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Abstract  In this paper, we consider the problem —Au = —u_ﬁx{u>0} + f(u) in  with u = 0 on 99,
where 0 < B < 1 and Q is a smooth bounded domain in R, N > 2. We are able to solve this problem
provided f has subcritical growth and satisfy certain hypothesis. We also consider this problem with

f(s) =Xs+ s% and N > 3. In this case, we are able to obtain a solution for large values of \. We
replace the singular function «~? by a function g. (u) which pointwisely converges to u= P as e — 0. The
corresponding energy functional to the perturbed equation —Au + ge(u) = f(u) has a critical point uc
in Hé (€2), which converges to a non-trivial non-negative solution of the original problem as ¢ — 0.
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1. Introduction

In this paper, we show that the problem

—Au = fufﬁx{ux)} + f(u) in Q
u>0,u%0in (1)
u =0 on 01,

has a non-negative solution when f has subcritical growth. The expression x .0} denotes
the characteristic function corresponding to the set {x € Q : u(x) > 0} and by conven-
tion u‘ﬁx{u>0} =0 if u = 0. Hereafter, Q C RV, N > 2, is a bounded smooth domain,
0<ﬂ<1and2*:%forN23.

By a solution of problem (1), we mean a function v € Hg () such that

’u’_ﬂX{u>0} € Llloc(Q)
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and
/ VuVp = / ((=u™P + f(u)) @) for every € CH(Q).
Q QN{u>0}

Here, C}(Q) stands for the functions belonging to C''(Q) with compact support.
We consider the perturbed problem

—Autge(u) = f(u) in ©
u>0,u%0in (2)
u =0 on 01,

where the perturbation g, is given by

51
———fors>0
ge(s) = § (s +€)tP (3)

0 for s < 0,

and 0 < ¢ < 3. We say that u. € H(€2) is a weak solution of problem (2) if

/QVuEVv + /Qgg(ue)v = /Qf(ue)v for all v € H} (). (4)

We define the functional I, : Hi(£2) — R associated to problem (2) by

1 9 _ "
1w =5 [ 1va?+ [ 6w = [ Pl 5)

where G(s) = [ ge(t)dt and F(s) = [; f(t)dt. It turns out that certain solutions of
problem (2) converge to a solution of problem (1). Initially, we make the following
assumptions on f.

f is of class C*(0, 00) N C[0, 00) and s%pl] s (s)] < oo, (6)
s€|0,

for some 0 < v <1land0< ¢ <1, and
f(s) =0 for s <0. (7)
We also assume that there exist constants 0 < ¢y, § < 1 such that
Jeo (8) > f(s) for all s <4, (8)
and that there exists a constant C' > 0 such that
|f(s)| < C(14 sP) for all s >0, 9)

where 0 <p<2*—1 (0<p<oo when N =2). We also assume that there exists
constants 0 < 6 < 1/2, R > 0 and ¢ > 0 such that

(1—-0)f(s) <0sf'(s) —cfor s >R, (10)
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and that there exists ¢g € H}(Q) N L°°(Q) such that

I (¢o) <0 for all 0 < € < €. (11)
Condition (11) holds provided
F
lim (25) = 00
§—00 S

Assumptions (6) and (9) imply that I, is of class C! and

I'(u)(v) = / VuVu —|—/ ge(u)v —/ f(uw)v, for all u,v € Hy (). (12)
Q Q Q
Our first result is as the following

Theorem 1.1. Assume that (6)—(11) hold. Then, problem (1) has a non-trivial
non-negative solution.

Examples: Let A >0 and p >0 be constants. Conditions (6)—(11) hold for the
following examples of f.

of(s) =As? L us? with0<g<p<2"—1andp>1;
of(s) =As? £ us? with N=3,0<g<pand 1<p<5;
of(s) =As? £ us? with N =2,0<¢g<p<ooandp>1;
of(s) =As? £ us?logs with 1 <p<2*—1and 0 < ¢ < p;
of(s) =AsPlogs+ pus? with 1 <p<2*—1and 0<q<p.

Indeed, condition (10) will hold for ﬁ < 60 < 1/2 and condition (8) will hold because
for each A > 0 and 0 < 7 < 1 there exists 0 < 0,y < 1 and 0 < e,y < 1 such that

ge(s) > As" for 0 < s <6, ) and 0 < € < ¢;3,

provided 0 < ¢ < 7 in (3).
Next, we study problem (1) with N > 3 and f(s) = As + s> —!, where A > 0. We prove

Theorem 1.2. Assume that N > 3 and f(s) = As + s> ~'. Then, there exists Ao > 0
such that problem (1) has a non-trivial non-negative solution for all A > \.

We recall the works of [1, 5], where the authors studied the problem
—Au =X P +u* "1 inQ
u>0in Q (13)
u =0 on ON.

In [5], it was assumed that 1 < p < 2* —1 in (13). They proved that problem (13) has
a positive solution for every A > 0 provided N > 4. The same result holds if N =3
and 3 <p < 5. In the case N =3 and 1 < p <3, the authors proved in [5] that (13)
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possesses a positive solution provided A > 0 is sufficiently large. In [1], the authors stud-
ied problem (13) when 0 < p < 1. They showed that there exists a constant Ay >0
such that problem (13) has at least two solutions if 0 < A < A; and has no solution
for A > A;. In [12], the authors studied the problem —Au = —u~? + f(x) in Q, u =0
in 012, the sub-supersolution method was used and positive solutions were obtained.
Equation —Au + K (z)u™? = \uP with 0 < p < 1 and zero boundary condition was stud-
ied in [27], where K was assumed to be of class C*%(£2). For more on singular problems
with sublinear nonlinearities, see [23, 30]. Theorem 1.1 asserts that the problem

—Au = —ufﬁx{wo} + AuP £+ pu? in Q
u>0,uz#0in (14)
u = 0 on 01,

is solvable for each A > 0 and p > 0, provided 0 < ¢ < p < 2* — 1 and p > 1. Problems
(13) and (14) are similar in essence, the latter being a singular version of the former.
Theorem 1.1 should also be compared with the results of [10, 22], where the authors
studied the problem

—Au = —u’ﬁx{wo} + AuP in

u>0,uz0in (15)

u = 0 on 01,

with A > 0. In [10], the authors assumed that p > 1 and they obtained one solution of (15)
for each A > 0. The case p =1 was also studied in [10], and they obtained one solution
for A > A\, where \; is the first eigenvalue of —A. In [22], the authors assumed that
0 < p < 1 and they obtained two distinct solutions of (15) for large values of A. See also
[9], where the authors obtained sharper regularity results for solutions wuy of problem (15)
with 0 < p < 1. In this work, we consider general nonlinearities f with subcritical growth,
and we do not make use of parameters. Observe also that in Theorem 1.1, we make no
assumptions on the sign of f.

Theorem 1.2 should be compared with the results of [14], where the authors studied
the problem

—Au = —uiﬁx{u>0} AP+ uN"E in Q
uZ0in (16)
u =0 on 0f.

When 0 < p < 1 in (16), the authors obtained a constant Ay > 0 such that problem (16)
has two distinct non-trivial and non-negative solutions for 0 < A < Ag. If 1 <p < %,
the authors obtained a constant Aj > 0 such that problem (16) admits a solution provided
A > Aj. Theorem 1.2 addresses the case p =1 in (16).

Problems similar to (1) and (2) arise in the context of heterogencous catalysis. Consider
a reaction R which converts a given gas to useful products, and suppose that R occurs
only in the presence of a catalyst that comes in the form of a porous pellet Q2. For the pellet
to be useful, the gas must diffuse inside it. In this context, two entities arise: the rate of
reaction kr and the rate of diffusion kp of the gas in regions of Q. If kp is large compared
to kg, then the reaction occurs throughout €2 and no free boundary arises. However, when
kp is small compared to kg, then there are zones within €2 in which no reaction takes
place, these are known as dead cores. The rates of adsorption k, and desorption kg of gas
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in the surface of the pellet must also be considered, for the equilibrium is reached when
ko equals kg. Let Ay, Ao, ... Ag be chemical species involved in the reaction

S
Z OéjAj = O7
j=1

where a; denote the number of molecules of A; being formed (o > 0) or consumed
(oj <0) in Q. Then, under certain assumptions about the mechanism of the reaction,
the concentration ¢; = ¢;j(z) of A; at & € Q) satisfies the following elliptic equation

DjACj + Ozjﬂ'skR =01in Q
¢j = ¢js on 08,

for each j € {1, 2, ..., S}. Here, D; denotes the diffusion coefficient of A; and 7g the
catalytic area per unit volume. At equilibrium, the reaction rate kg can be calculated as
a function of the concentrations ¢;. Using a suitable change of variables (see [3], p.168),
we get an equation of the form

Au = N?R(u) in Q

{u =1 on 012, (17)

where A\ > 0 is a constant called Thiele Modulus, R : R — R is a rational function and
0 <wu <1 represents a ‘normalized dimensionless concentration’. We see that equations
(2) and (17) are similar in essence.

For more applications in catalysis and in other fields of research, such as biochemistry,
see [3, 11]. See [15, 26] for studies of the free boundary of solutions of some elliptic
equations.

Singular equations are related to phase field models, see [6, 8, 13, 16]. For more results
on singular elliptic equations, see [2, 4, 17, 19, 21, 24, 25, 28].

Our paper is organized as follows. In § 2, we give some preliminary results. Next, we
study problem (2) by considering two different scenarios; in § 3, we consider the subcritical

case and in § 4, we study problem (2) with f(s) = s + s¥3 . In both cases, we show
that the associated functional satisfy the assumptions of the Mountain Pass Theorem.
We thus obtain solutions of problem (2). These solutions will be shown to be bounded in
H}(2) by a constant that does not depend on €. Such an estimate will be crucial in § 5,
where we will establish regularity results for the solutions of problem (2) obtained in § 3
and § 4. In § 6, we prove Theorems 1.1 and 1.2.

2. Preliminary results

First, we show that critical points of the functional I, defined in (5) must be non-negative.

Lemma 2.1. Assume that (6), (7) and (9) hold. Let u. be a critical point of the
functional I. defined by (5). Then u. > 0 and u. is a weak solution of problem (2).
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Proof of Lemma 2.1. Let u_ = max{—u,, 0}. Taking v = u_ in (12) and using (7),
we obtain

7 -\ _ —112
0= Il(u) () = —lus [0
Hence, u, > 0 and

0= (w)) = |

Vu.Vo +/ ge(ue)v — / flue)v, for all v € Hé(Q)
Q Q Q

Hence, (4) holds. This proves Lemma 2.1. 0

We will need estimates of the perturbation g defined in (3). Note that

1
51 5 13

1
> = 2 f > 0.
s+ €)q+ﬁ ~ (s+ 1)q+ﬁ (s + 1)q+ﬁs or s =

ge(s) = (

Hence,

1
ge(s) > 2q+ﬁsq*%s% for 0 <s < 1.

Therefore, from the fact that 0 < g < %, it follows that, for each M > 0, there exists
0 =6(M) < 1 such that
ge(s) > Msfor0<s<d< 1.

We thus obtain
S S M 2 _
Ge(s)= [ ge(t)dt > Mtdtzjs for0 <s<d<1. (18)
0 0
Observe that

() = BETOT — (a4 B)s(s + )T
eld) = (s + ¢€)2(at0) '

Hence,

sgL(s) = g5 - (g+ )57 .
R Y P T

The following lemma will play a crucial role in § 4.

Lemma 2.2.

1
Ge(s) > §g€(8)s7 for every s > 0.
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Proof of Lemma 2.2. Indecd, let B(s) = Ge(s) — 19(s)s. We have that B.(0) =0
and

Loe(s) = 20(5) = £ (0els) - s9/(9))

B(5) = gus) -
/() = 9e(s) — 0c(s) — Salls) = 3
Therefore, B(s) > 0 if and only if

9e(s) = sg.(s)-

From (19), this inequality will be true if

s qs?
> . 20
(s+e€)ath = (s+¢)ath (20)
Since ¢ < 1/2, (20) holds for each s > 0. This proves Lemma 2.2. O

Now, we show that a version of the Ambrosetti-Rabinowitz condition holds. We define

Je(s) = f(s) — ge(s) for s € R.

1w =5 [ [vuP = [ 1w,

where J(s) = fOS Je(t) dt. For simplicity of notation, we denote J. and j. merely by J and
J respectively.

Consequently,

Lemma 2.3. Suppose that (6) and (10) hold. Let 0 < § < 1/2 be given by (10). There
exists a constant R > 0 such that

J(s) < 0sj(s) for s > R.
Proof of Lemma 2.3. Let B.(s) = J(s) — 0sj(s). We have
Bl(s) = (1- 6)j(s) — 05'(5).
Hence,

Bi(s) = =(1 = 0)ge(s) + Osg.(s) + (1 = 0) f(s) — Osf'(s).

From (19) we obtain
[sge(s)] < als|™7 + (a+ B)|s| 7 — 0 as s — co.
It is also clear that
(1 —0)ge(s) — 0 as s — oo uniformly for e.
Hence, for each 0 < 7 < 1 there exists R, > 0 that does not depend on € such that

[(1—0)ge(s)| + |sgL(s)] < T for s > R;.
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Therefore,
Bl(s) <7+ (1—0)f(s) —0Osf'(s). for s > R,.
Consequently, from (10), we get
Bl(s) < T —cfor s > max{R, R, },

where ¢ > 0 and R > 0 are given by (10). Choosing 7 = ¢/2, we get

Bi(s) < *g for s > Ry, (21)
where
Ry = max{R, R./>}.
Note that
B.(R2) < Cy
where

Cr = |F(Ba)| +[0Rs f(Ro)| + OBy ™.
Therefore, (21) implies that there exists a constant 7" > 0 such that
B.(s) < —C—; + T for s > Rs.
Hence, B(s) <0 for s > max{Rs, 27"/c}. This proves Lemma 2.3. O
Let ¢p € HL(Q) N L>(Q) be given by (11). We have

Lemma 2.4. Assume that (6), (9) and (11) hold. There exist a constant as > 0 that
does not depend on € such that

sup I (sgg) < ag for every 0 < € < €. (22)
0<s<1

Proof of Lemma 2.4. We have

2
I (s¢o) < %H%HH&(Q) +/ G(s¢o) —/ F(s¢p)dz, for every s > 0.
Q Q

Consequently, we get

52 1 _
I(s60) < G Woollnycor + 1= [ Isonl™ = [ F(son) d, for every s 20,
- Q Q

We conclude that
sup Iea(s¢o) < az,

0<s<1
where
1 supg |¢o|" "
ay = = + Q| ————+ su F(s)|].
» = 5ldollzyca + 19 ( L, [FG)
This proves (22). We have proved Lemma 2.4. (]
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3. Existence of solution of the perturbed subcritical problem

Throughout this section, we will assume that f satisfies (9) with 0 < p < 2* — 1. Our aim
is to show that problem (2) has a non-negative non-trivial solution. We recall that given
a Banach space E and a functional ¥ € C'(E;R), we say that a sequence (u,) in E is a
Palais-Smale sequence of U if there exists ¢ € R such that ¥(u,) — c and ||¥'(uy)|| — 0
as n — oo. We say that W satisfies the Palais—Smale condition if every Palais—Smale
sequence of ¥ has a convergent subsequence.

Lemma 3.1. Assume that (6)—(10) hold. Fix 0 < € < 1 and let (u,) be a Palais-Smale
sequence for I, in H(Q). Assume that there exists a constant C > 0 that does not depend
on € such that

[Ic(uy)| < C for all n € N. (23)
Then, there exists D > 0 that does not depend on € such that

[up |2 ) < D for alln € N. (24)

Furthermore, there exists u. € Hg(Q) such that, up to a subsequence, uS, — u. strongly
in H}(Q). Consequently, u, is a critical point of I..

Proof of Lemma 3.1. Throughout this proof, we denote |- |1 by [|-[. Let
(uf,)nen be a Palais—Smale sequence for I, satisfying (23). Consequently,

1
Sl < ¢ +/ J(us) d for all n € N, (25)
Q
and there is a sequence 7, — 0 such that

/Vu;dex—/j(u;)wdz
Q Q

Let 0 < 6 < 1/2 be given by (10). From Lemma 2.3, there is a constant R > 0 that does
not depend on € such that

< 7p||w|| for each w € Hy(9). (26)

J(t) < 0tj(t) for t > R.

Since there exists D1 > 0 that does not depend on € such that

sup_max{|J(s)], |sj(s)[} < D1,
0<s<R

we may find a constant Dy > 0 such that
J(us,) < Do + Ous,j(us,).

We know from (25) that there is a constant D3 > 0 such that

1
Sllusl® < Ds+0 / up g (ur,) da.
Q
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Taking w = u, in (26), we also conclude that

/Q J(uS ), dz < [[uS |2 + .
Hence,
1 €12 € (12 €

Since 0 < 6 < %, (24) follows. Consequently, there exists u. € H}(€2) such that uf, — u,
weakly in Hg (). Since J. has subcritical growth at infinity (see [7], Theorem 3.4 and
Remark 2.2.1), we conclude that, up to a subsequence, uf, — u, strongly in Hg(£2). Since
I'(uf) — 0 as n — oo and I, is of class O, we conclude that I!(u.) = 0. This proves the
result. (]

Now, we obtain one solution for problem (2).

Proposition 3.2. Assume that (6)—(11) hold and let as > 0 be given by Lemma 2.4.
Then, there is a non-negative solution u. of problem (2) and there exist constants a; > 0
and D > 0 that do not depend on € such that

0<ay <I(u) < as,

and

lwell 2 ) < D-

Proof of Proposition 3.2. Let § > 0 and ¢ be given by (8). Note that
1
I.(u) = f/ |Vu? —|—/ (Ge(u) — F(u))dz
2 Ja fu<s}
+/ (Gc(u) — F(u)) dx for every u € Hy(Q).
{u>d}

The fact that g. is monotone in e implies that
ge(s) > f(s) forall 0 < s < dand 0 < € < €.

Using the fact that Ge > 0, we get
1
Ic(u) > f/ |Vul? —/ F(u) for every u € Hj ().
2 Ja {u>6}

From (9), we have
Cglttp

1+p°

|F(s)] < /Os [F(®)]dt < C/Os(1+tp)dt =Cs+

Consequently,

C

1
I (u 27/ Vul> - C U——
) 2 Q| {(u>6} I+p

/ uP ! for every u € Hj(Q).
{u>d}
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We conclude that there exists C' > 0 such that
1 ~
I(u) > 5/ |Vu|* — C/ lu|? for every u € Hy (),
Q Q

where o > 2 is chosen such that 1+ p < o < 2*. The Sobolev embedding implies that
there is a constant C3 > 0 such that

1 o
() 2 5l o = Callul g

Therefore,
1
Ie(u) 2 ZHu”%Ié(Q) for [|ul gz () < p,
where
1
1 o—2
. (403> '
Also,
Ie(u) = ay for ||ull gz a) = P,
where
2
ay = &
4

Let ¢p be given by (11) and ' = {y € C([0, 1], H3(2)) : v(0) = 0, v(1) = ¢o}. We know
from (23) that I.(¢g) < 0. Consequently, we may apply the Mountain Pass Theorem [29],
page 12) to conclude that there is a Palais-Smale sequence (uf, for I. in H}(Q) and a
number

ce = inf sup I.(v(s)),
int sup 10(6)

such that

lim I (u;) =c. and lim Ié(ue) =0.

n
n—oo n—o0

From Lemma 2.4, we know that a1 < ¢, < as. From Lemma 3.1, we conclude that there
exist D > 0 (that does not depend on €) and u. € H{(£2) such that, up to a subsequence,
uf, — u, strongly in HJ(2) and

[well g2 @) < D.
Consequently, I/ (u.) = 0 and
a1 < I (u.) < as.

This proves the result. O
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4. Existence of solution of the perturbed problem when p = 2* — 1

In this section, we study problem (2) with f(s) = As 4+ s> ~! for s > 0. We assume that
f(s) =0 for s < 0. This function satisfies (6), (7), (8) and (10). The difficulty here is that
f no longer satisfies (9), so that Lemma 3.1 does not hold. The associated functional then
becomes

I a(u) = /Q |Vu|? dz + /Q Ge(u) — %/Q(zﬁ)Q dz — 2% Q(u+)2* defined for u € H{(Q),

(27)
where ™ = max{u, 0}. The functional I, is of class C! and
ea(u)(v) = / VuVu dx +/ ge(u)vdx
Q Q
- )\/(u+)v dz — / (ut)? o dz for all u,v € HL(Q). (28)
Q Q

The same argument given by Lemma 2.1 implies that critical points of I, are non-
negative solutions of problem (2). Observe also that zero is a local minimum of the
functional I, ». Indeed, let 0 < 0 < 1 be given by (18). Note that

1 A 1 .
To(u) > f/ |Vu|2—|—/ Golu) — 7/(u+)2 _ —*/(u+)2 for every u € HI(Q)
2 Ja {u<s} 2 Ja 2% Jo
Choosing M = X in (18), we obtain

1 A 1 .
I a(u) > 7/ |Vul|* — 7/ u? — = / (u™)? for every u € Hy(Q).
2 Ja 2 Jius3y 2% Ja

Observe that there exists a constant C7 > 0 such that
2 < 0132* for s > 0.
Hence, there exists a constant Cy > 0 such that
1 «
I a(u) > §||7.LH12LI&(Q) - C’Q/Q lul?" for every u € HJ(Q).
Consequently, the Sobolev embedding implies that
1 .
Iea(u) = 5”“”3{3(9) — Cs]lullFy (g for all u € Hy ()

We conclude that

1
Tea(w) 2 Zllully o) for llullmy@) < .

(L)
P=\acs '

where
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Also,

Iea(u) = ay for |lull gy ) = p, (29)
where

a1 = &2
4
We now show that there exists ¢ € H} () N L>°(Q2) such that
Ie,)\((b) <0.

Indeed, let ¢1 € HE () be the first eigenfunction of the operator —A with o1z o) = 1.
We have

Lemma 4.1. There exist constants Ng > 0, as > 0 and by > 0 such that

I x(Nop1) < —b1 <0, for every 0 <e <1, (30)
and
sup IcA(sNop1) < ag for every A > 0,0 < e < 1. (31)
0<s<1

Moreover, these constants do not depend on \.

Proof of Lemma 2.4. For each t > 0, we have

12 A2 2
I A(ter) = 5 +/ G(tor) — 7/ ¢7 da — o
Q Q

1

From the fact that G¢(s) < “Sl:g for all s > 0, we get

/2 1-8
La(té) <=+t /¢

Since 2* > 2 > 1 — 3, inequality (30) then follows by taking ¢ large enough in (32). We
also have

*

dx.

" da. (32)

2772

s N, 2 N2
Iea(sNogn) < 5 0 +/ Ge(sNoop1) —
Q

/ ¢>2 dx, for every s > 0.

Consequently, we get

2 2 sl— BNl B
I 2 (sNog1) < ° 5 0+ T / ¢17P, for every s > 0.

We conclude that
sup I a(sNo¢1) < as,

0<s<1
where
N2 Nl B
a2 = / ¢1
This proves (31). We have proved Lemma 4.1. O
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Lemma 4.1, (29) and the Mountain Pass Theorem imply that there is a sequence (us,)
in H}(Q2) and a number

Cex = inf sup I A(y(9)), (33)
Y€l s¢(0,1]
such that
lim I \(uy,) = cex and lim 17 ) (uy,) = 0, (34)

where I' = {y € C([0, 1], H}(Q)) : v(0) = 0, v(1) = No¢1 }. It is clear that the function
f(s) = \s + 52"~ satisfies (10). Consequently, the same computations developed in the
proof of Lemma 2.3 imply that there exists 0 < 6§ < 1/2 such that

J(s) < 0sj(s),

where j(s5) = As + s>~ — gc(s) and J(s) = fosj(t) dt. Consequently, by a similar argu-
ment given in the proof of Lemma 3.1, we obtain a constant D > 0 such that

[upllma@) < D foralln € N0 <e<1. (35)
Furthermore, we have
Lemma 4.2. Let ¢y . be given by (33). Then
)\lim cxe = 0 uniformly on 0 < e < 1. (36)
Proof of Lemma 4.2. Fix 0 < e <1 and let ¢ty . > 0 be such that
TeA(trer) = Juax, I\ (tNo1).
From Lemmas 2.4 and (29), we get
167,\(t¢1) >0for0<t< p and IE,)\(No(ﬁl) < 0.

Hence, 0 <ty < 1. Consequently,

%L,A(U\fo(ﬁl) t:tM: 0.
Equivalently, from (28),
1+q
0= I \(tx,cNog1)(Noo1) = NgtA,e/Q IVér|? + Nquth,e/Q (NOt)\,ed)ll te)atB

(37)
_Ng)\t,\ye/gﬁ—Ng*ti;’l/(ﬁ*.
Q Q

Fix a sequence (A,) in R such that A, — oco. Since 0 < ¢y, < 1, we know that for each
0 < e <1 there exists an element 0 <ty < 1 such that

tx,,e — to,e as n — 0.

n ;€
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We will show that ¢y = 0. Indeed, from (37) there exists a constant My > 0 that does

not depend on A nor on € such that

Mo [ o< [ ol 72 [ ol <
Q Q Q

(38)

Letting n — oo in (38), it follows that ¢y, . — 0 asn — oo uniformly on e. Hence, ¢y = 0.

Consequently,

O < Cknyf S max IE;)\n (tNO¢1) = €A (t>\n;€¢1) S tin E/ |V¢1|2 dx + ti\_i/ (b}_ﬁ dx
0<t<1 < Jo e Jo

Letting n — oo, we obtain

lim ¢y, . = 0 uniformly on 0 < e < 1.

Since the sequence (\,) was arbitrarily chosen, (36) follows.
Consequently, there exist A\g > 0 and 0 < ¢y < 1 such that

1 1
Cre < (2— 2*> S% for all A > Ao, 0 < € < e,

where

|Vu|* dz

S = inf 2 -
* 2*
2 dx)

uEHO(Q)\{O}
/ |
Q

We now obtain the main result of this section.

(40)

Proposition 4.3. Let a; >0, as > 0 and A\g > 0 be given by (29), Lemmas 4.1 and
(39), respectively. If X > Xg, then problem (2) has a non-negative solution u. such that

0<ar <ene=Ica(ue) < as,

where ¢y . Is given by (33). Furthermore, there exists a constant D > 0 that does not

depend on € such that

uell 2@y < D forall 0 <e<1.
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Proof of Proposition 4.3. Inequality (35) implies that there is u. € H}(Q) with
Ue|| 1oy < D such that, up to a subsequence,
3()

uf, — u, weakly in Hg(Q), uf — ucin L™(Q) forall 1 <r <2, u — u, a.ein Q.
(41)

/ uf) ™t —>/ u) ) asn — . (42)

To do this, we use the ideas given in [14]. Note that there exist positive measures yu, v in
Q such that

We claim that

V()P = [Vl P+ poand ((ug)1)* = (wf)* +v

€

Using the concentration-compactness principle due to Lions (cf. [18]L Lemma 1.1), we
obtain at most a countable set of indexes denoted by A, sequences z; € Q, p;, v; € (0, 00)
such that

2
y:ZViézi, MZZ/M(SL- and Sv?" <y,
ieA ieA

for every i € A, where S is given by (40). Now, for every o > 0 and i € A, we define

) =0 (22,

where ¢ € C°(R"™) is a function satisfying

0<¢ <1, ¢=1inB1(0), ¥ =0inR"\ B2(0) and |[VY| e m@mn) < 2.

Since the function ¢q ;(us,)* is bounded in Hg (), we know that I} _(un)(¢o,i(us)t) — 0
as n — 00. Hence,

VsV (4(us) ) + / e (S 5 (1))
Q Q

= u) )2, u ) Yy + o .
—A/Q« ) >wa,z+/9<< 2 i + 0n (1)

Consequently,
/ IV (4S)* P + / (US) Vs Vi s < A / (wS) )2 + / (W) 1) s + 0n(L).
Q Q Q Q
(43)

Note that

lim [ ((WS))? s = / (W) s + / s .
n—oo JO Q Q

lim lim [ ((u$) ") Yei = vs

c—0n—o0 Jo

Hence,
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It is also clear that
lim lim (( )2 tei = hm/ V2 4hgi =

and
lim lim / IV (u&) TP es > pi-

We claim that

;ii% nlirr;o Q(UZ)*VU%V%,J =0. (44)
Indeed,
() s g < (LD Vel VAT
Therefore,
nhj{.lo Q(UZ)+VU§LV¢U,1‘ <o+ Jog
where

1 1
Ta =3 [PV o= vut e [ i
2 Ja 2 {o<|z—x;|<20} {o<|z—2;|<20}

Using the Lebesgue Differentiation Theorem and the bound on Vi, we obtain

4 1
thJ s < lim / uj‘ QSC limO'N_Qi/ ’u,:_ 2:0’
L o—0 0‘2 {U<‘$_zi|<20}( ) NJ*»O V(BQJ(ZL'Z)) Bza(17‘,)( )

where V(Bas(2;)) denotes the volume of the ball Ba,(z;). Hence, lim,_,¢J; ,» = 0. It
is also clear that lim,_.o J2,, = 0. This proves (44). Letting n — oo and 0 — 0 in (43),

we get
w; < v; for every i € A.
Hence,
Vi% > S for each ¢ € A.
Since
=5 [ 1P+ [ Gt =5 [ i =5 [
and

é,)\(ue /vunvu +/96 n n A/ + ¥ —/((u;)ﬂ?*lu;,

it follows that

() = a5 = [ (Gutu) = ot ) + (5 - 57 ) [ (@in®
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From Lemmas 2.2, (34) and from the definition of 1, ;, we obtain

1 1 N 1 1 .
exe + on(1) > ( _ ) /((u;)+)2 > ( ~ )/ W s(uS) )2 for cach i € A.
2 2 Q 2 2 B (1)

(45)
Note that

lim ba (W) = /B (

n—oo /g (1)

Poa(u)? + / Gosdv > v > S

i) Bo (i)

Hence, letting n — oo in (45), we obtain

1 1
C) e > <2 - 2*>S

This contradicts (39). This proves that A = () and therefore (42) holds. We will now show
that uf, — u. in Hj (). Indeed

w[Z

L) (1) — Iy (uS) () = / V2 — 2 / Vi, Vau, + / Ve ?
Q Q Q

€ € € €
- Ll,n + L2,n - L3,n - L4,n’

where
LS, = / (|Vue|® = Vug, Vu,)
Q
L = [ (otui) s - w).
Q
LS, =X [ ((ug)" (us, — ue))
Q
and

Fan = /Q ()" M, = o)) = /Q<<u;>+>2* - /Q«u;)*)?**lue

Using the Dominated Convergence Theorem, (41) and (42), we obtain that

lim max{L] ,, L5 ,, L5 ,,

o0 1,n>~2n> LZ,n} =0.
Therefore, it follows from (34) that

llus — Ue”?{g(m = on(1).

Therefore, u§ — u. strongly in H} (). From (34), it follows that u, is a critical point of
Ie’)\ with
0<a < 167,\(u6) < as.

In particular, we know that u. > 0. This proves Proposition 4.3. d
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5. Regularity results and gradient estimates

We will need the following a priori bound in L>(f2).

Lemma 5.1. Let u. \ € H}(Q2) be a non-negative solution of problem (2) with f(s) =
As + sP and assume that there exists a constant D > 0 independent of € such that

el i) < D for each 0 < e < 1. (46)

Then the following assertions hold
(i) If 1 < p < 2* —1 then u, x € L>(Q) and there exists a constant Ky > 0 such that

|te Al oo () < K1 for each 0 < e < 1. (47)
(ii) If p=2* — 1 and
)\lim I \(uex) = 0 uniformly on e, (48)

then there exists Ao > 0 such that Uex € L(Q) for each A > Xo and (47) holds.

Proof of Lemma 5.1. For simplicity, we denote e x by u.. For s > 0, define h(s) =
As + sP. From (4), we get

/ Vu Vo +/ ge(ue)v = / h(ue)v for all v € H} (). (49)
Q Q Q
Note that
q+p
h((s)) = (s+ Eq) (As+5P) < (s + 1) P (As' 794 sP79) - 0 as s — 0.
ge(s s

Hence, the exists 0 < §) < 1 that does not depend on € such that

h(s) 1
< = for s < §,. 50
o) <2 0
Also,
h
(5) = As'"P 4+ 1 for s > 6,.
sp
Therefore, we conclude that
h
() 9 for 5> 4y, (51)
sp
where
Ay = AvT.
It is also clear that
h(s) = As + s < Ay, + AL = C,, for §) < s < A,. (52)
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Using (50), (51) and (52), we obtain

elS
h(s) < <g é )> X{o<s<or} T OaX(sr<s<as) + 28 X (s>a,) for s >0

Hence, from (70), we get

Vu Vo < C’,\/

v+ 2/ uPv for all v € H(Q),v > 0. (53)
(6r<uc<Ar) )

Q

We will now prove assertions (i) and (i7) separately. The proof of (i7) is more intricate,
because we need to study the dependence of certain constants on A, so that we can let
A — o0.

Proof of (i): From (53), we obtain a constant Cs x > 0 such that

/ Vu Vv < C(p\/ uPv for all v € Hy(Q),v > 0. (54)
Q Q

For L > 1, we define,

ue(w),if ue(z) < L
ur,e(z) = {L,if ue(r) > L,

2Le = ui{iil)ue and  wr . = uu] 61,
with o > 1 to be determined later. Note that 27, . € H}(Q), 2z > 0 and
Vipe= uL . )Vu +2(0 — 1)u€uL e —3Vuy, e

Taking v = 2z, in (54) we obtain

/ui(fzfl)|Vue|2+2(o—1)/ ueuLE —3Vu Vur e <C’A5/ u€+1u2L(Z D
Q Q Q

Since o > 1 and

/ UeUL( —3Vu Vur . :/ 112(071)|V1L6|2 >0,
Q {uc<L}

we conclude that

/ 2(0 R \Vu |2 < C,\g/ uf“ui(a D < C’,\ﬁ/ uP 2o (55)
Q Q
On the other hand, from the Sobolev embedding, we know that there is a constant C; > 0
such that
=1
(/ p+1 dx) < Cl/ |Vwg, | da.
Q Q

Since

o—1 o—2
Vwg,e =ug . Vue + (0 — 1)U6UL,€ Vur,e,
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it follows that
2
T
(/ngtldw) SCl/UQL(Z 2 \Vu€|2dm+01(0—1)2/ﬂu2uiz D |Vu |
+2C (0 — 1)/ U uL6 ?’VuGVuL6
Q

From the definition of ur ., we conclude that

2
7T
(/ p+1 dx) §C1o'2/ ui(: D |Vu€|2da:.
Q Q

Using (55), we obtain
T
(/ wy 61 dx) < Cio C(;A/ uP 1%, (56)
Q Q

2 2 2
T T T
(/ wll),tl dx) _ (/ uf+1u(ij1)(071) dx) > (/ uz(iﬂrl) dm) ]
Q Q Q

Hence, there is a constant CT;;\ > 0 such that

2
p+1 —
( / ug ity d:v) < 0*Csa / u? (57)
Q Q

Let a1, ag > 1 be constants such that —- 4+ ai =1land p+1<aj(p—1) <2* From
(57) and Holder’s inequality it follows that

2 1 1
7T __ a1 az
(/ uz(f+1)dx> < 02Cy </ uor(P=1) dx) ' (/ u2oe dx) :
Q Q Q

Using (46) and the Sobolev Embedding, we obtain a constant C' > 0 such that

/ u?l(”_l) dx < C.
Q

Hence, there exists a constant C > 0 that does not depend on o nor on € such that

o %
(/ qufJFl) dx) ' < Co? (/ u?o2 dx) . (58)
Q Q

Now, observe that
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provided u. € L??*2()). Equivalently,
el Lowsty < C707 ||uc| 200z for each o > 1, (59)

where C = V/C. Observe that the choices of ay and ag imply that o(p + 1) > 20aq. The
result now follows from an iterative argument. Indeed, take

oz _p+1
te 2@2.

Using the Sobolev embedding and (46), we obtain a constant D > 0 such that

1
o1

1+ ~ 1
||u6||L01(p+1)(Q) <Cvigy! HuEHLerl(Q) < DCvio;

Now, take o9 = o7 in (59). We get
= ~ itz (5 55
||u6||L"%(p+1)(Q) < C10y? [uell porwiny < DCTH 71 (07t 05°
Taking o = of in (59), we get

5o =
lttell ot iy ) < DO (0. (60)

It is clear that

k
=1

L o b
lim (Hf_loi"’) = klim <Hf_1af1> < oo and klim c™
— 00 — 00

k—o0

1
71 < o0,
Letting k — oo in (60), it follows that u. € L>°(Q2) and we obtain a constant K; > 0 that
does not depend on € such that
l|ltell oo () < K.
This proves (47).
Proof of (ii). Suppose that p = 2* — 1. This case is much more complicated. We have

Vuc.Vodz +/ ge(u)vde = / (Mue 4+ u2 " Yo da for all v e HE ().
Q Q Q

Consequently, since g. > 0, we know that

/Vu6Vv§/ue()\+uz*_2)v for all v € HY(R),v > 0,0 <e< 1. (61)
) Q

For each 0 < € < 1, we define
ac(x) = X+ ue(z)? 72

Observe that

4 N\ NV/2 i
/ ac(z)N? < C(N) (Wm + / (u) ) = C(N)AY2(9] + [luclF - @)
Q Q
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where C'(N) is a constant that depends only on N. From (46) and the Sobolev embedding,
we get a constant C' > 0 such that

laell pr/2qy < C for all 0 < e < 1.

Let 0 >0 be a constant to be fixed later and consider the function z; .=
ue min{u??, L?} € H}(Q2), with L > 0. Observe that

VucVzr e |Vu6\2 mln{u% L2} + 2aug"|Vu€\2X{ug§L}.

Taking v = z, . in (61), we get

/ |Vue|? min{u??, L?} + 20/
Q

u?? | Vu|? < / ac(z)u? min{u??, L?}. (62)
{ug<L} Q

Define wy, . by wy, . = u, min{u?, L} € H} (). We have

Vwr . = min{ug, L}Vu, + ou Vuexuor<r}-

We thus get
IVwr,|? = 0?u?|Vu,|? X{uz<L} T min{u??, L?}|Vuc|? + Juf(’\Vu6|2X{ug§L}.
Hence,
Vwz, |* = (1 +o(o + 1)) min{u??, L?}|Vu.|* in {u? < L}
and

|Vwr,o|? = min{u??, L*}|Vu|? in {u? > L}.
We conclude that
[Vwg,[* < e(o) min{u?”, L?}|Vu|? in Q,
where ¢(0) =1+ (o + 1). From (62), we get

/ |Vwg, |? < e(o /mm{u ,L?} | Vu|? < c(a)/ ac(z)u? min{u??, L*}.
Q
Now, fix K > 0. We have
/ |Vwy, > < C(O’)K/ u? min{u??, L?} + c(o)/ ac(z)u? min{u??, L?}.
Q Q {ac=2K}
Hence,

/\VwLE <c(o K/u min{u??, L}

T (o) ( /{ . <>) ([ weningur, 2y

N-—2

N N
—2
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Consequently,

N % 2N N
/ \Vwp, |2 §C(U)K/ u? min{u??, L*} + ¢(o) / ac(z)z </ wﬁf)
Q Q {ac>K} Q

From the Sobolev embedding Theorem, we get

/ |VwL,€|2 < c(U)K/ u?min{u??, L?} + Cc(o) (/ ae(a:)g) / |VwL,€|2.
Q Q {a.>K} Q
(63)

Choose K > 0 such that

N 1
</{GE>K}“6(” ) = 20c(o)’

Claim 1: K can be chosen independently of e, provided A is sufficiently large.
Assuming the claim to be true, we obtain

/|Vw6|2dxSCC(J)K/ugmin{u?U,LQ}.
Q Q

Consequently,
/ IV(uZ™)?dz < CC(U)K/ (ue min{u?, L})* da.
{ur<L} o

Suppose that u, € L?>72(Q) and let up, . = (ue min{u?, L})%. Observe that

2420

c almost everywhere in €2

lim ur=u
L—oco

Furthermore,
Ly < Ly implies that ur, < urp,, in €.

The Monotone Convergence Theorem implies that
/ IV (uZ )2 dz < CC(O’)K/ u?t27 da.
{ug<L} Q
From Fatou’s Lemma, we get

/ |V (uZ )2 dz < CC(U)K/ u?t2? dg for all o > 0. (64)
Q )

(2420)N

Consequently, ™ € HE () and u. € L™ ~-2 (). Now let ¢ > 1. We will show that

ue € L1(2) and |lucl|pao) < C, for all 0 < e < 1. (65)

https://doi.org/10.1017/50013091522000268 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091522000268

676 M. F. Stapenhorst

Indeed, this follows by choosing adequate values for ¢ in (64). Let op = 0. From (64), we
get

/|Vu6|2dx§CK/ufdx§CO.
Q Q

Let 01 = 25 — 1. From (64), we get

/|V |2d33<C’K/uE 2 dz < (.

Consequently, ue e € HL(Q) and
(7)) 7
Ue S Cl.
Q

Let 09 = (N 2)2 From (64), we get

2 2N22
/|v <N 2 WPde <CK [ ulN™" do < Co.

Consequently, u (N 2 € H(Q2) and

Q

Assertion (65) then follows by choosing

N

o +1=(0;— 1—|—1)N_2

and iterating up until sp; > ¢ for some M € N. Now let w, be the solution of the
non-singular problem

_ _ 2% -1 :
{ Aw = Aue + u? in Q (66)

w =0 on 0L,

Assertion (65) and elliptic regularity theory implies that w. € W24(Q2) and
[wellw2.aia) < ClMue +u2 " pa) = Cq,

where C,; does not depend on e. Consequently, the Sobolev embedding assures that w. €

C1(Q) and
lwel|c1(qy < C forall 0 <e< 1.
Observe that

/VwEVv:/()\ue—i—u?*_l)v for all v € H}(),0 < e < 1.
Q Q
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Consequently,
/ V(ue —we)Vo <0 for all v € HJ(Q),v>0,0 < e < 1.
Q

The weak maximum principle implies

sup(u. —w,) = 0.
Q

Hence,
Ue < We.
Consequently,
|t oo () < C for all 0 < e < 1.

This proves the result. We need to only show that the claim holds. Indeed, from (46),
there exists an element u € Hg () such that, up to a subsequence,

u. — u weakly in Hg(Q),
ue — uin L"(2) for 1 <r < 2%, (67)

u. — u a.e in .

/ u? — / u? as e — 0. (68)
o o

Again using the Concentration-compactness principle of Lions, we get positive measures
1, v in € such that

We first show that

2

|Vue* = |[Vul? + p and uf* — ot

Furthermore, there is at most a countable set of indexes denoted by A, sequences z; € Q,
Wi, v; € (0, 00) such that

2
V= E Vilp,, > E 1idg, and Syt < py,
i€A iEA

for every i € A, where S is given by (40). Now, for every ¢ > 0 and i € A, we define

e =0 (22,

o
where ¢ € C°(R™) is a function satisfying
OS’(/JS ]., 1[)51 in Bl(O), QZJEOIH Rn\BQ(O) and HV'I/J”Loo(]Rn) §2

Proceeding as in the proof of Proposition 4.3 and using the hypothesis limy_, o0 Te(ue x) =
0, we conclude that A =), provided A >0 is sufficiently large, thus proving (68).
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N
Consequently, a2 converges in L'(Q) to a, where

N
2

a(z) = (A +u(2)* 7?)

We now show that for each §* > 0 there exists n > 0 and ¢y > 0 such that

/ ae(x)% < 0" for all sets B C 2 with |B| <n and 0 < € < €.
B

Since a € L1(€), there exists 7 > 0 such that

/ a(x) < 6% /2 for all sets B C Q with |B| < 7.
B

/Bae(x)% :/B(ae(x)% —a(x))+/Ba(x).

and we choose €y > 0 such that

We write

/ |a€(x)% —a(z)| <0*/2 for all 0 < € < €.
Q

Consequently,

/Bae(m)

This proves (69). We now finally prove Claim 1. Indeed, we choose

w2

N
2

.
{u>(K_2)2*12}

{ac > K} = {uc(z) > (K = N7}
The choice of K implies that

{u > (K_;)m}

Consequently, from (69) and the choice of §*, we get

and we choose K > 0 such that

<n.

Observe that

{ac = K}| <

N
N 1
ac(r)2 < ——— for sufficiently small e.
</{aE>K} (@) ) 2Cc(o)

This proves Claim 1 and the result.
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We also have

Lemma 5.2. Let u. € H}(Q) be a non-negative solution of problem (2) and assume
that there exists a constant D > 0 independent of € such that

uell 2@y < D for each 0 < e < 1.

If f satisfies (8) and (9) for 0 < p < XEZ, then u. € L>(Q) and there exists a constant
K5 > 0 such that

l|tel| oo () < K2 for each 0 < e < 1.

Proof of Lemma 5.2. From (4), we get
/ Vu Vv +/ ge(ue)v — / fu)v =0 for all v € HY(Q),v >0 (70)

Q Q Q

From (8), we get
/ Vu. Vo +/ ge(ue)v — / fuc)v <0 for all v € HY(Q),v > 0.
Q QN{ue>6} QN{u.>6}
Consequently,
/ VucVo < / fuo)v for all v € HY(Q),v > 0.
Q Qn{u.>6}

From (9), we get

/VUEVUS/ C(1 +uP)v for all v € H} (Q),v > 0.

Q Qn{u>5}

Consequently,

1
/ Vu.Vo < C —+ 1) uPv for all v € Hy(Q),v > 0.
Q

QN {u.>6} (5p

Consequently, there exists C>0and 1< p < 2* — 1 such that
/ VucVo < 6’/ uPv for all v € HY(Q),v > 0.
Q Q

The proof then follows as in item (¢) of Lemma 5.1. O

Now, we obtain gradient estimates for solutions u, of problem (2).
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Lemma 5.3. Assume that f satisfies (6). For each 0 < € < 1, let u. € H(2) N L>(Q)
be a non-negative solution of problem (2) and assume that there exists a constant T > 0
such that

sup el g o) < T < oo. (71)
<e<1
Let 1) be such that

VY[
(G

Then, there exist constants M > 0 and €y > 0 such that

NS C2(§), ¥ >01inQ, =0 ondN and is bounded in .

V()| Vue(x)]* < M(uc(x)' =P +uc(z)) for every z € Q, 0< € < e.

Proof of Lemma 5.3. From (6), we obtain constants C; > 0 and 0 < ¢y < 1 such
that

|f'(s)| < Cist7 for 0 < s < to. (72)

From (71) we obtain that Au, is bounded in L>°(€2). Thus, by standard elliptic regularity,
ue belongs to C1(Q). We define

We shall denote u,. simply by u. Define the functions

B |Vul?

Z(u) =u'"P +u+a, 7))

v = w,

where a > 0 is small. Note that v is C? at all points = € Q such that u(z) > 0. Indeed, let
x € Q) be one such point. By continuity, there must exist an open ball B C 2 centred at
o such that 4 > 0 in B. Consequently, we know that g.(u) € C1¥(B) and f(u) € C1V(B).
Hence, h(u) € C1¥(B). Since u satisfies the equation —Awu + h,(u) = 0 in B, we conclude
that u € C3(B), implying that Z(u) and w are C? in B.

The function v is continuous in €2, hence it attains its maximum at some point zy € Q.
Thus, we obtain

v(xg) > 0.

Note that zy € €, because v = 0 on J2. Furthermore, u(xy) > 0, since otherwise zy would
be a critical point of u and w(xg) = 0. Hence,

Vou(xg) =0

and

Awv(zg) <0. (73)
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The computations already carried out in [20, 22| lead to the following expression evaluated

at xg
1 2 1 ! U 2 U " U
Boz s oot (522 - 2002 (0) )
+ w20 Z(u)h(u) — bhe(w)Z (v) — KoZ(w)) (74)
_Kozl(u)Z(u)l/2wl/2w3/2:| ,
where

Vi V|?
Ky = max <31S12p <|¢1/2> ,sgp <A1/) — 21/}|)> > 0.

We will show that if v(zg) is large enough then the right-hand side of (74) must be
positive, which would contradict (73).
We will establish the following estimates uniformly for every e sufficiently small.

2z < ¢ (32'w? - 220 ) (73)
2] < ¢ (320 - 22w (70
Zwlho] < ¢ (57w - 2020, (77)

2w < € (5207 - 202w (78)

for every 0 < u < T'. The constant C' depends only on 7', but not on € nor on a.
Assuming for a moment that (75)—(78) are true. Inequality (74) implies that

32/ (w)? — 2" (w) Z (u)

Av > (Yw?® — C(w + ' 2w?/?))

Z(u)
- L7 (u)? — 2" (u) Z(u) 02— Clo + v3/2
_ o (v2 = C(v+v%?)).

Since Av(zg) < 0 and
Z'(u)? — Z"(u)Z (u)
Z(u)y

1
2 > 0 in £,

we conclude that
v(z0)? = C(v(z0) + v(z0)*/?) < 0.
Consequently, there exists M > 0 that does not depend on a such that

supv = v(zg) < M.
Q

Consequently,
|Vau(z)[*)(z) < M(u(z) =" 4 u(z) + a) for all z € Q.
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The result then follows by letting a — 0. _
We prove now the relations (75)—(78). In the course of this proof, C, C, C;, i€
{1, 2, 3, ...} denote various positive constants independent of € and a, we obtain gradient

Z(u)=u'"P +u+a,

Z'w) = (1-Pu+1,  Z"(u) =B - Pu """

Hence,

1-5)°

5 (w2’ + 1)+ ap(1 — B)u=r"P. for u > 0. (79)

1
L2 ) — 2" (w)Z(u) >
We first prove (78). Indeed, there is a constant C' > 0 such that
Zw)=u""P tut+a<Cfor0<u<T.

Hence, (78) follows from (79).
We now prove (77). Note that there exists a constant C' > 0 such that

Z'(w)he(u)] < (1= B)u" + 1)(ge(w) + £ (w)))

<A-Bu P +1-B)u" sup |f(s)|+u "+ sup [f(s)|
0<s<T 0<s<T

IN

C(1+u~?).

Inequality (77) then follows from (79).
Now, we prove (76). Note that

ud—1
Ei(u) = (u + e)a+B+L (g€ — Bu) — f'(u).

We split the proof of (76) in three cases.
Case I. Suppose that 0 < u < min{g—;, to}, where 0 <ty <1 is given by (72). We
define

w1

we(u) = (T )atBrt (qe — Bu) — Cru® ™1,

where Cy > 0 is given by (72). We claim that there exists ¢y > 0 such that we(u) > 0 for

each 0 < € < €. Indeed, assume by contradiction that we(u) <0 for some 0 <u < 5.
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We then have

qeuqfl < ﬂuq +Cluq171(u+€)q+ﬁ+1 < /Buq +Cluqu€q+ﬁ+1 (1 +

+6+1
q q+08
273 '

Now take ¢y > 0 such that

+6+1
Cretthtl (14 L ’ <—qf0r0<6<6
1 25 5 0-

We may assume that 0 < ¢ < ¢1. Consequently,

-1 - equi ! wdi—1 - equi! ud—1
qeu < fu? + 5 < Pu 7
Hence,
q—1
<,
which implies that
u > ac
28°

This contradicts our initial assumption. The claim is proven. Since

geud—! - ud € <4
(u+ e)atB+l = qu(u +€)7 (u+€)ftl = b+’

we obtain

— o q—i—Clu‘h"'B
|he(w)| = he(u) < B for 0 < u < min Qﬁ

Hence,

/

— 2q . qe

|h€(u)| S W for 0 < u < mln{%,to,tl} s
where t; > 0 is chosen such that

Cru™ P < g for 0 < u < ty.

Therefore,

— 1-8 2q 2q 2qa qe
Z(w)h (u)] < (u =" +u+a) <uﬁ+1> < 25 + sy for 0 < u < min %,to,h .

Comparing with (79), it follows that there exists a constant C' > 0 that does not depend
on a such that

Z(w)|h(u)] < C(%Z’(u)2 — Z"(u)Z(u)) for 0 < u < min {;;71607151} , 0<e<e.
(80)
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Case II. Suppose that % < u < min{tg, t1}. We have

udt|qe — Bul
(u+ e)atB+1

Note that |ge — fu| < fu if 20u > ge. We then obtain

\Eé(u)| < + Cru®~* for ;]—; < u < tp.

gt + Cruren (142

(u —+ €)Q+ﬁ+1

)q+ﬁ+1

IEL(U)I < for % <u <ty

Now, observe that there exists 0 < t2 < min{to, t1} that does not depend on € such that

26 q+8+1
Crutth <1+> < Bfor 0 <u<ts.

q

Therefore,
/ Qﬂ qe
[h.(u)] < e for 23 <u <ty
Comparing with (79), we obtain
— 1
Z(w)|h.(w)| < C (22’(u)2 - Z”(u)Z(u)) for % <u <t (81)

gflse ITI. Assume that to < u <T. Since there exists a constant C > 0 such that
|h(u)| < C for ty <u < T, it follows from (78) that

Z(w)|h.(v)| < C (;Z’(u)2 — Z"(u)Z(u)) for to <u <T. (82)

Hence, (76) follows from (80), (81) and (82).
We now prove (75). Observe that

Z'(w)Z(w)? = (1= B)u™? + D)Vul=F +u+a.
Hence,
Z'(w)Z(u)?* <V3T((1 - B)u" +1).
When 0 < u <1 we know that u? < u. Hence v % < u=2°. Therefore, from (79), there
exist constants C3 > 0 and C4 > C3 such that

Z'(uw)Z(u)? < Cy(u=? +1) < Cy (;Z’(u)2 - Z"(u)Z(u)) for0<u<1. (83)

If 1 <u < T, we know that there exists a constant Cs > 0 such that Z’(u)Z(u)1/2 < Cs.
Hence, from (79), there exists a constant Cs > 0 such that

Z'(u)Z(u)? < Cg (;Z/(u)2 - Z"(u)Z(u)) for 1 <u<T. (84)

Inequality (75) then follows from (83) and (84). We have proved Lemma 5.3. O
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Consequently, we obtain

Corollary 5.4. For each 0 < € < 1, let u. be the solution of problem (2) obtained in
Propositions 3.2 and 4.3. Let v be as in the hypothesis of Lemma 5.3. Then there exist
constants M > 0 and ¢y > 0 such that

V()| Vue(@)|? < M(ue(z)' =P + u(x)) for every z € Q, 0 <€ < €.

Proof of Corollary 5.4. From Propositions 3.2 and 4.3, we know that there is a
constant D > 0 such that

[well 2 (@) < D for each 0 < e < 1.

From Lemmas 4.2, 5.1 and 5.2 we conclude that the solutions u. of (2) are bounded in
L>(Q) by constant K7 > 0 and Ks > 0 independent of €. Corollary 5.4 then follows by
Lemma 5.3. ]

6. The limit of approximate solutions

Now we will study the convergence as € — 0 of the solutions u. of problem (2) obtained
in Propositions 3.2 and 4.3. First, we obtain the existence of a non-trivial limit u. Next,
we prove that u is a solution of problem (1).

Lemma 6.1. Let (e,) be a sequence in (0, 1) such that €, — 0 as n — co. Let (u} )
and (u? ) be the sequences of solutions obtained in Propositions 3.2 and 4.3 respectively.

Then there exist non-trivial functions uy € H}(Q)) and ug € Hg () such that, up to a
subsequence, ul — u; weakly in Hj(S2), where i € {1, 2}.

Proof of Lemma 6.1. From Propositions 3.2 and 4.3, we know that there exist
constants D; > 0 such that

HuinHHé(Q) < D; for each n € N,i € {1,2}

Hence, there exist functions u; € Hg(£2) such that

%
u
€n

ul  — wu; in L"(Q) for every 1 < r < 2%; (85)

€n

— wu; weakly in HJ(Q);

ul — u; a.e in €
n

Lemmas 5.1 and 5.2 imply that ul € L>®(Q) with [ul |1~ < K; for all neN.
Consequently, the Dominated Convergence Theorem implies that

ul — u,; in L"(Q) for every r > 1.

€

We prove the result for ¢ = 1 and denote (u! ) and u; merely by (uc, ) and u respectively.
From Proposition 3.2, we have

1
0<ar <[ (u,) = 5/ |vu€n‘2 +/ Ge,(ue,) — / F(ue, ).
Q Q Q
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Since u,, is a non-negative critical point of I, , we have

n?

e, H%Il(Q) + [ e (e, )ue, = [ ue, flue,)
0 Q Q

Hence,

I, (ue,) = /Q (Gen (ue, ) — %gen (uen)uETL) dz — /Q (F(uen) - ;uenf(uén)) dz > ay.

(86)
The Dominated Convergence Theorem implies that
lm [ g, (e, ), dz = / ur P de,
n—oo Q Q
lim | G, (u.,)dz = L/ ut~P dz
n—eo Jo " 1=0Ja ’
and
1 1
Fuc,) = Suc, f(uc,) | do— [ ( F(u) = Suf(u) | dz.
Q 2 Q 2
Taking the above claims into account and letting n — oo in (86), we obtain
ul=f s 1
/Q (1—5 -3 > d;zc—/Q <F(u)— 2uf(u)> dz > a;.
We proved that u is non-trivial. The proof for ¢ = 2 is analogous. O

We now show that the functions u; and us defined in Lemma 6.1 satisfy the following
property.

Lemma 6.2. Let u; and us be the functions given by Lemma 6.1. The function
ufﬁx{upo} belongs to L} () fori € {1, 2}.

loc

Proof of Lemma 6.2. We again prove the result for i = 1. The proof for i =2 is
analogous. Let (uc,) and u be given by (85) with ¢ = 1. Let V' C € be a open set such
that V C Q. Take ¢ € C1(£2) such that 0 < ( <1 and ( =1in V. Since u,, is a critical
point of I, we obtain

/ gen(uen)c = / f(uen)c_/ VUenVC— gen(uen)<~
{te, <l—en} Q Q {te,, >1—€,}

Corollary 5.4 implies that u., — u uniformly in compact subsets of 2. Since u., — u
weakly in H}(Q), we get
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Define the set 2, = {z € Q: u(z) > p} for p > 0. It follows from (87) that there exists a
constant C' > 0 that does not depend on n nor on p such that

ud
T Xfu. <1-6,1C < / ge, (e, )¢ < CforallmeN, p>0,
/Vmszp (te, + €)1 fuen <tment {te, <1—€n}

Letting n — oo and using Fatou’s Lemma, we then get

/ ’LL_BXQP <C.
1%

Letting p — 0 and applying Fatou’s Lemma again, we conclude that

/ u_ﬁx{u>0} < 00.
1%

Since V' was arbitrarily chosen, Lemma 6.2 is proved. O

Proof of Theorem 1.1. The proof of this result is very similar to the one given in
[14], but for the sake of completeness, we give the proof with details. We will show that
the sequences (uin) given by Lemma 6.1 converge to a solution u; of (1) as n — oco. In
doing so, we obtain a solution u; of (1) which is non-trivial. The non-triviality of w;
is guaranteed by Lemma 6.1. From now on, we denote u., and w; merely by u. and u
respectively. Let ¢ € C}(£2). From Proposition 3.2, we have

/ Vi, Vi = / (—ge(uue) + Flue)). (8)
Q Q

Let ne C*[R), 0<n <1, n(s)=0 for s <1/2, n(s) =1 for s >1. For m >0 the
function g := ¢n(u./m) belongs to C1(9).

From Corollary 5.4, we know that |Vu,| is locally bounded independent on 0 < € < €.
It then follows from (47) and the Arzela-Ascoli Theorem that ue — u in CP (), and the

loc

set Qy = {z € Q:u(x) > 0} is open. Let Q be an open set such that support(p) C Q and
QcCQ Let Qp = QN Q. For every m > 0, there is an €; > 0 such that

uc(z) < m/2 for every x € Q\ Qo and 0 < € < €. (89)

Replacing ¢ by ¢ in (88), we obtain

/ VueV (on(ue/m)) = / (—ge(ue) + Fue))on(ue/m). (90)
Q Q

We break the previous integral as
Xei= [ (=gl + Fud)entuc/m)
0

and

Y, = / (—ge(ue) + F(ue))gn(ue/m).

O\ Qo
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Clearly, Y. =0, whenever 0 < e <¢; by (89) and the definition of 7. From (47), the
Dominated Convergence Theorem and from the fact that u, — w uniformly in Qg, we get

Xe— | (~u™7+ f(w)en(u/m) as € — 0.

Qo
We take the limit in m to conclude that
| u s s@yentum) — [ (a4 fu)e as m -0, (91)
QO QO

since (u/m) <1 and u P xg+ + f(u) € L*(Q), according to Lemma 6.2.
What follows next is identical to [20]. We proceed with the integral on the left side of
(90). We have

/Q VueV (e m)) = /Q (Ve Vo) (e fm) + W, (92)
where
- |Vu€|2 /
W= [ ey fmyp.
Consequently,

/~(VU€V<p)n(ue/m) — /(Vquo)n(u/m) as € — 0,
Q Q

since ue — u weakly in H}(Q) and u. — u uniformly in Q. Hence, by the Dominated
Convergence Theorem,

/_(Vquo)n(u/m) — / VuVy as m — 0. (93)
Q Q
Now we only need to show that
We—0ase—0 (and then as m — 0). (94)
Let Zo(uc) = ul=" + u.. The estimate |Vu|> < M Zy(u) in Q provided by Corollary 5.4
yields
) M . /
lim sup [W,| < — lim Zo(ue)|n' (ue/m) ]
=0 m e=0Jan{ % <u.<m}
/
=0 Qﬂ{%guegm} Ue
Consequently
Zo(ue
lim sup |W,| < M sup 1| sup |¢| lim o(ue)
e—0 e—0 Qm{%guegm} Ue
< M sup|r'|sup || | (14 u™")Xqus0y,

QN{ % <um}

for every m > 0.
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The claim follows by letting m — 0 and by using Lemma 6.2.
As a immediate consequence of (90), (91),(92), (93) and (94), we have

/ VuVy = / (—u_ﬁ + f(u))p
Q Qn{u>0}

for every ¢ € C1(Q). This concludes the proof of Theorem 1.1. O

Proof of Theorem 1.2. The proof of this result is entirely analogous to the proof of

Theorem 1.1. We only need to use Proposition 4.3 instead of Proposition 3.2 and consider
f(s) =As+ s> 1. O
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