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We continue to study the nonlinear fourth-order problem T∆u − D∆2u =
λ/(L + u)2, −L < u < 0 in Ω, u = 0, ∆u = 0 on ∂Ω, where Ω ⊂ R

N is a bounded
smooth domain and λ > 0 is a parameter. When N = 2 and Ω is a convex domain,
we know that there is λc > 0 such that for λ ∈ (0, λc) the problem possesses at least
two regular solutions. We will see that the convexity assumption on Ω can be
removed, i.e. the main results are still true for a general bounded smooth domain Ω.
The main technique in the proofs of this paper is the blow-up argument, and the
main difficulty is the analysis of touch-down behaviour.

1. Introduction

We consider the structure of solutions to the problem

T∆u − D∆2u =
λ

(L + u)2
in Ω,

−L < u < 0 in Ω,

u = ∆u = 0 on ∂Ω,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(Pλ)

where λ > 0 is a parameter, T > 0, D > 0 and L > 0 are fixed constants, and
Ω ⊂ R

N (N � 2) is a bounded smooth domain.
Problem (Pλ) arises in the study of the deflection of charged plates in electrostatic

actuators (see [5]). It is known from [5] that there exists 0 < λc < ∞ such that,
for λ ∈ (0, λc), (Pλ) has a maximal regular solution uλ, which can be obtained
from an iterative scheme. (By a regular solution uλ of (Pλ), we mean that uλ ∈
C4(Ω) ∩ C3(Ω̄) satisfies (Pλ).)

When N = 2 and Ω is a convex domain, Guo and Wei [4] obtained two solutions
of (Pλ) for λ ∈ (0, λc): the maximal and a mountain-pass solution. To obtain such
results, they showed that all the solutions of (Pλ) are regular for λ ∈ (0, λc) by
using the convexity of Ω and some good properties of Green’s function in the two-
dimensional case. In this paper, we will see that the convexity assumption on Ω
can be removed. The main result of this paper is the following theorem.

Theorem 1.1. Let Ω be a bounded smooth domain in R
2. For λ ∈ (0, λc], any

solution of the problem (Pλ) is regular and the following hold.
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(i) For 0 < λ < λc, problem (Pλ) admits two regular solutions: the maximal and
a mountain-pass solution.

(ii) For λ = λc, problem (Pλ) admits a unique regular solution.

(iii) For λ > λc, problem (Pλ) admits no regular solution.

To remove the convexity of Ω, we need some non-existence results for complete
solutions of the equation

−D∆2W = W−2 in R
2. (1.1)

We consider an equivalent form of (Pλ):

−T∆v + D∆2v =
λ

(L − v)2
in Ω,

0 < v < L in Ω,

v = ∆v = 0 on ∂Ω.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(Tλ)

(Tλ is equivalent to (Pλ) by taking u = −v.) Note that v ∈ C4(Ω)∩C3(Ω̄) provided
that v is a regular solution of (Tλ). Moreover, if uλ is a maximal solution of (Pλ),
then vλ is a minimal solution of (Tλ). We also know from the strong maximum
principle that if vλ is a regular solution of (Tλ), then

∆vλ < 0 in Ω. (1.2)

In this paper, we use C to denote a universal constant.

2. Non-existence of entire solution of (1.1)

In this section we will show that (1.1) does not admit a smooth positive solution.
In the following, we present the proof for a general form of (1.1):

−D∆2W = W−p in R
2, (2.1)

where p > 0.

Theorem 2.1. If p > 0, (2.1) admits no classical positive solution.

To prove this theorem, we first show the following lemmas.

Lemma 2.2 (Gilbarg and Trudinger [3]). Assume that w ∈ C2(R2) satisfies ∆w �
0 and w � C in R

2. Then w ≡ const. in R
2.

It follows from lemma 2.2 that if w ∈ C2(R2) satisfies ∆w � 0 and w � C in R
2,

then w ≡ C in R
2. Note that −w satisfies the assumptions in lemma 2.2.

Lemma 2.3. Assume that W ∈ C4(R2) is a positive solution of (2.1). Then ∆W >
0 in R

2.

Proof. We first claim that
∆W � 0 in R

2. (2.2)

https://doi.org/10.1017/S0308210509001061 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210509001061


A fourth-order elliptic equation with negative exponent 539

On the contrary, there is a point x0 ∈ R
2 such that ∆W (x0) < 0. Defining

W̄ (r) =
1

2πr

∫
∂Br(x0)

W dσ and Z̄(r) =
1

2πr

∫
∂Br(x0)

∆W dσ,

since the function s−p is convex for s ∈ (0,∞), we see from Jensen’s inequality that

W−p � W̄−p.

Then
∆W̄ − Z̄ = 0 and ∆Z̄ + D−1W̄−p � 0. (2.3)

Since ∆Z̄ = (1/r)(rZ̄ ′)′ � 0, we see that (rZ̄ ′)′ � 0. Therefore, Z̄ ′(r) � 0 (note
that limr→0 rZ̄ ′(r) = 0). This implies that Z̄(r) � Z̄(0) < 0 for all r > 0 (note that
∆W (x0) < 0). We then obtain that ∆W̄ � Z̄(0). Therefore,

W̄ ′(r) � 1
2rZ̄(0). (2.4)

This implies
W̄ (r) − W̄ (0) � 1

4 Z̄(0)r2.

Since ∆W (x0) < 0, we see that Z̄(0) = ∆W (x0) < 0. We then obtain that W̄ (r) < 0
provided that r is sufficiently large. This is clearly impossible since we have assumed
that W is positive everywhere. Our claim (2.2) holds.

Now we claim
∆W > 0 in R

2. (2.5)

On the contrary, there is x1 ∈ R
2 such that ∆W (x1) = 0. This implies that x1 is

a minimum point of ∆W . Thus, ∆(∆W )(x1) � 0. This contradicts ∆2W (x1) =
−(1/D)W−p(x1) < 0 and our claim (2.5) holds.

Proof of theorem 2.1. Suppose that W > 0 is a classical solution of (2.1). It follows
from lemma 2.3 that

∆W > 0 in R
2.

Since ∆(∆W ) � 0 in R
2, we see from lemma 2.2 and the comments after it that

∆W ≡ const. in R
2.

This is clearly impossible since ∆(∆W ) = −(1/D)W−p. This completes the proof
of theorem 2.1.

Remark 2.4. Arguments similar to those in the proof of theorem 2.1 imply that
the equation

−D∆2Z = f(Z) in R
2

does not admit a classical lower-bound solution Z satisfying f(Z) � 0 and f(Z) �≡ 0
in R

2 and f(s) is a convex function of s ∈ (infΩ Z, supΩ Z).

In the following we consider the equation

D∆2W = h(W ) in R
2, (2.6)

https://doi.org/10.1017/S0308210509001061 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210509001061


540 Z. M. Guo and Z. Y. Liu

where

h(s) =

⎧⎪⎨
⎪⎩

0 for 0 < s � L,

s2

L
− L for s > L.

We have the following theorem.

Theorem 2.5. Equation (2.6) admits no bounded classical positive solution W sat-
isfying sup

R2 W > L. Equation (2.6) admits only the constant positive solution
W ≡ sup

R2 W provided that sup
R2 W � L.

Proof. We use the notation as above. The proof is divided into two steps:

(i) sup
R2 W > L,

(ii) sup
R2 W � L.

For case (i), we show
∆W � 0 in R

2,

which implies that ∆W ≡ const. by lemma 2.2. But this contradicts ∆2W =
h(W ) �≡ 0.

Assume that there is a point x0 ∈ R
2 such that ∆W (x0) > 0. Then

∆W̄ = Z̄, D∆Z̄ � h(W̄ ), Z̄(0) > 0

(note that h is a convex function). Thus, we have (rZ̄ ′)′ � 0 and hence Z̄ ′(r) � 0.
Therefore,

Z̄(r) � Z̄(0) for r > 0.

This implies
(rW̄ ′(r))′ � rZ̄(0)

and
W̄ (r) − W̄ (0) � 1

4 Z̄(0)r2.

This and the fact Z̄(0) > 0 derive a contradiction since W is bounded. Thus ∆W �
0. This completes the proof of (i).

For case (ii), we see that ∆2W ≡ 0 in R
2. Since the proof above implies ∆W � 0,

we see that ∆W ≡ C in R
2 by lemma 2.2. Noting that ∆W � 0, we have C � 0

and W̄ (r) = W̄ (0) + 1
4Cr2. We can obtain C = 0 since W > 0. Thus, ∆W ≡ 0 in

R
2 and

W ≡ sup
R2

W in R
2.

This completes the proof of (ii).

3. Proof of theorem 1.1

In this section, we present the proof of theorem 1.1. Instead of proving theorem 1.1,
we show the following theorem.

Theorem 3.1. Let Ω be a bounded smooth domain in R
2. For λ ∈ (0, λc], any

solution of the problem (Tλ) is regular and the following hold.
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(i) For 0 < λ < λc, problem (Tλ) admits two regular solutions: the minimal and
a mountain-pass solution.

(ii) For λ = λc, problem (Tλ) admits a unique regular solution.

(iii) For λ > λc, problem (Tλ) admits no regular solution.

The proof of (ii) and (iii) is known from [4]. We only need to show (i).
Let H = H2(Ω)∩H1

0 (Ω) be the function space obtained by taking the completion
under the norm of H2(Ω) ∩ H1

0 (Ω) (i.e. ‖ψ‖ = (
∫

Ω
[T |∇ψ|2 + D|∆ψ|2] dx)1/2) for

the set of smooth functions that satisfy the boundary condition ψ = ∆ψ = 0 on
∂Ω. We first obtain the following lemma.

Lemma 3.2. For any fixed λ > 0, if v ∈ H is a positive solution of (Tλ), then there
exists 0 < τ < L depending on λ but independent of v and locally independent of λ
such that v � L − τ in Ω. This also implies that all the positive solutions of (Tλ)
in H are regular.

Proof. The embedding theorem implies that v ∈ Cα(Ω̄) for any 0 < α < 1. Then
there is xλ ∈ Ω such that v(xλ) = maxΩ v.

Suppose that there are λ0 > 0 and sequences {λi} and {vi} ≡ {vλi} with
maxΩ vi = L − εi such that λi → λ0, εi → 0 as i → ∞. Then vi ∈ C4(Ω) ∩ C3(Ω̄).
Denoting xi = xλi

and choosing subsequences if necessary, we consider two cases:

(i) λ
1/4
i ε

−3/4
i dist(xi, ∂Ω) → ∞ as i → ∞;

(ii) λ
1/4
i ε

−3/4
i dist(xi, ∂Ω) � M for any i.

For the first case, making the transformation wi = L − vi, we see that wi with
minΩ wi = εi satisfies the problem

T∆wi − D∆2wi = λiw
−2
i in Ω, wi = L, ∆wi = 0 on ∂Ω.

Note that wi(xi) = minΩ wi. Setting w̃i(y) = wi/εi and y = λ
1/4
i ε

−3/4
i (x − xi), we

see that w̃i with w̃i(0) = minΩi w̃i = 1 and w̃i satisfies the problem

λ
−1/2
i ε

3/2
i T∆yw̃i − D∆2

yw̃i = w̃−2
i in Ωi, w̃i =

L

εi
, ∆yw̃i = 0 on ∂Ωi, (3.1)

where Ωi = {y = λ
1/4
i ε

−3/4
i (x − xi) : x ∈ Ω}. Note that w̃i � 1 and w̃−2

i � 1 in Ωi.
It follows from the regularity of the operator T∆ − D∆2 that w̃i → W in C3

loc(R
2)

as i → ∞, where W ∈ C4(R2) with W (0) = 1 and W � 1 in R
2 satisfies the

equation
−D∆2W = W−2 in R

2, W (0) = 1. (3.2)

It is known from theorem 2.1 that this is impossible.
For the second case, we denote ηi ∈ ∂Ω such that dist(xi, ηi) = dist(xi, ∂Ω). We

see that ηi → η0 ∈ ∂Ω as i → ∞ (we can choose subsequences if necessary). We
also see that

−T∆vi + D∆2vi = λiε
−3
i

(
L − vi

ε
3/2
i

)−2

in Ω, vi = ∆vi = 0 on ∂Ω. (3.3)
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Noticing that (L − vi)/εi � 1, we see that

L − vi

ε
3/2
i

= ε
−1/2
i

L − vi

εi
� 1 and

L − vi

ε
3/2
i

→ +∞ in Ω as i → ∞.

We also see from (1.2) that ∆vi < 0 in Ω. Making the transformations:

y = λ
1/4
i ε

−3/4
i (x − ηi), v̂i(y) = vi,

we see that v̂i satisfies the problem

−Tλ
−1/2
i ε

3/2
i ∆y v̂i + D∆2

y v̂i =
(

L − v̂i

ε
3/2
i

)−2

in Ω̂i, v̂i = ∆y v̂i = 0 on ∂Ω̂i,

(3.4)
where Ω̂i = {y = λ

1/4
i ε

−3/4
i (x − ηi) : x ∈ Ω}. Since ((L− v̂i)/ε

3/2
i )−2 � 1 in Ω̂i, the

regularity of ∆2 implies that |∆y v̂i| is uniformly bounded. By the regularity of ∆2

and a similar blow-up argument to that in [1], we see that v̂i → V̂ in C3
loc(Γ ) as

i → ∞ (we can choose subsequences if necessary) and V̂ ∈ C4(Γ ) ∩ C3(Γ ∪ ∂Γ )
with V̂ � L, |∆V̂ | being bounded and ∆V̂ � 0 in Γ satisfies the problem

D∆2V̂ ≡ 0 in Γ, V̂ = ∆V̂ = 0 on ∂Γ, (3.5)

where Γ = {y = (y1, y2) ∈ R
2 : y1 > 0} and there is an η ∈ Γ with dist(0, η) � M

such that V̂ (η) = L. Using Green’s expression of the solution h of the problem
∆h = 0 in Γ and h = 0 on ∂Γ , we easily see that h ≡ 0 in Γ . This implies that
∆V̂ ≡ 0 in Γ and hence V̂ ≡ 0 in Γ . But this contradicts the fact that V̂ (η) = L.
These contradictions complete the proof of this lemma.

Proof of theorem 3.1. We modify the nonlinearity as in [4]. Since the nonlinearity
g(v) = 1/(L − v)2 is singular at v = L, we need to consider a regularized C1

nonlinearity gε(v), 0 < ε < L, of the following form:

gε(v) =

⎧⎪⎪⎨
⎪⎪⎩

1
(L − v)2

, v � L − ε,

1
ε2 − L − ε

ε3 +
1

ε3(L − ε)
v2, v > L − ε.

For λ ∈ (0, λc), we study the regularized semilinear elliptic problem:

−T∆v + D∆2v = λgε(v) in Ω, v = ∆v = 0 on ∂Ω. (3.6)

From a variational viewpoint, the action functional associated to (3.6) is

Jε,λ(v) = 1
2

∫
Ω

[T |∇v|2 + D(∆v)2] dx − λ

∫
Ω

Gε(v) dx, v ∈ H,

where
Gε(v) =

∫ v

−∞
gε(s) ds.

By arguments similar to those in the proof (i) of theorem 7.1 in [4] (see also lem-
mas 7.3 and 7.4 in [4]), we can obtain a mountain-pass solution Vε,λ ∈ H of (3.6)
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such that
‖Vε,λ‖H � C, (3.7)

where C > 0 is independent of ε. The embedding H ↪→ C0(Ω̄) implies Vε,λ � C in
Ω. Moreover, since Vε,λ ∈ H is a solution of (3.6), multiplying Vε,λ on both sides
of (3.6), we see from (3.7) that∫

Ω

gε(Vε,λ)Vε,λ dx � C

λ
, (3.8)

where C > 0 is independent of ε.
We want to show that

Vε,λ � L − ε in Ω. (3.9)

This implies that Vε,λ is a solution of (Tλ).
We claim that if there is a sequence {εi} with εi → 0 as i → ∞ such that

maxΩ Vεi,λ > L − εi, then

max
Ω

Vεi,λ → L as i → ∞. (3.10)

To show this claim, we denote Vεi,λ(xi) = maxΩ Vεi,λ. Since Vεi,λ � C in Ω, we
see from the regularity of ∆2 that Vεi,λ ∈ C4(Ω) ∩ C3(Ω̄). The maximum principle
implies that

Vεi,λ > 0, ∆Vεi,λ < 0 in Ω. (3.11)

We first show
λ1/4ε

−3/4
i dist(xi, ∂Ω) → ∞ as i → ∞. (3.12)

(We can choose subsequences if necessary.) On the contrary, we have that

λ1/4ε
−3/4
i dist(xi, ∂Ω) � M ∀i. (3.13)

Writing the equation of Vεi,λ as

−T∆Vεi,λ + D∆2Vεi,λ = λε−3
i (ε3

i gε(Vεi,λ)) in Ω, Vεi,λ = ∆Vεi,λ = 0 on ∂Ω,
(3.14)

and setting
y = λ1/4ε

−3/4
i (x − ηi), Ṽi,λ(y) = Vεi,λ(x),

where ηi ∈ ∂Ω such that dist(xi, ηi) = dist(xi, ∂Ω), by blow-up arguments similar
to those in the second case of the proof of lemma 3.2, we see that Ṽi,λ → Ṽ in
C3

loc(Γ ) as i → ∞. Moreover, Ṽ ∈ C4(Γ ) with L � maxΓ Ṽ � C, ∆Ṽ � 0, and
|∆Ṽ | being bounded, satisfies

D∆2Ṽ = h(Ṽ ) in Γ, Ṽ = ∆Ṽ = 0 on ∂Γ, (3.15)

where

h(s) =

⎧⎪⎨
⎪⎩

0 for 0 < s � L,

s2

L
− L for s > L.

(3.16)
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Moreover, there is η ∈ Γ with dist(0, η) � M such that Ṽ (η) = maxΓ Ṽ . Note that
h ∈ C1((0,∞)\{L}) is a non-decreasing function. Let W̃ = −∆Ṽ . Then (3.15) can
be written as

−∆Ṽ = W̃ in Γ,

−∆W̃ =
1
D

h(Ṽ ) in Γ,

Ṽ = W̃ = 0 on ∂Γ.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.17)

There are two cases: (i) maxΓ Ṽ = L; (ii) maxΓ Ṽ > L.
For the first case, we see that Ṽ satisfies

∆2Ṽ = 0 in Γ, Ṽ = ∆Ṽ = 0 on ∂Γ.

It is easily seen that Ṽ ≡ 0 in Γ . This is clearly impossible.
For the second case, theorem 4 of [2] implies that

∂Ṽ

∂y1
> 0 and

∂W̃

∂y1
> 0 for y1 > 0. (3.18)

This contradicts Ṽ (η) = maxΓ Ṽ . (Note that h ∈ C1((0,∞) \ {L}) here. Since h
is Lipschitz continuous, arguments in the proof of theorem 4 of [2] still work for
our case. The continuous differentiability assumption in [2] can be avoided if the
equation system does not admit semitrivial solutions and the nonlinearities are C1

near zero. This is true for our case here.) Thus, (3.12) holds.
Now, making the transformations

y = λ1/4ε
−3/4
i (x − xi), V̂i,λ(y) = Vεi,λ(x),

we see from (3.12) that V̂i,λ → V̂ in C3
loc(R

2) as i → ∞ (we can choose subsequences
if necessary). We also know that L � V̂ (0) = maxR2 V̂ � C, |∆V̂ | � C, and V̂ sat-
isfies the equation

D∆2V̂ = h(V̂ ) in R
2, (3.19)

where the function h(s) is defined in (3.16). Arguments similar to those in case (i)
of the proof of theorem 2.5 implies that V̂ (0) = L. It is also known from theorem 2.5
that V̂ ≡ L in R

2. This implies that

Vεi,λ(xi) = max
Ω

Vεi,λ → L as i → ∞ (3.20)

and our claim (3.10) holds.
Now we show (3.9). On the contrary, there is a sequence {εi} with εi → 0 as

i → ∞ such that maxΩ Vεi,λ > L − εi. Thus, (3.20) holds. There are three cases to
consider (we can choose subsequences if necessary):

(i) Vεi,λ(xi) = L + ξi,

(ii) Vεi,λ(xi) = L for all i,

(iii) Vεi,λ(xi) = L − ξi with ξi < εi,

where ξi > 0 and ξi → 0 as i → ∞.
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For the first case, we show

εi

ξi
�→ 0 as i → ∞. (3.21)

(We can choose subsequences if necessary.) On the contrary, there is a sequence
{εi/ξi} such that εi/ξi → 0 as i → ∞. Set Zi = L−Vi, where {Vi} ≡ {Vεi,λ}. Then
Zi(xi) := minΩ Zi = −ξi and Zi satisfies

T∆Zi − D∆2Zi = λki(Zi) in Ω, Zi = L,∆Zi = 0 on ∂Ω,

where

ki(Zi) =

⎧⎪⎪⎨
⎪⎪⎩

1
Z2

i

, Zi � εi,

1
ε2

i

+
2(εi − Zi)

ε3
i

+
(εi − Zi)2

ε3
i (L − εi)

, Zi < εi.

Making the transformations Z̃i(y) = Zi/ξi and y = ε
−3/4
i (x − xi), we can see that

Z̃i(0) = minΩ Z̃i = −1 and Z̃i satisfies the problem

ε
3/2
i T∆yZ̃i−D∆2

yZ̃i = λk̃i(Z̃i) in Ω̃i, Z̃i = L/ξi, ∆yZ̃i = 0 on ∂Ω̃i, (3.22)

where Ω̃i = {y = ε
−3/4
i (x − xi) : x ∈ Ω} and

k̃i(Z̃i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
Z̃2

i

(
εi

ξi

)3

, Z̃i � εi

ξi
,

3
(

εi

ξi

)
− 2Z̃i +

ε2
i

ξi(L − εi)
− 2

(
εi

L − εi

)
Z̃i +

(
ξi

L − εi

)
Z̃2

i , Z̃i <
εi

ξi
.

Since εi/ξi → 0 as i → ∞, we see that {|k̃i(Z̃i)|} is bounded. Thus, it follows
from the regularity of ∆2 that Z̃i → Z̃ in C3

loc(R
2) (note that (3.12) holds) with

Z̃(0) = minR2 Z̃ = −1, and Z̃ satisfies the equation

−D∆2Z̃ = λk̃(Z̃) in R
2,

where

k̃(Z̃) =

{
0, Z̃ � 0,

−2Z̃, Z̃ < 0.

It is known from remark 2.4 that Z̃ does not exist. This contradiction implies that
(3.21) holds.

Now we show that
εi

ξi
�→ ∞ as i → ∞. (3.23)

On the contrary, making the transformations Ẑi(y) = Zi/εi and y = ε
−3/4
i (x − xi),

we see that Ẑi(0) = minΩ Ẑi = −ξi/εi (→ 0 as i → ∞) and Ẑi satisfies the problem

ε
3/2
i T∆yẐi−D∆2

yẐi = λk̂i(Ẑi) in Ω̂i, Ẑi = L/εi, ∆yẐi = 0 on ∂Ω̂i, (3.24)
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where Ω̂i = {y = ε
−3/4
i (x − xi) : x ∈ Ω} and

k̂i(Ẑi) =

⎧⎪⎪⎨
⎪⎪⎩

1
Ẑ2

i

, Ẑi � 1,

3 − 2Ẑi +
εi

L − εi
− 2

(
εi

L − εi

)
Ẑi +

(
εi

L − εi

)
Ẑ2

i , Ẑi < 1.

It is easily seen that {|k̂i(Ẑi)|} is bounded. Therefore, the regularity of ∆2 implies
that Ẑi → Ẑ in C3

loc(R
2) as i → ∞ with Ẑ(0) = minR2 Ẑ = 0, and Ẑ satisfies the

equation
−D∆2Ẑ = λk̂(Ẑ) in R

2,

where

k̂(Ẑ) =

{
Ẑ−2, Ẑ � 1,

3 − 2Ẑ, Ẑ < 1.

We know from remark 2.4 that Ẑ does not exist. This contradiction implies that
(3.23) holds.

Equations (3.21) and (3.23) imply that there exists 0 < A1 < ∞ such that
εi

ξi
→ A1 as i → ∞. (3.25)

(We can choose subsequences if necessary.) Making the transformations Z
¯ i(y) =

Zi/ξi and y = ξ
−3/4
i (x − xi), we see that Z

¯ i(0) = minΩ Z
¯ i = −1 and Z

¯ i satisfies
the problem

ξ
3/2
i T∆yZ

¯ i −D∆2
yZ
¯ i = λk

¯i(Z¯ i) in Ω
¯ i, Z

¯ i = L/ξi, ∆yZ
¯ i = 0 on Ω

¯ i, (3.26)

where Ω
¯ i = {y = ξ

−3/4
i (x − xi) : x ∈ Ω} and

k
¯i(Z¯ i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
Z
¯

2
i

, Z
¯ i � εi

ξi
,

3
(

ξi

εi

)2

− 2
(

ξi

εi

)3

Z
¯ i +

ξ2
i

εi(L − εi)

−2
(

ξ3
i

ε2
i (L − εi)

)
Z
¯ i +

(
ξ4
i

ε3
i (L − εi)

)
Z
¯

2
i , Z

¯ i <
εi

ξi
.

Note that {|k
¯i(Z¯ i)|} is bounded and ξ

−3/4
i dist(xi, ∂Ω) → ∞ as i → ∞ (see (3.12)).

Thus, the regularity of ∆2 implies that Z
¯ i → Z

¯
in C3

loc(R
2) as i → ∞ with Z

¯
(0) =

minR2 Z
¯

= −1, and Z
¯

satisfies the equation

−D∆2Z
¯

= λk
¯
(Z
¯
) in R

2,

where

k
¯
(Z
¯
) =

⎧⎪⎨
⎪⎩

Z
¯

−2, Z
¯

� A1,

3
A2

1
− 2

A3
1
Z
¯
, Z

¯
< A1.

We know from remark 2.4 that Z
¯

does not exist. This contradiction implies that
case (i) does not occur.
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For case (ii), we make the transformations Ẑi(y) = Zi/εi and y = ε
−3/4
i (x − xi).

We see that Ẑi(0) = minΩ Ẑi = 0 and Ẑi satisfies the problem

ε
3/2
i T∆yẐi−D∆2

yẐi = λk̂i(Ẑi) in Ω̂i, Ẑi = L/εi, ∆yẐi = 0 on ∂Ω̂i, (3.27)

where Ω̂i = {y = ε
−3/4
i (x − xi) : x ∈ Ω} and

k̂i(Ẑi) =

⎧⎪⎪⎨
⎪⎪⎩

1
Ẑ2

i

, Ẑi � 1,

3 − 2Ẑi +
εi

L − εi
− 2

(
εi

L − εi

)
Ẑi +

(
εi

L − εi

)
Ẑ2

i , Ẑi < 1.

It is easily seen that {|k̂i(Ẑi)|} is bounded. Therefore, the regularity of ∆2 implies
that Ẑi → Ẑ in C3

loc(R
2) as i → ∞ with Ẑ(0) = minR2 Ẑ = 0, and Ẑ ∈ C4(R2)

satisfies the equation
−D∆2Ẑ = λk̂(Ẑ) in R

2,

where

k̂(Ẑ) =

{
Ẑ−2, Ẑ � 1,

3 − 2Ẑ, Ẑ < 1.

We know from remark 2.4 that Ẑ does not exist. This contradiction implies that
case (ii) does not occur.

For case (iii), we see that ξi < εi for all i since Vi(xi) > L − εi. We first show
that

εi

ξi
�→ ∞ as i → ∞. (3.28)

(We can choose subsequences if necessary.) On the contrary, making the transfor-
mations Ẑi(y) = Zi/εi and y = ε

−3/4
i (x − xi), we see that Ẑi(0) = minΩ Ẑi = ξi/εi

(→ 0 as i → ∞) and Ẑi satisfies the problem

ε
3/2
i T∆yẐi−D∆2

yẐi = λk̂i(Ẑi) in Ω̂i, Ẑi = L/εi, ∆yẐi = 0 on ∂Ω̂i, (3.29)

where Ω̂i = {y = ε
−3/4
i (x − xi) : x ∈ Ω} and

k̂i(Ẑi) =

⎧⎪⎪⎨
⎪⎪⎩

1
Ẑ2

i

, Ẑi � 1,

3 − 2Ẑi +
εi

L − εi
− 2

(
εi

L − εi

)
Ẑi +

(
εi

L − εi

)
Ẑ2

i , Ẑi < 1.

It is easily seen that {|k̂i(Ẑi)|} is bounded. Therefore, the regularity of ∆2 implies
that Ẑi → Ẑ in C3

loc(R
2) as i → ∞ with Ẑ(0) = minR2 Ẑ = 0, and Ẑ ∈ C4(R2)

satisfies the equation
−D∆2Ẑ = λk̂(Ẑ) in R

2,

where

k̂(Ẑ) =

{
Ẑ−2, Ẑ � 1,

3 − 2Ẑ, Ẑ < 1.
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We know from remark 2.4 that Ẑ does not exist. This contradiction implies that
(3.28) does not hold. Therefore, there exists A2 � 1 such that

εi

ξi
→ A2 as i → ∞. (3.30)

(We can choose subsequences if necessary.) Making the transformations Z
¯ i(y) =

Zi/ξi and y = ξ−3/4(x − xi), we see that Z
¯ i(0) = minΩ Z

¯ i = 1 and Z
¯ i � 1 satisfies

the problem

ξ
3/2
i T∆yZ

¯ i −D∆2
yZ
¯ i = λk

¯i(Z¯ i) in Ω
¯ i, Z

¯ i = L/ξi, ∆yZ
¯ i = 0 on Ω

¯ i, (3.31)

where Ω
¯ i = {y = ξ

−3/4
i (x − xi) : x ∈ Ω} and

k
¯i(Z¯ i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Z
¯

2
i

, Z
¯ i � εi

ξi
,

3
(

ξi

εi

)2

− 2
(

ξi

εi

)3

Z
¯ i +

ξ2
i

εi(L − εi)

−2
(

ξ3
i

ε2
i (L − εi)

)
Z
¯ i +

(
ξ4
i

ε3
i (L − εi)

)
Z
¯

2
i , Z

¯ i <
εi

ξi
.

Note that {|k
¯i(Z¯ i)|} is bounded and ξ

−3/4
i dist(xi, ∂Ω) → ∞ as i → ∞ (see (3.12)).

Thus, the regularity of ∆2 implies that Z
¯ i → Z

¯
in C3

loc(R
2) as i → ∞ with Z

¯
(0) =

minR2 Z
¯

= 1, and Z
¯

satisfies the equation

−D∆2Z
¯

= λk
¯
(Z
¯
) in R

2,

where
k
¯
(Z
¯
) = Z

¯
−2

provided A2 = 1 and

k
¯
(Z
¯
) =

⎧⎪⎨
⎪⎩

Z
¯

−2, Z
¯

� A2,

3
A2

2
− 2

A3
2
Z
¯
, Z

¯
< A2,

provided A2 > 1. We know from theorem 2.1 and remark 2.4 that Z
¯

does not exist.
This contradiction implies that case (iii) does not occur.

The above arguments imply that

max
Ω

Vε,λ � L − ε

for ε sufficiently small. Actually, arguments similar to those above imply that there
exists δ > 0 independent of ε such that

Vε,λ � L − δ in Ω,

for ε sufficiently small. This completes the proof of this theorem.

Remark 3.3. We can also obtain the same asymptotic behaviour as in theorem 8.2
of [4] of the mountain-pass solutions as λ → 0+ by arguments similar to those in
the proof of theorem 8.2 of [4].
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