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Motivated by the result that an ‘approximate’ evaluation of the Jones polynomial of a

braid at a 5th root of unity can be used to simulate the quantum part of any algorithm in

the quantum complexity class BQP, and results relating BQP to the counting class GapP,

we introduce a form of additive approximation which can be used to simulate a function in

BQP. We show that all functions in the classes #P and GapP have such an approximation

scheme under certain natural normalizations. However, we are unable to determine whether

the particular functions we are motivated by, such as the above evaluation of the Jones

polynomial, can be approximated in this way. We close with some open problems motivated

by this work.

1. Introduction

The quantum complexity class BQP consists of those decision problems that can be

computed with bounded error, using quantum resources, in polynomial time. Relative to

the polynomial hierarchy of classical computation, it is known that

BPP ⊆ BQP ⊆ PP ⊆ PSPACE,

and at the moment none of these inclusions is known to be proper [1]. Recent work

by Freedman, Kitaev, Larson and Wang [5] has shown that the ‘quantum part’ of

any quantum computation can be replaced by an approximate evaluation of the Jones

polynomial of a related braid. A classical polynomial time algorithm can convert a

quantum circuit for an instance of such a problem, into a braid, such that the probability

that the output of the quantum computation is zero is a simple (polynomial time) function
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of the Jones polynomial of the braid at a 5th root of unity. For an exact statement of this

see Freedman, Kitaev, Larsen and Wang [5], or the more detailed papers by Freedman,

Kitaev and Wang [6], and Freedman, Larsen and Wang [7, 8].

It therefore follows that if we take A(L, x) to be an oracle that returns the evaluation of

the Jones polynomial of a braid L at a point x, any BQP computation can be replicated by

a classical polynomial time algorithm with one call to A, i.e., BQP ⊆ PA. Since computing

the Jones polynomial is in general a #P-hard problem, this does not help. However, it

is not an exact evaluation of the Jones polynomial that is required, but an approximate

evaluation at a specific point for braids of a specific class. Hence we may look for a

weaker oracle A′ such that BQP ⊆ PA
′
.

In a different approach Fortnow and Rogers [4] link quantum complexity to the classical

complexity class GapP. In particular they show that for any quantum Turing machine M

running in time t(n) there is a GapP function f such that for all inputs x

Pr(M(x) accepts) =
f(x)

52t(|x|) .

Again evaluating a general GapP function exactly is #P-hard; however, one can simulate

M using a polynomial algorithm with access to an oracle A′′, where A′′ is an oracle giving

an approximation to the GapP function f.

With this motivation we examine the type of approximation needed in order to simulate

a quantum computation, and then consider the complexity of such approximations. It

turns out that an additive approximation is sufficiently powerful. We should emphasize

that a polynomial time additive approximation scheme is weaker than the familiar and

much studied fully polynomial randomized approximation scheme (FPRAS). However, it is

well known that any function which counts objects for which the corresponding decision

problem is NP-complete cannot have an FPRAS (unless NP = RP). We show below that

all #P functions do have polynomial time additive approximation schemes under natural

normalizations. We also show that in two senses this is the best sort of approximation we

can hope to achieve in polynomial time (see Theorems 4.1, 4.3 and 4.4).

2. Quantum computing

A link L is a smooth submanifold of S3, consisting of c(L) disjoint simple closed curves.

A braid on m strings is constructed as follows. Take m distinct points in a horizontal

line (p1, p2, . . . , pm) and link them to m distinct points (q1, q2, . . . , qm) lying on a parallel

line, by m disjoint simple arcs fi in R3, so that fi starts at pi and ends at qπ(i) where π

is a permutation. A braid can be closed in numerous ways, by identifying the points pi
and qj in some way, creating a link. Similarly any link can be represented as a braid. In

particular, the plat closure of a braid on 2m strings is obtained by identifying the points

p2i−1 and p2i, and q2i−1 and q2i for 1 � i � m.

2.1. Topological computing and the Jones polynomial

One of the major difficulties in building a quantum computer has been the sensitivity of

the system to outside interference. Freedman, Kitaev, Larson and Wang [5] introduced

the notion of topological quantum computing, in an attempt to make the computations less
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sensitive to small disturbances. The basic idea is as follows. One can create pairs of special

quasi-particles, called anyons, in a 2-dimensional plane sandwiched between two blocks

of a superconductor. The anyons have a certain probability of annihilating each other

(leaving a vacuum) when brought together. However, this probability changes, according

to the laws of quantum mechanics when one anyon is moved around the other before

they are brought together. Even if it is moved in a complete circle around the other, on

reaching its original position the probability of annihilation is changed. Thus a system

of a large number of these particles can be used as a quantum computer for decision

problems; pairs of anyons are created, moved around relative to each other, and then a

predefined pair of the anyons is brought together. If this pair annihilate each other leaving

a vacuum, this is taken to be an output of 0 (or rejection); if they do not it is taken

to be an output of 1 (or acceptance). The paths in the 2-dimensional surface, combined

with a time dimension, give rise to a 3-dimensional representation of the ‘computation’

as a braid. There remain major difficulties in constructing such a quantum computer, and

controlling the movement of anyons. However, one of the important results of Freedman,

Kitaev, Larsen and Wang is that small changes in the paths of the anyons do not affect

the outcome of the computation; indeed it is determined by the isotopy class of the braid,

and therefore stable under perturbations of the paths that do not change the braiding

itself.

The way in which the probability changes is sufficiently subtle that such a quantum

computer is universal in the following sense. The Kitaev–Solovay theorem [12, 14] together

with the density theorem of Freedman, Larsen and Wang [7, 8] yields an algorithm which

given any quantum circuit on m/2 qubits and error parameter ε, outputs a braid on

m strings using a polynomial number of crossings (polynomial in m and log ε−1). The

topological quantum computation using this braid efficiently simulates the quantum

circuit, (the probability of acceptance is within ε of the correct value). Since an algorithm

for a BQP problem can be used to generate a quantum circuit for a given instance,

the above result gives an explicit method for finding an equivalent topological quantum

computation, and so the class BQP is the same under either model.

Hence a quantum computation on m/2 qubits is approximately represented by a braid b.

In showing that the topological quantum computation depends on the isotopy class of b

alone [5], the following link L is considered. L is the plat closure of the composition of

b−1, b and a small loop γ inserted (between b−1 and b) around the leftmost two strings

(see Figures 1 and 2). Both b and b−1 are needed as any quantum computation must be

reversible; the loop γ effects a measurement of the qubit represented by the leftmost pair

of strings. The conclusions of [5] may then be summarized as the following theorem: refer

to [5] for full details.

Theorem 2.1. Let π be a problem in BQP, with a polynomial time quantum algorithm A,

and let I be an instance of π. For any ε > 0, a link L may be determined in time polynomial

in |I| and log ε such that∣∣∣∣Pr(A(I) = 0) − 1

1 + [2]25

(
1 +

(−1)c(L)+w(L)(−a)3w(L)VL(e
2πi/5)

[2]m(L)−2
5

)∣∣∣∣ < ε, (2.1)
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b

Figure 1. The braid b.

b

b–1

γ

minima

Figure 2. The link L.

where a = eiπ/10 and [2]5 = 2 cos π/5 and c(L), w(L) and m(L) are the number of compon-

ents, writhe and number of minima of the link L respectively.

The minima of [5] are the individual joins in the plat closure at the bottom of the braid,

hence m(L) is half the number of strings in b plus one. By construction, the number of

strings in b is twice the number of (qu)bits in the input, hence m(L) = |I | + 1. The writhe

is defined for an oriented link, and is the number of ‘positively oriented’ crossings minus

the number of ‘negatively oriented’ crossings, with respect to the given orientation of L.

It is easily computable. The Jones polynomial is also defined for oriented links; however,

the formula above is independent of the orientation chosen for L. Since every crossing in

b appears reversed in b−1, these do not contribute to the writhe of L, hence the writhe is

determined by the four crossings involving γ, and can only be −4, 0, or 4 (depending on

the orientation of the two strands passing through γ). If L∗ denotes L with the orientation

of one component reversed, then VL∗ (t) = t−3λ/2VL(t), where λ is the contribution to the

writhe of L from crossings of the reversed component over (or under) the rest of L. Hence

only reversing γ or one of the leftmost two strings can affect the Jones evaluation, and it
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is easily checked that this is compensated by the change in the terms involving the writhe.

To be consistent, we will retain the notation [2]5 for 2 cos π/5 from [5] throughout.

It is Theorem 2.1 that gives rise to our interest in approximating VL(t). Further

explanation of the derivation of this equation is given in [18] where the special but

sufficient case w(L) = 0 is considered (we could restrict attention to braids with writhe

zero without affecting the main results). Although this formula involves an evaluation at

e2πi/5, similar results can be obtained for the nth root of unity for any n � 5, n �= 6 but

these involve multiple Ls.

The preceding paragraphs explain how an evaluation of a Jones polynomial can yield

the answer to a (general) quantum computation. There is a weak converse to this. Suppose

we have a quantum computer at our disposal with which to learn something about a Jones

evaluation of a link L. We may assume without loss of generality (Freedman, Larsen and

Wang [7]) that our quantum computer is of the topological kind and thus nicely adapted

to braids. We can (easily) write L as the plat closure of a braid b by starting with the

link diagram and pulling the overcrossings up and the undercrossings down. Let m be the

number of strands of this braid b. If we wish to evaluate VL(α), α = e2πi/r , we encounter

an important constant d = 2 cos π/r. The norm |VL(α)| is bounded from above by dm/2

with |VL(α)| = dm/2 achieved only when L is the unlink on m/2 components, a case which

occurs when b is the identity braid. Our quantum computer will be able to provide an

additive approximation (see below) of |VL(α)| as a variable with range [0, dm/2].

Given m marked points in the horizontal plane and the number α, there is a finite

dimensional Hilbert space H on which m-strand braids act through a Jones representation

p. The m/2 maxima (in the plat closure) determine a vector c in this space and the m/2

minima (in the plat closure) determine a vector in the dual H∗, which when identified

with H by the Hermitian inner product, is the same c.

We have

VL(α)

dm/2
= 〈c|p(b)|c〉.

Furthermore Prob(|0〉) = |〈c|p(b)|c〉|2, where Prob(|0〉) refers to the physical probability

that below the cups, after all the ‘particles’ have been fused in pairs, the vacuum |0〉 is

observed, that is, no nontrivial particles result from these fusions. The last formula reflects

the quantum mechanical rule that the probability of observing an outcome, in this case

|0〉, is proportional to the square of the component of the state vector in the |0〉-direction.

Because the range of |VL(α)| depends exponentially on the number of strings in the

braid, m(b), our quantum computer will give much better information (sooner) if we

succeed in displaying L with, or nearly with, the minimal m(b), called the braid index

of L.

Turning to the computational question, it is a theorem of Thistlethwaite [15] that when

L is an alternating link, with associated plane graph G, then

VL(t) = αT (G; −t,−t−1)

where α is an easily computable function, and T is the Tutte polynomial of the planar

graph. It is known [17] that even for planar graphs, computing T (G; x, y) is #P-hard,
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except when (x, y) is one of a few special points, or lies on a hyperbola satisfying

(x− 1)(y − 1) = q ∈ {1, 2}.
Since (−e2πi/n,−e−2πi/n), n � 5, is not one of these ‘easy’ points, exact computation in

polynomial time is not feasible (unless #P=P). It also seems unlikely that an FPRAS

exists for these points. However, the notion of an FPRAS seems to be much stronger than

the kind of approximation that is needed in the current context. For any BQP language L

there is a quantum Turing machine M such that for all x ∈ L, M accepts with probability

at least 3/4, and for all x �∈ L, M accepts with probability at most 1/4. Therefore all that

we require is to determine which quartile of its range VL(e
2πi/5) lies in. We return to this

topic in Section 5.

When considering algorithms on braids or links, the size of the input is taken to be

the number of crossings. A quantum gate on m/2 qubits is converted into a braid on m

strings of length polylog (1/ε), therefore the number of crossings in the braid associated

with a BQP circuit is polynomially related to the number of gates in the BQP circuit.

This in turn is bounded by a polynomial in the input size, hence an algorithm will either

be polynomial with respect to both the number of crossings in the braid and the number

of input qubits to the circuit, or neither.

2.2. GapP functions

The class of counting functions which constitute #P is the set of functions that count

certificates of membership of a language belonging to NP, hence #P functions are

constrained to evaluate to non-negative integers. The class of functions GapP can be

regarded as the closure of #P under subtraction, that is to say a function f : I 	→ Z is

in GapP if and only if there exist functions g, h ∈ #P such that f(I) = g(I) − h(I) for all

I ∈ I. The class AWPP can be defined as follows [3]. A language L is in AWPP if and

only if there exist a polynomial p and a GapP function g such that for all I ∈ I,

I ∈ L ⇒ 3

4
� g(I)

2p(|I |) � 1,

I �∈ L ⇒ 0 � g(I)

2p(|I |) � 1

4
. (2.2)

The increase in power of quantum computation over classical computation is that

in a quantum computer there is an ability to cancel out computations paths. Fortnow

and Rogers [4] show that this power is captured by the class GapP, in which a similar

effect is seen. In particular they show that BQP ⊆ AWPP. It therefore follows that for a

BQP language L, polynomial p and GapP function g satisfying (2.2), determining which

quartile of the range [0, 2p(|I |)] contains g(I) would be enough to determine membership

of L.

To summarize, our foremost problems can be interpreted as finding a suitable approx-

imation for the Jones polynomial of a link, VL(t), the Tutte polynomial of an associated

planar graph, T (G; x, y), at a particular point, or for the GapP functions arising from

BQP languages.
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3. Approximation

Given a function ψ : I 	→ R for which no efficient exact evaluation algorithm is known,

one may be interested in an ‘approximate’ answer instead. A standard approach is to look

for a fully polynomial randomized approximation scheme (FPRAS) for the problem. If ψ

is such a function and I ∈ I is an input, then an FPRAS for ψ is a randomized algorithm

that given any I ∈ I, ε > 0 will output ψ̂(I, ε), such that

Pr[|ψ̂(I, ε) − ψ(I)| > εψ(I)] < 1/4,

and the running time is polynomial in |I | and ε−1.

Here one might be prompted to consider the following sort of approximation. Suppose

we know a range in which the answer lies. Can we say where in that range the answer

lies? Is it in the top or bottom half of the range, or in which quartile? We shall see

that this approach is unlikely to be feasible, and in Section 3.1 we present an alternative.

Clearly this type of approximation depends on the nature of the range. For the moment

let us restrict our attention to the class of functions in #P. We will make the standard

assumption that for a given NDTM M there exists a fixed polynomial p such that for

any input x, all certificates have size p(|x|) (so the total number of possible certificates of

M is 2p(|x|)). We would like to answer the following problem, denoted by πr: Given r, for

which k is the number of accepting certificates for x between (k−1)
r

2p(|x|) and k
r
2p(|x|)?

The problem π2 is simply to determine which inputs have more than half of all certi-

ficates as accepting certificates. The set of languages in this class is exactly the set PP

of probabilistic polynomial time languages. Furthermore, π2 is clearly Turing reducible

to π2s, for any positive integer s, since if π2s(x) � s then π2(x) = 1, otherwise π2(x) = 2.

Hence it is no surprise that this approach to approximation is NP-hard for #SAT, indeed

the following lemma shows that any attempt to approximate #SAT in this way, or

any problem with a parsimonious reduction to SAT, is unlikely to work. The proof is

straightforward and we omit it; details may be found in [2].

Lemma 3.1. For k ∈ Z, deciding whether a CNF formula in n literals has more than 2n−k

solutions is NP-hard.

When k = 1 the same decision for disjunctive normal form (DNF) formulae is equivalent

to that for SAT, since the negation of a SAT formula is in DNF, and hence for an instance

F , we have #SAT(F) = 2n−#DNF(F), where n is the number of literals. This observation

leads to the following related lemma. Again, the proof is omitted and details may be

found in [2].

Lemma 3.2. For k ∈ Z, deciding whether a DNF formula in n literals has at least 2n−k

solutions is NP-hard.

This may seem more counterintuitive since not only is DNF in P, but also #DNF has

an FPRAS [11]. On the other hand, the next lemma shows that the number of stable

(independent) sets of vertices in a graph (#SS) can be approximated in this way, even
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though it is #P-complete and does not admit an FPRAS unless NP = RP. Essentially

this is because the ‘natural’ upper bound on the number of stable sets, 2n, is far too big

unless the graph has very few edges. For details of the proof see [2].

Lemma 3.3. Let G be a graph on n vertices. For r ∈ Z, determining for which k, #SS(G) ∈
[ (k−1)

r
2n, k

r
2n) is computable in time polynomial in n and r.

Lemma 3.1 suggests that we cannot hope to fix a partition of the range and then

determine in polynomial time in which section the answer lies; the difficulty associated

with an NP-complete decision problem can be shifted to exactly the boundary between

two parts of our partition. We therefore consider an alternative method of approximation

which will meet our needs.

3.1. Additive approximation

Our approach to approximation consists of determining a small section of the range

depending on the input, and in which we can say the answer lies with high probability.

This gives rise to an additive approximation.

Definition 1 (Additive Approximation (AA)). Given any function f : I 	→ C and a nor-

malization u : Z+ 	→ R+, an additive approximation for (f, u) is a probabilistic algorithm

which, given any I ∈ I, ε > 0, produces an output f̂(I) such that

Pr[|f(I) − f̂(I)| > εu(|I |)] < 1/4,

in time polynomial in |I | and ε−1.

Note that the 1/4 in the definition could be replaced by any δ ∈ (0, 1/2), since we could

reduce this error probability in polynomial time by taking several runs of the algorithm.

Note also that most of the time we shall be considering the case where f is real. In

contrast to the set of functions admitting an FPRAS, which is closed under addition

but not under subtraction (e.g., #DNF(f) has an FPRAS, but #SAT(f) = 2n − #DNF(f̄)

does not), we have the following result, whose proof we leave to the reader.

Proposition 3.4. Suppose (f, u) and (g, v) admit AA algorithms, then there exists AA al-

gorithms for (−f, u), (f + g, u+ v) and (f − g, u+ v). If, in addition, |f(I)| � u(|I |) and

|g(I)| � v(|I |) for all I , then there is an AA algorithm for (fg, uv).

The normalization is crucial. Since we are most interested in determining where in the

range of possible values the answer lies, we shall usually be taking u to be an upper

bound on |f| depending only on input size. An additive approximation allows errors up

to an absolute value of εu(|I |), whereas an FPRAS allows only errors up to an absolute

value of εf(I). It is therefore a weaker notion of approximation, and it is easy to check

that any function that admits an FPRAS also admits an AA algorithm under any upper

bound.
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Lemma 3.5. Let f : I 	→ R be a function that admits an FPRAS, and let u : Z+ 	→ R

satisfy |f(I)| � u(|I |) for all inputs I ∈ I. Then (f, u) has an AA algorithm.

Note also that a given function will have an AA with respect to some normalizations

but not others. For example, we show later that for the number of proper 3-colourings

of a connected graph G on n vertices, PG(3) where PG is the chromatic polynomial of

G, we have an AA for (PG(3), 2n). However, for any constant δ > 0, (PG(3), (2 − δ)n)

does not have an AA unless NP = RP (Theorem 4.4). In other words we can determine

PG(3) to within an additive error ε2n in polynomial time, but we cannot approximate to

within an additive error ε(2 − δ)n. Note that if (f(I), u(|I |)) has an AA, then for any fixed

polynomial p, (f(I), u(|I |)/p(|I |)) also does, since we can absorb the polynomial factor in

the normalization into ε at only a polynomial slowing of the algorithm.

It is the determination of the ‘best’ normalization for a given function that causes the

greatest difficulties, particularly in relation to approximating VL(t). Nevertheless our first

positive result shows that any function belonging to #P does have an AA algorithm under

very natural normalizations.

4. Additive approximations for #P functions

The class of functions which constitute #P can be regarded as the set of functions that

count certificates of membership of a language belonging to NP. For a given NP-language

L there will be infinitely many NDTMs which check membership of L, and the certificates

for a given input I will depend on the machine used in verification.

The main result of this section is that all such counting functions have additive ap-

proximation schemes under the ‘natural normalization’ associated with the corresponding

NDTM. For example, if we take f(G) to be the number of Hamiltonian circuits in a

graph G, then two possible NDTMs for checking membership of L are M1, which takes

as certificates subsets of the edges, and checks that these form a cycle of length |V |,
and M2, which takes as certificates an ordering of the vertices v1, v2, . . . , vn and checks

that the edges between any two adjacent vertices in the ordering, and between vn and v1,

do appear in the graph (to avoid double counting we must insist that relative to some

fixed ordering of the vertices π : V 	→ 1, . . . , n, we have π(v1) = 1 and π(v2) < π(vn)). In

each case the number of good certificates for a given graph G is exactly the number

of Hamiltonian circuits of G; however, M1 has 2|E(G)| possible certificates, while M2 has

(|V | − 1)!/2 possible certificates. In either case the number of possible certificates is a

natural upper bound on the number of Hamiltonian circuits. We show below that there

is an additive approximation algorithm under the normalization associated with any such

bound.

Theorem 4.1. Let f be a function in the class #P , with an associated NDTM M, so that,

for a given instance I , M has f(I) accepting certificates, each of length p(|I |). Then there

exists an additive approximation algorithm for (f, 2p(|I |)) that runs in time polynomial in |I |
and ε−1.
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Proof. Given an instance I of f, we will select t computation paths, or certificates,

uniformly at random from the 2p(|I |) possible. We then run M using these inputs, and let

Xi, i = 1 . . . t be indicator functions which take value 1 if and only if the ith computation

path accepts I . The estimator for f(I) is then X = 2p(|I |)

t

∑t
i=1Xi.

Clearly E[X] = f(I). It remains to show that we can select t only polynomially large,

such that the error bounds given in Definition 1 are satisfied. First note from Chebyshev’s

inequality that

Pr
[
|X − f(I)| � ε2p(|I |)] � Var(X)

ε222p(|I |)

� 1

t

f(I)
2p(|I |)

(
1 − f(I)

2p(|I |)

)
ε2

� 1

tε2
.

Now if t = 4ε−2 + 1, we have

Pr
[
|X − f(I)| � ε2p(|I |)] < 1/4. �

Turning briefly to GapP functions, we get the following immediate corollary.

Theorem 4.2. Let f be a GapP function such that f = g − h where g, h ∈#P.

(i) Suppose that there are additive approximations for (g, u) and (h, v), then there is an

additive approximation scheme for (f,max{u, v});
(ii) Suppose that g(I) and h(I) have certificates of length p(|I |) for all I , then there is an

additive approximation scheme for (f, 2p).

Proof. From Proposition 3.4 we have that there is an additive approximation for

(f, u+ v). From Definition 1 we can halve the permitted error for only a polynomial

increase in running time, hence there is an AA for (f, u+v
2

) and therefore also (f,max{u, v}),
which gives (i). When g and h have certificates of length p, by Theorem 4.1 there are AA

schemes for (g, 2p) and (h, 2p), (ii) now follows from (i).

We have seen that all functions contained in #P have an AA algorithm relative to

normalization by the size of the certificate space, and it is reasonable to ask if we could

do better. However, we give two results that suggest this is already the best we can do

in general. First we will see that sharpening our approximation to a logarithmic scale for

the number of proper 5-colourings of a graph is NP-hard. Secondly, we show that the

normalization by the number of possible certificates cannot be improved significantly in

the case of the number of k-colourings of a graph.

Theorem 4.3. Let PG(5) be the number of proper 5-colourings of a graph. Then for a general

graph G on n vertices, there cannot be an additive approximation algorithm for (log(PG(5) +

1), 3n) that runs in time polynomial in n and ε−1 unless NP = RP.
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Proof. Consider an NDTM for PG(5) that takes as certificates any 5-colouring of the

graph, hence the certificates are of length n�log 5
 = 3n, where n is the number of vertices

in G. We show that an AA algorithm for (log(PG(5) + 1), 3n) would be able to solve the

NP-complete problem of determining whether a graph is 5-colourable.

Let G be a graph on n vertices and consider the following polynomial time transforma-

tion. We form G+ by adding n isolated vertices to G. If G is not 5-colourable, then nor is

G+. However, if G is 5-colourable, each 5-colouring can be extended to 5n 5-colourings of

G+. Therefore, if G is not 5-colourable log(PG+(5) + 1) = 0, whereas if G is 5-colourable,

log(PG+(5) + 1) � log(5n.5! + 1)

> 2n.

Hence an additive approximation algorithm for (log(PG+(5) + 1), 6n) could determine

whether or not G is 5-colourable in random polynomial time.

Theorem 4.1 shows that for connected graphs there exists an AA algorithm for

(PG(k), (k − 1)n) as follows. We can take an arbitrary spanning tree on G, and take

the set of certificates to define colourings relative to this spanning tree, giving k(k − 1)n−1

possible certificates. We can then adjust the normalization by a constant factor (k − 1)/k.

We show that this cannot be improved, in the sense that the normalization (and therefore

the error) cannot be reduced by any exponential factor. We have already noted that the

normalization can be improved by any fixed polynomial factor.

Theorem 4.4. If NP �= RP then for any fixed k � 3, δ > 0 there cannot be a polynomial

time AA algorithm for (PG(k), φ(n)) for connected graphs G on n vertices, for any function

φ(n) of order O((k − 1 − δ)n).

Proof. Let φ(n) � c(k − 1 − δ)n for sufficiently large n. Take r such that (k − 1 − δ) �
(k − 1)1−1/r. Given any graph G, we form a graph H by attaching a path of length n(r − 1)

to a vertex of G. Now

PG(k)(k − 1)n(r−1) = PH (k), (4.1)

PG(k) =
PH (k)(

(k − 1)1−1/r
)nr , (4.2)

PG(k) =
cPH (k)

φ(nr)

φ(nr)

c
(
(k − 1)1−1/r

)nr . (4.3)

Now suppose that there is an AA algorithm for (PH (k), φ(|H |)), then we can get an

approximation P̂H (k) within an additive error of 1
2c
φ(nr). Using P̂H (k) and equation (4.2),

we obtain an approximation P̂G(k). By equation (4.3), P̂G(k) is within an additive error of

1/2, since

φ(nr)

c
(
(k − 1)1−1/r

)nr � φ(nr)

c(k − 1 − δ)nr
� 1.

Since PG(k) is integral, we can therefore determine it exactly.
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5. Approximating VL(t) and related quantities

We have seen in Section 2.1 that our primary problem is to decide whether or not there

exists an additive approximation scheme for (VL(e
2πi/5), [2]

m/2
5 ) where L is the plat closure

of a braid on m strings, indeed an additive approximation for the absolute value of the

Jones polynomial suffices. We make this precise in the following theorem.

Theorem 5.1. Let A be a oracle which takes as input a braid b on m strings and ε > 0, and

returns an additive approximation for (|VL(e2πi/5)|, [2]
m/2
5 ), where L is the plat closure of b.

Then BQP = PA.

Proof. Recall from Section 2.1 that given a braid on m strings, a topological quantum

computer can be constructed such that the probability of output zero is |VL(e2πi/5)|2
[2]m5

and

the computer runs in time polynomial in m. Given ε > 0, using independent runs of this

computer and a standard sampling approach, the probability of zero can be estimated

to within an error of ε2, where the number of runs is polynomial in ε−1. Hence we may

estimate |VL(e2πi/5)| to within an absolute error of ε[2]
m/2
5 in polynomial time. Therefore

PA ⊆ BQP.

Secondly, suppose we have a BQP language and an input x. By Theorem 2.1 we can

determine a link L, of size polynomial in |x|, such that L satisfies equation (2.1), and the

number of minima of L is |x| + 1. If x is in the language, Pr(0) < 1/4, hence

0 � 1

1 + [2]25

(
1 +

(−1)c(L)+w(L)(−a)3w(L)VL
(
e2πi/5

)
[2]

|x|−1
5

)
< 1/4,

−[2]
|x|+1
5 [2]−2

5 � (−1)c(L)+w(L)(−a)3w(L)VL
(
e2πi/5

)
< [2]

|x|+1
5 [2]−2

5

(
1 + [2]25

4
− 1

)
,

∣∣VL( e2πi/5 )∣∣ < [2]
|x|+1
5 0.39. (5.1)

Whereas, if x is not in the language, Pr(0) > 3/4, hence

1

1 + [2]25

(
1 +

(−1)c(L)+w(L)(−a)3w(L)VL
(
e2πi/5

)
[2]

|x|−1
5

)
> 3/4,

(−1)c(L)+w(L)(−a)3w(L)VL
(
e2πi/5

)
> [2]

|x|+1
5 [2]−2

5

(
3(1 + [2]25)

4
− 1

)
,

∣∣VL( e2πi/5 )∣∣ > [2]
|x|+1
5 0.65. (5.2)

Clearly use of an oracle giving an additive approximation for (|VL(e2πi/5)|, [2]
|x|+1
5 ) will en-

able us to distinguish these two cases with probability at least 3/4. Hence BQP ⊆ PA.

We saw in Section 2.1 the equivalence of the Jones polynomial and a specialization

of the Tutte polynomial for alternating links, hence we would like an AA for a general

planar graph G for (
T

(
G; −e2πi/5,−e−2πi/5

)
, u

)
,

where u is some reasonable upper bound.
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Hyperbolae of the form Hq := (x− 1)(y − 1) = q play a crucial role in the manipulation

of the Tutte polynomial; loosely speaking, the process of performing a tensor product on

an input graph G with some other fixed graph N enables us to ‘move around’ the Tutte

plane. That is, the new graph G⊗N satisfies

T (G⊗N; x, y) = f(N; x, y)T (G;X,Y ), (5.3)

where f and the arguments X,Y can be computed in time polynomial in |x|, |y| and |N|.
However, for any choice of N, the new points X,Y satisfy

(X − 1)(Y − 1) = (x− 1)(y − 1) = q. (5.4)

Thus, such transformations restrict us to remain on the initial hyperbola Hq; see [10] for

further details. The close relationship between points on the hyperbola enables us to use

an additive approximation at one point to get an additive approximation at any other

point (X,Y ) on the same hyperbola for which there exists a suitable planar N which

transforms (x, y) to (X,Y ) by (5.3).

Proposition 5.2. Let x, y ∈ Q and N a planar graph on k vertices be fixed. Suppose there

is an AA scheme for (T (G; x, y), u(n)) for any planar G on n vertices and m edges. Then

there is also an AA for

(T (G;X,Y ), u(n+ m(k − 2))),

where X and Y are the points determined by the transformation in (5.3) (depending only on

x, y and N).

Proof. Let X and Y be the points satisfying (5.3). Since G⊗N is planar (see the

construction in [10]) we may use the AA scheme for

(T (G⊗N; x, y), u(|V (G⊗N)|))

to get an approximation to within an error εu(|V (G⊗N)|) with probability at least 3/4 in

polynomial time. Note that |V (G⊗N)| = n+ m(k − 2). Since the running time of the AA

scheme is polynomial in ε−1, and f(N; x, y) is a constant, we can approximate to within

an error of ε|f(N; x, y)|u(n+ m(k − 2)) and still run in polynomial time. By (5.3) we have

T (G;X,Y ) =
T (G⊗N; x, y)

f(N; x, y)
.

Hence the AA for T (G⊗N; x, y) yields an AA for T (G;X,Y ) with error at most

εu(n+ m(k − 2)) in polynomial time.

Because of the important role of these hyperbolae, it is natural to look at the hyperbolae

containing the roots of unity (−e 2πi
n ,−e− 2πi

n ). These are Hqn , where qn = 2 + 2 cos(2π/n),

which cut the x-axis at

x = −1 − 2 cos(2π/n), (5.5)

corresponding to an evaluation of the chromatic polynomial at one of the well-known

Beraha numbers Bn = 2 + 2 cos(2π/n). Since for real x and y and any graph N, the related
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points X and Y will also be real, we cannot find an N such that we can directly relate

T (G⊗N; 1 − B5, 0) and T (G; −e 2πi
5 ,−e− 2πi

5 ). Whether or not we can find a point within

absolute value ε of (1 − B5, 0) that can be directly related to (−e 2πi
5 ,−e− 2πi

5 ) is an interesting

ongoing question. We present some positive results below, and return to these difficulties

in Section 7.

First note that by Theorems 4.1 and 4.2 we know that T (G; x, y), x, y ∈ Z will have

an AA scheme with respect to an appropriate normalization, since evaluations at these

points are GapP functions. However, the drawback is that often the naive normalization

will be too large. This will not always be the case, for example the point (1 − λ, 0), λ ∈ Z,

gives the number of proper λ colourings, and by Theorems 4.3 and 4.4 here we have a

best possible normalization.

When we consider the non-integer points, the situation is more complicated. A straight-

forward sampling approach gives the following result.

Proposition 5.3. For rational (x, y) and a connected graph G, there exists a AA algorithm

for the following:

(i) (T (G; x, y), y|E|(y − 1)−|V |+1) when {x = 1, y > 1},
(ii) (T (G; x, y), x|E|(x− 1)|V |−|E|−1) when {x > 1, y = 1},
(iii) (T (G; x, y), y|E|(x− 1)|V |−1) when {x > 1, y > 1}.

In other regions, in particular where there are negative terms in the expansion of T ,

cancellation between terms means that there is no longer a natural upper bound by which

to normalize. We return to this problem in Section 7.

6. An alternative approach

Returning to our original motivation, at the moment we are unable to determine whether

there is an AA algorithm for (VL(e
2πi/5), [2]

m/2
5 ) where L is the plat closure of a braid on

m strings. However, we now show that in order to simulate a quantum computation it

would be sufficient to determine the sign of the real part of VL(e
2πi/5). Particularly in the

case that the writhe of L is zero, and hence VL(e
2πi/5) is real, this seems an easier problem.

Theorem 6.1. Let A(L) be an oracle that returns the sign of the real part of the Jones

polynomial of the link L evaluated at e2πi/5. Then BQP ⊆ PA.

Proof. This proof follows that of Theorem 5.1. Suppose we have a BQP language and

an input x. By Theorem 2.1 we can determine a link L, of size polynomial in |x|, such that

L satisfies equation (2.1), and the number of minima of L is |x| + 1. We now assume that

w(L) = 0; the proof in the cases w(L) = 4 and w(L) = −4 follow by a similar argument.

Simplifying equation (2.1) in the case w(L) = 0, we have

Pr(0) =
1

1 + [2]25

(
1 +

(−1)c(L)VL
(
e2πi/5

)
[2]m(L)−2

5

)
. (6.1)
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If x is in the language, Pr(0) < 1/4, hence

1

1 + [2]25

(
1 +

(−1)c(L)VL
(
e2πi/5

)
[2]

|x|−1
5

)
< 1/4,

(−1)c(L)VL
(
e2πi/5

)
< [2]

|x|−1
5

(
1 + [2]25

4
− 1

)
,

(−1)c(L)VL
(
e2πi/5

)
< −[2]

|x|−1
5 0.09 < 0. (6.2)

Whereas, if x is not in the language, Pr(0) > 3/4, hence

1

1 + [2]25

(
1 +

(−1)c(L)VL
(
e2πi/5

)
[2]

|x|−1
5

)
> 3/4,

(−1)c(L)VL
(
e2πi/5

)
> [2]

|x|−1
5

(
3(1 + [2]25)

4
− 1

)
,

(−1)c(L)VL
(
e2πi/5

)
> [2]

|x|−1
5 1.71 > 0. (6.3)

Clearly use of an oracle giving an additive approximation for the sign of VL(e
2πi/5) will en-

able us to distinguish these two cases with probability at least 3/4. Hence BQP ⊆ PA.

In the previous section we outlined the importance of the hyperbolae Hq := (x− 1)(y−
1) = q to the Tutte polynomial. For x, y, X, Y and N related as in equation (5.3), we can

determine the sign of T (G;X,Y ) if we can determine the sign of T (G⊗N; x, y).

This gives rise to the natural question of the complexity of determining whether a

function is greater than or less than zero, in particular the Tutte polynomial, of which the

Jones is a specialization. It is immediate from the definitions that the Tutte is non-negative

in the region x, y � 0. At all other integer points on the axes the Tutte polynomial counts

either colourings or flows, up to easy multiplicative factors. Since these factors may be

positive or negative, we can always select one of either ‘T (G; x, y) is non-negative’ or

‘T (G; x, y) is non-positive’ that is true, in polynomial time. In the above situation we are

not concerned with cases in which the value is exactly zero, hence this would suffice. We

consider the situation at other points in the next section.

7. Some combinatorial and complexity questions

We close with the following questions which have been prompted by this work.

In Section 5 we noted that we are unable to find a suitable normalization for

approximating the Tutte polynomial when the expansion included negative terms. We

return to this here and examine the chromatic polynomial to highlight the difficulties.

We have seen that for a connected graph G, we have an additive approximation

for (PG(λ), (λ− 1)n)) for all λ ∈ Z+. However, we are most interested in an additive

approximation at the non-integral Beraha numbers. One might hope to achieve the above

approximation for all λ ∈ R>1; however, this seems unlikely as (λ− 1)n is not even close
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to being an upper bound for PG(λ). Indeed, consider the complete graphs: for small δ,

PKn
(1 + δ) = (1 + δ)(δ)(−1 + δ) · · · (−n+ δ + 1) (7.1)

≈ (−1)n−2δ(n− 2)!. (7.2)

This prompts the first open question.

Question 1. What is the best upper bound depending on λ, n and m for |PG(λ)| for all

(planar) graphs G on n vertices and m edges?

As far as we are aware the best upper bound known [19] is

|PG(λ)| � |λ|n−m(|λ| + 1)m λ ∈ C.

For general graphs we can make the following small improvement.

Proposition 7.1. Let G be a graph and let λ ∈ C, then

|PG(λ)| �
(
m

n
− 1

)n−m(
m

n

)m

for
m

n
� |λ| + 1,

|PG(λ)| � (|λ|)n−m(|λ| + 1)m for
m

n
< |λ| + 1.

If G is a connected graph then

|PG(λ)| �
(

m

n− 1
− 1

)n−m−1(
m

n− 1

)m

|λ| for
m

n− 1
� |λ− 1|,

|PG(λ)| � (|λ− 1| − 1)n−m−1(|λ− 1|)m|λ| for
m

n− 1
< |λ− 1|.

These bounds hold for all λ ∈ C; however, the Beraha numbers have special character-

istics. The evaluations of the chromatic polynomial at these points have some beautiful,

but not totally understood, properties [16]. The values begin 4, 0, 1, 2, 1 + τ, 3, . . . and

converge towards 4, where τ is the golden ratio 1+
√

5
2

. The integers in this series are clearly

central to the theory of chromatic polynomials. Writing B5 = 1 + τ, then for any plane

triangulation T on n vertices:

|PT (B5)| � τ5−n. (7.3)

For a connected graph G with average degree at least 3.24 (note that a planar triangulation

has average degree 6 − 12/n), the above proposition gives

|PG(B5)| �
(

m

n− 1
− 1

)n−m−1(
m

n− 1

)m

B5.

Hence we ask the following.

Question 2. Is there a better bound for |PG(Bn)| than there is for an evaluation at a general

point?
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Following the results of Section 6 we are also prompted to examine the complexity of

determining whether the Tutte polynomial is greater than or equal to, or less than zero

at a given point. Recall that this decision problem is trivial for x, y � 0, and for integer

points on the axes. Again considering the specialization to the chromatic polynomial we

ask the following.

Question 3. For fixed λ ∈ Q, is it NP-hard to decide whether PG(λ) is greater than or equal

to, or less than zero?

Note that this is trivial for λ ∈ Z. It is also P-time decidable for λ < 32/27 by the

following theorem of Woodall [19] and Jackson [9].

Theorem 7.2. Let G be a graph without loops on n vertices, κ components and b blocks.

(i) If λ < 0, then PG(λ) is nonzero with the sign of (−1)n.

(ii) If 0 < λ < 1, then PG(λ) is nonzero with the sign of (−1)n−κ.

(iii) If 1 < λ < 32
27

, then PG(λ) is nonzero with the sign of (−1)n−κ−b.

Note that PG(λ) �= 0 for λ ∈ Q\Z, since the chromatic polynomial has integer coefficients.

It is easy to show the following.

• Let λ ∈ Q\Z. If deciding whether PG(λ) > 0 is NP-hard, then it is also NP-hard to

decide whether PG(λ+ 1) > 0 for a general graph G.

However, since it is easy to decide for λ < 32/27, the converse cannot be true for all

λ ∈ Q\Z unless these questions are all in P. It would be interesting to know the answer to

the following questions.

Question 4. Does there exist a critical α > 0 such that deciding whether PG(λ) is greater

than or less than zero is NP-hard for all rational λ > α, λ �∈ Z?

Question 5. Is this critical α equal to 32/27?

As before we are more interested in evaluating the chromatic polynomial at the Beraha

points than at general non-integers, and the graphs we are most interested in are planar.

Hence we ask the following specific question.

Question 6. For planar graphs, is the problem of deciding whether PG(Bn) is greater or less

than zero NP-hard?

For any graph G, not necessarily planar, it is known that PG(Bn) �= 0 for n � 5, n �= 6, 10,

[13]. Also Tutte [16] has shown that for any planar triangulation the following equation

holds, writing B10 = τ
√

5,

PT (B10) =
√

5τ3(n−3)(PT (B5))
2. (7.4)

So PT (B10) > 0 for all plane triangulations T , indeed a simple reverse induction shows that

for any planar graph G, PG(B10) > 0 holds. Further, for any outerplanar graph G, we can
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form the planar graph G+ by adding a new vertex adjacent to all original vertices. Since

PG+(λ+ 1) = (λ+ 1)PG(λ)

holds for all positive integers, it holds for all λ ∈ R. Noting that B10 = B5 + 1, we conclude

that PG(B5) > 0 for all outerplanar graphs G.
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