
n

)
+
(

1
2
− 1

2∗

)∫
Ω

((uε
n)+)2

∗
.
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From Lemmas 2.2, (34) and from the definition of ψσ,i, we obtain

cλ,ε + on(1) ≥
(

1
2
− 1

2∗

)∫
Ω

((uε
n)+)2

∗ ≥
(

1
2
− 1

2∗

)∫
Bσ(xi)

ψσ,i((uε
n)+)2

∗
for each i ∈ Λ.

(45)
Note that

lim
n→∞

∫
Bσ(xi)

ψσ,i((uε
n)+)2

∗
=
∫

Bσ(xi)

ψσ,i(u+
ε )2

∗
+
∫

Bσ(xi)

ψσ,i dν ≥ νi ≥ S
N
2 .

Hence, letting n→ ∞ in (45), we obtain

cλ,ε ≥
(

1
2
− 1

2∗

)
S

N
2 .

This contradicts (39). This proves that Λ = ∅ and therefore (42) holds. We will now show
that uε

n → uε in H1
0 (Ω). Indeed

I ′ε,λ(uε
n)(uε

n) − I ′ε,λ(uε
n)(uε) =

∫
Ω

|∇uε
n|2 − 2

∫
Ω

∇uε
n∇uε +

∫
Ω

|∇uε|2

− Lε
1,n + Lε

2,n − Lε
3,n − Lε

4,n,

where

Lε
1,n =

∫
Ω

(|∇uε|2 −∇uε
n∇uε

)
,

Lε
2,n =

∫
Ω

(gε(uε
n)(uε

n − uε)) ,

Lε
3,n = λ

∫
Ω

(
(uε

n)+(uε
n − uε)

)
and

Lε
4,n =

∫
Ω

(
((uε

n)+)2
∗−1(uε

n − uε)
)

=
∫

Ω

((uε
n)+)2

∗ −
∫

Ω

((uε
n)+)2

∗−1uε

Using the Dominated Convergence Theorem, (41) and (42), we obtain that

lim
n→∞max{Lε

1,n, L
ε
2,n, L

ε
3,n, L

ε
4,n} = 0.

Therefore, it follows from (34) that

‖uε
n − uε‖2

H1
0 (Ω) = on(1).

Therefore, uε
n → uε strongly in H1

0 (Ω). From (34), it follows that uε is a critical point of
Iε,λ with

0 < a1 < Iε,λ(uε) < a2.

In particular, we know that uε ≥ 0. This proves Proposition 4.3. �
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5. Regularity results and gradient estimates

We will need the following a priori bound in L∞(Ω).

Lemma 5.1. Let uε,λ ∈ H1
0 (Ω) be a non-negative solution of problem (2) with f(s) =

λs+ sp and assume that there exists a constant D > 0 independent of ε such that

‖uε,λ‖H1
0 (Ω) ≤ D for each 0 < ε < 1. (46)

Then the following assertions hold
(i) If 1 < p < 2∗ − 1 then uε,λ ∈ L∞(Ω) and there exists a constant K1 > 0 such that

‖uε,λ‖L∞(Ω) ≤ K1 for each 0 < ε < 1. (47)

(ii) If p = 2∗ − 1 and

lim
λ→∞

Iε,λ(uε,λ) = 0 uniformly on ε, (48)

then there exists λ̂0 > 0 such that uε,λ ∈ L∞(Ω) for each λ > λ̂0 and (47) holds.

Proof of Lemma 5.1. For simplicity, we denote uε,λ by uε. For s ≥ 0, define h(s) =
λs+ sp. From (4), we get∫

Ω

∇uε∇v +
∫

Ω

gε(uε)v =
∫

Ω

h(uε)v for all v ∈ H1
0 (Ω). (49)

Note that

h(s)
gε(s)

=
(s+ ε)q+β

sq
(λs+ sp) ≤ (s+ 1)q+β(λs1−q + sp−q) → 0 as s→ 0.

Hence, the exists 0 < δλ < 1 that does not depend on ε such that

h(s)
gε(s)

<
1
2

for s ≤ δλ. (50)

Also,
h(s)
sp

= λs1−p + 1 for s ≥ δλ.

Therefore, we conclude that
h(s)
sp

≤ 2 for s ≥ Aλ, (51)

where

Aλ = λ
1

p−1 .

It is also clear that

h(s) = λs+ sp ≤ λAλ +Ap
λ = Cλ for δλ ≤ s ≤ Aλ. (52)
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Using (50), (51) and (52), we obtain

h(s) <
(
gε(s)

2

)
χ{0≤s≤δλ} + Cλχ{δλ≤s≤Aλ} + 2spχ{s≥Aλ} for s ≥ 0

Hence, from (70), we get∫
Ω

∇uε∇v < Cλ

∫
{δλ≤uε≤Aλ}

v + 2
∫

Ω

up
εv for all v ∈ H1

0 (Ω), v ≥ 0. (53)

We will now prove assertions (i) and (ii) separately. The proof of (ii) is more intricate,
because we need to study the dependence of certain constants on λ, so that we can let
λ→ ∞.

Proof of (i): From (53), we obtain a constant Cδ,λ > 0 such that∫
Ω

∇uε∇v < Cδ,λ

∫
Ω

up
εv for all v ∈ H1

0 (Ω), v ≥ 0. (54)

For L > 1, we define,

uL,ε(x) =
{
uε(x), if uε(x) ≤ L
L, if uε(x) ≥ L,

zL,ε = u
2(σ−1)
L,ε uε and wL,ε = uεu

σ−1
L,ε ,

with σ > 1 to be determined later. Note that zL,ε ∈ H1
0 (Ω), zL,ε ≥ 0 and

∇zL,ε = u
2(σ−1)
L,ε ∇uε + 2(σ − 1)uεu

2σ−3
L,ε ∇uL,ε.

Taking v = zL,ε in (54) we obtain∫
Ω

u
2(σ−1)
L,ε |∇uε|2 + 2(σ − 1)

∫
Ω

uεu
2σ−3
L,ε ∇uε∇uL,ε < Cλ,δ

∫
Ω

up+1
ε u

2(σ−1)
L,ε .

Since σ > 1 and ∫
Ω

uεu
2σ−3
L,ε ∇uε∇uL,ε =

∫
{uε<L}

u2(σ−1)
ε |∇uε|2 ≥ 0,

we conclude that∫
Ω

u
2(σ−1)
L,ε |∇uε|2 < Cλ,δ

∫
Ω

up+1
ε u

2(σ−1)
L,ε < Cλ,δ

∫
Ω

up−1
ε u2σ

ε . (55)

On the other hand, from the Sobolev embedding, we know that there is a constant C1 > 0
such that (∫

Ω

wp+1
L,ε dx

) 2
p+1

≤ C1

∫
Ω

|∇wL,ε|2 dx.

Since
∇wL,ε = uσ−1

L,ε ∇uε + (σ − 1)uεu
σ−2
L,ε ∇uL,ε,
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it follows that(∫
Ω

wp+1
L,ε dx

) 2
p+1

≤ C1

∫
Ω

u
2(σ−1)
L,ε |∇uε|2 dx+ C1(σ − 1)2

∫
Ω

u2
εu

2(σ−2)
L,ε |∇uL,ε|2

+ 2C1(σ − 1)
∫

Ω

uεu
2σ−3
L,ε ∇uε∇uL,ε.

From the definition of uL,ε, we conclude that(∫
Ω

wp+1
L,ε dx

) 2
p+1

≤ C1σ
2

∫
Ω

u
2(σ−1)
L,ε |∇uε|2 dx.

Using (55), we obtain (∫
Ω

wp+1
L,ε dx

) 2
p+1

≤ C1σ
2Cδ,λ

∫
Ω

up−1
ε u2σ

ε . (56)

Now, observe that(∫
Ω

wp+1
L,ε dx

) 2
p+1

=
(∫

Ω

up+1
ε u

(p+1)(σ−1)
L,ε dx

) 2
p+1

≥
(∫

Ω

u
σ(p+1)
L,ε dx

) 2
p+1

.

Hence, there is a constant C̃δ,λ > 0 such that(∫
Ω

u
σ(p+1)
L,ε dx

) 2
p+1

≤ σ2C̃δ,λ

∫
Ω

up−1
ε u2σ

ε . (57)

Let α1, α2 > 1 be constants such that 1
α1

+ 1
α2

= 1 and p+ 1 < α1(p− 1) < 2∗. From
(57) and Hölder’s inequality it follows that(∫

Ω

u
σ(p+1)
L,ε dx

) 2
p+1

≤ σ2C̃δ,λ

(∫
Ω

uα1(p−1)
ε dx

) 1
α1
(∫

Ω

u2σα2
ε dx

) 1
α2

.

Using (46) and the Sobolev Embedding, we obtain a constant C̃ > 0 such that∫
Ω

uα1(p−1)
ε dx ≤ C̃.

Hence, there exists a constant Ĉ > 0 that does not depend on σ nor on ε such that(∫
Ω

u
σ(p+1)
L,ε dx

) 2
p+1

≤ Ĉσ2

(∫
Ω

u2σα2
ε dx

) 1
α2

. (58)

Letting L→ ∞ in (58) and using Fatou’s Lemma, we conclude that(∫
Ω

uσ(p+1)
ε dx

) 2
p+1

≤ Ĉσ2

(∫
Ω

u2σα2
ε dx

) 1
α2

for each σ > 1,
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provided uε ∈ L2σα2(Ω). Equivalently,

‖uε‖Lσ(p+1) ≤ C
1
σ σ

1
σ ‖uε‖L2σα2 for each σ > 1, (59)

where C =
√
Ĉ. Observe that the choices of α1 and α2 imply that σ(p+ 1) > 2σα2. The

result now follows from an iterative argument. Indeed, take

σ1 =
p+ 1
2α2

.

Using the Sobolev embedding and (46), we obtain a constant D̃ > 0 such that

‖uε‖Lσ1(p+1)(Ω) ≤ C
1

σ1 σ
1

σ1
1 ‖uε‖Lp+1(Ω) ≤ D̃C

1
σ1 σ

1
σ1
1

Now, take σ2 = σ2
1 in (59). We get

‖uε‖Lσ2
1(p+1)(Ω)

≤ C
1

σ2
1 σ

1
σ2
2 ‖uε‖Lσ1(p+1) ≤ D̃C

1
σ1

+ 1
σ2
1

(
σ

1
σ1
1 σ

1
σ2
2

)
Taking σk = σk

1 in (59), we get

‖uε‖Lσk
1 (p+1)(Ω)

≤ D̃C

∑k
i=1

1
σi
1 (Πk

i=1σ
1

σi
i ). (60)

It is clear that

lim
k→∞

(
Πk

i=1σ
1

σi
i

)
= lim

k→∞

(
Πk

i=1σ
i

σi
1

1

)
<∞ and lim

k→∞
C

∑k
i=1

1
σi
1 <∞.

Letting k → ∞ in (60), it follows that uε ∈ L∞(Ω) and we obtain a constant K1 > 0 that
does not depend on ε such that

‖uε‖L∞(Ω) ≤ K1.

This proves (47).
Proof of (ii). Suppose that p = 2∗ − 1. This case is much more complicated. We have∫

Ω

∇uε∇v dx+
∫

Ω

gε(uε)v dx =
∫

Ω

(λuε + u2∗−1
ε )v dx for all v ∈ H1

0 (Ω).

Consequently, since gε ≥ 0, we know that∫
Ω

∇uε∇v ≤
∫

Ω

uε(λ+ u2∗−2
ε )v for all v ∈ H1

0 (Ω), v ≥ 0, 0 < ε < 1. (61)

For each 0 < ε < 1, we define

aε(x) = λ+ uε(x)2
∗−2.

Observe that∫
Ω

aε(x)N/2 ≤ C(N)

(
λN/2|Ω| +

∫
Ω

(
u

4
N−2
ε

)N/2
)

= C(N)(λN/2|Ω| + ‖uε‖2∗
L2∗ (Ω)),
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where C(N) is a constant that depends only on N . From (46) and the Sobolev embedding,
we get a constant C > 0 such that

‖aε‖LN/2(Ω) ≤ C for all 0 < ε < 1.

Let σ ≥ 0 be a constant to be fixed later and consider the function zL,ε =
uε min{u2σ

ε , L2} ∈ H1
0 (Ω), with L > 0. Observe that

∇uε∇zL,ε = |∇uε|2 min{u2σ
ε , L2} + 2σu2σ

ε |∇uε|2χ{uσ
ε ≤L}.

Taking v = zL,ε in (61), we get∫
Ω

|∇uε|2 min{u2σ
ε , L2} + 2σ

∫
{us

ε≤L}
u2σ

ε |∇uε|2 ≤
∫

Ω

aε(x)u2
ε min{u2σ

ε , L2}. (62)

Define wL,ε by wL,ε = uε min{uσ
ε , L} ∈ H1

0 (Ω). We have

∇wL,ε = min{uσ
ε , L}∇uε + σuσ

ε ∇uεχ{uσ
ε ≤L}.

We thus get

|∇wL,ε|2 = σ2u2σ
ε |∇uε|2χ{uσ

ε ≤L} + min{u2σ
ε , L2}|∇uε|2 + σu2σ

ε |∇uε|2χ{uσ
ε ≤L}.

Hence,

|∇wL,ε|2 = (1 + σ(σ + 1))min{u2σ
ε , L2}|∇uε|2 in {uσ

ε ≤ L}
and

|∇wL,ε|2 = min{u2σ
ε , L2}|∇uε|2 in {uσ

ε > L}.
We conclude that

|∇wL,ε|2 ≤ c(σ)min{u2σ
ε , L2}|∇uε|2 in Ω,

where c(σ) = 1 + σ(σ + 1). From (62), we get∫
Ω

|∇wL,ε|2 ≤ c(σ)
∫

Ω

min{u2σ
ε , L2}|∇uε|2 ≤ c(σ)

∫
Ω

aε(x)u2
ε min{u2σ

ε , L2}.

Now, fix K > 0. We have∫
Ω

|∇wL,ε|2 ≤ c(σ)K
∫

Ω

u2
ε min{u2σ

ε , L2} + c(σ)
∫
{aε≥K}

aε(x)u2
ε min{u2σ

ε , L2}.

Hence, ∫
Ω

|∇wL,ε|2 ≤ c(σ)K
∫

Ω

u2
ε min{u2σ

ε , L2}

+ c(σ)

(∫
{aε≥K}

aε(x)
N
2

) 2
N (∫

Ω

(uε min{uσ
ε , L})

2N
N−2

)N−2
N

.
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Consequently,

∫
Ω

|∇wL,ε|2 ≤ c(σ)K
∫

Ω

u2
ε min{u2σ

ε , L2} + c(σ)

(∫
{aε≥K}

aε(x)
N
2

) 2
N (∫

Ω

w
2N

N−2
L,ε

)N−2
N

.

From the Sobolev embedding Theorem, we get

∫
Ω

|∇wL,ε|2 ≤ c(σ)K
∫

Ω

u2
ε min{u2σ

ε , L2} + Cc(σ)

(∫
{aε≥K}

aε(x)
N
2

) 2
N ∫

Ω

|∇wL,ε|2.

(63)

Choose K > 0 such that (∫
{aε≥K}

aε(x)
N
2

) 2
N

≤ 1
2Cc(σ)

.

Claim 1: K can be chosen independently of ε, provided λ is sufficiently large.
Assuming the claim to be true, we obtain∫

Ω

|∇wε|2 dx ≤ Cc(σ)K
∫

Ω

u2
ε min{u2σ

ε , L2}.

Consequently, ∫
{uσ

ε ≤L}
|∇(uσ+1

ε )|2 dx ≤ Cc(σ)K
∫

Ω

(uε min{uσ
ε , L})2 dx.

Suppose that uε ∈ L2σ+2(Ω) and let uL,ε = (uε min{uσ
ε , L})2. Observe that

lim
L→∞

uL,ε = u2+2σ
ε almost everywhere in Ω

Furthermore,

L1 < L2 implies that uL1,ε < uL2,ε in Ω.

The Monotone Convergence Theorem implies that∫
{uσ

ε ≤L}
|∇(uσ+1

ε )|2 dx ≤ Cc(σ)K
∫

Ω

u2+2σ
ε dx.

From Fatou’s Lemma, we get∫
Ω

|∇(uσ+1
ε )|2 dx ≤ Cc(σ)K

∫
Ω

u2+2σ
ε dx for all σ ≥ 0. (64)

Consequently, uσ+1
ε ∈ H1

0 (Ω) and uε ∈ L
(2+2σ)N

N−2 (Ω). Now let q > 1. We will show that

uε ∈ Lq(Ω) and ‖uε‖Lq(Ω) < Cq for all 0 < ε < 1. (65)
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Indeed, this follows by choosing adequate values for σ in (64). Let σ0 = 0. From (64), we
get ∫

Ω

|∇uε|2 dx ≤ CK

∫
Ω

u2
ε dx ≤ C0.

Let σ1 = N
N−2 − 1. From (64), we get∫

Ω

|∇(u
N

N−2
ε )|2 dx ≤ CK

∫
Ω

u
2N

N−2
ε dx ≤ C1.

Consequently, u
N

N−2
ε ∈ H1

0 (Ω) and∫
Ω

u
( N

N−2 ) 2N
N−2

ε ≤ C1.

Let σ2 = 4N−4
(N−2)2 . From (64), we get

∫
Ω

|∇(u
N2

(N−2)2
ε )|2 dx ≤ CK

∫
Ω

u
2N2

(N−2)2
ε dx ≤ C2.

Consequently, u
N2

(N−2)2
ε ∈ H1

0 (Ω) and∫
Ω

u
( N2

(N−2)2
) 2N

N−2
ε ≤ C2.

Assertion (65) then follows by choosing

σi + 1 = (σi−1 + 1)
N

N − 2
.

and iterating up until sM > q for some M ∈ N. Now let wε be the solution of the
non-singular problem {−Δw = λuε + u2∗−1

ε in Ω
w = 0 on ∂Ω,

(66)

Assertion (65) and elliptic regularity theory implies that wε ∈W 2,q(Ω) and

‖wε‖W 2,q(Ω) ≤ C|λuε + u2∗−1
ε |Lq(Ω) = Cq,

where Cq does not depend on ε. Consequently, the Sobolev embedding assures that wε ∈
C1(Ω) and

‖wε‖C1(Ω) ≤ C for all 0 < ε < 1.

Observe that ∫
Ω

∇wε∇v =
∫

Ω

(λuε + u2∗−1
ε )v for all v ∈ H1

0 (Ω), 0 < ε < 1.
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Consequently, ∫
Ω

∇(uε − wε)∇v ≤ 0 for all v ∈ H1
0 (Ω), v ≥ 0, 0 < ε < 1.

The weak maximum principle implies

sup
Ω

(uε − wε) = 0.

Hence,

uε ≤ wε.

Consequently,

‖uε‖L∞(Ω) < C for all 0 < ε < 1.

This proves the result. We need to only show that the claim holds. Indeed, from (46),
there exists an element u ∈ H1

0 (Ω) such that, up to a subsequence,⎧⎪⎨⎪⎩
uε ⇀ u weakly in H1

0 (Ω),

uε → u in Lr(Ω) for 1 < r < 2∗,

uε → u a.e in Ω.

(67)

We first show that ∫
Ω

u2∗
ε →

∫
Ω

u2∗
as ε→ 0. (68)

Again using the Concentration-compactness principle of Lions, we get positive measures
μ, ν in Ω such that

|∇uε|2 ⇀ |∇u|2 + μ and u2∗
ε ⇀ u2∗

+ ν.

Furthermore, there is at most a countable set of indexes denoted by Λ, sequences xi ∈ Ω,
μi, νi ∈ (0, ∞) such that

ν =
∑
i∈Λ

νiδxi
, μ ≥

∑
i∈Λ

μiδxi
and Sν

2
2∗
i ≤ μi,

for every i ∈ Λ, where S is given by (40). Now, for every σ > 0 and i ∈ Λ, we define

ψσ,i(x) = ψ

(
x− xi

σ

)
,

where ψ ∈ C∞
c (Rn) is a function satisfying

0 ≤ ψ ≤ 1, ψ ≡ 1 in B1(0), ψ ≡ 0 in R
n \B2(0) and ‖∇ψ‖L∞(Rn) ≤ 2.

Proceeding as in the proof of Proposition 4.3 and using the hypothesis limλ→∞ Iε(uε,λ) =
0, we conclude that Λ = ∅, provided λ > 0 is sufficiently large, thus proving (68).
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Consequently, a
N
2

ε converges in L1(Ω) to a, where

a(x) = (λ+ u(x)2
∗−2)

N
2 .

We now show that for each δ∗ > 0 there exists η > 0 and ε0 > 0 such that∫
B

aε(x)
N
2 < δ∗ for all sets B ⊂ Ω with |B| < η and 0 < ε < ε0. (69)

Since a ∈ L1(Ω), there exists η > 0 such that∫
B

a(x) < δ∗/2 for all sets B ⊂ Ω with |B| < η.

We write ∫
B

aε(x)
N
2 =

∫
B

(aε(x)
N
2 − a(x)) +

∫
B

a(x).

and we choose ε0 > 0 such that∫
Ω

|aε(x)
N
2 − a(x)| ≤ δ∗/2 for all 0 < ε < ε0.

Consequently,∫
B

aε(x)
N
2 ≤ δ∗ for all sets B ⊂ Ω with |B| < η and 0 < ε < ε0.

This proves (69). We now finally prove Claim 1. Indeed, we choose

δ∗ =
(

1
2Cc(σ)

)N
2

and we choose K > 0 such that∣∣∣∣∣
{
u >

(K − λ)
1

2∗−2

2

}∣∣∣∣∣ < η.

Observe that
{aε ≥ K} = {uε(x) ≥ (K − λ)

1
2∗−2 }.

The choice of K implies that

|{aε ≥ K}| ≤
∣∣∣∣∣
{
u >

(K − λ)
1

2∗−2

2

}∣∣∣∣∣ < η for sufficiently small ε.

Consequently, from (69) and the choice of δ∗, we get(∫
{aε≥K}

aε(x)
N
2

) 2
N

≤ 1
2Cc(σ)

for sufficiently small ε.

This proves Claim 1 and the result. �
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We also have

Lemma 5.2. Let uε ∈ H1
0 (Ω) be a non-negative solution of problem (2) and assume

that there exists a constant D > 0 independent of ε such that

‖uε‖H1
0 (Ω) ≤ D for each 0 < ε < 1.

If f satisfies (8) and (9) for 0 < p < N+2
N−2 , then uε ∈ L∞(Ω) and there exists a constant

K2 > 0 such that

‖uε‖L∞(Ω) ≤ K2 for each 0 < ε < 1.

Proof of Lemma 5.2. From (4), we get∫
Ω

∇uε∇v +
∫

Ω

gε(uε)v −
∫

Ω

f(uε)v = 0 for all v ∈ H1
0 (Ω), v ≥ 0 (70)

From (8), we get∫
Ω

∇uε∇v +
∫

Ω∩{uε≥δ}
gε(uε)v −

∫
Ω∩{uε≥δ}

f(uε)v ≤ 0 for all v ∈ H1
0 (Ω), v ≥ 0.

Consequently, ∫
Ω

∇uε∇v ≤
∫

Ω∩{uε≥δ}
f(uε)v for all v ∈ H1

0 (Ω), v ≥ 0.

From (9), we get∫
Ω

∇uε∇v ≤
∫

Ω∩{uε≥δ}
C(1 + up

ε )v for all v ∈ H1
0 (Ω), v ≥ 0.

Consequently,∫
Ω

∇uε∇v ≤ C

∫
Ω∩{uε≥δ}

(
1
δp

+ 1
)
up

εv for all v ∈ H1
0 (Ω), v ≥ 0.

Consequently, there exists C̃ > 0 and 1 < p̃ < 2∗ − 1 such that∫
Ω

∇uε∇v ≤ C̃

∫
Ω

up̃
εv for all v ∈ H1

0 (Ω), v ≥ 0.

The proof then follows as in item (i) of Lemma 5.1. �

Now, we obtain gradient estimates for solutions uε of problem (2).
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Lemma 5.3. Assume that f satisfies (6). For each 0 < ε < 1, let uε ∈ H1
0 (Ω) ∩ L∞(Ω)

be a non-negative solution of problem (2) and assume that there exists a constant T > 0
such that

sup
0<ε<1

‖uε‖L∞(Ω) < T <∞. (71)

Let ψ be such that

ψ ∈ C2(Ω), ψ > 0 in Ω, ψ = 0 on ∂Ω and
|∇ψ|2
ψ

is bounded in Ω.

Then, there exist constants M > 0 and ε0 > 0 such that

ψ(x)|∇uε(x)|2 ≤M(uε(x)1−β + uε(x)) for every x ∈ Ω, 0 < ε < ε0.

Proof of Lemma 5.3. From (6), we obtain constants C1 > 0 and 0 < t0 < 1 such
that

|f̃ ′(s)| ≤ C1s
q1−1 for 0 ≤ s ≤ t0. (72)

From (71) we obtain that Δuε is bounded in L∞(Ω). Thus, by standard elliptic regularity,
uε belongs to C1,ν(Ω). We define

hε(u) = gε(u) − f(u).

We shall denote uε simply by u. Define the functions

Z(u) = u1−β + u+ a, w =
|∇u|2
Z(u)

, v = wψ,

where a > 0 is small. Note that v is C2 at all points x ∈ Ω such that u(x) > 0. Indeed, let
x ∈ Ω be one such point. By continuity, there must exist an open ball B ⊂ Ω centred at
x such that u > 0 in B. Consequently, we know that gε(u) ∈ C1,ν(B) and f(u) ∈ C1,ν(B).
Hence, hε(u) ∈ C1,ν(B). Since u satisfies the equation −Δu+ hε(u) = 0 in B, we conclude
that u ∈ C3(B), implying that Z(u) and w are C2 in B.

The function v is continuous in Ω, hence it attains its maximum at some point x0 ∈ Ω.
Thus, we obtain

v(x0) > 0.

Note that x0 ∈ Ω, because v = 0 on ∂Ω. Furthermore, u(x0) > 0, since otherwise x0 would
be a critical point of u and w(x0) = 0. Hence,

∇v(x0) = 0

and

Δv(x0) ≤ 0. (73)
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The computations already carried out in [20, 22] lead to the following expression evaluated
at x0

Δv ≥ 1
Z(u)

[
ψw2

(
1
2
Z ′(u)2 − Z(u)Z ′′(u)

)
+ w(2ψZ(u)h

′
ε(u) − ψhε(u)Z ′(u) −K0Z(u))

−K0Z
′(u)Z(u)1/2ψ1/2w3/2

]
,

(74)

where

K0 = max
(

sup
Ω

( |∇ψ|
ψ1/2

)
, sup

Ω

(
Δψ − 2

|∇ψ|2
ψ

))
> 0.

We will show that if v(x0) is large enough then the right-hand side of (74) must be
positive, which would contradict (73).

We will establish the following estimates uniformly for every ε sufficiently small.

Z ′(u)Z(u)1/2 ≤ C

(
1
2
Z ′(u)2 − Z ′′(u)Z(u)

)
, (75)

Z(u)|h′ε(u)| ≤ C

(
1
2
Z ′(u)2 − Z ′′(u)Z(u)

)
, (76)

Z ′(u)|hε(u)| ≤ C

(
1
2
Z ′(u)2 − Z ′′(u)Z(u)

)
, (77)

Z(u) ≤ C

(
1
2
Z ′(u)2 − Z ′′(u)Z(u)

)
, (78)

for every 0 ≤ u ≤ T . The constant C depends only on T , but not on ε nor on a.
Assuming for a moment that (75)–(78) are true. Inequality (74) implies that

Δv ≥
1
2Z

′(u)2 − Z ′′(u)Z(u)
Z(u)

(ψw2 − C(w + ψ1/2w3/2))

=
1
2Z

′(u)2 − Z ′′(u)Z(u)
Z(u)ψ

(v2 − C(v + v3/2)).

Since Δv(x0) ≤ 0 and
1
2Z

′(u)2 − Z ′′(u)Z(u)
Z(u)ψ

> 0 in Ω,

we conclude that
v(x0)2 − C(v(x0) + v(x0)3/2) ≤ 0.

Consequently, there exists M > 0 that does not depend on a such that

sup
Ω
v = v(x0) < M.

Consequently,

|∇u(x)|2ψ(x) ≤M(u(x)1−β + u(x) + a) for all x ∈ Ω.

https://doi.org/10.1017/S0013091522000268 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091522000268


682 M. F. Stapenhorst

The result then follows by letting a→ 0.
We prove now the relations (75)–(78). In the course of this proof, C, C̃, Ci, i ∈

{1, 2, 3, . . .} denote various positive constants independent of ε and a, we obtain gradient

Z(u) = u1−β + u+ a,

Z ′(u) = (1 − β)u−β + 1, Z ′′(u) = −β(1 − β)u−β−1.

Hence,

1
2
Z ′(u)2 − Z ′′(u)Z(u) ≥ (1 − β)2

2
(u−2β + 1) + aβ(1 − β)u−1−β . for u > 0. (79)

We first prove (78). Indeed, there is a constant C > 0 such that

Z(u) = u1−β + u+ a ≤ C for 0 ≤ u ≤ T.

Hence, (78) follows from (79).
We now prove (77). Note that there exists a constant C̃ > 0 such that

Z ′(u)|hε(u)| ≤ ((1 − β)u−β + 1)(gε(u) + |f(u)|)
≤ (1 − β)u−2β + (1 − β)u−β sup

0≤s≤T
|f(s)| + u−β + sup

0≤s≤T
|f(s)|

≤ C̃(1 + u−2β).

Inequality (77) then follows from (79).
Now, we prove (76). Note that

h
′
ε(u) =

uq−1

(u+ ε)q+β+1
(qε− βu) − f ′(u).

We split the proof of (76) in three cases.
Case I. Suppose that 0 < u < min{ qε

2β , t0}, where 0 < t0 < 1 is given by (72). We
define

ωε(u) =
uq−1

(u+ ε)q+β+1
(qε− βu) − C1u

q1−1,

where C1 > 0 is given by (72). We claim that there exists ε0 > 0 such that ωε(u) > 0 for
each 0 < ε < ε0. Indeed, assume by contradiction that ωε(u) < 0 for some 0 < u < qε

2β .
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We then have

qεuq−1 < βuq + C1u
q1−1(u+ ε)q+β+1 < βuq + C1u

q1−1εq+β+1

(
1 +

q

2β

)q+β+1

.

Now take ε0 > 0 such that

C1ε
q+β+1

(
1 +

q

2β

)q+β+1

<
εq

2
for 0 < ε < ε0.

We may assume that 0 < q < q1. Consequently,

qεuq−1 < βuq +
εquq1−1

2
< βuq +

εquq−1

2
.

Hence,
qεuq−1

2
< βuq,

which implies that

u >
qε

2β
.

This contradicts our initial assumption. The claim is proven. Since

qεuq−1

(u+ ε)q+β+1
≤ q

uq

u(u+ ε)q

ε

(u+ ε)β+1
≤ q

uβ+1
,

we obtain

|h′ε(u)| = h
′
ε(u) ≤

q + C1u
q1+β

uβ+1
for 0 < u < min

{
qε

2β
, t0

}
.

Hence,

|h′ε(u)| ≤
2q
uβ+1

for 0 < u < min
{
qε

2β
, t0, t1

}
,

where t1 > 0 is chosen such that

C1u
q1+β < q for 0 ≤ u ≤ t1.

Therefore,

Z(u)|h′ε(u)| ≤ (u1−β + u+ a)
(

2q
uβ+1

)
≤ 2q
u2β

+
2qa
uβ+1

for 0 ≤ u ≤ min
{
qε

2β
, t0, t1

}
.

Comparing with (79), it follows that there exists a constant C > 0 that does not depend
on a such that

Z(u)|h′ε(u)| ≤ C(
1
2
Z ′(u)2 − Z ′′(u)Z(u)) for 0 < u < min

{
qε

2β
, t0, t1

}
, 0 < ε < ε0.

(80)
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Case II. Suppose that εq
2β ≤ u ≤ min{t0, t1}. We have

|h′ε(u)| ≤
uq−1|qε− βu|
(u+ ε)q+β+1

+ C1u
q1−1 for

qε

2β
≤ u ≤ t0.

Note that |qε− βu| ≤ βu if 2βu ≥ qε. We then obtain

|h′ε(u)| ≤
βuq + C1u

q+q1+β
(
1 + 2β

q

)q+β+1

(u+ ε)q+β+1
for

qε

2β
≤ u ≤ t0.

Now, observe that there exists 0 < t2 < min{t0, t1} that does not depend on ε such that

C1u
q1+β

(
1 +

2β
q

)q+β+1

< β for 0 ≤ u ≤ t2.

Therefore,

|h′ε(u)| ≤
2β
uβ+1

for
qε

2β
≤ u < t2.

Comparing with (79), we obtain

Z(u)|h′ε(u)| ≤ C

(
1
2
Z ′(u)2 − Z ′′(u)Z(u)

)
for

qε

2β
≤ u < t2. (81)

Case III. Assume that t2 ≤ u ≤ T . Since there exists a constant C > 0 such that
|h′ε(u)| ≤ C for t2 ≤ u ≤ T , it follows from (78) that

Z(u)|h′ε(u)| ≤ C

(
1
2
Z ′(u)2 − Z ′′(u)Z(u)

)
for t2 ≤ u ≤ T. (82)

Hence, (76) follows from (80), (81) and (82).
We now prove (75). Observe that

Z ′(u)Z(u)1/2 = ((1 − β)u−β + 1)
√
u1−β + u+ a.

Hence,
Z ′(u)Z(u)1/2 ≤

√
3T ((1 − β)u−β + 1).

When 0 ≤ u ≤ 1 we know that u2 ≤ u. Hence u−β ≤ u−2β . Therefore, from (79), there
exist constants C3 > 0 and C4 > C3 such that

Z ′(u)Z(u)1/2 ≤ C3(u−2β + 1) ≤ C4

(
1
2
Z ′(u)2 − Z ′′(u)Z(u)

)
for 0 ≤ u ≤ 1. (83)

If 1 ≤ u ≤ T , we know that there exists a constant C5 > 0 such that Z ′(u)Z(u)1/2 ≤ C5.
Hence, from (79), there exists a constant C6 > 0 such that

Z ′(u)Z(u)1/2 ≤ C6

(
1
2
Z ′(u)2 − Z ′′(u)Z(u)

)
for 1 ≤ u ≤ T. (84)

Inequality (75) then follows from (83) and (84). We have proved Lemma 5.3. �
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Consequently, we obtain

Corollary 5.4. For each 0 < ε < 1, let uε be the solution of problem (2) obtained in
Propositions 3.2 and 4.3. Let ψ be as in the hypothesis of Lemma 5.3. Then there exist
constants M > 0 and ε0 > 0 such that

ψ(x)|∇uε(x)|2 ≤M(uε(x)1−β + uε(x)) for every x ∈ Ω, 0 < ε < ε0.

Proof of Corollary 5.4. From Propositions 3.2 and 4.3, we know that there is a
constant D > 0 such that

‖uε‖H1
0 (Ω) < D for each 0 < ε < 1.

From Lemmas 4.2, 5.1 and 5.2 we conclude that the solutions uε of (2) are bounded in
L∞(Ω) by constant K1 > 0 and K2 > 0 independent of ε. Corollary 5.4 then follows by
Lemma 5.3. �

6. The limit of approximate solutions

Now we will study the convergence as ε→ 0 of the solutions uε of problem (2) obtained
in Propositions 3.2 and 4.3. First, we obtain the existence of a non-trivial limit u. Next,
we prove that u is a solution of problem (1).

Lemma 6.1. Let (εn) be a sequence in (0, 1) such that εn → 0 as n→ ∞. Let (u1
εn

)
and (u2

εn
) be the sequences of solutions obtained in Propositions 3.2 and 4.3 respectively.

Then there exist non-trivial functions u1 ∈ H1
0 (Ω) and u2 ∈ H1

0 (Ω) such that, up to a
subsequence, ui

εn
⇀ ui weakly in H1

0 (Ω), where i ∈ {1, 2}.
Proof of Lemma 6.1. From Propositions 3.2 and 4.3, we know that there exist

constants Di > 0 such that

‖ui
εn
‖H1

0 (Ω) < Di for each n ∈ N, i ∈ {1, 2}

Hence, there exist functions ui ∈ H1
0 (Ω) such that⎧⎪⎪⎨⎪⎪⎩

ui
εn
⇀ ui weakly in H1

0 (Ω);

ui
εn

→ ui in Lr(Ω) for every 1 ≤ r < 2∗;

ui
εn

→ ui a.e in Ω;

(85)

Lemmas 5.1 and 5.2 imply that ui
εn

∈ L∞(Ω) with ‖ui
εn
‖L∞(Ω) < Ki for all n ∈ N.

Consequently, the Dominated Convergence Theorem implies that

ui
εn

→ ui in Lr(Ω) for every r ≥ 1.

We prove the result for i = 1 and denote (u1
εn

) and u1 merely by (uεn
) and u respectively.

From Proposition 3.2, we have

0 < a1 ≤ Iεn
(uεn

) =
1
2

∫
Ω

|∇uεn
|2 +

∫
Ω

Gεn
(uεn

) −
∫

Ω

F (uεn
).
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Since uεn
is a non-negative critical point of Iεn

, we have

‖uεn
‖2

H1
0 (Ω) +

∫
Ω

gεn
(uεn

)uεn
=
∫

Ω

uεn
f(uεn

).

Hence,

Iεn
(uεn

) =
∫

Ω

(
Gεn

(uεn
) − 1

2
gεn

(uεn
)uεn

)
dx−

∫
Ω

(
F (uεn

) − 1
2
uεn

f(uεn
)
)

dx > a1.

(86)

The Dominated Convergence Theorem implies that

lim
n→∞

∫
Ω

gεn
(uεn

)uεn
dx =

∫
Ω

u1−β dx,

lim
n→∞

∫
Ω

Gεn
(uεn

) dx =
1

1 − β

∫
Ω

u1−β dx,

and ∫
Ω

(
F (uεn

) − 1
2
uεn

f(uεn
)
)

dx→
∫

Ω

(
F (u) − 1

2
uf(u)

)
dx.

Taking the above claims into account and letting n→ ∞ in (86), we obtain∫
Ω

(
u1−β

1 − β
− u1−β

2

)
dx−

∫
Ω

(
F (u) − 1

2
uf(u)

)
dx ≥ a1.

We proved that u is non-trivial. The proof for i = 2 is analogous. �

We now show that the functions u1 and u2 defined in Lemma 6.1 satisfy the following
property.

Lemma 6.2. Let u1 and u2 be the functions given by Lemma 6.1. The function
u−β

i χ{ui>0} belongs to L1
loc(Ω) for i ∈ {1, 2}.

Proof of Lemma 6.2. We again prove the result for i = 1. The proof for i = 2 is
analogous. Let (uεn

) and u be given by (85) with i = 1. Let V ⊂ Ω be a open set such
that V ⊂ Ω. Take ζ ∈ C1

c (Ω) such that 0 ≤ ζ ≤ 1 and ζ ≡ 1 in V . Since uεn
is a critical

point of Iεn
, we obtain∫

{uεn<1−εn}
gεn

(uεn
)ζ =

∫
Ω

f(uεn
)ζ −

∫
Ω

∇uεn
∇ζ −

∫
{uεn≥1−εn}

gεn
(uεn

)ζ.

Corollary 5.4 implies that uεn
→ u uniformly in compact subsets of Ω. Since uεn

⇀ u
weakly in H1

0 (Ω), we get∫
{uεn<1−εn}

gεn
(uεn

)ζ →
∫

Ω

f(u)ζ −
∫

Ω

∇u∇ζ −
∫
{u≥1}

u−βζ as ε→ 0 (87)
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Define the set Ωρ = {x ∈ Ω : u(x) ≥ ρ} for ρ > 0. It follows from (87) that there exists a
constant C > 0 that does not depend on n nor on ρ such that∫

V ∩Ωρ

uq
εn

(uεn
+ εn)q+β

χ{uεn<1−εn}ζ ≤
∫
{uεn<1−εn}

gεn
(uεn

)ζ < C for all n ∈ N, ρ > 0,

Letting n→ ∞ and using Fatou’s Lemma, we then get∫
V

u−βχΩρ
< C.

Letting ρ→ 0 and applying Fatou’s Lemma again, we conclude that∫
V

u−βχ{u>0} <∞.

Since V was arbitrarily chosen, Lemma 6.2 is proved. �

Proof of Theorem 1.1. The proof of this result is very similar to the one given in
[14], but for the sake of completeness, we give the proof with details. We will show that
the sequences (u1

εn
) given by Lemma 6.1 converge to a solution u1 of (1) as n→ ∞. In

doing so, we obtain a solution u1 of (1) which is non-trivial. The non-triviality of u1

is guaranteed by Lemma 6.1. From now on, we denote uεn
and u1 merely by uε and u

respectively. Let ϕ ∈ C1
c (Ω). From Proposition 3.2, we have∫

Ω

∇uε∇ϕ =
∫

Ω

(−gε(uε) + f(uε))ϕ. (88)

Let η ∈ C∞(R), 0 ≤ η ≤ 1, η(s) = 0 for s ≤ 1/2, η(s) = 1 for s ≥ 1. For m > 0 the
function � := ϕη(uε/m) belongs to C1

c (Ω).
From Corollary 5.4, we know that |∇uε| is locally bounded independent on 0 < ε < ε0.

It then follows from (47) and the Arzelà-Ascoli Theorem that uε → u in C0
loc(Ω), and the

set Ω+ = {x ∈ Ω : u(x) > 0} is open. Let Ω̃ be an open set such that support(ϕ) ⊂ Ω̃ and
Ω̃ ⊂ Ω. Let Ω0 = Ω+ ∩ Ω̃. For every m > 0, there is an ε1 > 0 such that

uε(x) ≤ m/2 for every x ∈ Ω̃ \ Ω0 and 0 < ε ≤ ε1. (89)

Replacing ϕ by � in (88), we obtain∫
Ω

∇uε∇(ϕη(uε/m)) =
∫

Ω̃

(−gε(uε) + f(uε))ϕη(uε/m). (90)

We break the previous integral as

Xε :=
∫

Ω0

(−gε(uε) + f(uε))ϕη(uε/m)

and

Yε :=
∫

Ω̃\Ω0

(−gε(uε) + f(uε))ϕη(uε/m).
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Clearly, Yε = 0, whenever 0 < ε ≤ ε1 by (89) and the definition of η. From (47), the
Dominated Convergence Theorem and from the fact that uε → u uniformly in Ω0, we get

Xε →
∫

Ω0

(−u−β + f(u))ϕη(u/m) as ε→ 0.

We take the limit in m to conclude that∫
Ω0

(−u−β + f(u))ϕη(u/m) →
∫

Ω0

(−u−β + f(u))ϕ as m→ 0, (91)

since η(u/m) ≤ 1 and u−βχΩ+ + f(u) ∈ L1(Ω̃), according to Lemma 6.2.
What follows next is identical to [20]. We proceed with the integral on the left side of

(90). We have ∫
Ω

∇uε∇(ϕη(uε/m)) =
∫

Ω̃

(∇uε∇ϕ)η(uε/m) +Wε, (92)

where

Wε =
∫

Ω̃

|∇uε|2
m

η′(uε/m)ϕ.

Consequently, ∫
Ω̃

(∇uε∇ϕ)η(uε/m) →
∫

Ω̃

(∇u∇ϕ)η(u/m) as ε→ 0,

since uε ⇀ u weakly in H1
0 (Ω) and uε → u uniformly in Ω̃. Hence, by the Dominated

Convergence Theorem,∫
Ω̃

(∇u∇ϕ)η(u/m) →
∫

Ω̃

∇u∇ϕ as m→ 0. (93)

Now we only need to show that

Wε → 0 as ε→ 0 ( and then as m→ 0). (94)

Let Z0(uε) = u1−β
ε + uε. The estimate |∇uε|2 ≤MZ0(uε) in Ω̃ provided by Corollary 5.4

yields

lim sup
ε→0

|Wε| ≤ M

m
lim
ε→0

∫
Ω̃∩{m

2 ≤uε≤m}
Z0(uε)|η′(uε/m)ϕ|

≤M lim
ε→0

∫
Ω̃∩{m

2 ≤uε≤m}

Z0(uε)|η′(uε/m)ϕ|
uε

.

Consequently

lim sup
ε→0

|Wε| ≤M sup |η′| sup |ϕ| lim
ε→0

∫
Ω̃∩{m

2 ≤uε≤m}

Z0(uε)
uε

≤M sup |η′| sup |ϕ|
∫

Ω̃∩{m
2 ≤u≤m}

(1 + u−β)χ{u>0},

for every m > 0.
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The claim follows by letting m→ 0 and by using Lemma 6.2.
As a immediate consequence of (90), (91),(92), (93) and (94), we have∫

Ω

∇u∇ϕ =
∫

Ω∩{u>0}

(−u−β + f(u)
)
ϕ

for every ϕ ∈ C1
c (Ω). This concludes the proof of Theorem 1.1. �

Proof of Theorem 1.2. The proof of this result is entirely analogous to the proof of
Theorem 1.1. We only need to use Proposition 4.3 instead of Proposition 3.2 and consider
f(s) = λs+ s2

∗−1. �

Acknowledgements. M.F.S.has been partially supported by CAPES. The author
thanks the anonymous referees for their valuable suggestions.

Competing interest declaration. The author declares none.

References

1. A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex
nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519–543.

2. G. Anello and F. Faraci, On a resonant elliptic problem with singular terms, Nonlinear
Anal. 195 (2020), 111818.

3. R. Aris, The mathematical theory of diffusion and reaction in permeable catalysts
(Clarendon Press, 1975).
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