
Network Science 4 (1): 117–139, 2016. c© Cambridge University Press 2016

doi:10.1017/nws.2015.35

117

An improved MCMC algorithm for generating
random graphs from constrained distributions

TREVOR TAO

Defence Science and Technology Organisation,

Edinburgh, South Australia 5111, Australia

(e-mail: trevor.tao@dsto.defence.gov.au)

Abstract

We consider the problem of generating uniformly random graphs from a constrained

distribution. A graph is valid if it obeys certain constraints such as a given number of nodes,

edges, k-stars or degree sequence, and each graph must occur with equal probability. A typical

application is to confirm the correctness of a model by repeated sampling and comparing

statistical properties against empirical data. Markov Chain Monte Carlo (MCMC) algorithms

are often used, but have certain difficulties such as the inability to search the space of all

possible valid graphs. We propose an improved algorithm which overcomes these difficulties.

Although each individual iteration of the MCMC algorithm takes longer, we obtain better

coverage of the search space in the same amount of time. This leads to better estimates of

various quantities such as the expected number of transitive triads given the constraints. The

algorithm should be of general interest with many possible applications, including the world

wide web, biological, and social networks.

Keywords: MCMC, adjacency matrix, graph theory, constrained distribution, social network,

triad census

1 Introduction

An important and interesting mathematical problem is sampling random graphs

from a constrained distribution. By constrained we mean that the graph must satisfy

certain properties such as a fixed number of nodes or edges, or fixed in-degree and

out-degree sequence. A typical application is to confirm the correctness of a model

by testing it against empirical data. For example, we might postulate that a social

network can have N nodes and M edges for some N,M. We could generate a large

number of random networks with the correct values of N and M and observe some

statistics, such as the size of the largest connected component (Chung & Lu, 2002)

or the number of transitive triads (Lusher et al., 2012). We might find that the

observed statistics do not match that of empirical social networks, and we would

conclude that the above model is not valid for social networks.

The above model is the famous Erdös–Rényi model (Erdös & Rényi, 1959). This

is a conditionally uniform model (Snijders, 2011) in the sense that any graph with

the correct number of nodes and edges occurs with equal probability and any

other graph has probability zero. Clearly, generating from a uniform distribution is

desirable so we can ensure there is no bias in a large sample of random networks.

Note that a constrained uniform distribution is different to an Exponential Random

https://doi.org/10.1017/nws.2015.35 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.35

118 T. Tao

Graph Model (ERGM) (Lusher et al., 2012; Holland & Leinhardt, 1981) in the

following sense: if two graphs have the same statistical properties as specified by

the ERGM then they are equally probable, but any deviation from the “correct”

statistics does not imply a probability of zero.

One can consider more complex models: for example we might postulate that

each node has a specified in-degree or out-degree (Blitzstein & Diaconis, 2010).

Or we might specify a certain number of reciprocated links, transitive triads or

k-stars (Lusher et al., 2012) for the network as a whole. Simple problems such as the

Erdös–Rényi model have been extensively analyzed (see e.g. Lusher et al. (2012) and

references therein). However, progress on more complex problems has been limited.

The crux of the problem is that obtaining the uniform distribution over all valid

graphs is non-trivial. At the most basic level, one can generate random graphs by

repeatedly sampling among all graphs with N nodes and discarding the graphs that

violate the constraints. But this is extremely inefficient since most graphs will be

discarded. Conversely, one can generate valid graphs very quickly, but at the cost

of giving up the uniform distribution. To illustrate these difficulties, consider the

problem of placing a rook, knight, bishop, and queen on a chessboard such that no

piece attacks any other. We wish to assign a probability of 1/k to each solution, where

k is the number of solutions. It turns out that placing the pieces on “safe squares” one

at a time will not yield the uniform distribution. Moreover, the distribution depends

on the order in which the pieces are placed. The uniform distribution cannot be

obtained unless all four pieces are placed simultaneously. Similar problems occur

when constructing valid graphs (or the corresponding adjacency matrices) satisfying

given constraints.

One of the simplest non-trivial problems is that of generating a uniformly random

matrix A with given row and column marginals (i.e. row and column sums, or the

number of ones in the case of a binary matrix), which we will refer to as Problem

URC. Note that this is equivalent to sampling bipartite graphs with a given degree

sequence (Erdös et al., 2013). This problem has been studied in the context of

real-world networks including the world wide web, social networks, and biological

networks (Blitzstein & Diaconis, 2010; Newman, 2003). One can also constrain

the main diagonal to be all zeros, which we will refer to as Problem URC0. This

corresponds to forbidding self-loops between nodes in a network.

Some early researchers have attempted to use brute force to solve Problem URC

or URC0 by filling in “forced moves” or making random guesses if no forced

moves are available. This leads to the same difficulties as the chessboard problem

discussed earlier, and their methods are infeasible even for moderate datasets (Rao

et al., 1996). Rao et al. (1996) proposed a simple MCMC algorithm to ensure the

distribution is uniform. For details we refer the reader to Rao et al. (1996) and

references therein.

A more challenging problem is to sample graphs with a fixed number of mutual

dyads, where two nodes in a graph have links to each other. This corresponds to

two 1s in an adjacency matrix being mirror opposites with respect to the main

diagonal. Thus one can consider an extended version of the above problem, where

the row/column marginals and number of mutual dyads are fixed, which we will

refer to as Problem URCM (and similarly for Problem URCM0). McDonald et al.

(2007) proposed an MCMC algorithm for the URCM0 problem, but were unable to

https://doi.org/10.1017/nws.2015.35 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.35

An improved MCMC algorithm for generating random graphs 119

Fig. 1. Markov chain Monte Carlo example. (Color online)

conclusively show that their algorithm produced an irreducible Markov chain (c.f.

Section 2). In this report, we propose an improved version of the MCMC algorithm.

Section 2 describes MCMC methods. Section 3 describes previous algorithms.

Section 4 describes the proposed algorithm. Section 5 describes the experiments,

and Section 6 is the conclusion.

We emphasize that the proposed algorithm is not tied to any particular application

and should be of general interest. For instance it is not hard to extend this algorithm

so that the number of transitive triads or k-stars remain constant, as will become

clear in Section 4. This is of particular relevance to social networks (however, it

remains an open question if the resulting algorithm will be efficient enough to be

practical).

2 Markov chain Monte Carlo algorithms

MCMC is an algorithm for generating samples from a set of possible states. An

MCMC is defined by specifying the probability of moving from any state to any

other state (including itself). MCMC algorithms are useful because it is often easy

to calculate a change in energy potential (or other function such as log-energy or

probability) when moving from one state to a “nearby” state, but impractical to

calculate the actual energy potential (for the URC and URCM problems even the

uniform distribution is hard because one cannot easily enumerate all legal states).

An example is shown in Figure 1. States are represented by letters and adjacent

states are indicated by the solid lines. Adjacent means that the probability of going

from one state to another is strictly positive. In this example, it is assumed that the

adjacency property is symmetric, (i.e. A is adjacent to B if and only if B is adjacent

to A, but the transition probabilities need not be equal) and reflexive (i.e. each state

is adjacent to itself). These properties are often desirable, but not necessary for a

Markov chain. An example path would be N-E-V-E-R-G-O-N-N-A-G-I-V-E-Y-O-

U-U-P.

The purpose of generating such a path is to enable estimation of the distribution

of states. For instance, after a large number of iterations, one might find that states

E,A,Q occur 12.7% 8.2%, and 0.01% of the time respectively. One could then use

these values as estimated values of π(E), π(A), π(Q). Similarly one can estimate a

distribution over some function of states. For example, suppose that each state

represents an adjacency matrix. We could count the number of transitive triads

T (s) for every state s, tabulate the results as shown in Table 1 and estimate the

distribution of T .

https://doi.org/10.1017/nws.2015.35 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.35

120 T. Tao

Table 1. Number of transitive triads for each state s → T (s).

A → 1 E → 1 G → 2 I → 1

J → 8 K → 5 N → 1 O → 1

P → 3 Q → 10 R → 1 U → 1

V → 4 X → 8 Y → 4 Z → 10

Observe that the adjacency graph of Figure 1 contains two components which are

“thinly” connected via three links namely, GU, OU, and IQ. The path N-E-V-E-

R-G-O-N-N-A-G-I-V-E-Y-O-U-U-P starts in the left component and only reaches

the right component in the final three states. This illustrates a typical problem with

Markov chains in that a random walk can often get stuck in one component for

some period of time and there is no easy way of detecting this. The ideal situation

occurs when all possible states lie in a single component, but this can’t always be

guaranteed. In mathematical terms, this problem occurs if it is only possible to reach

B from A by following a low-probability link from one component to another. Or

worse still, the components may not even be connected, in which case one will never

reach B for any path length. A more subtle (though less important) problem occurs

when it is only possible to reach a certain state at periodic intervals, e.g. only after

10k iterations for some integer k. In practice this is rarely a problem and is only

mentioned for sake of completeness.

One can summarize the above discussion using the concepts of irreducibility,

positive recurrent, and aperiodicity. Irreducibility means that any state can be

reached from any other state (i.e. one cannot separate the Markov Chain into

multiple components). Positive recurrence means that if one starts at state i, one

must eventually return to state i. Moreover, the expected number of iterations

required to return to state i must be finite1. Aperiodicity means that there is no

period k > 1 such that one can return to state i only if the number of iterations is a

multiple of k. The importance of this resides in the following well-known theorem:

Theorem 1

If a Markov chain is positive recurrent, irreducible, and aperiodic, then there exists

a steady state distribution π such that

P [Xn = j|X0 = i] → π(j) ∀i, j as n → ∞ (1)

where P is the transition matrix. Also, the expected recurrence time for state i is

finite.

This theorem implies that one can perform a random walk on the possible

states, and after a sufficiently large number of iterations one can count the number

of occurrences of each state and get a reasonable approximation to the actual

distribution. We should mention that in practice there is no easy way of determining

how many iterations are “sufficiently large”. We do not attempt to address this

problem in this report.

1 This last caveat is only of concern when dealing with an infinite number of states, so will not concern
us here.

https://doi.org/10.1017/nws.2015.35 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.35

An improved MCMC algorithm for generating random graphs 121

2.1 Metropolis–Hastings algorithm

A popular variant of MCMC algorithms is the Metropolis-Hastings algorithm. One

property of the MCMC algorithm is that it is legal to move from a state with high

probability to one with lower probability; this is obviously necessary to avoid the

path terminating at a globally or locally optimum state. The MH algorithm makes

this explicit by defining proposal and acceptance probabilities. Given an old state

Sold a new state Snew is proposed with probability pprop(Snew|Sold). If the proposed

new state has higher probability than the old state, the probability of acceptance

pacc(Snew|Sold) is 1; if the new state has lower probability then pacc(Snew|Sold) is a ratio

of probabilities of old and new states. If the proposed new state is rejected, then

Snew = Sold. For more details see Rubinstein et al. (2013).

3 Previous algorithms

We consider the problem of generating a random adjacency matrix that is “compat-

ible” with a given matrix A. We say that two matrices are compatible if they have

the same row and column marginals and mutual dyads (in the case of URCM0).

3.1 Problem URC0

Recall that Problem URC0 means that the row and marginal columns are constant

and the diagonal entries must be zero. In this case, the diagonal zeros are called

structural zeros (Rao et al., 1996).

Given an adjacency matrix A a simple algorithm for computing the next iteration

A′ is:

• Select a random tetrad, defined by the intersection of two columns and two

rows, avoiding any structural zeros (as shown in Figure 2(a).

• If the tetrad is [1, 0; 0, 1] or [0, 1; 1, 0], then invert it to obtain a new matrix

A′. Otherwise set A′ = A.

This ensures that row and column marginals are constant, but Rao et al. (1996)

proved that the Markov chain is not necessarily irreducible. They proved that the

Markov chain becomes irreducible if symmetric hexad swaps were allowed as well

as tetrad swaps. A symmetric hexad swap is obtained by inverting six entries of the

form A(i, j), A(i, k), A(j, k), A(j, i), A(k, i), A(k, j) as shown in Figure 2(b).

3.2 Problem URCM0

Problem URCM0 is significantly harder than URC0, since the algorithm of Rao

et al. does not work for problem URCM0. Other researchers have proposed

adding operations such as swapping non-symmetric hexads (McDonald et al., 2007)

and symmetric opposite tetrads (Roberts, 2000) as shown in Figure 2(c), (d). For

discussion of these algorithms we refer the reader to McDonald et al. (2007) and

references therein.

McDonald et al. (2007) proposed an open question as to whether these extensions

implied an irreducible Markov Chain. Unfortunately we have a simple counterex-

ample to show this is not so.

https://doi.org/10.1017/nws.2015.35 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.35

122 T. Tao

Fig. 2. (a) Tetrad, (b) symmetric hexad, (c) asymmetric hexad, and (d) symmetrically

opposite tetrads. (Color online)

Fig. 3. Counterexample to McDonald et al.’s hypothesis.

In Figure 3, there are three compatible adjacency matrices. The reader can draw

the networks corresponding to these matrices and convince him- or herself there

is no other 5 × 5 adjacency matrix with the same row/column marginals and one

mutual dyad. But these matrices do not differ from each other by single tetrad swap,

symmetric hexad, asymmetric tetrad, or symmetrically opposite tetrads (although

the matrices are isomorphic, permuting rows/columns is not a valid operation).

Thus the conjecture is false.

It will be noted that symmetric hexad, asymmetric hexad or symmetrically opposite

tetrad updates are composed of two tetrad updates (for hexads, the two tetrad swaps

will “intersect” at one entry). This suggests that a natural extension would be to

allow any two tetrad swaps in a row. Thus the first tetrad swap is allowed to change

the number of mutual dyads (or insert a one on the main diagonal in the case

of symmetric hexads), provided it is corrected by the second swap. Indeed, this

would solve the counterexample in Figure 3, so one could reasonably conjecture

that double tetrad swaps will ensure the chain is irreducible. Unfortunately, a second

counterexample shows even this conjecture is false. Figure 4 shows two 12 × 12

compatible adjacency matrices, but it is not possible to obtain one from the other

using double tetrad swaps. Using trial and error, one can verify that most of the

matrix entries are “fixed” in the sense that they cannot be inverted even if one

ignores the mutual dyads constraint. Further experimentation with the remaining

entries shows that it is not possible to transition from one adjacency matrix to the

other if any double-tetrad swaps are allowed.

If the Markov chain is reducible (or one cannot prove it is irreducible), then a

common strategy is to extend the set of allowable states S to a new set S ′ to ensure

all states are connected. This is illustrated in Figure 5.

In the left half of Figure 5 one has 15 states in 3 unconnected components so

the Markov Chain is reducible. In the right half, we have added some extra states

(unshaded) to connect these components into one large component. The obvious

https://doi.org/10.1017/nws.2015.35 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.35

An improved MCMC algorithm for generating random graphs 123

Fig. 4. A second counterexample.

Fig. 5. Adding states to a Markoc chain to make it irreducible. (Color online)

disadvantage of this approach is that one must reject states in S ′ \ S in the final

path, so one needs more iterations in the Markov chain to obtain a good estimate of

the correct distribution. One can tweak the Markov Chain so that states in S have

more probability than states in S ′ \ S . This results in a trade-off between “rejection”

and “coverage”. If too much weight is placed on S , then the Markov Chain will

probably become trapped in an isolated component. Thus one will need a large

number of iterations to obtain a good coverage of S . If not enough weight is placed

on S then one will reject too many states in the final path. Note that all states in

S ′ \ S need not have the same probability. If an adjacency matrix is such that the

number of mutual dyads is very far from the correct value, one can assign a lower

probability than a matrix whose number of mutual dyads is only slightly incorrect.

Also note that tweaking the Markov Chain implies that the distribution on all states

is no longer uniform. Thus the Metropolis–Hastings algorithm described in Section

2.1 can be used.

This strategy was used by McDonald et al. (2007). A matrix is a valid state if

the marginals xi+, x+j are correct, regardless of M. Since one is only interested in

matrices with the correct value of M, one should only retain these matrices in the

final path. From Rao et al. (1996), we know that the Markov Chain is irreducible.

The tradeoff between coverage and rejection is achieved by introducing a parameter

β. More specifically, given A, the new matrix A′ is accepted with probability

min[exp(−β(|m0 − M(A′)| − |m0 − M(A)|)), 1] (2)

where m0 is the desired number of mutual dyads and M(A),M(A′) is the number of

mutual dyads for matrices A,A′. One can easily show that a transition from state A

https://doi.org/10.1017/nws.2015.35 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.35

124 T. Tao

to B will have acceptance probability less than one if and only if the new state B

has a mutual dyad count further from m0 from that of A.

If β is large, most of the matrices will be retained but at the risk of missing

some isolated component of compatible matrices as illustrated in the left panel of

Figure 5. Conversely, if β is small there is a danger of discarding too many matrices,

particularly if the algorithm is “lost at sea” exploring a random area of the solution

space with M very far from the correct value. Unfortunately there is no obvious

method of choosing β.

4 Proposed algorithm

We take a completely different approach. Roughly speaking, we want the ability

to update any number of entries at once, instead of being restricted to tetrad or

double-tetrad swaps (which can only invert at most eight entries). This will trivially

imply the Markov chain is irreducible. But this poses some obvious problems, since

for an N × N matrix, there are O(2N
2

) possible adjacency matrices to consider. We

essentially want a fast algorithm that can choose a new adjacency matrix whilst

ensuring the Markov chain is irreducible.

4.1 Preliminaries

Definition 1

An alternating cycle is a sequence of the form (i1, i2) → (i3, i2) → (i3, i4) → · · · →
(i2n+1, j2n) with i2n+1 = i1 and ik �= ik+1 for all k, such that the entries of the matrix

A(i1, i2), A(i3, i2), . . . are alternating 1s and 0s.

This means that the alternating cycle consists of a sequence 1, 0, 1, 0, 1, 0 . . . tracing

alternating horizontal and vertical line segments on the adjacency matrix A, and not

intersecting with the main diagonal. Clearly, the length of an alternating cycle is

even and at least four. If the length is exactly four, the cycle is called an alternating

rectangle (Rao et al., 1996).

Lemma 1

If A and B are two matrices with the same row and column marginals, then the

entries where A and B differ are a disjoint union of 0 or more alternating cycles.

Proof

If A = B, then the entries where A and B differ are a disjoint union of 0 alternating

cycles. Suppose A �= B. Without loss of generality choose an element (i, j) such that

A(i, j) = 1 and B(i, j) = 0. Since A and B must have the same marginal total for

row i there must be a j ′ such that A(i, j ′) = 0 and B(i, j ′) = 1. We can apply the

same argument to column j ′ to show there must be an i′ such that A(i′, j ′) = 1 and

B(i′, j ′) = 0. Continuing this argument one must eventually obtain an alternating

cycle (since A is finite). Now define A1 by inverting all elements on the alternating

cycle. Then, A1 is closer to B than the original A. By repeating this procedure we

can obtain A2, A3 . . . where each Ai is closer to B than the previous Ai−1. Eventually

we must obtain An = B for some finite n. Then the entries where A,B differ must

be a disjoint union of n alternating cycles. �

https://doi.org/10.1017/nws.2015.35 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.35

An improved MCMC algorithm for generating random graphs 125

We note that Rao et al. (1996) had a similar proof for problem URC0, but only

considered swapping alternating rectangles instead of entire alternating cycles of

length more than four.

This suggests the following algorithm for computing the next iteration Anew =

f(Aold)

• set Atemp = Aold

• LOOP

— choose a random alternating cycle that doesn’t intersect with a previous

alternating cycle.

— Invert all elements of Atemp on the alternating cycle

— if M(Atemp) = M(Aold) then return Anew = Atemp.

— if there are no more cycles return Anew = Aold.

• END LOOP

Note that, this algorithm is somewhat similar to the Metropolis–Hastings algo-

rithm in that we propose a new matrix Atemp and accept it if it is compatible with

Aold. However, one difference is that if Atemp is rejected, then we do not immediately

set Anew = Aold since we still have another chance to obtain Anew �= Aold for every

new alternating cycle.

As an aside, we note that checking that there are no more cycles may be awkward,

so we will “cheat” by picking randomly and if an old cycle is repeated then we will

simply return Anew = Aold immediately.

We now answer the problem of choosing a “random alternating cycle”.

4.2 Selection of random alternating cycles

The proof of Lemma 1 is based on finding alternating cycles in the adjacency

matrix using arbitrary “pointers” to entries in the same row/column, and we can do

something similar. Given an adjacency matrix, we consider each entry Aij . If Aij = 1,

then assign a pointer to a random zero on the same column, but not the structural

zero. If Aij = 0, then assign a pointer to a random 1 on the same row. If no 0 or 1

is available, then point to the structural zero on the same row or column.

To choose a random alternating cycle, simply pick a “starting seed” (i, j) at

random and follow the pointers. There are three possible outcomes: (i) one hits a

new cycle, (ii) one repeats an old cycle, (iii) one hits a structural zero. In cases (ii)

or (iii), set Anew = Aold. In case (i) a success occurs if the number of mutual dyads

M is the correct value, otherwise pick a new starting seed and repeat.

To be more specific, the algorithm is as follows:

Problem: determine the next iteration Anew given Aold.

• Set Atemp = Aold.

• Assign pointers: For each Atemp(i, j)

— if i = j, then set P (i, j) = NULL else,

— if Atemp(i, j) = 0, then choose a random j ′ �= i such that Atemp(i, j
′) = 1. If

no j ′ exists, then j ′ = i. Set P (i, j) = (i, j ′).
— if Atemp(i, j) = 1, then choose a random i′ �= j such that Atemp(i

′, j) = 0. If

no i′ exists, then i′ = j. Set P (i, j) = (i′, j).

https://doi.org/10.1017/nws.2015.35 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.35

126 T. Tao

• Assign a “seed order”. Let R be a random permutation of the numbers 1 . . . N2

arranged in a square matrix.

• set k = 1.

• LOOP

— Find i, j such that R(i, j) = k. Start with Atemp(i, j) and follow the pointers

in P until you hit a structural zero or an alternating cycle.

— If you hit a structural zero, then return Anew = Aold

— If you hit an alternating cycle that is marked VISITED, then return Anew =

Aold

— If you hit an alternating cycle that is not marked VISITED, then

– Invert all entries of Atemp corresponding to the alternating cycle

– If M(Atemp) = M(Aold), then return Anew = Atemp

– Otherwise mark the alternating cycle as VISITED, increment k and

NEXT LOOP

• END LOOP

Remark 1

In the introduction, we alluded to the fact that the algorithm could be extended to

add more constraints such as fixed number of transitive triads or k-stars. This is

obtained by replacing M with a vector e.g. Θ = (M,T , k3), where T is the number

of transitive triads and k3 is the number of 3-stars. Obviously the extra constraints

will imply a higher probability of Anew = Aold, but the basic algorithm remains the

same.

We need to prove that this algorithm does indeed produce samples from

U|xi+, x+j ,M.

Suppose that A and B are compatible. From Lemma 1, it is possible to move from

A to B in a finite number of iterations of the Markov chain. All that is required

is to select the correct alternating cycles, since Lemma 1 guarantees they exist. The

number of iterations required to move from A to B will depend on how many

times the correct number of mutual dyads is obtained when inverting the alternating

cycles one at a time. For instance, suppose that four alternating cycles were inverted

to obtain A(6) → A
(6)
1 → A

(7)
2 → A

(8)
3 → A

(6)
4 = B(6), where the superscripts indicate

the number of mutual dyads. Then it would take two iterations to change A to B,

i.e. x0 = A, x1 = A1, x2 = A4 = B, where x0, x1, . . . is the Markov chain. Since this

argument works for any compatible matrices A,B and any sequence A1, A2, . . ., the

Markov chain is irreducible. There are only a finite number of possible pointers for

each entry, and the number of ways to select starting seeds is also finite. Therefore,

we have positive recurrence. To prove aperiodicity, we only need ensure p(A|A) > 0

for some A i.e. we can reach A from A in one step. The simplest solution is to allow

the first starting seed to be a structural zero in which case we automatically have

Anew = Aold.

It only remains to prove we get the correct distribution U|xi+, x+j ,M. A sufficient

(but not necessary) condition is detailed balance i.e.

π(A)p(B|A) = π(B)p(A|B) (3)

https://doi.org/10.1017/nws.2015.35 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.35

An improved MCMC algorithm for generating random graphs 127

where A,B are matrices and π is the steady state distribution. Since we want the

uniform distribution, it suffices to show that p(B|A) = p(A|B).

Note that, the algorithm requires us to generate random matrices P , R to generate

the next iteration. In other words, B is a function of A, P , R. Let us denote this as

φ(A, P , R) = B. Before we can prove detailed balance, we need an algorithm for

determining an inverse P and R, i.e. given A, P ↑, R↑, B such that φ(A, P ↑, R↑) = B

determine P↓, R↓ such that φ(B, P↓, R↓) = A. The algorithm is given below:

• Given: Aold, P
↑, R↑. Required: P↓, R↓.

• Set Anew = φ(Aold, P
↑, R↑)

• If Anew = Aold, then set c = 0. Otherwise let c be the number of alternating

cycles inverted to obtain Anew .

• Find the entries 1, 2, . . . , c in R↑ and replace with c, c − 1, . . . , 1 to obtain R↓.
• Set P↓ = P ↑
• Define the active cycles to be the cycles of Aold that are inverted. Each cell

within an active cycle is called an active cell.

• For each active cycle, adjust the entries in the pointer matrix P↓ to point in

the “opposite” direction of the cycle. This means that if P ↑(i, j) = (i′j ′), then

P↓(i′, j ′) = (i, j).

• For each inactive cell (i, j) pointing to an active cell (i′, j ′), set P↓(i, j) = P↓(i′, j ′)
(note that each P↓(i′, j ′) was reversed in the previous step).

Lemma 2

The above algorithm satisfies Aold = φ(Anew, P↓, R↓)

Proof

Let the number of alternating cycles swapped be c. If c = 0, then Anew = Aold, P↓ =

P ↑, R↓ = R↑ and the proof is trivial. Hence we can assume c > 0. The above algorithm

generates Aold → A1 → . . . → Ac = Anew such that each Ai differs from the Ai−1 by

inversion of a single alternating cycle. Moreover, it is true that M(Aold) �= M(Ai)

for all 1 � i < c. If one starts with Anew, P↓, R↓ then the algorithm will generate

Anew → Ac−1 → . . . → A1 → A0 = Aold since M(Aold) = M(Anew). But it is also true

that M(Anew) �= M(Ai) for all 1 � i < c, so this prevents φ(Anew, P↓, R↓) = Ai for

some 1 � i < c. Therefore, Aold = φ(Anew, P↓, R↓). �

Remark 2

Note that, this proof would not work if we simply set R↓ = R↑ since we would end

up with a new sequence Anew → B1 → B2 → . . . and we might have an i such that

Bi �= Aj for all j. Hence it might be possible that M(Bi) = M(Aold) = M(Anew) and

therefore φ(Anew, P↓, R↓) = Bi �= Aold.

Lemma 3

Suppose that φ(Aold, P
↑, R↑) = Anew and P↓, R↓ are determined as above. Then

p(Anew, P
↑, R↑|Aold) = p(Aold, P↓, R↓|Anew)

Remark 3

p(Anew, P
↑, R↑|Aold) refers to the probability that given Aold we obtain Anew as well

as the correct values of P ↑, R↑. One can think of P ↑, R↑ of playing a similar role

to e.g. latent variables in a hidden Markov model Rabiner & Juang (1986). One

can therefore use equations such as e.g. p(Anew|Aold) =
∑

p(Anew, P
↑, R↑|Aold) with

summation over all P ↑, R↑.

https://doi.org/10.1017/nws.2015.35 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.35

128 T. Tao

Proof

Let us calculate p(Anew, P
↑, R↑|Aold).

Since P ↑, R↑ are independent of each other and do not depend on Anew , it is true

that

p(Anew, P
↑, R↑|Aold) = p(P ↑|Aold)p(R

↑|Aold)p(Anew|Aold, R
↑, P ↑) (4)

There are N2 entries and therefore (N2)! possible permutations of the matrix R,

so p(R↑|Aold) = 1/(N2)!. The term p(Anew|Aold, R
↑, P ↑) is 1 if φ(Aold, R

↑, P ↑) = Anew

and 0 otherwise. It only remains to calculate p(P ↑|Aold).

For each zero element A(i, j) observe that there are xi+ 1s in the ith row. If xi+ > 0,

then the probability of P (i, j) pointing to a particular (i, j ′) is 1/xi+. If xi+ = 0, then

P (i, j) will point to the structural zero in row i with probability one. Since there are

N − 1 − xi+ (non-structural) zeros in row i and each entry of P is independent, this

contributes a factor of

(
1

max(1, xi+)

)N−1−xi+

(5)

Similarly, all the 1s in column j contribute a factor of

(
1

max(N − 1 − x+j , 1)

)x+j

(6)

Putting everything together yields a probability of p(Anew, P
↑, R↑|Aold) = f1f2f3f4

where

f1 =
1

(N2)!
(7)

f2 =
∏
i

(
1

max(1, xi+)

)N−1−xi+

(8)

f3 =
∏
j

(
1

max(N − 1 − x+j , 1)

)x+j

(9)

f4 = 1φ(Aold,P ↑ ,R↑)=Anew
= 1φ(Anew,P ↓ ,R↓)=Aold

(10)

A similar argument yields the same expression for p(Aold, P↓, R↓|Anew). Since Aold

and Anew are compatible, they have the same values of xi+, x+j and therefore

p(Anew, P
↑, R↑|Aold) = p(Aold, P↓, R↓|Anew) �

Theorem 2

Let A and B be compatible matrices. Then p(B|A) = p(A|B)

Proof

It is true that

p(B|A) =
∑
P ,R

p(B, P , R|A) =
∑
P ,R

p(P |A)p(R|A)1φ(A,P ,R)=B (11)

and also

p(A|B) =
∑
P ,R

p(A, P , R|B) =
∑
P ,R

p(P |B)p(R|B)1φ(B,P ,R)=A (12)

https://doi.org/10.1017/nws.2015.35 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.35

An improved MCMC algorithm for generating random graphs 129

Fig. 6. Example adjacency, pointer, and starting seed matrices.

There are two cases to consider: A = B and A �= B. In either case Lemmas 2 and 3

imply that each P , R satisfying φ(A, P , R) = B can be put in 1-1 correspondence with

each P ′, R′ satisfying φ(B, P ′, R′) = A and also p(P |A) = p(P ′|B), p(R|A) = p(R′|B).

Therefore

p(B|A) = p(A|B) (13)

as claimed �

Therefore, we have proved detailed balance, i.e. the proposed algorithm does

obtain samples from U|xi+, x+j ,M.

An example is shown in Figure 6. Let A and B be adjacency matrices (top/bottom

resp. of Figure 6, left) and let the corresponding pointer matrices PA, PB and starting

seed matrices RA, RB be shown. The notation R4 means move four spaces to the

right, and L U D similarly mean left up or down.

For matrix A, the start-seed matrix has a 1 at element (6,3), so one would start at

A(6, 3), follow the pointers and find a 4-cycle at (6, 1) → (5, 1) → (5, 2) → (6, 2) →
(6, 1). A swap will increase the number of mutual dyads M by 1, so look for another

cycle. The next element is A(2, 1) since RA(2, 1) = 2. Following the pointers results

in a 6-cycle at (3, 6) → (1, 6) → (1, 5) → (2, 5) → (2, 4) → (3, 4) → (3, 6). It turns

out that swapping both the above 4-cycle and 6-cycle results in no change in M,

so the swap is accepted, and the new matrix is B. Similarly, one can start with

B, PB, RB and obtain A. One can easily verify that A,RA, PA and B, PB, RB form a

1-1 correspondence as described above, and that

p(B, PA, RA|A) = p(A, PB, RB |B) =
1

36!
× 18 ×

(
1

2

)15

×
(

1

3

)6

×
(

1

4

)1

(14)

Remark 4

It is worth noting that the proof does not require a closed formula for p(A|B) or

p(B|A) - it is only necessary to show they are equal. This differs from the algorithms

of Rao et al. (1996) or McDonald et al. (2007), where the updates were trivial. If for

instance, one only allowed tetrad swaps in Problem URC, then the probability of

any change is p(B|A) = (2/n(n−1))2 if B is compatible with A. If tetrads intersecting

the main diagonal were not allowed, or if hexads were allowed, then it is easy to

https://doi.org/10.1017/nws.2015.35 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.35

130 T. Tao

modify the formula for p(B|A) accordingly. With the proposed algorithm, it is easy

to calculate P (B, P , R|A) for any given P , R, but there are many different values of

P , R that would cause A to be updated to B, and it is not feasible to count them.

This explains why the computation of p(B|A) is infeasible.

Remark 5

The algorithm for selecting random alternating cycles is fairly complex, but it can

be optimized somewhat. In practice, one would not construct the entire pointer and

starting-seed matrices explicitly. This would be extremely inefficient if, for example,

the first starting seed in a 100 × 100 matrix happened to yield a simple alternating

rectangle with the correct value of M. Instead, one would simply compute each

element “on demand”. Also, if one updates alternating cycles, one can also update

M incrementally instead of having to recompute it from scratch. Again this is more

efficient for a large e.g. 100 × 100 matrix.

4.3 Discussion

Recall that McDonald et al.’s algorithm requires β as a parameter. If β is too low,

a large proportion of matrices will have the wrong value of M. If β is too high,

then the algorithm may get trapped in an isolated component of all possible graphs.

The proposed algorithm actually avoids this trade-off. To see this, observe that this

algorithm would temporarily allow matrices with the wrong value of M, so there

is no danger of getting stuck in an isolated component. But if one keeps inverting

random alternating cycles, eventually they must repeat because the matrix is finite.

By construction, once we repeat a cycle, the new matrix A′ is immediately rejected,

so Anew = A which is known to have the correct M. This avoids the problem where

the algorithm is “lost at sea” spending a large amount of time exploring random

adjacency matrices with the number of mutual dyads very far from the correct value.

Hence we avoid the above trade-off as claimed.

5 Experiments

5.1 Synthetic data

McDonald et al. propose to measure the rejection rate (i.e. how many matrices must

be discarded from the MH algorithm) for problem URMC0. The problem is this

doesn’t tell us if one has found the whole set of admissible matrices or whether the

algorithm is stuck in a isolated component. Instead, we wish to count the number

of different matrices directly, (i.e. the number of matrices that occur at least once).

If for example, the number of different matrices is increasing linearly, then there

is a strong indication the algorithm is not repeating an isolated component and

there are several matrices that haven’t been found yet. If the number of different

matrices starts to flatline then there is a good indication the algorithm is repeating

a component or found all the matrices.

Counting the number of different matrices obtained in any MCMC algorithm is

not trivial. A brute force search requires O(n2) comparisons, where n is the length

of the sequence. This is awkward if A is large. Instead we use a hash trick. Let R be

a random matrix of the same size as A. We then pretend R and A are vectors and

https://doi.org/10.1017/nws.2015.35 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.35

An improved MCMC algorithm for generating random graphs 131

compute a dot product, thus

hR(A) =
∑
i,j

A(i, j)R(i, j) = tr(R′A) = tr(A′R) (15)

where tr is the trace of a matrix. Assuming no hash collisions, then hR(A) = hR(B) if

and only if A = B. The hash converts every matrix into a real number. It is relatively

simple to count the number of different real numbers obtained, e.g. by sorting the

numbers and discarding repeats.

Intuitively, hash collisions shouldn’t be a serious problem, but can we rigorously

prove this? One might be tempted to use a power sequence for R, i.e. let R be

a permutation of 1, 2, 4, 8, . . . , 2N
2

where N × N is the size of the matrix A or B.

Then it is easy to show that hR(A) = hR(B) if and only if A = B, since A,B are

binary matrices. Unfortunately this only works theoretically, and one may encounter

numerical problems such as underflow/overflow for large N. Thus it is necessary to

estimate the probability of hash collisions.

Let us assume that R is a random matrix with entries between 0 and 1. Let us

“generously” assume two hash values are equal if the fractional part is equal (i.e.

the difference is a whole number). With the above assumption it is reasonable to

treat hR(A) as a uniformly random number between 0 and 1. If one has n distinct

matrices and k possible hash values, then one can show that the expected number

of collisions C is E[C] = n − k + k(1 − 1/k)n, as shown in the Appendix.

If k is large relative to n, then

E[C] = n − k + k

(
1 − 1

k

)n

= n − k + k

(
1 −

(
n

1

)
1

k
+

(
n

2

)
1

k2
− · · · +

(
n

n

)
(−1)n

kn

)

=

(
n

2

)
1

k
−

(
n

3

)
1

k2
+

(
n

4

)
1

k3
− · · · ≈ n2

2k

Assume the Markov chain stops after n iterations. In practice, this will yield an

upper bound for the number of hash collisions for two reasons: (i) we assumed

h(A) = h(B) if the difference is a whole number, not necessarily 0, (ii) the n iterations

are not necessarily distinct matrices.

A typical value of “machine epsilon” is ε = O(10−16), so we will take k = 1016.

Therefore, hash collisions should not really be an issue for reasonable n. In the

following experiments, we have n < 108 which would imply we should expect less

than one collision on average.

McDonald et al.’s algorithm is simple to implement in the sense that swapping

a tetrad is trivial, whereas the proposed algorithm is much more complex. In other

words, each iteration of McDonald et al.’s algorithm is cheaper than the proposed

algorithm in terms of time. Thus we decided to compute various quantities of interest

as a function of time, not number of iterations.

In Section 2, we remarked that it can be useful to estimate the distribution

of some function of states (i.e. adjacency matrix) in the Markov chain. In this

case, we take each adjacency matrix A in the Markov chain and measure the

transitivity (Wasserman, 1977) τ by counting the number of ordered triples p, q, r

satisfying p → q, q → r, p → r. Note that, the relationships q → p, r → q, r → p

https://doi.org/10.1017/nws.2015.35 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.35

132 T. Tao

Fig. 7. McDonald et al.’s algorithm with G = G(10, 0.3). (Color online)

are irrelevant and we also do not subtract 1 for any intransitive triples satisfying

p → q, q → r,¬(p → r).

Figure 7 shows the result of McDonald et al.’s algorithm and the proposed

algorithm on a randomly generated matrix A of size 10 and density 0.3, with both

algorithms running for 3,000 seconds or 50 minutes, using Matlab version 7.5 on an

Intel i7-2600 desktop machine with 16 Gb RAM, running Windows 7. (In Figure 7,

the notation G = G(10, 0.3) means that G is a given 10 × 10 adjacency matrix with

30% of entries equal to 1, and A must be compatible with G). For β = 0, 2, 5 the

number of iterations was 1.6e+07, 1.3e+07, 1.2e+07 respectively. The left panel

shows that McDonald et al.’s algorithm only achieves 2,800 unique matrices (even

with the best possible parameter β = 5). The other panels show the distribution

of transitive triads which look “erratic”. In contrast, Figure 8 shows the proposed

algorithm has 1.4 × 105 unique matrices, and the distribution of transitive triads

is much smoother. The proposed algorithm only achieved 7.5e+06 iterations, but

that is a small price to pay for the huge improvement over McDonald et al.’s

algorithm. This suggests that the proposed algorithm has made much more progress

in estimating the true distribution of τ than McDonald et al.’s algorithm.

Similar results were obtained for matrices of the form G = G(20, 0.3) and G =

G(30, 0.3). Figures 9 and 10 show the result for G = G(20, 0.3) again with both

algorithms running for 50 minutes. McDonald et al.’s algorithm obtains between

1,100 and 4,500 unique matrices, compared to 1.5 × 105 unique matrices for the

https://doi.org/10.1017/nws.2015.35 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.35

An improved MCMC algorithm for generating random graphs 133

Fig. 8. Proposed algorithm with G = G(10, 0.3). (Color online)

Fig. 9. McDonald et al.’s algorithm with G = G(20, 0.3). (Color online)

proposed algorithm, and the distribution of the triad count is again much smoother

for the proposed algorithm than McDonald et al’s algorithm. The same result is

obtained at G = G(30, 0.3) as shown in Figures 11 and 12. McDonald et al.’s

algorithm has less than 8,000 unique matrices compared to 1.5×105 for the proposed

algorithm.

https://doi.org/10.1017/nws.2015.35 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.35

134 T. Tao

Fig. 10. Proposed algorithm with G = G(20, 0.3). (Color online)

Fig. 11. McDonald et al.’s algorithm with G = G(30, 0.3). (Color online)

5.2 Classroom experiment—Triad census

The triad census (Wasserman, 1977) is a set of summary statistics describing the

local structure in a network. For any triad of three nodes, there are six possible

relationships between ordered pairs of distinct nodes. If one allows each such

relationship to be “on” or “off”, then there are 16 possible triads, up to isomorphism

(Wasserman, 1977). The triad census is therefore a 16-element vector and is a

function of an adjacency matrix (or corresponding network). Hence it carries much

https://doi.org/10.1017/nws.2015.35 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.35

An improved MCMC algorithm for generating random graphs 135

Fig. 12. Proposed algorithm with G = G(30, 0.3). (Color online)

more information than the transitivity τ in the previous section. If each element of

the vector is treated separately, one can do similar calculations to the transitivity in

the previous experiment, such as estimating the distribution or calculating moments

etc.

McKinney (1948) analyzed the preferences of 29 ninth-grade classroom students

regarding their acceptance/rejection preferences of each other and presented the

adjacency matrix for a subset of 10 students. Wasserman (1977) and McDonald

et al. (2007) attempted to estimate the expected value of the triad census under

certain conditions. More specifically, matrices compatible with A are randomly

drawn from the uniform distribution, and the expected values of the triad census

can be estimated as described in Section 2. The adjacency matrix A is given below:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 1 1 1 1 1

1 0 0 1 0 1 1 0 0 1

1 1 0 1 0 0 1 0 0 1

1 1 0 0 0 1 0 0 0 0

1 0 0 1 0 1 0 0 0 0

0 0 0 1 0 0 0 1 0 0

1 1 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0 1

1 1 0 0 0 0 0 1 0 0

1 1 0 0 1 1 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The first column of Table 2 represents the standard names given to all possible

triads using the MAN labeling (Wasserman & Faust, 1994) such as 003 for the

empty triad, 012 for a single asymmetric arc, and so on. For each triad type, the

next three columns are the observed number of triads in A, expected number of

triads under U|MAN,Bin, Bout and expected number of triads under U|Xi+, Bin, m

respectively. These results are due to Wasserman (1977) and copied by McDonald

et al. (2007). The fifth column is the expected number of triads under U|M,Xi+, X+j

(i.e. the model of interest to us) due to McDonald et al. (2007). The last column is

the expected number of trials using the proposed algorithm on U|M,Xi+, X+j .

Here MAN refers to the number of mutual, asymmetric and null dyads in an

adjacency matrix, and Bin, Bout refer to the number of 2-instars and 2-outstars in

https://doi.org/10.1017/nws.2015.35 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.35

136 T. Tao

Table 2. Triad census and expected values for relationships in ninth-grade classroom.

Triad Observed U|MAN,Bin, Bout U|Xi+, Bin, m U|M,Xi+, X+j Proposed

003 8 7.00 5.23 7.31 7.25

012 19 20.50 19.12 19.97 20.31

102 7 8.77 10.23 7.65 7.50

021D 5(?) 4.91(?) 5.83(?) 4.40(?) 4.27

021U 5(?) 7.95(?) 5.71(?) 8.19(?) 8.05

021C 11 7.07 9.20 7.90 7.78

111D 18(?) 14.94(?) 13.07(?) 14.87(?) 14.88

111U 7(?) 7.07(?) 12.70(?) 8.53(?) 8.44

030T 4 6.62 5.29 6.74 6.96

030C 0 0.28 0.75 0.44 0.47

201 6 6.52 7.08 6.94 7.19

120D 9(?) 5.79(?) 4.00(?) 6.18(?) 6.12

120U 7(?) 3.70(?) 4.26(?) 3.31(?) 3.33

120C 4 5.51 6.94 4.60 4.53

210 6 10.92 9.08 9.89 9.85

300 4 2.44(?) 1.49 3.06 3.03

the graph. Thus U|MAN,Bin, Bout means the uniform distribution over all graphs

with M mutual dyads, A asymmetric dyads, N null dyads, Bin 2-instars, and Bout

2-outstars, for given values of M,A,N, Bin, Bout.

There are a number of discrepancies in Table 2 indicated by a question mark(?).

Experimentation on the matrix A suggests that Wasserman has inadvertently

swapped row 021D with 021U, and similarly for 111D/111U and 120D/120U.

Also, McDonald et al. had the incorrect value of 1.41 instead of 2.44 in the last row,

which was obviously copied from the wrong column of Wasserman’s table. If these

suggestions are valid, then Table 2 is correct, including all entries indicated with a

question mark(?).

McDonald et al. compares the columns labeled U|MAN,Bin, Bout, U|Xi+, Bin, m

and U|M,Xi+, X+j . McDonald et al. correctly claim that of the first two the former

is closer to the column labeled U|M,Xi+, X+j than the latter. This can be verified

by inspection; or if one wanted to verify it numerically, then one can calculate:

16∑
i=1

[|bi − di|, |ci − di|] = [9.11, 26.44]

16∑
i=1

[(bi − di)
2, (ci − di)

2] = [7.5685, 58.6892]

where each 1 � i � 16 corresponds to a triad type and b, c, d represent the columns

labeled U|MAN,Bin, Bout, U|Xi+, Bin, m, U|M,Xi+, X+j .

The entries for the proposed algorithm are very close to those obtained by

McDonald et al’s algorithm. This suggests the set of matrices compatible with A is

“well-behaved” e.g. there are no problems associated with isolated components of

the Markov chain, hence there is no reason to expect the output of the proposed

algorithm to differ from that of McDonald et al.

https://doi.org/10.1017/nws.2015.35 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.35

An improved MCMC algorithm for generating random graphs 137

One can also compare all the columns of Table 2 and verify that

16∑
i=1

[|bi − ai|, |ci − ai|, |di − ai|, |ei − ai|] = [32.29, 39.48, 29.92, 30.64]

16∑
i=1

[(bi − ai)
2, (ci − ai)

2, (di − ai)
2, (ei − ai)

2] = [97.2343, 139.6788, 80.6524, 82.7466]

where a, b, c, d, e correspond to columns 2–6 in Table 2. We see that the proposed

algorithm and Mcdonald’s algorithm produce similar deviations from the triad

census of A. The other algorithms (corresponding to columns 3 and 4) have larger

deviations.

6 Conclusion

The problem of generating uniformly random graphs (or adjacency matrices) from a

constrained distribution is important and has many applications, including the

world wide web, social, and biological networks. The MCMC algorithm is a

popular approach to this problem. One of the main difficulties with existing MCMC

algorithms such as McDonald et al. (2007) is that one cannot guarantee the Markov

chain is irreducible, and hence one cannot guarantee a reasonable coverage of all

possible networks of interest. McDonald et al. conjectured that if certain elementary

operations were allowed such as swapping tetrads hexads or alternating tetrads, then

the chain becomes irreducible. We showed that this conjecture is false.

We have proposed a new improved MCMC algorithm for the problem of

generating random graphs (or adjacency matrices) with fixed in-degree, out-degree,

and mutual dyads. The basic idea is to allow global instead of local changes that

allow many entries of the adjacency matrix to be inverted in a single iteration.

This trivially guarantees the Markov chain is irreducible. We showed there is a

fast algorithm for obtaining these global changes, and proved that the uniform

distribution is attained. Although each individual MCMC iteration of the proposed

algorithm costs more time than existing algorithms, we obtain better coverage of the

search space and smoother distributions regarding the transitivity (number of triples

satisfying p → q, q → r, p → r) if both algorithms are run for the same amount of

time. The proposed algorithm produces a similar tetrad census to McDonald et al.’s

algorithm for ninth-grade classroom data due to McKinney (1948).

Future work may include adding further constraints such as the number of in-stars

or out-stars in the graph, or indeed any quantity in the triad census. This would yield

more realistic models for certain applications such as social network analysis, al-

though it remains an open question if the resulting algorithms will be feasible in prac-

tice. Also, it is worth investigating if the algorithm is scalable for larger size graphs,

i.e. does computation time becomes an issue for larger networks (e.g. 300 or 1,000

nodes) and if so, whether the algorithm can be optimized to mitigate these difficulties.

Acknowledgements

The author would like to thank the editor and anonymous reviewers for helpful

suggestions.

https://doi.org/10.1017/nws.2015.35 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.35

138 T. Tao

References

Blitzstein, J., & Diaconis, P. (2010). A sequential importance sampling algorithm for generating

random graphs with prescribed degrees. Internet Mathematics, 6(4), 489–522.

Chung, F., & Lu, L. (2002). Connected components in random graphs with given expected

degree sequences. Annals of Combinatorics, 6(2), 125–145.

Erdös, P., & Rényi, A. (1959). On random graphs. Publicationes Mathematicae, 6, 290–297.

Erdös, P. L., Miklós, I., & Soukup, L. (2013). Towards random uniform sampling of bipartite

graphs with given degree sequence. Electronic Journal of Combinatorics, 20(1).

Holland, P., & Leinhardt, S. (1981). An exponential family of probability distributions for

directed graphs. Journal of the American Statistical Association, 76(373), 33–50.

Lusher, D., Koskinen, J., & Robins, G. (eds). (2012). Exponential random graph models for social

networks, theory, methods, and applications. New York, NY, USA: Cambridge University

Press.

McDonald, J., Smith, P., & Forster, J. (2007). Markov chain Monte Carlo exact inference for

social networks. Social Networks, 29(1), 127–136.

McKinney, J. C. (1948). An educational application of a two-dimensional sociometric test.

Sociometry, 11(4), 358–367.

Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review,

45(2), 167–256.

Rabiner, L. R., & Juang, B. H. (1986). An introduction to hidden Markov models. IEEE

ASSP Magazine, 3(1), 4–16.

Rao, A., Jana, R., & Bandyopadhyay, S. (1996). A Markov chain Monte Carlo method for

generating random 0-1 matrices with given marginals. Sankhya, Series A, 58(2), 225–242.

Roberts, J. (2000). Simple methods for simulating sociomatrices with given marginal totals.

Social Networks, 22(3), 273–283.

Rubinstein, R. Y., Ridder, A., & Vaisman, R. (2013). Introduction to Monte Carlo methods

(pp. 1–5). Hoboken, NJ, USA: John Wiley and Sons, Inc.

Snijders, T. (2011). Statistical models for social networks. Annual Review of Sociology, 37,

131–53.

Wasserman, S., & Faust, K. (1994). Social network analysis: methods and applications.

Cambridge, UK: Cambridge University Press.

Wasserman, S. S. (1977). Random directed graph distributions and the triad census in social

networks. Journal of Mathematical Sociology, 5(1), 61–86.

A expected number of collisions

I wish to prove that if a hash function h(·) maps n objects onto k “slots”, and the

distribution is i.i.d. uniform for each h(z) then the expected number of collisions

E[C] is given by

E[C] = n − k + k

(
1 − 1

k

)n

(A 1)

Proof

I start by considering the probability that a given slot is empty. Let φi represent the

event that slot i is empty for 1 � i � k. Also let 1φi
denote the indicator function,

equal to 1 if φi occurs and 0 otherwise. The probability that state i is empty is given

by

E[1φi
] =

(
k − 1

k

)n

=

(
1 − 1

k

)n

(A 2)

https://doi.org/10.1017/nws.2015.35 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.35

An improved MCMC algorithm for generating random graphs 139

for any 1 � i � k since the distribution of each hash h(z) is i.i.d. uniform for

1 � z � n. The expected number of empty slots is therefore given by

E

[
k∑

i=1

1φi

]
=

k∑
i=1

E[1φi
] (A 3)

=

k∑
i=1

(
1 − 1

k

)n

(A 4)

= k

(
1 − 1

k

)n

(A 5)

If there are m empty slots, there must be k − m non-empty slots and hence

n − (k − m) collisions. Therefore, the expected number of collisions is

E[C] = n − k + k

(
1 − 1

k

)n

(A 6)

as required �

https://doi.org/10.1017/nws.2015.35 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.35

