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We continue to study the nonlinear fourth-order problem TAu — DA2y =
MN(L+u)?, —L<u<0in 2, u=0, Au=0 on 982, where 2 C RY is a bounded
smooth domain and A > 0 is a parameter. When N = 2 and {2 is a convex domain,
we know that there is Ac > 0 such that for A € (0, Ac) the problem possesses at least
two regular solutions. We will see that the convexity assumption on {2 can be
removed, i.e. the main results are still true for a general bounded smooth domain (2.
The main technique in the proofs of this paper is the blow-up argument, and the
main difficulty is the analysis of touch-down behaviour.

1. Introduction

We consider the structure of solutions to the problem

TAu — DA%y = A in £2,
(L +u)?
—L<u<0 in £2, ()
u=Au=0 on 042,

where A > 0 is a parameter, 7' > 0, D > 0 and L > 0 are fixed constants, and
2 C RY(N > 2) is a bounded smooth domain.

Problem (Py) arises in the study of the deflection of charged plates in electrostatic
actuators (see [5]). It is known from [5] that there exists 0 < A, < oo such that,
for A € (0,Ac), (Py) has a maximal regular solution uy, which can be obtained
from an iterative scheme. (By a regular solution uy of (Py), we mean that uy €
CH(02) N C3(N2) satisfies (Py).)

When N = 2 and 2 is a convex domain, Guo and Wei [4] obtained two solutions
of (Py) for A € (0, A\c): the maximal and a mountain-pass solution. To obtain such
results, they showed that all the solutions of (Py) are regular for A € (0,\.) by
using the convexity of {2 and some good properties of Green’s function in the two-
dimensional case. In this paper, we will see that the convexity assumption on {2
can be removed. The main result of this paper is the following theorem.

THEOREM 1.1. Let 2 be a bounded smooth domain in R%. For X € (0,)\.], any
solution of the problem (Py) is reqular and the following hold.
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(i) For 0 < A < A, problem (Py) admits two regular solutions: the mazximal and
a mountain-pass solution.

(i1) For A = A¢, problem (Py) admits a unique regular solution.
(iii) For A > Ac, problem (Py) admits no regular solution.

To remove the convexity of 2, we need some non-existence results for complete
solutions of the equation

~DA’W =W™? inR?% (1.1)

We consider an equivalent form of (Py):

—TAv+ DA%y = A in £2,
(L —v)?
0<v<lL in 2, (T3
v=Av =0 on 0f2.

(T is equivalent to (Py) by taking u = —v.) Note that v € C*(£2)NC3(§2) provided
that v is a regular solution of (7). Moreover, if u) is a maximal solution of (P),
then vy is a minimal solution of (T)). We also know from the strong maximum
principle that if vy is a regular solution of (7)), then

Avy <0 in £2. (1.2)

In this paper, we use C to denote a universal constant.

2. Non-existence of entire solution of (1.1)

In this section we will show that (1.1) does not admit a smooth positive solution.
In the following, we present the proof for a general form of (1.1):

—~DA’W = WP in R? (2.1)
where p > 0.
THEOREM 2.1. Ifp >0, (2.1) admits no classical positive solution.
To prove this theorem, we first show the following lemmas.

LEMMA 2.2 (Gilbarg and Trudinger [3]). Assume that w € C?(R?) satisfies Aw >
0 and w < C in R%2. Then w = const. in R2.

It follows from lemma 2.2 that if w € C?(R?) satisfies Aw < 0 and w > C in R?,
then w = C in R?. Note that —w satisfies the assumptions in lemma 2.2.

LEMMA 2.3. Assume that W € C*(R?) is a positive solution of (2.1). Then AW >
0 in R2.

Proof. We first claim that
AW >0 in R% (2.2)
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On the contrary, there is a point g € R? such that AW (z) < 0. Defining
- 1 - 1
W(r) = —/ Wdo and Z(r)= —/ AW do,
27'(7" 8Br(ac0) 27’(7" aBT(Qfo)

since the function s~P is convex for s € (0, 00), we see from Jensen’s inequality that

W-r > WP,

Then
AW -Z=0 and AZ+ D 'W™?<0. (2.3)

Since AZ = (1/r)(rZ')" < 0, we see that (rZ’)" < 0. Therefore, Z'(r) < 0 (note
that lim, o 7Z’(r) = 0). This implies that Z(r) < Z(0) < 0 for all 7 > 0 (note that
AW (xg) < 0). We then obtain that AW < Z(0). Therefore,

W' (r) < 2rZ(0). (2.4)

N

This implies

W(r)—W(0) < 2Z(0)r*.
Since AW (xg) < 0, we see that Z(0) = AW (zg) < 0. We then obtain that W (r) < 0
provided that r is sufficiently large. This is clearly impossible since we have assumed

that W is positive everywhere. Our claim (2.2) holds.
Now we claim

AW >0 in R% (2.5)

On the contrary, there is x; € R? such that AW (z1) = 0. This implies that z; is
a minimum point of AW. Thus, A(AW)(z1) > 0. This contradicts A2W (z;) =
—(1/D)W~P(x1) < 0 and our claim (2.5) holds. O

Proof of theorem 2.1. Suppose that W > 0 is a classical solution of (2.1). It follows
from lemma 2.3 that

AW >0 inR%
Since A(AW) < 0 in R?, we see from lemma 2.2 and the comments after it that
AW = const. in R?.

This is clearly impossible since A(AW) = —(1/D)W~P. This completes the proof
of theorem 2.1. O

REMARK 2.4. Arguments similar to those in the proof of theorem 2.1 imply that
the equation
—DA*Z = f(Z) inR?

does not admit a classical lower-bound solution Z satisfying f(Z) > 0 and f(Z) £ 0
in R? and f(s) is a convex function of s € (inf Z,sup,, Z).

In the following we consider the equation

DA*W = h(W) in R?, (2.6)
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where
0 for 0 < s< L,
h(s) = q 42
7 L fors> L.

We have the following theorem.

THEOREM 2.5. Equation (2.6) admits no bounded classical positive solution W sat-
isfying supg: W > L. Equation (2.6) admits only the constant positive solution
W = supp: W provided that supg W < L.

Proof. We use the notation as above. The proof is divided into two steps:
(i) supge W > L,
(11) SUPR2 w S L.

For case (i), we show

AW <0 in R?
which implies that AW = const. by lemma 2.2. But this contradicts A2W =
h(W) £ 0.
Assume that there is a point zg € R? such that AW (z) > 0. Then

AW =Z,  DAZ > h(W), (0) >0

A
(note that h is a convex function). Thus, we have (rZ’)’ > 0 and hence Z’(r) > 0.
Therefore,

Z(r) > Z(0) forr > 0.
This implies

(rW'(r)) = rZ(0)
and
W(r)—W(0) > +Z(0)r*.
This and the fact Z(0) > 0 derive a contradiction since W is bounded. Thus AW <
0. This completes the proof of (i).

For case (ii), we see that A2V = 0 in R2. Since the proof above implies AW < 0,
we see that AW = C in R? by lemma 2.2. Noting that AW < 0, we have C < 0
and W (r) = W(0) + $Cr?. We can obtain C' = 0 since W > 0. Thus, AW =0 in
R? and

W =supW in R
R2

This completes the proof of (ii). O

3. Proof of theorem 1.1

In this section, we present the proof of theorem 1.1. Instead of proving theorem 1.1,
we show the following theorem.

THEOREM 3.1. Let 2 be a bounded smooth domain in R%. For A € (0,)\.], any
solution of the problem (Ty) is regular and the following hold.
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(i) For 0 < X\ < A¢, problem (Ty) admits two regular solutions: the minimal and
a mountain-pass solution.

(ii) For A = A¢, problem (T) admits a unique regular solution.
(iii) For A > X¢, problem (T») admits no regular solution.

The proof of (ii) and (iii) is known from [4]. We only need to show (i).

Let H = H?(2)NHL($2) be the function space obtained by taking the completion
under the norm of H2(2) N H{(2) (i.e. [[¢] = ([, [TIVY]* + D] Ap|?] dz)'/2) for
the set of smooth functions that satisfy the boundary condition ¥ = Ay = 0 on
0f2. We first obtain the following lemma.

LEMMA 3.2. For any fized A > 0, if v € H is a positive solution of (Ty), then there
exists 0 < T < L depending on A but independent of v and locally independent of A
such that v < L — 7 in £2. This also implies that all the positive solutions of (T»)
in H are regular.

Proof. The embedding theorem implies that v € C*(£2) for any 0 < a < 1. Then
there is x € 2 such that v(z)) = maxp v.

Suppose that there are Ay > 0 and sequences {\;} and {v;} = {v),} with
maxg v; = L — g; such that \; — Ao, &; — 0 as i — co. Then v; € C*(£2) N C3(£2).
Denoting x; = x, and choosing subsequences if necessary, we consider two cases:

(i) AL/ =8/4 dist(z;,082) — oo as i — oo;

7 K3

(i) )\1/45;3/4 dist(x;, 092) < M for any 1.

(2
For the first case, making the transformation w; = L — v;, we see that w; with
ming w; = ¢; satisfies the problem
TAw; — DA%*w,; = )\iw;2 inf, w;=L, Aw;=0 on df2.
. L 1/4 —3/4
Note that w;(z;) = ming w;. Setting w;(y) = w;/e; and y = \;"¢;
see that w; with @;(0) = ming, w; = 1 and w; satisfies the problem

(x — x;), we

A VPEPTA i — DAY = 072 in 2, @y = — Ay@i=0 on0f; (31)

where 2; = {y = )\1/46-_3/4(‘% —x;): x € 2}. Note that w; > 1 and 1[)1._2 < 1in £2;.

It follows from the regularity of the operator TA — DA? that w; — W in C}_(R?)
as i — oo, where W € C*(R?) with W(0) = 1 and W > 1 in R? satisfies the
equation

~DA’W =W~% inR? W(0) = 1. (3.2)

It is known from theorem 2.1 that this is impossible.

For the second case, we denote n; € 912 such that dist(z;,n;) = dist(z;, 02). We
see that n; — 1o € 92 as i — oo (we can choose subsequences if necessary). We
also see that

L— (%
3/2
&

-2
—TAv; + DA?%v; = )\iais( ) inf2, v;=Av;=0 on 9. (3.3)
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Noticing that (L — v;)/e; > 1, we see that

L —wv; _1/2L —w; L—v; . .

3 Z—€i1/27121 and — +o00 in f2 as i — oo.
32 < 53/2
3 1

We also see from (1.2) that Av; < 0 in 2. Making the transformations:

)\1/46

y = 13/4(1:

— 1), 0i(y) = vi,

we see that 0; satisfies the problem

L \—2
—T)\;1/2€§/2Ay@i + DAZ@Z = <LS—/2,UZ> in Qi, v; = Ayf}l =0 on 6.@1,
&

(3.4)
where 2; = {y = 1/45Z 3/4(x —mn;): x € £2}. Since ((L—vl)/eg/Z) < 1in £2;, the
regularity of A? implies that |A,d;| is uniformly bounded. By the regularlty of A?
and a similar blow-up argument to that in [1], we see that 0; — Vin C3 (I') as
i — oo (we can choose subsequences if necessary) and VecqI)n 03(F uor)

with V < L, |AV| being bounded and AV < 0 in I satisfies the problem
DA’V =0 inI, V=AV =0 ondl, (3.5)

where I' = {y = (y1,y2) € R?: y; > 0} and there is an n € I' with dist(0,7) < M
such that V(n) = L. Using Green’s expression of the solution h of the problem
Ah =0in I' and h = 0 on 9I", we easily see that A = 0 in I". This implies that
AV =0in I" and hence V =0 in I". But this contradicts the fact that V() = L
These contradictions complete the proof of this lemma. O

Proof of theorem 3.1. We modify the nonlinearity as in [4]. Since the nonlinearity

g(v) = 1/(L — v)? is singular at v = L, we need to consider a regularized C*
nonlinearity g.(v), 0 < & < L, of the following form:
1
Y < L—e,
e v €
gé‘ (U) 1 L — € + 1 9 > L
= — v, v —e.
g2 3 e3(L—¢e)

For A € (0, A.), we study the regularized semilinear elliptic problem:
~TAv+ DA*w = )\g.(v) in2, v=Av=0 on . (3.6)

From a variational viewpoint, the action functional associated to (3.6) is
Jea(v) = %/ [T|Vv|? + D(Av)?] dz — )\/ G:(v)dx, veEH,
Q Q

where

G.o) = [ a)as

— 0o

By arguments similar to those in the proof (i) of theorem 7.1 in [4] (see also lem-
mas 7.3 and 7.4 in [4]), we can obtain a mountain-pass solution V; » € H of (3.6)
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such that
[Veulln < C, (3.7)

where C' > 0 is independent of e. The embedding H — C°(£2) implies V. < C in
2. Moreover, since V. x € H is a solution of (3.6), multiplying V. 5 on both sides
of (3.6), we see from (3.7) that

C
/ 9e(Vep)Verdz <+, (3.8)
0
where C' > 0 is independent of ¢.
We want to show that
Vea<L—¢ in (2. (3.9)

This implies that V_ » is a solution of (T3).
We claim that if there is a sequence {g;} with ¢; — 0 as i — oo such that
maxgo Ve, » > L — g, then

mgXVin’,\ — L asi— oo. (3.10)

To show this claim, we denote Vg, x(z;) = maxg Vz, ». Since Vg, » < C in 2, we
see from the regularity of A2 that VL, y € C*(£2) N C3(£2). The maximum principle
implies that

Vsi’)\ > 0, AVEi’)\ <0 in £2. (3.11)

We first show
)\1/45;3/4 dist(x;,02) - 00 as i — oo. (3.12)

(We can choose subsequences if necessary.) On the contrary, we have that
A48 dist (a;,002) < M Vi (3.13)
Writing the equation of V;, ) as

~TAV., »+ DAV, = Xe; 3(e39:(Ve,2)) in 2, Vo, a=AV,,A=0 ond,
(3.14)
and setting

y=N1 M@ =), Vialy) = V@),
where 7; € 0(2 such that dist(x;,7;) = dist(x;,012), by blow-up arguments similar
to those in the second case of the proof of lemma 3.2, we see that V; » — V in
C3 (') as i — oo. Moreover, V € C*(I') with L < maxpV < C, AV < 0, and
|AV| being bounded, satisfies

DA’V =h(V) inl, V=AV=0 ondl, (3.15)
where
0 for 0 <s< L,
h(S) = 32 (3.16)
7 L fors> L.
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Moreover, there is n € I" with dist(0,n) < M such that f/(n) = maxp V. Note that
h € C((0,00)\ {L}) is a non-decreasing function. Let W = —AV. Then (3.15) can
be written as B _
AV =W in T
- 1. -
—AW = Zh(V) in I (3.17)
V=W=0 ondl

There are two cases: (i) maxp X:/ = L; (ii) max; V > L.
For the first case, we see that V satisfies

A’V =0 inl, V=AV =0 ondl.

It is easily seen that V =0in I". This is clearly impossible.
For the second case, theorem 4 of [2] implies that
oV oW
— >0 and — >0 fory; >0. (3.18)
8y1 8y1
This contradicts V(1) = maxp V. (Note that h € C*((0,00) \ {L}) here. Since h
is Lipschitz continuous, arguments in the proof of theorem 4 of [2] still work for
our case. The continuous differentiability assumption in [2] can be avoided if the
equation system does not admit semitrivial solutions and the nonlinearities are C'*
near zero. This is true for our case here.) Thus, (3.12) holds.
Now, making the transformations
y= XN ez, ViaW) = Vaalo),
we see from (3.12) that \A/i,)\ —Vin Cffm (R?) asi — oo (we can choose subsequences
if necessary). We also know that L < V(0) = maxg: V < C, |AV| < C, and V sat-
isfies the equation R R
DA*V = h(V) inR? (3.19)

where the function A(s) is defined in (3.16). Arguments similar to those in case (i)
of the proof of theorem 2.5 implies that V' (0) = L. It is also known from theorem 2.5
that V = L in R?. This implies that

V'Ei,)\(xi):mngEi,)\%L as ¢ — 00 (3.20)

and our claim (3.10) holds.

Now we show (3.9). On the contrary, there is a sequence {g;} with ¢; — 0 as
i — oo such that maxg Vz, » > L —¢;. Thus, (3.20) holds. There are three cases to
consider (we can choose subsequences if necessary):

(1) Verl(zi) = L+&,
(ii) Vg, a(m;) = L for all 4,
(111) ‘/si,)\(xi) =1L — 51 with fz < g4,

where & > 0 and §; — 0 as ¢ — oo.
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For the first case, we show

S0 asi— oo, (3.21)

2

(We can choose subsequences if necessary.) On the contrary, there is a sequence
{€i/&} such that ;/&; — 0 as i — oo. Set Z; = L —Vj, where {V;} = {V, »}. Then
Zi(x;) :==ming Z; = —¢&; and Z; satisfies

TAZ; — DA*Z; = \ky(Z;)) in 2, Z;=L,AZ;=0 on 912,

where
1
ﬁ7 Zi >5i7
ki(Z) =<
z( 1) i N 2(52' o Zz) (Ei _Zi)2 7 < e
| M
—3/4

Making the trqnsformations~2i(y) =Z;/¢ andy=¢ (x — x;), we can see that

Z;(0) = ming Z; = —1 and Z; satisfies the problem

i

E?/2TAyZl—DA321 = A]%z(Zz) in f)i, Zi = L/&‘, AyZz =0 on 8!}“ (322)

where 2; = {y = 5;3/4(:3 —x;): x € 2} and

€ - g2 € - & - - g

3 2) —2%; 2 -2 2z t\z2, Z; < 2.

(fi) +fz’(L—€i) (L—Ei) +<L_5i> ‘ &
Since €;/§; — 0 as i — oo, we see that {|k:(Z;)|} is bounded. Thus, it follows
from the regularity of A? that Z; — Z in C} (R?) (note that (3.12) holds) with

loc

Z(0) = minge Z = —1, and Z satisfies the equation
—DA%Z = Mk(Z) in R?,
where
- 0, Z>0,
k(Z) = .
-27Z, Z<NO.
It is known from remark 2.4 that Z does not exist. This contradiction implies that

(3.21) holds.
Now we show that

% A oo asi— oo. (3.23)
On the contrary, making the transformations Zily) = Zi/es and y = 5;3/4(36 —T;),
we see that Z;(0) = ming Z; = =& /e; (— 0 as i — o0) and Z; satisfies the problem
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where 2, = {y = 5;3/4(33 —x;): x € 2} and

1 .
=5 21217
2

~ £ i ~ & ~
3—-2Z;+———2 LI, /¢ 72, Zi<1.
+L—5i (Lsi) +(LEZ) <

It is easily seen that {|k:(Z:)|} is bounded. Therefore, the regularity of A® implies
that Z; — Z in C3 (R?) as i — oo with Z(0) = ming> Z = 0, and Z satisfies the
equation

ki(Z;) =

—DA%Z = \k(Z) in R?

. 72 Z>1
k(Z): 7A R b)
3-22, Z<1.

where

We know from remark 2.4 that Z does not exist. This contradiction implies that
(3.23) holds.
Equations (3.21) and (3.23) imply that there exists 0 < A; < oo such that

Si — A, asi— oo. (3.25)

&i

(We can choose subsequences if necessary.) Making the transformations Z,(y) =
Z;/& and y =&, 3/4(33 —z;), we see that Z,(0) = minp Z, = —1 and Z, satisfies
the problem

&P TA,Z,~DN2Z, = \k,(Z,) in Q;, Z;=L/&, OA,Z;=0 on 2, (3.26)
where 2, ={y = f-ﬁ3/4(x —z;): x € 2} and

iz =19(5) (82 e

—2<51'3>Z.+(§?)Z2 Z,< 2.
ef(L—e)) " \el(L—e))" &i

Note that {|k;(Z;)|} is bounded and 5;3/4 dist(z;, 082) — oo as i — oo (see (3.12)).
Thus, the regularity of A? implies that Z; — Z in C (R?) as i — oo with Z(0) =
mingz Z = —1, and Z satisfies the equation

—DA*Z = Xk(Z) inR?

where
zZ72 Z > A,
K2)=13 2
i A—§Z Z < Ay

We know from remark 2.4 that Z does not exist. This contradiction implies that
case (i) does not occur.

https://doi.org/10.1017/50308210509001061 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210509001061

A fourth-order elliptic equation with negative exponent 547

For case (ii), we make the transformations Zi(y) = Zi/e; and y = €; 3/4(30 —Z;).
We see that Z;(0) = ming Z; = 0 and Z; satisfies the problem

where 2, = {y = 61-_3/4($ —x;): x € 2} and

1 R
= Zi>1,

o5 E; _ &; 5 2 5

It is easily seen that {|k:(Z:)|} is bounded. Therefore, the regularity of A% implies
that Z; — Z in CP (R?) as i — oo with Z(0) = ming: Z = 0, and Z € C*(R?)
satisfies the equation

ki(Z;) =

—DA?Z = \k(Z) inR?,

where

o 72 Z>1
k(Z): 7/\ R 9
3-27, Z<1.

We know from remark 2.4 that Z does not exist. This contradiction implies that
case (ii) does not occur.

For case (iii), we see that & < ¢; for all ¢ since Vi(z;) > L — &;. We first show
that

Z 400 asi— oo. (3.28)

(We can choose subsequences if necessary.) On the contrary, making the transfor-
mations Z;(y) = Zi/siA and y = 5;3/4(30 — x;), we see that Z;(0) = ming Z; = &;/¢;
(— 0 asi— 00) and Z; satisfies the problem
where 2; = {y = 5;3/4(:5 —x;): x € £2} and

1 N
o Zl 2 17
z

~ £; £; ~ o
3-927; L2 t\Z 72, Z;<1.
+L—5i (L—ai) +<L—az)

It is easily seen that {|k:(Z:)|} is bounded. Therefore, the regularity of A% implies
that Z; — Z in CP (R?) as i — oo with Z(0) = ming: Z = 0, and Z € C*(R?)
satisfies the equation

ki(Z;) =

—~DA?Z = \e(Z) in R?,

where R R
R zZ72, Z>1,

k(z) = .
3—-27, Z<1.
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We know from remark 2.4 that Z does not exist. This contradiction implies that
(3.28) does not hold. Therefore, there exists Az > 1 such that

? Ay asi— oo (3.30)
(We can choose subsequences if necessary.) Making the transformations Z,(y) =
Z;/& and y = £3/4(x — x;), we see that Z,(0) = ming Z, = 1 and Z; > 1 satisfies
the problem

ff/2TAyZi—DA§ZZ— =\k,(Z;) in 2, Z;=LJ&, AyZ; =0 on 2, (3.31)

where 2, = {y = 553/4(33 —z;): ¢ € 2} and
&

&’

N -
WV

B &Y &Y &
@) =43(2) 2(2) 4 o

55’ f? 2 €q
2<a%<L—si>>Zi+ <e§<L—ei>)Zi’ i< g

Note that {|k,(Z;)|} is bounded and 5;3/4 dist(z;, 002) = 0o as i — oo (see (3.12)).
Thus, the regularity of A? implies that Z; — Z in C} (R?) as i — oo with Z(0) =
mingz Z = 1, and Z satisfies the equation

~DA?Z = \k(Z) in R?,

N

where
k(Z)=27?
provided A; = 1 and
z7, Z > A,
k(2)=13 2
— ——=Z, Z<A
A% A% Ly 4 < 2

provided As > 1. We know from theorem 2.1 and remark 2.4 that Z does not exist.
This contradiction implies that case (iii) does not occur.
The above arguments imply that

mgXV&,\ <L-c¢

for e sufficiently small. Actually, arguments similar to those above imply that there
exists & > 0 independent of € such that

Vvs,)\ < L—4 in Q,
for € sufficiently small. This completes the proof of this theorem. O

REMARK 3.3. We can also obtain the same asymptotic behaviour as in theorem 8.2
of [4] of the mountain-pass solutions as A — 07 by arguments similar to those in
the proof of theorem 8.2 of [4].
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