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We propose an adaptive genetic algorithm (AGA) for the multi-objective optimisation design

of a fuzzy PID controller and apply it to the control of an active magnetic bearing (AMB)

system. Unlike PID controllers with fixed gains, a fuzzy PID controller is expressed in terms

of fuzzy rules whose consequences employ analytical PID expressions. The PID gains are

adaptive and the fuzzy PID controller has more flexibility and capability than conventional

ones. Moreover, it can be easily used to develop a precise and fast control algorithm in an

optimal design. An adaptive genetic algorithm is proposed to design the fuzzy PID

controller. The centres of the triangular membership functions and the PID gains for all

fuzzy control rules are selected as parameters to be determined. We also present a dynamic

model of an AMB system for axial motion. The simulation results of this AMB system show

that a fuzzy PID controller designed using the proposed AGA has good performance.

1. Introduction

Active magnetic bearing (AMB) systems with controlled permanent magnet electromag-

nets have been described elsewhere. They support a rotating body without direct contact

and, because of this significant feature, are widely used for various purposes. They offer a

number of practical advantages over conventional bearings, such as higher speeds, lower

rotating losses, elimination of the lubrication system and lubricant contamination of the

process, operation at temperature extremes and in vacuum, and longer life (Knospe 2007;

Fan et al. 2008; Chen 2011). However, AMB applications often require the solution of

very interesting and formidable control problems because of their inherent instability

and the non-linear relationship between the lift force and the air gap distance (Khoo

et al. 2010; Polajzer et al. 1968). The controller is a key component of AMB systems, and

its performance has a direct effect on whether a magnetic bearing can work stably and

without failing.
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In recent decades, conventional PID controllers have been widely applied in industrial

process control. This is mainly because PID controllers have simple control structures

and are easy to maintain (Bennett 1987; Chen 1996). To design such a controller,

the proportional, integral and derivative gains must be determined. However, a con-

ventional PID controller may have poor control performance for non-linear and/or

complex systems that have no precise mathematical models. Various types of modified

traditional PID controller, such as auto-tuning and adaptive PID controllers, have been

developed to overcome these difficulties (Na 2001; Lin et al. 2003). Since the PID

gains are fixed, the main disadvantage is that they are usually lacking in flexibility and

capability.

Recently, many researchers have attempted to combine conventional PID controllers

with fuzzy logic (Harinath and Mann 2008; Mohan and Sinha 2008). Despite the

significant improvement provided by these fuzzy PID controllers compared with their

conventional counterparts, they are still subject to some disadvantages. For example, the

locations of the peak of the membership functions are fixed and cannot be adjusted,

and the fuzzy control rules have to be designed by hand. To overcome these weaknesses,

we propose a multi-objective optimisation method for the parameter tuning of fuzzy

PID controllers based on an improved adaptive genetic algorithm (AGA) to solve the

control problem of an AMB system. With the proposed AGA-tuning method, a fitness

function is systematically defined such that the centres of the triangular membership

functions and the PID gains for all fuzzy control rules can be selected as parameters to

be determined. By using adaptive crossover and mutation operators, the global search

ability and convergence speed of the genetic algorithm can be significantly improved

(Chambers 2001; Michalewicz 1996; Srinivas and Patnaik 1994). By incorporating both

the transient performance index of the dynamic response and the control input into the

fitness function and properly weighting these terms, the overall performance of the fuzzy

PID controller can be optimised to give greater flexibility and capability. The performance

of the resulting controller was verified through simulation.

2. Fuzzy PID controllers

Fuzzy controllers are, in essence, a kind of non-linear PID controller that take advantage of

the properties of both fuzzy controllers and PID controllers by converting the experience

of tuning the PID parameters into fuzzy reasoning rules. In fuzzy PID controllers, the

input variables of the fuzzy rules are the error signals and their derivatives, while the

output variables are the PID gains. The rules of a double input single output (DISO)

fuzzy PID controller are usually expressed in the following form:

Rij : IF x is Ai and y is Bj THEN

uij(t) = Kij
p e(t) +K

ij
I

∫
e(t)dt+ +Kij

D

∫
ė(t)dt (1)

where:

— x denotes e(t) and x ∈ X;

— y denotes e(t) and y ∈ Y , i = 1, 2, . . . , n;
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— j = 1, 2, . . . , m;

— u(t) denotes the output variable.

Using a singleton fuzzifier, sum-product inference and a centre-average defuzzifier, the

output of a fuzzy PID controller is

ut =

∑n
i=1

∑m
j=1 wij(x, y)u

ij∑n
i=1

∑m
j=1 wij(x, y)

(2)

where

wij(x, y) = Ai(x)Bj(y)

is the firing strength of the rule denoted by Rij .

For calculational convenience, triangular functions are commonly adopted as the

membership functions of the input variables. In the current paper, we assume that

X and Y are the universes of discourse for input variables e and ė, respectively. We

assume

{Ai(x) ∈ F(X), i = 1, 2, . . . , n}
is a cluster of fuzzy sets on X with triangular membership functions as shown in Figure 1.

The apexes of {Ai} are denoted by xi and satisfy x1 < x2 < . . . < xn. The membership

functions for {Ai} can be calculated from

Ai(x) =

⎧⎨
⎩

(x− xi−1)/(xi − xi−1) x ∈ [xi−1, xi], i = 2, 3, . . . , n

(xi+1 − x)/(xi+1 − xi) x ∈ [xi−1, xi], i = 2, 3, . . . , n− 1

1 x < x1 or x > xn.

(3)

As with {Ai}, we assume {Bj(y) ∈ F(Y ), j1, 2, . . . , m} is also a cluster of fuzzy sets on

Y with the triangular membership functions given in Figure 1, the apexes of {Bj} are

denoted by yj and satisfy

y1 < y2 < . . . < ym.

The membership functions for {Bj} can be calculated by

Bj(y) =

⎧⎨
⎩

(y − yj−1)/(yi − yi−1) y ∈ [yi−1, yi], j = 2, 3, . . . , m

(yi+1 − y)/(yi+1 − yi) y ∈ [yi−1, yi], j = 1, 2, 3, . . . , m− 1

1 y < y1 or y > ym.

(4)

The base plane of the rule can be decomposed into many inference cells (ICs) with output

rules on its four corners, as shown in Figure 1. The inference can then be operated on

these ICs. If we assume that xi and xi+1 are any two adjacent apexes of {Ai}, and yj , and

yj+1 are any two adjacent apexes of {Bj}, then

xi � x � xi+1

yj � y � yj+1

forms an inference cell IC(i, j) in the X × Y input space – see Figure 1. For the activated

inference cell IC(i, j), the output of the fuzzy PID controller adopts dualistic piecewise

interpolation functions of the parameters of the rule consequences, as follows (Xiu and
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Fig. 1. The membership function for (Ai) and (Bj)

Ren 2004):

u(t) =

⎡
⎣ i+1∑
s=i

j+1∑
t=j

wst(x, y)K
st
p

⎤
⎦ e(t) +

⎡
⎣ i+1∑
s=i

j+1∑
t=j

wst(x, y)K
st
I

⎤
⎦∫

e(t)dt

+

⎡
⎣ i+1∑
s=i

j+1∑
t=j

wst(x, y)K
st
D

⎤
⎦ψ(t)

(5)

Equation (5) is an analytical model of the fuzzy PID controller.

3. AGA-based optimal fuzzy pid controller design

The design of a fuzzy PID controller can be treated as a multi-objective optimisation

problem. The tuning of the fuzzy PID parameters is designed to achieve the best

compromise between the rapidity, stability and accuracy of the system control. It is

difficult to optimise all aspects of the overall performance at the same time through

the general adjustment of fuzzy PID parameters. To address this problem, the current

paper describes the application of GA to the fine tuning of the parameters for fuzzy PID

controllers.

We propose an improved multi-objective optimisation method for parameter tuning of

a fuzzy PID controller based on an adaptive genetic algorithm, which consists of the

following five steps:

— Step 1: Representation of the parameters

In most applications of genetic algorithms to optimisation problems, the real coding

technique is used to represent a solution to a given problem. In a real coding

https://doi.org/10.1017/S096012951300073X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951300073X


Optimal fuzzy PID controller design for an active magnetic bearing system 5

implementation, each chromosome is encoded as a vector of real numbers of the

same length as the solution vector. One of the key issues for the proposed AGA-based

method is how to encode the parameters xi, yj , K
ij
p , K

ij
I , K

ij
D , for, 1 � i � n ,1 � j � m.

The output trajectory of a sign-symmetry system is symmetrical to the original when

the initial conditions and inputs are changed in sign. In many cases, like the AMB

controller discussed in this paper, the system has a non-linear controller that is also

sign-symmetric. We assume that the input variables e(t) and e(t) are divided into five

fuzzy sets named:

– Negative Big (NB);

– Negative Small (NS);

– Zero (ZO);

– Positive Small (PS);

– Positive Big (PB).

The five fuzzy sets employ 50% overlapped triangular membership functions on the

universe of discourse. Thus the parameters of the input variables can he simplified to

the following four:

– the apex position x4 of PS;

– the apex position x5 of PB for e(t);

– the apex position y4 of PM;

– the apex position y5 of PB for e(t).

The PID expressions for the fuzzy control rule consequences each have three moduli

and sign-symmetry. Therefore, when the membership functions of the input variables

are symmetrical about 0, there are only 15 independent rules amongst the 25 fuzzy

control rules described in (1). This means that there are only 49 parameters in the

individual coding when implementing an AGA.

With the real coding implementation, the k chromosome of the l generation can be

represented by

P l
k =

[
xlk4, x

l
k5, y

l
k4, y

l
k5, K

ijl

kP , K
ijl

kI , K
ijl

kD

]
=

[
plk1, p

l
k2, . . . , p

l
k49

]
. (6)

Each chromosome plk corresponds to 49 tuned parameters of the fuzzy PID controller.

— Step 2: Design of the fitness function

To evaluate the controller performance and get the required transient dynamic,

the fitness function includes not only the four main transient performance indices

(overshoot, rise time, settling time and cumulative error), but also a quadratic term in

the control input to avoid the control energy becoming too big. The fitness function

we designed is

J = 1

/∫ ∞

0

[ω1te
2(t) + ω2u

2(t)]dt+ ω3tr + ω4σ + ω5ts (7)

where:

– e(t) is the system error;

– u(t) is the controller input;

https://doi.org/10.1017/S096012951300073X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951300073X


H.-C. Chen 6

– tr is the rise time;

– σ is the maximal overshoot;

– ts is the settling time with a 5% error band; and

– ω1, ω2, ω3, ω4, ω5 are weighting coefficients.

For a practical fuzzy PID design, we would adjust all the weighting coefficients in

the fitness function according to the specific requirements for the system’s rapidity,

accuracy, stability, and so on. For example, if we require a system with a small

overshoot value, we would increase ω4 appropriately, but if we require a system with

a fast dynamic response, we would increase ω3. For this paper, we chose the weighting

coefficients ωi = 02 for i = 1, 2, . . . , 5 to cover all the performance indices completely.
— Step 3: Selection

In the proportional selection procedure, the selection probability of a chromosome

is proportional to its fitness. However, this simple scheme has some undesired

properties. To maintain a reasonable difference between the relative fitness ratings

of the chromosomes and to prevent too rapid a takeover by some super chromosomes,

we used an exponential ranking fitness assignment for the fitness calculations of the

reproduction operator, because of its simplicity and robustness (Zhiming et al. 2003;

Haiming and Yen 2003). The idea is straightforward: sort the population from best

to worst and assign the selection probability of each chromosome according to its

ranking rather than its raw fitness value. For the current paper, we chose normalised

geometric selection, which is a ranking selection function based on a normalised

geometric distribution.
— Step 4: Crossover

We used a single-point method for the crossover. Denoting two randomly selected

chromosomes in the l generation by

P l
k =

[
plk1, p

l
k2, . . . , p

l
k49

]
P l
q =

[
plq1, p

l
q2, . . . , p

l
q49

]
,

the genetic values at the crossover point of these two chromosomes are plkj and plqj ,

respectively. Two new chromosomes are created after the crossover operation. The

genetic values before and after the crossover point remain the same, while the genetic

value of the crossover point is

pl
′

kj = rcp
l
kj + (1 − rc)p

l
qj

pl
′

qj = rcp
l
qj + (1 − rc)p

l
kj

(8)

where rc is a randomly generated constant between 0 and 1. For the current paper, we

used the adaptive method, which takes the diversity of the population as the controlled

variable, and we also adjusted the individual crossover rate based on the fitness value

itself. The adaptive crossover rate for an individual is defined by

pc =

⎧⎪⎪⎨
⎪⎪⎩

kc
(fmax − favg)/favg

+ pc1e
c
τc

(fc−favg) fc � favg

kc
(fmax − favg)/favg

+ pc1 fc < favg

(9)
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where:

– fmax is the maximal fitness value of the present population;

– favg is the average fitness value of the present population;

– fc is the larger fitness value of the two intersecting individuals;

– kc, pc1 and pc2 are the crossover coefficients, with pc1 and pc2 having constant values

between 0 and 1 with pc1 > pc2;

– c is the crossover amplitude coefficient;

– and

τc =
fmax − favg

λn(pc1/pc2)
. (10)

— Step 5: Mutation

We used a non-uniform mutation method. We set the mutated individual to be

P l
k = [plk1, p

l
k2, . . . , p

l
k49]

after the mutation operation. The genetic value of an individual that is not mutated

remains the same, while the gene pl
′

kj for a mutated one is

pl
′

kj =

⎧⎪⎨
⎪⎩
plkj + δ

(
l, pjmax − plkj

)
rm � 0.5

plkj − δ
(
l, plkj − pjmin

)
rc < 0.5

(11)

where rm is a random number between 0 and 1, and δ(l, y) represents a random

number within the range [0, y], which varies with each generation evaluation. The

expression for δ(l, y) is

δ(l, y) = y(1 − r(1− l
G

)b ) (12)

where:

– r is a random number between 0 and 1;

– l is the current evolution generation;

– G is the set maximum evolution generation;

– b is a coefficient determining the dependency of the stochastic disturbance on

the evolution generation l, which is generally determined by experience – for the

current paper, we set b = 2.

For the current paper, we used the adaptive method, which takes the diversity of the

population as the controlled variable, and we also adjusted the individual mutation

rate based on the fitness value itself. The adaptive mutation rate for an individual is

defined to be

pm =

⎧⎪⎨
⎪⎩

km
(fmax − favg)/favg

+ pm1e
m
τm

(fc−favg) fm � favg

km
(fmax − favg)/favg

+ pc1 fm < favg

(13)

where:

– fm is the fitness value of the individual undergoing the mutation operation;
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Fig. 2. Schematic of the controlled AMB system

– km, pm1 and pm2 are the mutation coefficients, with pm1 and pm2 having constant

values between 0 and 1 with pm1 > pm2;

– m is the mutation amplitude coefficient;

– and

τm =
fmax − favg

λn(pm1/pm2)
. (14)

4. Analysis of the AMB system dynamic model

Figure 2 shows a schematic of the controlled AMB system. It consists of a levitated

object (rotor) and a pair of opposing E-shaped controlled PM electromagnets with a

coil winding. An attraction force acts between each pair of hybrid magnets and the

extremities of the rotor. The attractive force each electromagnet exerts on the levitated

object is proportional to the square of the current in each coil and is inversely dependent

on the square of the gap. The entire system has only one degree of freedom for one axis,

namely the axial position. Assuming a minimum distance for the length of the axis, the

two attraction forces restrict radial motions of the axis in a stable way. The rotor position

in the axial direction is controlled by a closed loop control system, which is composed of

a non-contact type gap sensor, a Fuzzy PID controller and an electromagnetic actuator

(power amplifier). This control is necessary since it is impossible to reach equilibrium

using permanent magnets alone.

To model the AMB system, we assume a few simplifications:

(a) The rotor maintains symmetry around the rotating axis.

(b) Deviations around the normal operating point are small.
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(c) The magnetic axial attraction force and the electromagnetic force are linearised around

the operation point.

We assume: the mass of the suspended rotor is m; the hybrid magnets produce two

attractive forces F1 and F2; and the applied voltage E from the power amplifier to the coil

generates a current i, which is necessary only when the system is subjected to an external

disturbance w. The equations governing the dynamics of the system are then

F1(y, i) + F2(y, i) − mg + w = m
d2y

dt2
(15)

E = Ri +N
d

dt
(φ1(y, i) + φ2(y, i)) (16)

where:

— y is the distance from the gap sensor to the bottom of the rotor;

— R is the resistance of the coil;

— N is the number of turns of the coil; and

— φ1 and φ2 are the flux in the top and bottom air gaps, respectively.

With a small disturbance, the above equation becomes

ΔE = RΔt+N
d

dt
(φ1(y, i) + φ2(y, i)) (17)

= RΔt+N

(
∂(�φ1 + �φ2)

∂Δy

dΔy

dt
+

)
. (18)

If the weight of the rotor is equal to the sum of these two attractive forces, the rotor

will rotate with a specific gap. According to (14), the disturbance equation for a specific

gap is calculated as follows:

ΔF1(Δy,Δt) + ΔF2(Δy,Δt) + w = m
d2Δy

dt2
(19)

ΔF1(Δy,Δt) =
∂ΔF1

∂Δy
Δy +

∂ΔF1

∂Δt
Δt (20)

ΔF2(Δy,Δt) =
∂ΔF2

∂Δy
Δy +

∂ΔF2

∂Δt
Δt. (21)

We define

φ = φ1 + φ2

F = F1 + F2.

The system is linearised at the operation point (y = yo, i = 0) and is described as follows:

d2Δy

dΔy2
=

1

m

∂�F

�y

∣∣∣∣(y0 ,0)
Δy +

1

m

dΔy

dt
Δt+

1

m
w (22)

dΔt

dt
= −R

L
Δt− N

L

dΔφ

dy

∣∣∣∣(y0 ,0)

dΔy

dt
+

1

L
ΔE. (23)
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Table 1. Centre and width values of the optimised membership function

e(t) ė(t)

Centre Width Centre Width

NB −2.947 1.797 −149.600 217.198

NS −1.203 2.947 −82.802 149.600

ZO 0 2.406 0 165.604

PS 1.203 2.947 82.802 149.600

PB 2.947 1.797 149.600 217.198

Then

d

dt

⎡
⎣Δy

Δy

Δi

⎤
⎦ =

⎡
⎣ 0 1 0

a21 0 a23

0 a32 a33

⎤
⎦

⎡
⎣Δy

Δy

Δi

⎤
⎦ +

⎡
⎣0

0

b

⎤
⎦E +

⎡
⎣0

d

0

⎤
⎦w (24)

where

a21 =
1

m

∂ΔF

∂y
(25)

a23 =
1

m

∂ΔF

∂i
(26)

a32 = −N

L

∂Δφ

∂y
(27)

a33 = −R

L
b =

1

L
b =

1

m
L = N

∂Δφ

∂Δy
. (28)

The partial derivatives are calculated from the experimental characteristics at the normal

equilibrium operating point. It can be seen from the characteristic roots that the system

is unstable and controlling the AMB system is not an easy task. This system has to be

stabilised by a controller with appropriate parameter tuning. In the following section, we

will show that the fuzzy PID controller design drives the AMB system to an equilibrium

position.

5. Simulation results and discussion

The AMB system shown in Figure 2 was used to demonstrate the feasibility of the

proposed approach to dynamic systems. The fuzzy PID controller is designed using the

proposed AGA. After 20 generations of the genetic operation, the resulting 49 optimal

parameters describing the triangular membership functions and the PID gains of the

fuzzy control rules are shown in Tables I and II, respectively.

The step responses of the rotor position from the gap sensor in the AMB system

using the optimised fuzzy PID controller and the optimised conventional PID controller

are shown in Figure 3. The figure shows that the fuzzy PID controller has achieved a

remarkable reduction in the overshoot and settling time compared with the optimised

conventional PID controller. The fuzzy PID controller also achieved good performance
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Table 2. The optimised PID gains for the fuzzy control rules

Fig. 3. The step responses of the rotor position from the gap sensor in the AMB system using the

optimised fuzzy PID controller and the optimised conventional PID controller

for both transient and steady state periods. Figure 4 shows the converging patterns for

the PID parameters. Moreover, the PID gains are adaptive and the fuzzy PID controller

has greater flexibility and capability than conventional ones.

The variation of the best and mean fitness values given by the proposed AGA are

plotted in Figure 5. Careful analysis of Figure 5 reveals that the best solution given by

the proposed AGA in each population is being propagated to each subsequent generation
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Fig. 4. Converging patterns for the PID parameters (a) Kp (b) Ki (c) Kd

and the best fitness is increasing with time. The lower mean fitness value of the proposed

AGA indicates that the population has remained scattered in the solution space and has

not become stuck at any local optimum. The optimisation efficiency is greatly enhanced

by using AGA.

6. Conclusions

This paper has proposed an improved adaptive genetic algorithm for the multi-objective

optimisation design of a fuzzy PID controller and applied it to the control of an AMB

system. The proposed algorithm has better convergence speed and better stability in the

global optimum result. Another benefit of the proposed method is the way it defines the

fitness function based on the concept of multi-objective optimisation. This method allows

the systematic design of all major parameters of a fuzzy PID controller, which enhances

the flexibility and capability of the PID controller. Since the PID gains generated by the

proposed approach are expressed in the form of fuzzy rules, they are more adaptive than
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Fig. 5. The best and mean fitness values at each generation during the optimisation process

a PID controller with fixed gains. The simulation results for this AMB system show that

a fuzzy PID controller designed using the proposed AGA has good performance.
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