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The stability of capillary waves on fluid sheets
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The linear stability of finite-amplitude capillary waves on inviscid sheets of fluid
is investigated. A method similar to that recently used by Tiron & Choi (J. Fluid
Mech., vol. 696, 2012, pp. 402–422) to determine the stability of Crapper waves on
fluid of infinite depth is developed by extending the conformal mapping technique of
Dyachenko et al. (Phys. Lett. A, vol. 221 (1), 1996a, pp. 73–79) to a form capable of
capturing general periodic waves on both the upper and the lower surface of the sheet,
including the symmetric and antisymmetric waves studied by Kinnersley (J. Fluid
Mech., vol. 77 (02), 1976, pp. 229–241). The primary, surprising result is that both
symmetric and antisymmetric Kinnersley waves are unstable to small superharmonic
disturbances. The waves are also unstable to subharmonic perturbations. Growth rates
are computed for a range of steady waves in the Kinnersley family, and also waves
found along the bifurcation branches identified by Blyth & Vanden-Broeck (J. Fluid
Mech., vol. 507, 2004, pp. 255–264). The instability results are corroborated by
time integration of the fully nonlinear unsteady equations. Evidence is presented for
superharmonic instability of nonlinear waves via a collision of eigenvalues on the
imaginary axis which appear to have the same Krein signature.

Key words: capillary waves, waves/free-surface flows

1. Introduction
In this paper we demonstrate that capillary waves on fluid sheets are linearly

unstable to both superharmonic and subharmonic disturbances. Superharmonic
perturbations have the same (or smaller) wavelength as the base wave, and
subharmonic perturbations have a longer wavelength than the base wave. The study
of capillary waves on liquid sheets began with the theoretical and experimental work
of Squire (1953) and Taylor (1959) (see also the work of Rayleigh 1896). The
small-amplitude states are classified as either symmetric or antisymmetric. Symmetric
waves have a crest on one surface above a trough on the other surface; alternatively,
such waves may be interpreted as occurring on a fluid of finite depth over a flat
bottom. Antisymmetric waves have a crest on one surface above a crest on the
other surface. In the case of fluid of infinite depth, a remarkable exact solution
was given by Crapper (1957). Twenty years later, using elliptic functions Kinnersley
(1976) supplied exact solutions for both symmetric and antisymmetric waves on fluid
sheets of finite thickness. Kinnersley’s symmetric wave solution was later given in a
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6 M. G. Blyth and E. I. Părău

simplified form by Crowdy (1999). Kinnersley waves have been shown to be relevant
in other problems, for example in flow driven by surface tension in a slender wedge
(Billingham 2006). Capillary waves on a liquid thread recoiling after pinch-off are
found, for example, in water from a dripping tap (Peregrine, Shoker & Symon 1990)
and may be viewed as the axisymmetric analogue of Kinnersley waves.

Our finding that Kinnersley waves are unstable to superharmonic disturbances is
somewhat surprising. Tiron & Choi (2012) showed that capillary waves on fluid of
infinite depth are stable to superharmonic disturbances. This work followed an earlier
contention by Hogan (1988) that superharmonic instability in infinite depth may occur
via the collision of linear modes of opposite Krein signature for sufficiently steep
(i.e. nonlinear) waves. The concept of Krein signature was formulated by Williamson
(1936) and Krein (1950). According to the theory of MacKay & Saffman (1986), in
a Hamiltonian system instability can only occur through the collision of eigenvalues
(of the linearised system) of opposite Krein signature, or else through a collision of
eigenvalues at zero. Tiron & Choi (2012) also demonstrated that Crapper waves are
unstable to subharmonic disturbances and found agreement with the weakly nonlinear
theory of Chen & Saffman (1980).

The fact that capillary waves on fluid of finite depth turn out to be superharmonically
unstable even for relatively small-amplitude waves is interesting as it contrasts with
the stability characteristics of classical gravity waves. It is well known that gravity
waves in infinite depth are long-wave unstable and suffer a side-band instability
first identified both theoretically and experimentally by Benjamin & Feir (1967);
the extension to finite depth fluid was provided by Benney & Roskes (1969).
Superharmonic perturbations were investigated by Longuet-Higgins (1978), who found
that the waves are stable if their amplitude does not exceed a critical value. Later
work by Saffman (1985) found that superharmonic perturbations become unstable for
larger-amplitude waves. Reviews of the stability properties of periodic water waves
can be found in Hammack & Henderson (1993) and Dias & Kharif (1999). More
recent results on the stability of gravity waves have been obtained by Deconinck &
Oliveras (2011) and Akers & Nicholls (2014) for finite depth and Akers & Nicholls
(2012) for infinite depth. The stability of gravity–capillary waves in infinite and finite
depth was investigated by Djordjevic & Redekopp (1977) and Hogan (1985). More
recent results have been presented by Akers & Nicholls (2013) and Deconinck &
Trichtchenko (2014).

In all of the studies discussed above the flow is inviscid and irrotational and, as
such, is determined as a solution to the Laplace equation. To study the stability of the
steady waves on fluid sheets in the presence of surface tension but with no gravity
(i.e. Kinnersley waves), it is convenient to first reformulate the problem using only
surface variables, namely the elevation on each surface and the velocity potential
evaluated on each surface. This can be done by introducing a Dirichlet-to-Neumann
operator (see for example Wilkening & Vasan (2015) for the particular case of the
classical water wave problem) and then calculating the operator using a conformal
mapping technique. This procedure yields a set of non-local partial differential
equations describing the location of the two upper and lower surfaces of the sheet,
and the velocity potential on each. Following the earlier work of Dyachenko et al.
(1996a), Dyachenko, Zakharov & Kuznetsov (1996b) for infinite depth, this derivation
has been carried out by Choi & Camassa (1999) for finite depth fluid for the particular
case of waves over a flat bottom – such a formulation is capable of capturing the
symmetric but not the antisymmetric Kinnersley case. (We note that Viotti, Dutykh
& Dias (2014) have recently extended the formulation to the case of a prescribed
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Stability of capillary waves on fluid sheets 7

bottom topography.) In the present work, we further generalise the formulation to
allow for two a priori unknown capillary surfaces which is then suitable for studying
both symmetric and antisymmetric Kinnersley waves, and also the bifurcated wave
branches identified by Blyth & Vanden-Broeck (2004). Since the new formulation
requires only fairly straightforward modifications of the Choi & Camassa (1999)
work, we give only brief details (these are supplied in appendix A).

Finally, we note that our focus is on the temporal stability of spatially periodic
nonlinear waves. The stability of small-amplitude symmetric and antisymmetric waves
to a localised disturbance has been investigated by Barlow, Helenbrook & Lin (2011)
and others (see references therein). The layout of the paper is as follows. In § 2 we
present the formulation of the general problem in terms of surface variables. In § 3
we discuss the steady travelling waves whose stability we wish to study. In § 4 we
present the calculation method for determining linear stability by solving an eigenvalue
problem and in § 5 we present our results. Finally in § 6 we summarise and discuss
our findings.

2. Problem formulation
We examine the stability of spatially periodic travelling waves of period λ

propagating on the upper and lower surfaces of a fluid sheet of density ρ with surface
tension γ . The medium above and below the sheet is assumed to be dynamically
inactive and held at constant pressure. The effect of gravity is ignored. The flow in
the sheet is assumed to be inviscid and incompressible.

It is convenient to write the governing equations in a frame of reference which is
travelling at the same speed as a basic, unperturbed periodic wave. Within this frame
of reference the basic wave does not change form and the flow is steady. To study the
effect of periodic disturbances, we describe the upper surface of the perturbed wave
within the travelling frame using the parametrisation (x, y), where x = x(ξ , t) and
y= y(ξ , t) are periodic functions of a real parameter ξ and t is time. The lower surface
is described by (x̂, ŷ), where x̂= x̂(ξ , t) and ŷ= ŷ(ξ , t). Generally speaking, from now
onwards a caret will be used to indicate a quantity on the lower surface. A derivation
of the governing equations following this parametrisation is given in appendix A.
A key point is that we are able to represent the flow using a set of partial differential
equations depending only on surface variables. On the upper surface we have

yt = yξ [T(ψξ/J)− S(ψ̂ξ/Ĵ)] − xξψξ/J, (2.1)

φt + [S(ψ̂ξ/Ĵ)− T(ψξ/J)]φξ + 1
2J
(φ2

ξ −ψ2
ξ )+ (γ /ρ)κ =B(t), (2.2)

where B(t) is the Bernoulli constant, φ(ξ, t) and ψ(ξ, t) represent the velocity
potential and streamfunction respectively on the upper surface and ψ̂(ξ , t) is the
streamfunction on the lower surface. The curvature κ and the Jacobian J are defined
below. The symbols T and S denote non-local operators which are also defined below.

On the lower surface the governing equations are,

ŷt = ŷξ [S(ψξ/J)− T(ψ̂ξ/Ĵ)] − x̂ξ ψ̂ξ/Ĵ, (2.3)

φ̂t + [T(ψ̂ξ/Ĵ)− S(ψξ/J)]φ̂ξ + 1

2Ĵ
(φ̂2

ξ − ψ̂2
ξ )− (γ /ρ)κ̂ =B(t), (2.4)

where φ̂(ξ , t) is the velocity potential on the lower surface. The Jacobians are defined
to be

J= x2
ξ + y2

ξ , Ĵ= x̂2
ξ + ŷ2

ξ , (2.5a,b)
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8 M. G. Blyth and E. I. Părău

and the surface curvatures are

κ = yξxξξ − xξyξξ
J3/2

, κ̂ = ŷξ x̂ξξ − x̂ξ ŷξξ
Ĵ3/2

. (2.6a,b)

The non-local operators T and S are defined so that

T( f (ξ))= 1
2H
−
∫ ∞
−∞

f (ξ ′)coth
[ π

2H
(ξ ′ − ξ)

]
dξ ′, (2.7)

and

S( f (ξ))= 1
2H
−
∫ ∞
−∞

f (ξ ′) tanh
[ π

2H
(ξ ′ − ξ)

]
dξ ′, (2.8)

where

H =m(y)−m(ŷ), m( f )≡ 1
λ

∫ λ
0

f (ξ) dξ . (2.9a,b)

Here H(t) is the generally time-dependent conformal modulus which represents
the difference in the mean value on the upper surface to the lower surface in
the transformed plane used to construct the governing equations (see appendix A).
Furthermore, we note that

xξ = 1− T(yξ )+ S(ŷξ ), x̂ξ = 1− S(yξ )+ T(ŷξ ), (2.10a,b)

and

φξ = ψ0 − ψ̂0

H
− T(ψξ )+ S(ψ̂ξ ), φ̂ξ = ψ0 − ψ̂0

H
− S(ψξ )+ T(ψ̂ξ ), (2.11a,b)

where ψ0 =m(ψ) and ψ̂0 =m(ψ̂).
In the limit H → ∞, the S operator vanishes, and the T operator becomes the

Hilbert transform H , defined as

H [ f ] = 1
π
−
∫ ∞
−∞

f (ξ ′, t)
ξ ′ − ξ dξ ′. (2.12)

Simultaneously, the above (2.1) and (2.2) reduce to (2.1) and (2.2) of Tiron & Choi
(2012) describing waves on fluid of infinite depth. The physical thickness of the
deformed sheet is given by

H̄ = 1
λ

∫ λ
0
(yxξ − ŷx̂ξ ) dξ . (2.13)

Here H̄ is defined as the thickness of the equivalent flat sheet with the same fluid
volume in one period. In the case of a flat sheet, H̄ = H. Consequently the limit
H→∞ corresponds to considering waves on fluid of infinite depth.

3. Travelling-wave solutions
In this section we discuss the computation of steadily propagating waves using the

formulation presented above. The stability of these waves, which is the main focus
of the paper, will be discussed in the next section. We begin by stating the problem
within the framework of § 2, and by describing our computational method. We then
discuss Kinnersley (1976)’s exact solutions, and how these may be recovered by the
present method.
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Stability of capillary waves on fluid sheets 9

3.1. Computational method
Henceforth, and following the conventions of Chen & Saffman (1985) and Tiron &
Choi (2012), we take γ = ρ = 1 and we set the period of the waves to be λ = 2π.
This corresponds to non-dimensionalising using the unit length and time scales

λ

2π
,

√
ρ

γ

(
λ

2π

)3

(3.1a,b)

respectively. We introduce the measure of the wave speed c,

c= 1
λ

∫
F

u · dx, (3.2)

where u is the fluid velocity and F denotes one period of the upper surface (in
fact, since the flow is irrotational, c takes the same value on any streamline). This
implies that the velocity potential φ varies by an amount cλ over one wavelength. It
is important to emphasise that in finite depth c is not the same as the crest speed of
the waves (note that (3.2) makes no allusion to a second frame of reference), and
indeed it will become clear below that in general they take different values. However,
in the special case of fluid of infinite depth considered by Crapper (1957), the crest
speed ck and the wave speed c defined through (3.2) are coincident (see Tiron &
Choi 2012).

We have a two-parameter family of steady travelling-wave solutions parametrised by
H and c. To compute the waves we first write x=X(ξ), y= Y(ξ), x̂= X̂(ξ), ŷ= Ŷ(ξ),
where X(ξ +2π)=X(ξ), and so on. In the frame travelling with the wave, the velocity
potential and streamfunctions on the upper and lower surfaces are given by

φ = φ̂ = cξ, ψξ = ψ̂ξ = 0. (3.3a,b)

We note that the former adheres to the stipulation above that the velocity potential
varies by an amount cλ= 2πc over one wavelength. Using (3.3), equations (2.1) and
(2.3) simply state that yt = 0 and ŷt = 0, and it follows from (2.2) and (2.4) that

c2

2J0
+ κ0 =B,

c2

2Ĵ0

− κ̂0 =B, (3.4a,b)

where B is now independent of time, J0 = X′2 + Y ′2 and Ĵ0 = X̂′2 + Ŷ ′2 and the base-
wave curvatures are given by

κ0 = Y ′X′′ − X′Y ′′

J3/2
0

, κ̂0 = Ŷ ′X̂′′ − X̂′Ŷ ′′

Ĵ3/2
0

. (3.5a,b)

We note in passing that we have an unknown Bernoulli constant, B, on the right-
hand sides of (3.4) and (3.5). This is slightly different to the formulation laid out by
Kinnersley (1976). The difference is discussed and explained in detail in appendix B.

We express the flow variables as Fourier expansions, writing

Y(ξ)=
∞∑

n=−∞
αneinξ , Ŷ(ξ)=

∞∑
n=−∞

βneinξ . (3.6a,b)
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10 M. G. Blyth and E. I. Părău

The functions X(ξ) and X̂(ξ) follow from (2.10) to within an arbitrary constant
corresponding to the choice of origin. To calculate the non-local operator terms we
make use of the identities valid for n 6= 0,

T(einξ )= i coth(nH)einξ , S(einξ )= i cosech(nH)einξ . (3.7a,b)

Next we introduce 2N + 1 equally spaced collocation points in ξ with

ξj = 2π( j− 1)
2N + 1

, j= 1, . . . , 2N + 1. (3.8)

We truncate the Fourier series at |n| = N and substitute into (3.4). These equations
are evaluated at 2N + 1 of the collocation points on the upper wave and 2N of
the collocation points on the lower wave. This produces a set of 4N + 1 nonlinear
algebraic equations. Two further equations follow to satisfy the relation (2.9): we
fix β0 = 0 and α0 = H. This yields a total of 4N + 3 nonlinear equations for the
4N + 3 unknowns comprising 4N + 2 Fourier coefficients in (3.6) and the Bernoulli
constant B. The numerical calculations are carried out in MATLAB where the
spatial derivatives are computed spectrally using the fast Fourier transform. The
nonlinear system is solved by Newton iterations using finite differences to compute
the derivatives in the Jacobian. The iterations are deemed to have converged when
LN < δ, with

LN =
{

4N+3∑
i=1

|Fi|2
}1/2

, (3.9)

where Fi is the ith equation in the nonlinear system. Typically we took δ in the range
10−9–10−12.

In the case of symmetric and antisymmetric waves, exact solutions were derived
by Kinnersley (1976) in terms of elliptic functions using a different formulation of
the problem. The transformation between the present formulation and that used by
Kinnersley (1976) is non-trivial and for this reason in the interest of simplicity we
use the numerical method described above to compute the base waves for the stability
calculations in the following sections. In appendix C we discuss the transformation
between the current formulation and that used by Kinnersley. There are no known
exact solutions for the bifurcation branches discovered by Blyth & Vanden-Broeck
(2004) and for this reason we compute them numerically.

Since exact solutions are available for symmetric and antisymmetric waves, they can
be used to check the accuracy of the numerical method. We have calculated the L2
norm of the difference in the Fourier coefficients,

L =
(

M∑
n=1

|a(e)n − a(c)n |2
)1/2

, (3.10)

where a(e)n , a(c)n are the coefficients for the exact and numerically computed waves
respectively and M < N is a chosen level of truncation (we note that in typical
calculations, the level of machine precision is reached when N ≈ 40 at which point
the Fourier coefficients are typically of size 10−16). By way of example, for a
symmetric Kinnersley wave with H = 3.0 and c= 0.751 we obtain L = 6.7× 10−13

with M =N = 32 and L = 1.14× 10−14 with M = 40, N = 128.
In the results to be presented below, we fix H and vary c from its value for a

small-amplitude wave. In doing this, we trace a branch of travelling-wave solutions,
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Stability of capillary waves on fluid sheets 11

eventually arriving at a limiting profile with a trapped bubble as c approaches a critical
value. That this must happen is demonstrated in appendix C.

4. Linear stability
To study the linear stability of the travelling-wave solutions discussed in § 3, we

introduce perturbations, writing

x=X(ξ)+ x̃(ξ , t), y=Y(ξ)+ ỹ(ξ , t), φ= cξ + φ̃(ξ , t), ψ = ψ̃(ξ , t), (4.1a−d)

and

x̂= X̂(ξ)+ χ̃(ξ , t), ŷ= Ŷ(ξ)+ b̃(ξ , t), φ̂= cξ + Φ̃(ξ , t) ψ̂ = Ψ̃ (ξ , t), (4.2a−d)

where variables with a tilde are small. Note that it is not necessary to perturb the
Bernoulli constant since any such perturbation can be absorbed into the perturbation
for the velocity potential. We emphasise that the base waves are periodic with period
2π. Substituting (4.1) and (4.2) into the governing system (2.1)–(2.11) and linearising
by neglecting products of the small perturbations, we obtain on the upper surface,

ỹt = Yξ [T(ψ̃ξ/J0)− S(Ψ̃ξ/Ĵ0)] − Xξ ψ̃ξ/J0, (4.3)

φ̃t + c[S(Ψ̃ξ/Ĵ0)− T(ψ̃ξ/J0)] + cφ̃ξ/J0 + Fx̃ξ +Gỹξ +QYξ x̃ξξ −QXξ ỹξξ = 0, (4.4)

x̃ξ = S(b̃ξ )− T(ỹξ ), φ̃ξ = S(Ψ̃ξ )− T(ψ̃ξ ). (4.5a,b)

where F=−PXξ −QYξξ , G=−PYξ +QXξξ and

P= (6BJ0 − c2)/(2J2
0), Q= 1/J3/2

0 . (4.6a,b)

On the lower surface we find

b̃t = Ŷξ [S(ψ̃ξ/J0)− T(Ψ̃ξ/Ĵ0)] − X̂ξ Ψ̃ξ/Ĵ0, (4.7)

Φ̃t + c[T(Ψ̃ξ/Ĵ0)− S(ψ̃ξ/J0)] + cΦ̃ξ/Ĵ0 + F̂χ̃ξ + Ĝb̃ξ + Q̂Ŷξ χ̃ξξ − Q̂X̂ξ b̃ξξ = 0, (4.8)

χ̃ξ = T(b̃ξ )− S(ỹξ ), Φ̃ξ = T(Ψ̃ξ )− S(ψ̃ξ ), (4.9a,b)

where F̂=−P̂X̂ξ − Q̂Ŷξξ , Ĝ=−P̂Ŷξ + Q̂X̂ξξ and

P̂= (6BĴ0 − c2)/(2Ĵ2
0), Q̂=−1/Ĵ3/2

0 . (4.10a,b)

Invoking Floquet theory (see, for example, Sandstede 2002), we express the
perturbations in the form

x̃
ỹ
φ̃

ψ̃

= eσ teipξ
∞∑

n=−∞
aneinξ ,


χ̃

b̃
Φ̃

Ψ̃

= eσ teipξ
∞∑

n=−∞
âneinξ , (4.11a,b)

where the constant Fourier coefficients an = (an, bn, cn, dn)
T and ân = (ân, b̂n, ĉn, d̂n)

T

and the generally complex growth rate σ = σR + iσI are to be found. If σR > 0
the flow is spectrally unstable and hence linearly unstable. The real parameter p is
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12 M. G. Blyth and E. I. Părău

prescribed. When p= 0, or any integer, the perturbation has the same wavelength as
the steady base wave and the mode is termed superharmonic. For p not an integer,
the perturbation is termed subharmonic and contains modes of wavelength longer than
the steady wave. If p is irrational the perturbation is subharmonic but quasiperiodic
and as such cannot be captured by the present formulation which assumes periodicity.
Following Chen & Saffman (1985), we may restrict p to the range [0, 1) without loss
of generality.

We substitute (4.11) into (4.5) and (4.9) and derive the following relations valid
when n+ p 6= 0,

an = ib̂n cosech([n+ p]H)− ibn coth([n+ p]H), (4.12)
dn = icn coth([n+ p]H)− iĉn cosech([n+ p]H), (4.13)

ân = ib̂n coth([n+ p]H)− ibn cosech([n+ p]H), (4.14)

d̂n = icn cosech([n+ p]H)− iĉn coth([n+ p]H), (4.15)

which we may use to eliminate aj, dj, âj, d̂j. To prepare the system for numerical
computation, we truncate the infinite series in (4.11) at the Nth harmonic by setting
an = ân = 0 for |n|>N. Substituting the truncated forms of (4.11) into the remaining
equations in (4.3)–(4.10) evaluated at the collocation points (3.8), we compile the
matrix system

σLx= Rx, (4.16)

where x = (b−N, . . . , bN, c−N, . . . , cN, b̂−N, . . . , b̂N, ĉ−N, . . . , ĉN)
T, and L and R are

(8N + 4)× (8N + 4) matrices given by

L=

E 0 0 0
0 E 0 0
0 0 E 0
0 0 0 E

 , R =


0 A 0 Â
B cG B̂ cĜ
0 Ω 0 Ω̂

∆ cM ∆̂ cM̂

 , (4.17a,b)

and where all of the submatrices are of size (2N+1)× (2N+1). Here Ek,l= exp{i(l′+
p)ξk} and

Ak,l = (l′ + p)
[

Xξ
J0

q1Ek,l + Yξ (q2µ̂k,l − q1νk,l)

]
,

Bk,l =−(l′ + p)[q1(F+ i(l′ + p)QYξ )+Gi+QXξ (l′ + p)]Ek,l,

Gk,l =−(l′ + p)
[

i
J0

Ek,l + (q1νk,l − q2µ̂k,l)

]
,

Ωk,l = (l′ + p)

[
X̂ξ
Ĵ0

q2Ek,l + Ŷξ (q2ν̂k,l − q1µk,l)

]
,

∆k,l =−(l′ + p)q2[F̂+ i(l′ + p)Q̂Ŷξ ]Ek,l,

Mk,l = (l′ + p)(q2ν̂k,l − q1µk,l)



(4.18)
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and

Âk,l = (l′ + p)
[
−Xξ

J0
q2Ek,l + Yξ (q2νk,l − q1µ̂k,l)

]
,

B̂k,l = (l′ + p)q2[F+ i(l′ + p)QYξ ]Ek,l,

Ĝk,l = (l′ + p)(q2νk,l − q1µ̂k,l),

Ω̂k,l = (l′ + p)

[
− X̂ξ

Ĵ0

q1Ek,l + Ŷξ (q2µk,l − q1ν̂k,l)

]
,

∆̂k,l = (l′ + p)[q1(F̂+ i(l′ + p)Q̂Ŷξ )− Ĝi− Q̂X̂ξ (l′ + p)]Ek,l,

M̂k,l =−(l′ + p)
[

i

Ĵ0

Ek,l + (q1ν̂k,l − q2µk,l)

]
,



(4.19)

where l′= l− (N + 1), and q1= coth([l′+ p]H) and q2= cosech([l′+ p]H). All of the
terms in the matrix elements are evaluated at the collocation points ξ = ξk. Also,

µk,l = i
N∑

j=−N

uj cosech([ j+ l′ + p]H)ei( j+l′+p)ξk , (4.20)

νk,l = i
N∑

j=−N

uj coth([ j+ l′ + p]H)ei( j+l′+p)ξk , (4.21)

µ̂k,l = i
N∑

j=−N

ûj cosech([ j+ l′ + p]H)ei( j+l′+p)ξk , (4.22)

ν̂k,l = i
N∑

j=−N

ûj cosech([ j+ l′ + p]H)ei( j+l′+p)ξk , (4.23)

where uj and ûj are the coefficients in the Fourier expansion of 1/J0 and 1/Ĵ0
respectively. The expressions (4.20)–(4.23) originate in the non-local terms in (4.3),
(4.4), (4.7) and (4.8). To obtain these we have used the facts that for n 6= 0

T(einξ )= i coth(nH)einξ , S(einξ )= i cosech(nH)einξ . (4.24a,b)

We note that when (l′+ p)= 0 in (4.18)–(4.19), we set (l′+ p)coth([l′+ p]H)= 0 and
(l′ + p)cosech([l′ + p]H) = 0. For the sums in (4.20)–(4.23), when j + l′ + p = 0 we
set the corresponding term in each sum to zero in accordance with the principal value
definition of the operators (2.7) and (2.8).

The eigenspectrum has the property that if (i) {σ , p, bj, cj, b̂j, ĉj} is an eigenset then
so are

(ii) {σ ∗,−p, b∗−j, c∗−j, b̂∗−j, ĉ∗−j}, (iii) {−σ ,−p, b−j,−c−j, b̂−j,−ĉ−j},
(iv) {−σ ∗, p, b∗j ,−c∗j , b̂∗j ,−ĉ∗j }.

}
(4.25a−c)

These can be shown using arguments similar to those presented by Tiron & Choi
(2012) for the case of infinite depth. Given the aforementioned symmetry properties,
we may further restrict the range of p for the stability problem to p ∈ [0, 1/2] (see
also Tiron & Choi 2012).
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14 M. G. Blyth and E. I. Părău

When both the upper and the lower surface is flat, Taylor (1959) showed that two
types of small-amplitude perturbation are possible: symmetric waves with troughs on
the upper wave facing crests on the lower wave and antisymmetric waves with troughs
on the upper wave opposing troughs on the lower waves (see also Squire 1953). Taylor
showed that the symmetric waves of period 2π travel at speed cs =√tanh(H/2) and
the antisymmetric waves travel at speed ca = √coth(H/2). As noted above, we are
presently working in a frame of reference travelling with the speed of the basic
periodic wave whose stability we wish to study. We find that for perturbations about
the flat state, σ = σ νs,m or σ νa,m, where

σ νs,m = iν[p′3 tanh(p′H/2)]1/2 − ip′cf , (4.26)

σ νa,m = iν[p′3 coth(p′H/2)]1/2 − ip′cf , (4.27)

where ν =±1, and p′ = p+m for any integer m and cf = cs or ca. Since p ∈ [0, 1/2]
and we have the symmetries in (4.25), it follows that p′ covers the whole real line.
Hence formulae (4.26), (4.27) cover all possible symmetric and antisymmetric waves
with wavenumber p′ written relative to the speed of a symmetric or antisymmetric
wave of unit wavenumber. It should be noted that both of the growth rates in (4.26),
(4.27) are purely imaginary, corresponding to neutral travelling waves.

The generalised eigenvalue problem (4.16) was solved numerically using the inbuilt
MATLAB function eig. The level of truncation N was varied according to the base
wave under scrutiny to ensure accuracy of the computation. An accuracy check is
carried out in § 5. We note that we have verified our numerical results by successfully
comparing against independent calculations performed by Dr Z. Wang (2015, private
communication).

4.1. Time-dependent numerical method
In addition to solving the eigenvalue problem for the growth rates discussed in § 4, we
have also solved the unsteady equations (2.1)–(2.4) numerically using a pseudospectral
scheme. The unknown variables are represented as Fourier expansions and the
spatial derivatives are computed spectrally in Fourier space. The nonlinear terms
are computed in real space and the solution is marched forward in time using the
fourth-order Runge–Kutta method. To handle the non-local operators, we use the fact
that if

f̂ (k)=F [ f (ξ)] =
∫ ∞
−∞

f (ξ)e−ikξ dξ (4.28)

then

T( fξ (ξ))=−F−1(k coth(kH)f̂ ), S( fξ (ξ))=−F−1(k cosech(kH)f̂ ) (k 6= 0),
T( fξ (ξ))= S( fξ (ξ))= 0 (k= 0).

}
(4.29)

5. Results
The solution space for steady waves is parametrised by H and c. In what follows,

we always fix H and vary c to delineate the branch of steady wave profiles and
determine their stability. We have checked that for a large value of H we recover the
results of the stability calculations of Tiron & Choi (2012) for the infinite depth case.
For a fixed finite value of H, symmetric waves bifurcate from c= cs and antisymmetric
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FIGURE 1. Steady symmetric waves (two periods are shown): (a,c) H= 1 and (b,d) H= 4;
(a,b) c − cs = −0.35 and −0.1 respectively; and (c,d) c − cs = −0.5785 and −0.22
respectively. The insets show close-ups near to the high curvature regions. Note that in the
(c,d) inset the upper/lower waves are very close together but are not actually in contact.
The waves have been translated upwards for display purposes.

waves bifurcate from c= ca. In each case, there is a finite range of c values over which
physically meaningful, that is not self-intersecting, steady wave profiles are possible
(see appendix C). At the limit of this range the nonlinear wave profiles always exhibit
a trapped air bubble.

5.1. Superharmonic perturbations, p= 0
We begin with a discussion of superharmonic perturbations to symmetric waves. Some
steady wave profiles are shown in figure 1 for H = 1 and H = 4 for sample values
of the wave speed c− cs. These waves were computed numerically using the method
described in § 3. In both cases the limiting profiles, obtained as the deviation from the
linear wave speed |c− cs| increases, have trapped bubbles. The results of the stability
calculations for the case H = 1 are shown in figure 2. At c≈ cs the amplitude of the
waves is small and the eigenvalues are all purely imaginary, so that the real part of the
growth rate σR is zero for the whole spectrum. The imaginary part of the eigenvalue
spectrum, σI , is plotted against c− cs in figure 2(a) up to c− cs=−0.55. As c− cs→
0, the eigenvalues connect to the theoretical predictions of linear theory (4.26) and
(4.27). The real part of the spectrum is shown in figure 2(b). Bubbles of instability
appear following the coalescence of pairs of imaginary eigenvalues. Specifically each
bubble emerges as two pairs of imaginary eigenvalues collide (in the upper half-plane
and their reflection in the lower half plane) and move out into the complex plane to
form a quartet of complex eigenvalues containing two conjugate pairs fulfilling the
symmetries (4.25), two eigenvalues of which are unstable. Two instability bubbles are
found over the range shown and these are labelled A and B in the figures. In both
panels (a) and (b), we have restricted the range of the imaginary part to 0 < σI <
15, but further computations reveal that more collisions occur beyond this range. The
eigenspectrum at c− cs=−0.35 is shown in figure 3. We note that a large number of
Fourier modes are required to accurately capture the spectrum over the range shown.
The figure indicates that for this value of c− cs, the most unstable mode has growth
rate σ = 0.357+ 26.9i. Of course it may be the case that an eigenvalue with imaginary
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FIGURE 2. Eigenvalues for symmetric waves with H = 1: (a) Imaginary part, σI and
(b) real part σR versus relative wave speed c− cs for superharmonic disturbances, p= 0.
Bubbles of instability are labelled A and B.

N σ (A)

32 0.1715586+ 13.4004857i
64 0.1757873+ 13.4481326i

128 0.1757873+ 13.4481326i
256 0.1757873+ 13.4481326i

TABLE 1. Accuracy check for the unstable eigenvalue on loop A, here labelled σ (A), at
c − cs = −0.35 in figure 2. The tolerance for the Newton iterations for the base-wave
calculation (see § 3) is δ = 10−11.

part off the scale shown in the figure has a larger real part than this value. We note
that the cluster of 16 eigenvalues toward the bottom of the figure lie on an ellipse (a
best-fit ellipse is superimposed in the figure).

The calculations presented in figure 2 were carried out with N= 128. In table 1 we
demonstrate the numerical convergence of the eigenvalue on bubble A in figure 2 at
c − cs = −0.35 as N is increased. Evidently the unstable eigenvalue is computed to
a high degree of accuracy. To further validate the result, we compare the growth rate
of a sample eigenmode from the spectrum found at c − cs = −0.35 with the results
of a time-dependent simulation. We select the mode with complex growth rate σ =
0.1758+ 13.45i and solve the unsteady equations (2.1)–(2.4) as described in § 4.1. We
track the time evolution of a small perturbation from the base wave with the initial
condition

y(ξ , 0)= Y(ξ)+ ỹ(ξ , 0), ỹ(ξ , 0)= ε
[

N∑
n=−N

ỹ1neinξ +
N∑

n=−N

ỹ2neinξ

]
, (5.1a,b)

where the coefficients ỹ1n and ỹ2n correspond to the eigenfunctions associated with σ
and σ ∗ respectively, and we choose ε=10−4 to facilitate comparison with linear theory.
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0
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FIGURE 3. The eigenvalue spectrum for superharmonic disturbances (p=0) for symmetric
waves with H = 1 at c − cs = −0.35. The solid lines are best-fit ellipses. The spectrum
was computed using N = 512. The label A indicates the eigenvalue lying on loop A in
figure 2. Eigenvalues in the lower half are the reflection of those in the upper half-plane.

The symmetry properties of the eigensets (4.25) for p = 0 guarantee that y(ξ , 0) in
(5.1) is real. Analogous initial conditions are imposed for b, φ and φ̂. Consistent
with the eigenvalue calculation, we fix the Bernoulli constant B(t) during the time
integration at the value corresponding to the steady wave solution. The perturbation
ỹ is shown in figure 4(a) at time t = 2.0 (note that in this case b̃ = −ỹ) and is
seen to closely resemble the prediction of linear theory. Figure 4(b) shows the time
evolution of the logarithm of the perturbation wave height, L= log(max(ỹ)−min(ỹ)).
This oscillates while growing at an exponential rate which convincingly matches the
prediction of linear theory (shown with a broken line in the figure).

As H is increased, the bubbles of instability with complex eigenvalues identified
in figure 2 shift to larger values of |c − cs| and eventually beyond the point where
the steady profiles self-intersect and become non-physical. Stability graphs for H = 4
are presented in figure 5. Recall that at c= cs the spectrum is purely imaginary. At
c− cs ≈−0.02 the imaginary eigenvalue, which is smallest in modulus, collides with
its conjugate counterpart at zero and forms a pair of real eigenvalues of opposite sign
producing instability. Again we confirm the instability by performing a time-dependent
simulation. We select the mode with σ =0.06083 at c− cs=−0.1 and apply the initial
condition

y(ξ , 0)= Y(ξ)+ ỹ(ξ , 0), ỹ(ξ , 0)= ε
[

eiξ
N∑

n=−N

ỹ1neinξ + e−iξ
N∑

n=−N

ỹ2neinξ

]
, (5.2a,b)

where the coefficients ỹ1n correspond to the eigenmode for σ when p=1 and ỹ2n to the
eigenmode for σ when p=−1. As before we set ε=10−4 to capture the linear regime.
The results are shown in figure 6(a,b) and confirm excellent agreement between the
linear theory and the unsteady calculation.

As H is increased further, the point of collision at which the real mode emerges in
figure 5(b) moves to the right towards c− cs = 0. At the same time the size of σR at
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FIGURE 4. Symmetric case for H= 1, c− cs=−0.35. Time evolution of a superharmonic
normal mode with σ = 0.1758 + 13.45i, shown with a solid line, using initial condition
(5.1) with ε = 10−4. (a) Shows the perturbation ỹ (note that b̃ = −ỹ) at t = 2 compared
with the eigenfunctions from the linear theory of § 4, shown with circles. (b) Shows
L = log(max(ỹ) − min(ỹ)) versus time. The broken line with slope 0.1758 is shown for
comparative purposes.
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FIGURE 5. Eigenvalues for symmetric waves with H = 4: (a) imaginary part, σI and
(b) real part, σR, versus relative wave speed c− cs for superharmonic disturbances, p= 0.

a fixed c− cs decreases in magnitude. This is clear from the plot in figure 6(c) which
illustrates the decay of the real eigenvalue with increasing H at a rate proportional to
exp(−H/2).

We now turn to superharmonic perturbations for antisymmetric waves. Sample wave
profiles at H = 1 are shown in figure 7. For this value of H, physically meaningful
wave profiles exist over the range 0 6 c − ca 6 0.73. The limiting profiles have
trapped bubbles, as shown in figure 7(b). Over this range, we identify two bubbles
of instability provoked by the collision of purely imaginary eigenvalues. The bubbles
of instability are shown in the upper and lower panels of figure 8(b,c) and the
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FIGURE 6. (a,b) Symmetric case for H = 4, c − cs = −0.1. Time evolution of a
superharmonic normal mode with σ =0.06083 using initial condition (5.1) with ε=0.0001.
(a) Shows the perturbation ỹ (note that b̃= ỹ) at t= 2 compared with the eigenfunctions
from the linear theory of § 4, shown with circles. (b) Shows L = log(max(ỹ) − min(ỹ))
versus time. The broken line with slope 0.06083 is shown for comparative purposes.
(c) Variation of log σR, where σR is the positive real eigenvalue, with H for the fixed
value c− cs =−0.1. The broken line has slope −1/2 and is included for illustration.

collisions are shown in 8(a). As for the symmetric case, we provide corroborating
evidence for the instability by performing a time-dependent simulation using the
eigenfunction associated with the most unstable mode as initial condition via (5.1).
We select the value c− ca = 0.27 for which the most unstable mode has eigenvalue
σ = 0.00765 + 0.99486i. The result of the simulation is shown in figure 9(a,b). As
can be seen from the upper panel, at t= 20 the numerical solution coincides with the
linear eigenfunction, shown with circles. The lower panel shows that the amplitude
of the perturbation wave is growing at a rate in line with prediction of the linear
theory, indicated by the broken line.

In general for the antisymmetric case, non-intersecting steady waves exist for c> ca
when H is smaller than approximately 2.29 and for c 6 ca when H is larger than
approximately 2.34. In a small window between these two extremes we find that non-
intersecting steady waves are present for both c < ca and c > ca. Figure 9(c) shows
an example inside this window at H = 2.3215. Note that this branch was computed
numerically using the present method; we have confirmed that it coincides with that
obtained using Kinnersley’s exact formulae given in appendix D. The diamond in the
figure indicates the presence of a small bubble of superhamonic instability.

5.2. Subharmonic perturbations, p 6= 0
Stability results for subharmonic perturbations with p = 1/3 on the main symmetric
branch for the case H = 1.885 are shown in figure 10. At c− cs = 0 the eigenvalues
are all purely imaginary and are given by (4.26) and (4.27). Two purely imaginary
eigenvalues coalesce at c − cs ≈ −0.03 and another pair at c − cs ≈ −0.05 to create
pairs of complex eigenvalues. Two more such eigenvalue collisions occur in the figure
at c− cs ≈−0.29 and c− cs ≈−0.31.
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FIGURE 7. Steady antisymmetric waves at H = 1 (two periods are shown): (a) c− ca =
0.26 and (b) c− ca= 0.73. The waves have been translated upwards for display purposes.
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FIGURE 8. Antisymmetric waves with H = 1: (a) imaginary part, σI and (b,c) real part
σR versus relative wave speed c − ca for superharmonic disturbances, p = 0. Bubbles of
instability are marked ‘A’ and ‘B’.

Figure 11 shows the eigenvalue spectrum for the antisymmetric branch when
H = 2.0 for subharmonic perturbations with p = 1/3. At c − ca = 0 the eigenvalues
are all purely imaginary. Two of these collide at c − ca ≈ 0.01 to form a complex
pair with non-zero real part, corresponding to instability. Two more purely imaginary
eigenvalues coalesce at c − ca ≈ 0.03 to form a complex pair which splits into two
purely imaginary values again at c − ca ≈ 0.043. One of these merges with another
purely imaginary eigenvalue at c − ca ≈ 0.044 to form a further complex pair. The
eigenvalue spectrum for this case at c− ca= 0.04 is shown in figure 12. The structure
of the spectrum is notable as it features a figure-of-eight type shape together with a
pair of elliptical bubbles (a close-up of the latter in the upper half-plane is shown
in figure 12b). The cruciform structure of the spectrum around the origin is a result
of the quadrifold symmetry of the problem (see (4.25)). Similar features have been
reported by Deconinck & Oliveras (2011) in their work on gravity waves on water
of finite depth.
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FIGURE 9. (a,b) Time evolution of a superharmonic normal mode for H = 1 with
σ = 0.06083 using initial condition (5.1) with ε = 0.0001. The upper panel shows the
perturbation ỹ (solid line) and b̃ (broken line) at t= 20 compared with the eigenfunctions
from the linear theory of § 4, shown with circles. The lower panel shows L= log(max(ỹ)−
min(ỹ)) versus time. The broken line with slope 0.00765 is shown for comparative
purposes. (c) Antisymmetric wave branch for H= 2.3215 showing wave height max(Y)−
min(Ŷ) versus c− ca. The diamond marks a small region of instability.
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FIGURE 10. Subharmonic perturbations, p= 1/3, for the main symmetric solution branch
with H = 1.885. (a) Imaginary part σI and (b) real part σR. The branch terminates at
c− cs =−0.417 where the profiles exhibit trapped bubbles.

The domains of subharmonic instability are shown in figure 13 for symmetric and
antisymmetric waves when H = 2. In both cases for each p 6= 0 there is a critical
value of the wave speed c which separates the stable and unstable regions. When c is
close to the long-wave limit the curves dividing the regions of stability and instability
are very well approximated by quadratic curves, with some exceptions (see figure 13b
inset).

5.3. Bifurcated base wave
Blyth & Vanden-Broeck (2004) found new solutions for capillary waves on a fluid
sheet by identifying bifurcations from the symmetric solution branch. They found that
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FIGURE 11. Subharmonic perturbations, p = 1/3, for the antisymmetric solution branch
with H= 2. (a) Imaginary part σI and (b) real part σR. The branch terminates at c− ca=
0.08 where the profiles feature trapped bubbles.
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FIGURE 12. (a) Eigenvalue spectrum for p∈ (0, 1) for the antisymmetric solution branch
with H = 2 at c − ca = 0.04. (b) Close up of part of (a). In (b) a best-fit ellipse is
superimposed. Note that the eigenvalues are dense around the curves shown in (a) and (b)
but only a finite number of eigenvalues are represented.

there are up to three such bifurcations, depending on the flux through the sheet. They
also reported that there are no bifurcations from the antisymmetric branch. According
to Choi & Camassa (1999), the flux Q∗ in the sheet is related to the conformal
modulus H by Q∗ = cH. It will also be helpful to relate this to the non-dimensional
flux parameter utilised by Blyth & Vanden-Broeck (2004), namely Q = Q∗/(cλ). In
fact we have the relation

H = λQ= 2πQ, (5.3)

where we recall that we have set the period of the waves to be λ = 2π. Assuming
that Q is such that there are three bifurcation branches, we label these branches 1, 2
and 3 to follow the convention of Blyth & Vanden-Broeck (2004).

To detect the bifurcation to branches 1 and 2, Blyth & Vanden-Broeck (2004) found
that it is necessary to include three wave profiles in the computational domain on the
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FIGURE 13. Phase diagrams showing regions of subharmonic stability (S) and instability
(U) for (a) symmetric waves and (b) antisymmetric waves, both for H= 2.0. The broken
lines are fitted quadratic curves. In (b) is shown a blow-up of the irregular behaviour
around p= 0.1.

main branch. To obtain this branch, we therefore work on a computational domain
of size 6π which includes three fundamental waves of period 2π. This permits us
to move from the main symmetric branch onto either branch 1 or branch 2. Moving
along either branch 1 or branch 2 from the bifurcation point, the wave profiles
immediately deform such that they have period 6π. Typical profiles along branches 1
and 2 can be seen in figures 5 and 6 of Blyth & Vanden-Broeck (2004), which are
reported for Q= 0.1. It is important to note that because the base wavelength jumps
by a factor of three as we move from the main solution branch to branch 1 or 2, the
value of Q also changes by a factor of 3.

The bifurcation to branch 3 coincides with the collision of a pair of imaginary
eigenvalues at the origin of the complex σ plane to form a pair of real eigenvalues
of the same magnitude and opposite sign. In figure 14(a) we plot the locus of the
bifurcation point, computed as the point at which the real eigenvalue pair emerges,
traced out as H varies. As H increases the bifurcation point gets closer and closer to
the zero amplitude (flat free surface) steady solution. As H decreases, the bifurcation
to branch 3 occurs further and further along the main branch, corresponding to
increasingly steep, nonlinear waves. However, the bifurcation always occurs before
the steepest wave with a trapped bubble is reached. The curve in figure 14 reaches
a minimum and then begins to turn upwards. This is seen more clearly in the inset,
which shows a magnified portion of the curve around the turning point. Significant
numerical problems are faced when trying to trace the curve to smaller H than shown.

We now focus on the case H = 1.885 (Q = 0.3). In figure 15(a) we show the
eigenvalue spectrum on the main symmetric branch of solutions at two values of c− cs
beyond the bifurcation point. Therefore the collision of the imaginary pair at the origin
of the complex σ plane has already occurred, and a ± real pair of eigenvalues is
visible in the spectrum for each c− cs. The collision occurs at c− cs=−0.274 marking
the bifurcation to branch 3. On this bifurcation branch the wave profiles have the
same wavelength as those on the main branch, namely λ= 2π. We note that the most
unstable mode is either given by a complex eigenvalue (as for c− cs=−0.276 – see
the circular symbols) or by the purely real eigenvalues (as for c− cs =−0.417 – see
the cross symbols). The figure 15(b) shows the locus of the real eigenvalues after the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

58
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.588


24 M. G. Blyth and E. I. Părău

–0.6

–0.5

–0.4

–0.3

–0.2

–0.1

0

0 1 2 3 4 5 6 7 8

0.80 0.85 0.90 0.95 1.00

 –0.568
 –0.570
 –0.572
 –0.574
 –0.576
 –0.578
 –0.580

H

H

FIGURE 14. The locus of the bifurcation to branch 3 as H varies. The inset shows a
close-up near the minimum.
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FIGURE 15. Superharmonic perturbations, p = 0, for H = 1.885 (Q = 0.3). (a,b):
(a) eigenspectrum at c− cs=−0.276 (E) and c− cs=−0.417 (×). (b) σR for the unstable
eigenvalues which emerge from a collision at the origin in complex σ plane and then
move out along the real axis as c− cs decreases. The collision occurs at c− cs=−0.274.
(c) σR along branch 3. The bifurcation point is at c − cs = −0.274. In (c) only the
eigenvalues with |σI|< 550 are plotted. The calculation for (c) was done with N = 512.

collision as c− cs varies. In figure 15(c) we show instability bubbles on the bifurcation
branch 3. This branch terminates at c− cs=−0.294 where the waves enclose trapped
bubbles (for sample profiles see Blyth & Vanden-Broeck (2004)). Only eigenvalues
with |σI|< 550 are plotted. Accurate computation of eigenvalues with larger imaginary
part (in modulus) requires a prohibitively large value of N. While much of the branch
is evidently unstable, we observe several windows of stability (assuming that there are
no unstable eigenvalues in these windows with imaginary part larger than 550).

Figure 16(a) shows the eigenvalues σ for superhamonic perturbations, p = 0,
computed along branch 1 with Q = 0.1. We emphasise the point made above that
as we move off the main branch where Q = 0.3 onto the bifurcation branch, the
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FIGURE 16. Real and imaginary parts of σ for superharmonic perturbations, p= 0, along
(a) branch 1 and (b) branch 2, both for Q= 0.1.

value of Q changes by a factor of three. The bifurcation from the main branch
occurs at the left-hand side of the figure, where c = 1.0716, and the steepest waves
featuring trapped bubbles are encountered at the right-hand side, where c = 1.1375.
In order to relate the eigenvalues computed at the bifurcation point, c = 1.0716
to those computed on the main branch, it is necessary to make the transformation
σ→ 3

√
3σ . This transformation follows according to the time scale used in (3.1) and

the shift in wavelength by a factor of three. We have confirmed that on making this
transformation, all the of eigenvalues at the bifurcation point in the computation on
branch 1 with λ= 2π and p= 0 coincide with those obtained from the union of the
eigensets for p= 0 and p=±1/3 in the main branch computation with λ= 2π/3.

Figure 16(b) shows the eigenvalues σ for superhamonic perturbations, p = 0,
computed along branch 2 with Q= 0.1. In order to see clearly the important features,
we have split the diagram into four panels. The bifurcation point from the main
branch occurs at c = 1.031 and the branch terminates with profiles in self-contact
and with trapped bubbles at c = 1.017. The two left panels shows the merging of
a pair of complex eigenvalues to form a real pair at c = 1.0281. The right panels
show the collision of a pair of purely imaginary eigenvalues, which emerge from the
bifurcation point at c= 1.031, to form a complex pair at c= 1.0217.

6. Concluding remarks
We have conducted a linear stability analysis of steadily travelling waves on fluid

sheets of finite thickness. We have examined the stability of the solutions presented
by Kinnersley (1976) and the additional solutions which appear as bifurcations from
the symmetric Kinnersley branch identified by Blyth & Vanden-Broeck (2004). Our
main result is that both symmetric and antisymmetric Kinnersley waves are in general
unstable to superharmonic perturbations. The waves are also unstable to subharmonic
perturbations. Where we have found instability by computing eigenvalues, we have
confirmed its presence by numerical integration of the full time-dependent equations
from a suitable initial condition. For small-amplitude waves the growth rates in the
linear stability problem are purely imaginary. The instability arises either as a collision
of two purely imaginary eigenvalues at zero or away from zero. The former case is
clearly permitted by the theory of MacKay & Saffman (1986).
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σ νs,m σ νa,m ν m sK

— 0.299 1 2 1
0.474 — −1 −2 −1
0.530 — 1 3 1
0.791 — −1 −1 −1

— 1.049 1 3 1

TABLE 2. Eigenvalues, σ νa,m and σ νs,m and their Krein signatures, sK , according to (4.26) and
(4.27), and (D 7) and (D 8), applied for cf = ca = 1.471, for the flat sheet case c− ca = 0
in figure 8 for H = 1.

The latter case is less clear as MacKay & Saffman stipulate that when two non-zero
eigenvalues collide a necessary condition for instability is that they have different
Krein signatures. Furthermore, MacKay (1987) showed that an eigenvalue cannot
change its signature under the continuous change of a parameter; in our work we
have continuously varied the wave speed c for a fixed H (see for example figure 2).
We have calculated the Krein signature of the purely imaginary eigenvalues for
perturbations about the flat state; details are provided in appendix D. Referring to the
particular case studied in figure 8 for antisymmetric base waves, we have computed
the signature for all eigenvalues shown in the figure at the flat state c− ca = 0 (see
table 2 in appendix D). We find that the two eigenvalues which eventually collide at
c− ca= 0.54 have the same signature at the flat state. If signature is preserved under
the continuous change of a parameter (here c− ca), this would appear to suggest that
the instability bubble labelled B in figure 8 arises through a collision of eigenvalues
of the same signature in direct contradiction of the Mackay & Saffman theory.

We may try to explain this apparent contradiction as follows. First, we note that in
figure 8 the lower of the two eigenvalues which ultimately takes part in the collision,
namely σ νs,m = 0.474, crosses another (σ νs,m = 0.530) at c − ca ≈ 0.1, and that these
two eigenvalues involved in the crossing have opposite signature (see table 2). It
may be the case that signature is exchanged during an eigenvalue crossing, so that
the signature of the lower eigenvalue switches from positive to negative prior to the
crossing at c − ca ≈ 0.1 without producing instability. This possibility appears to be
consistent with the theory of MacKay (1987). Alternatively, it is possible that in our
case signature is not preserved under a continuous parameter change. According to
MacKay (1987), signature is preserved under a continuous parameter change for a
non-degenerate Hamiltonian system. We recall that for such a system there exists a
non-degenerate symplectic form which induces a Hamiltonian flow,

JZt =∇ZH , (6.1)

where H is the Hamiltonian and J is a non-singular matrix. Following Benjamin &
Olver (1982) and Bridges & Donaldson (2011), we assume that we may write our
system (in a frame of reference moving with the base wave) in the Hamiltonian form
(6.1) with Z(ξ , t)= (x, y, x̂, ŷ, φ, φ̂)T and where J is a 6× 6 matrix whose elements
are derivatives of the components of Zξ . Importantly, in this case (6.1) is degenerate
since J is singular; in particular the kernel of J contains the vector Zξ (Bridges &
Donaldson 2011). Accordingly, the associated symplectic form is degenerate and the
conditions of the theory of MacKay (1987) are not satisfied.
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Appendix A. Derivation of the governing equations
We follow closely the derivation given by Choi & Camassa (1999) for the case of

a flat bottom. We note that similar equations have been derived by Viotti et al. (2014)
for a prescribed, fixed bottom shape. Our derivation allows for both an upper and a
lower deformable surface.

Consider one period of the flow in a frame of reference moving at speed c in the
physical x∗y∗ plane within the region 0 6 x∗ 6 λ and b∗(x∗, t) 6 y∗ 6 h∗(x∗, t). We
conformally map this region to the rectangular box in the complex ξη plane, 0 6
ξ 6 λ, −H 6 η 6 0, where H is the conformal modulus which depends on time. We
note that we choose the length of the rectangular box to be the same as the period
in the physical plane. The mapping is given by x∗ + iy∗ = f (ξ , η) + ig(ξ , η), where
the right-hand side is an analytic function in the mapped domain. The mapping is
determined by solving the Laplace problem,

gξξ + gηη = 0,
g= y(ξ , t) at η= 0, g= ŷ(ξ , t) at η=−H,

}
(A 1)

where y(ξ , t) = h∗[x∗(ξ , 0, t), t] and ŷ(ξ , t) = b∗[x∗(ξ , −H, t), t]. It is convenient to
express the mapped surface locations as Fourier series by writing

y(ξ , t)=
∞∑

n=−∞
an(t)einkξ , ŷ(ξ , t)=

∞∑
n=−∞

bn(t)einkξ , (A 2a,b)

where k= 2π/λ. The solution to (A 1) is found readily using the method of separation
of variables, and is given by

g= a0 + (a0 − b0)η/H +
′∑[

an
sinh(nk[η+H])

sinh(nkH)
− bn

sinh(nkη)
sinh(nkH)

]
einkξ , (A 3)

where the primed sum is over n=−∞ to n=∞ excluding n= 0. Making use of the
Cauchy–Riemann equations, it follows that

xξ = 1− T(yξ )+ S(ŷξ ), x̂ξ = 1− S(yξ )+ T(ŷξ ), (A 4a,b)

where x(ξ , t)= x∗(ξ , 0, t) and x̂(ξ , t)= x∗(ξ ,−H, t). The non-local operators T and S
are defined in (2.7) and (2.8).

The fluid problem for the streamfunction Ψ (ξ, η) in the mapped plane is stated as

Ψξξ +Ψηη = 0,
Ψ =ψ(ξ, t) on η= 0, Ψ = ψ̂(ξ , t) on η=−H,

}
(A 5)

where

ψ(ξ, t)=
∞∑

n=−∞
ψneinkξ , ψ̂(ξ , t)=

∞∑
n=−∞

ψ̂neinkξ , (A 6a,b)
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and the coefficients αn, βn are to be found. The solution is

Ψ =ψ0 + (ψ0 − ψ̂0)η/H +
′∑[

ψn
sinh(nk[η+H])

sinh(nkH)
− ψ̂n

sinh(nkη)
sinh(nkH)

]
einkξ . (A 7)

Since Φ + iΨ , where Φ is the velocity potential, is analytic in the mapped domain,
we can extract from (A 7) that

φξ = ψ0 − ψ̂0

H
− T(ψξ )+ S(ψ̂ξ ), φ̂ξ = ψ0 − ψ̂0

H
− S(ψξ )+ T(ψ̂ξ ), (A 8a,b)

where φ(ξ, t)=Φ(ξ, 0, t) and φ̂(ξ , t)=Φ(ξ,−H, t).
The kinematic conditions at the upper and lower surfaces are written in the mapped

plane as
ytxξ − xtyξ =−ψξ , ŷtx̂ξ − x̂tŷξ =−ψ̂ξ . (A 9a,b)

Following Choi & Camassa (1999), we note that zt/zξ is analytic inside the flow
domain, where z= x∗ + iy∗. From (A 9) it follows that

Im
(

zt

zξ

)
η=0

=−ψξ
J
, Im

(
zt

zξ

)
η=−H

=− ψ̂ξ
Ĵ
. (A 10a,b)

The Jacobians J and Ĵ were defined in (2.5). Exploiting the analyticity of zt/zξ and
proceeding via separation of variables as above, we derive the relations

Re
(

zt

zξ

)
η=0

= q(t)+ T(ψξ/J)− S(ψ̂ξ/Ĵ), (A 11)

Re
(

zt

zξ

)
η=−H

= q̂(t)+ S(ψξ/J)− T(ψ̂ξ/Ĵ), (A 12)

for arbitrary functions q(t), q̂(t). In deriving (A 11) we have exploited the fact that
m(ψξ/J)=m(ψ̂ξ/Ĵ), which itself can be demonstrated by applying Cauchy’s theorem
to zt/zξ in the mapped domain. Recall that the average m(·) was defined in (2.9).
Noting that Re(zt/zξ ) = (xtxξ + ytyξ )/J, we solve the first of (A 10) and (A 11) to
obtain

xt = xξ [T(ψξ/J)− S(ψ̂ξ/Ĵ)] + yξψξ/J, (A 13)

yt = yξ [T(ψξ/J)− S(ψ̂ξ/Ĵ)] − xξψξ/J. (A 14)

Similarly we solve the second of (A 10) and (A 12) to find

x̂t = x̂ξ [S(ψξ/J)− T(ψ̂ξ/Ĵ)] + ŷξ ψ̂ξ/Ĵ, (A 15)

ŷt = ŷξ [S(ψξ/J)− T(ψ̂ξ/Ĵ)] − x̂ξ ψ̂ξ/Ĵ. (A 16)

Following Choi & Camassa (1999) and Tiron & Choi (2012) we derive the
Bernoulli equations on the upper surface and lower surface respectively,

φt + [S(ψ̂ξ/Ĵ)− T(ψξ/J)]φξ + 1
2J
(φ2

ξ −ψ2
ξ )+ (γ /ρ)κ =B(t), (A 17)
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φ̂t + [T(ψ̂ξ/Ĵ)− S(ψξ/J)]φ̂ξ + 1

2Ĵ
(φ̂2

ξ − ψ̂2
ξ )− (γ /ρ)κ̂ =B(t), (A 18)

where B(t) is the Bernoulli constant.
The importance of the time dependence of the conformal modulus H has recently

been discussed by Turner & Bridges (2016). Indeed, these authors have demonstrated
that treating H as a constant in a time-dependent calculation leads to erroneous results.
However, for small-amplitude wave calculations such as those presented in this paper,
the error in doing so is of next order and does not compromise the integrity of our
conclusions, which are based on calculations assuming a constant value of H.

Appendix B. Formulations for steady waves
It is instructive to compare our formulation of the problem for steadily propagating

waves with that adopted by Kinnersley (1976). In particular we attempt to obviate
potential confusion over the presence of a Bernoulli constant in our formulation,
and that of others (e.g. Blyth & Vanden-Broeck 2004; Constantin & Strauss 2010;
Blyth, Părău & Vanden-Broeck 2011) and the absence of an explicitly mentioned
Bernoulli constant in Kinnersley’s problem. (The issue of the Bernoulli constant
is also discussed in the recent paper by Vasan & Deconinck 2013.) Kinnersley’s
approach begins in a fixed (x, y) frame of reference relative to the propagating wave
moving in the x direction, for which Bernoulli’s condition on the upper free surface
reads

φ̃t + 1
2
(φ̃2

x + φ̃2
y )+

γ κ

ρ
=C(t), (B 1)

where φ̃ is the velocity potential and C(t) is the Bernoulli constant. The latter is
removed by the transformation φ∗= φ̃− ∫ t

0 C(t′) dt. Changing to a frame of reference
travelling with the wave at the crest speed ck, we introduce the travelling-wave
coordinate z = x − ckt and the shifted potential φ = φ∗ + ckz (compare Groves &
Toland 1997). Substituting into (B 1) we find

1
2
(φ2

z + φ2
y )+

γ κ

ρ
= 1

2
c2

k, (B 2)

where we have set φt = 0 on the assumption of steady flow in the travelling frame.
Kinnersley constructed exact solutions to the Laplace equation for φ̂ subject to the
dynamic boundary condition (B 2).

In our formulation, we solve the problem in the travelling-wave frame with the
dynamic boundary condition,

1
2
(φ2

z + φ2
y )+

γ κ

ρ
=B. (B 3)

where B is the time-independent Bernoulli constant. This equation has been derived
by writing down the Euler momentum equation directly within the travelling-wave
frame and integrating once. Introducing the conformal mapping discussed in § 2 and
in appendix A, we obtain the boundary conditions (3.4) on the upper (and lower)
surfaces.

To rationalise the two approaches, we compare (B 2) with (B 3) and deduce that
c2

k = 2B, so that our Bernoulli constant can be related to the speed of propagation of
the waves relative to some inertial frame of reference.
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Appendix C. Kinnersley’s exact solutions for travelling waves
Kinnersley (1976) presented exact solutions in terms of elliptic functions, working

from a slightly different statement of the problem, as is explained in appendix B.
Kinnersley’s waves are classified as a two-parameter family according to the value of
his parameter B, which is related to the flux in the fluid sheet, and his parameter k ∈
(0, 1), which acts as a kind of measure of the fluid depth. Our waves are parametrised
by c and H. For symmetric waves the transformation from Kinnersley’s parameter set
to ours is effected by taking

H = πB
K(k)

, c=
(

2T
πρck

)
k′2K(k) sn(B, k′) cd(B, k′), (C 1a,b)

where k′=√1− k2, K(k) is the complete elliptic integral of the first kind, and sn and
cd are Jacobi elliptic functions with modulus k′ (see, for example, Byrd & Friedman
1971). Here ck is the crest speed adopted by Kinnersley. It is related to our Bernoulli
constant through ck=

√
2B (see appendix B). Using (35), (38) and (40) of Kinnersley

(1976), we obtain the formula for the symmetric wave crest speed,

ck =
(

4Tκs

ρλ

)1/2 (
1+ κ

2
s a2

s

λ2

)−1/4 (
1+ k2λ2

κ2
s a2

s

)−1/4

,
as

λ
= k
κs

sc(B, k′), (C 2a,b)

where κs = 2E(k)− k′2K(k), E(k) is the complete elliptic integral of the second kind,
as is the wave height defined as the vertical distance from trough to crest, and sc is
a Jacobi elliptic function (recall that we have set λ= 2π). For antisymmetric waves,
the transformation from Kinnersley’s parameter set to ours is given by

H = πB
K(k)

, c=
(

2T
πρck

)
K(k) cs(B, k′) nd(B, k′), (C 3a,b)

where cs and nd are Jacobi elliptic functions. Using Kinnersley’s expressions, we
obtain the formula for the antisymmetric crest speed,

ck =
(

4Tκa

ρλ

)1/2 (
k′2 + κ

2
a a2

a

λ2

)−1/4 (
1− k2λ2

κ2
a a2

a

)−1/4

,
aa

λ
= k
κa

nc(B, k′), (C 4a,b)

with κa = 2E(k) − K(k), where aa is the wave height and nc is a Jacobi elliptic
function.

For our calculations we will fix H and vary c. We now demonstrate that in doing
this we must always arrive at a limiting steady wave profile with a trapped bubble. If
H is fixed it is straightforward to show that B=HK(k)/π is monotonic increasing in k.
It can then be shown that as/λ is a monotonic increasing function of k and becomes
unbounded as k→ k0, where k0 satisfies cn(HK(k0)/π, k′0)= 0 (recall that sc= sn/cn).
Consequently as/λ becomes arbitrarily large as k→ k0, and certainly larger than the
threshold value stipulated by Kinnersley for self-intersecting waves (see his figure 3).
We note that c is a continuous function of k over [0, k0] and so varying c corresponds
to varying k and hence we must always arrive at a limiting wave profile with a trapped
bubble, and non-physical self-intersecting profiles beyond this. A similar argument
holds for antisymmetric waves which must also eventually enclose a trapped bubble
and then self-intersect.
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For completeness, we mention that Kinnersley showed that in the limit k → 1,
symmetric waves approach a limiting profile, described neatly by Billingham (2006)
as the ‘string of beads’ solution, in which a periodic sequence of bulbous fluid beads,
confined by upper and lower surfaces composed of parts of ellipses, are connected
by asymptotically narrow neck regions providing a smooth transition from one bead
to the next (see figure 5 of Kinnersley 1976). The gap between the necks on the
upper and lower surface is asymptotically small, so that the waves are almost in
contact. The wave profiles in this limit do not self-intersect provided that B is in
the range [0, π/4]. At B = π/4 the beads are semi-circular, and for B > π/4, the
profiles self-intersect in the region of the necks. Noting that K→∞ as k→ 1, the
‘string of beads’ solution may be obtained numerically using the present framework
by fixing B and then increasing k towards 1. The corresponding values of H and c in
this process come from the formulae in (C 1). We have confirmed that this procedure
yields elliptic string-of-bead type profiles with neck regions which closely match
Kinnersley’s asymptotic solution (72), although considerable numerical difficulties are
encountered in computing these profiles for values of k very close to one.

Appendix D. Krein signature

Following MacKay & Saffman (1986) we compute the Krein signatures for linear
perturbations by considering the sign of the total energy, E, in one wave period in
a frame of reference travelling at a nominated speed cf . The energy is defined as
E = K + V − cf P, where K is the kinetic energy, V is the potential energy and P
is the momentum transfer in the x direction through the ends of the reference frame.
Individually, these terms are given as

K =
∫

A

1
2
ρ|∇φ|2 dA, V =

∫
SU

γ [(1+ η2
x)

1/2 − 1] dl+
∫

SL

γ [(1+ ζ 2
x )

1/2 − 1] dl,

P=
∫

A

ρφx dA,


(D 1)

where φ is the velocity potential, A is the area between the upper and the lower
surface contained in one wave period, SU, SL are the upper and lower surfaces in
a period, η and ζ are the displacements of the upper and lower surfaces respectively
and l is the arc length along each surface. The Krein signature is positive if E > 0
and negative if E< 0. The signature is particularly simple to calculate in the limit of
small-amplitude sinusoidal waves. Assuming that the undisturbed surfaces are located
at y=±H/2, to leading order we find using the divergence theorem for the K and P
integrals and the symmetry or antisymmetry of the linear waves for the V integral,

K = 1
2
ρ

∫ λ
0
φφy|y=H/2 − φφy|y=−H/2 dx, V = γ

2

∫ λ
0
η2

x dx+ γ
2

∫ λ
0
ζ 2

x dx,

P= ρ
∫ λ

0
ζxφ|y=−H/2 − ηxφ|y=H/2 dx.

 (D 2)

We note that for linear sinusoidal waves, it follows from (2.13) that the conformal
modulus and the physical sheet thickness coincide, so that H= H̄. According to linear
stability theory (Taylor 1959), for waves with real wavenumber k̂ (which we allow
to be positive or negative) and frequency ω̂, travelling on a sheet of fluid otherwise
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at rest, we have the following results. For symmetric waves, we have the dispersion
relation ω̂2 = (γ /ρ)k̂3 tanh(k̂H/2), and

φ = φ0 cosh(k̂y)ei(k̂x−ω̂t) + c.c., η= ik̂φ0ω̂
−1 sinh(k̂H/2)ei(k̂x−ω̂t) + c.c., (D 3a,b)

with ζ = −η, where φ0 is an arbitrary complex constant, and c.c. denotes the
complex conjugate. For antisymmetric waves, the dispersion relation is ω̂2 =
(γ /ρ)k̂3 coth(k̂H/2), and we have

φ = φ0 sinh(k̂y)ei(k̂x−ω̂t) + c.c., η= ik̂φ0ω̂
−1 cosh(k̂H/2)ei(k̂x−ω̂t) + c.c., (D 4a,b)

with ζ = η. For both symmetric and antisymmetric linear waves, we find

K = V = 2πρ|φ0|2 k̂

|k̂| sinh(k̂H), P= 4πρ
k̂2

ω̂|k̂| sinh(k̂H)|φ0|2. (D 5a,b)

The total energy as defined above is

E=K + V − cf P= 4πρ
k̂

ĉ|k̂| sinh(k̂H)|φ0|2(ĉ− cf ), (D 6)

where ĉ= ω̂/k̂. Consistent with § 4, and recalling that we are working in this paper
with steady waves of period 2π, we decompose the wavenumber k̂ by writing k̂ =
p+m, where p is a real number in the range [0, 1) and m is an integer. This allows
us to relate the wave energy, and consequently the Krein signature, to the form of
the perturbations adopted in (4.11). Furthermore, we may meaningfully attribute a
Krein signature for a particular steady wave branch in the limit of zero amplitude by
choosing cf = cs for symmetric waves and cf = ca for antisymmetric waves. Following
MacKay & Saffman (1986), we calculate the Krein signature sK by scrutinising the
sign of E. As in the main body of the paper we set γ = ρ = 1. For symmetric
perturbations we have

sK = sgn[ν Im(σ νs,m)] = sgn
[

ĉ− cf

ĉ

]
= sgn[[k̂3 tanh(Hk̂/2)]1/2 − νk̂cf ], (D 7)

where ν =±1 and k̂ = p+ m and cf = cs or ca. For antisymmetric perturbations, we
have

sK = sgn[ν Im(σ νa,m)] = sgn
[

ĉ− cf

ĉ

]
= sgn[[k̂3 coth(Hk̂/2)]1/2 − νk̂cf ], (D 8)

for cf = cs or ca.
To provide an example, we consider the stability calculation for antisymmetric base

waves with H = 1 shown in figure 8. Using the preceding formulae, we compute the
Krein signatures for the eigenvalues shown in the figure at c− ca= 0. The results are
presented in table 2.
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BLYTH, M. G., PĂRĂU, E. I. & VANDEN-BROECK, J.-M. 2011 Hydroelastic waves on fluid sheets.

J. Fluid Mech. 689, 541–551.
BLYTH, M. G. & VANDEN-BROECK, J.-M. 2004 New solutions for capillary waves on fluid sheets.

J. Fluid Mech. 507, 255–264.
BRIDGES, T. J. & DONALDSON, N. M. 2011 Variational principles for water waves from the

viewpoint of a time-dependent moving mesh. Mathematika 57 (01), 147–173.
BYRD, P. F. & FRIEDMAN, M. D. 1971 Handbook of Elliptic Integrals for Engineers and Scientists.

Springer.
CHEN, B. & SAFFMAN, P. G. 1980 Numerical evidence for the existence of new types of gravity

waves of permanent form on deep water. Stud. Appl. Maths 62, 1–21.
CHEN, B. & SAFFMAN, P. G. 1985 Three-dimensional stability and bifurcation of capillary and

gravity waves on deep water. Stud. Appl. Maths 77 (2), 125–147.
CHOI, W. & CAMASSA, R. 1999 Exact evolution equations for surface waves. J. Engng Mech. 125

(7), 756–760.
CONSTANTIN, A. & STRAUSS, W. 2010 Pressure beneath a stokes wave. Commun. Pure Appl. Maths

63 (4), 533–557.
CRAPPER, G. D. 1957 An exact solution for progressive capillary waves of arbitrary amplitude.

J. Fluid Mech. 2 (06), 532–540.
CROWDY, D. G. 1999 Exact solutions for steady capillary waves on a fluid annulus. J. Nonlinear

Sci. 9 (6), 615–640.
DECONINCK, B. & OLIVERAS, K. 2011 The instability of periodic surface gravity waves. J. Fluid

Mech. 675, 141–167.
DECONINCK, B. & TRICHTCHENKO, O. 2014 Stability of periodic gravity waves in the presence of

surface tension. Eur. J. Mech. (B/Fluids) 46, 97–108.
DIAS, F. & KHARIF, C. 1999 Nonlinear gravity and capillary–gravity waves. Annu. Rev. Fluid Mech.

31 (1), 301–346.
DJORDJEVIC, V. D. & REDEKOPP, L. G. 1977 On two-dimensional packets of capillary–gravity

waves. J. Fluid Mech. 79 (04), 703–714.
DYACHENKO, A. I., KUZNETSOV, E. A., SPECTOR, M. D. & ZAKHAROV, V. E. 1996a Analytical

description of the free surface dynamics of an ideal fluid (canonical formalism and conformal
mapping). Phys. Lett. A 221 (1), 73–79.

DYACHENKO, A. I., ZAKHAROV, V. E. & KUZNETSOV, E. A. 1996b Nonlinear dynamics of the
free surface of an ideal fluid. Plasma Phys. Rep. 22, 829–840.

GROVES, M. D. & TOLAND, J. F. 1997 On variational formulations for steady water waves. Arch.
Rat. Mech. Anal. 137 (3), 203–226.

HAMMACK, J. L. & HENDERSON, D. M. 1993 Resonant interactions among surface water waves.
Annu. Rev. Fluid Mech. 25 (1), 55–97.

HOGAN, S. J. 1985 The fourth-order evolution equation for deep-water gravity–capillary waves.
Proc. R. Soc. Lond. A 402 (1823), 359–372.

HOGAN, S. J. 1988 The superharmonic normal mode instabilities of nonlinear deep-water capillary
waves. J. Fluid Mech. 190, 165–177.

KINNERSLEY, W. 1976 Exact large amplitude capillary waves on sheets of fluid. J. Fluid Mech. 77
(02), 229–241.

KREIN, M. G. 1950 A generalization of some investigations of linear differential equations with
periodic coefficients. Dokl. Akad. Nauk SSSR 73, 445–448.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

58
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.588


34 M. G. Blyth and E. I. Părău

LONGUET-HIGGINS, M. S. 1978 The instabilities of gravity waves of finite amplitude in deep water.
Part I. Superharmonics. Proc. R. Soc. Lond. A 360, 471–488.

MACKAY, R. S. 1987 Stability of equilibria of Hamiltonian systems. In Hamiltonian Dynamical
Systems: A Reprint Selection, pp. 137–153. IOP Publishing.

MACKAY, R. S. & SAFFMAN, P. G. 1986 Stability of water waves. Proc. R. Soc. Lond. A 406
(1830), 115–125.

PEREGRINE, D. H., SHOKER, G. & SYMON, A. 1990 The bifurcation of liquid bridges. J. Fluid
Mech. 212, 25–39.

RAYLEIGH, J. W. S. 1896 The Theory of Sound, vol ii. Macmillan.
SAFFMAN, P. G. 1985 The superharmonic instability of finite-amplitude water waves. J. Fluid Mech.

159, 169–174.
SANDSTEDE, B. 2002 Stability of travelling waves. In Handbook of Dynamical Systems II (ed. B.

Fiedler), pp. 983–1055. North-Holland.
SQUIRE, H. B. 1953 Investigation of the instability of a moving liquid film. British J. Appl. Phys.

4 (6), 167–169.
TAYLOR, G. I. 1959 The dynamics of thin sheets of fluid. Part II. Waves on fluid sheets. Proc. R.

Soc. Lond. A 253 (1274), 296–312.
TIRON, R. & CHOI, W. 2012 Linear stability of finite-amplitude capillary waves on water of infinite

depth. J. Fluid Mech. 696, 402–422.
TURNER, M. R. & BRIDGES, T. J. 2016 Time-dependent conformal mapping of doubly-connected

regions. Adv. Comput. Math. 42, 947–972.
VASAN, V. & DECONINCK, B. 2013 The bernoulli boundary condition for traveling water waves.

Appl. Math. Lett. 26 (4), 515–519.
VIOTTI, C., DUTYKH, D. & DIAS, F. 2014 The conformal-mapping method for surface gravity waves

in the presence of variable bathymetry and mean current. Procedia IUTAM 11, 110–118.
WILKENING, J. & VASAN, V. 2015 Comparison of five methods of computing the Dirichlet–Neumann

operator for the water wave problem. Contemp. Maths 635, 175–210.
WILLIAMSON, J. 1936 On the algebraic problem concerning the normal forms of linear dynamical

systems. Amer. J. Math. 58, 141–163.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

58
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.588

	The stability of capillary waves on fluid sheets
	Introduction
	Problem formulation
	Travelling-wave solutions
	Computational method

	Linear stability
	Time-dependent numerical method

	Results
	Superharmonic perturbations, p=0
	Subharmonic perturbations, p=0
	Bifurcated base wave

	Concluding remarks
	Acknowledgements
	Appendix A. Derivation of the governing equations
	Appendix B. Formulations for steady waves
	Appendix C. Kinnersley's exact solutions for travelling waves
	Appendix D. Krein signature
	References




