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We compare two-dimensional vorticity and passive scalar cascades seen as a gradient
enhancement process. Our criteria are based on conditional averages of the first and
second Lagrangian derivatives of vorticity and passive scalar gradients in relation
to the local flow geometry. In order to interpret these criteria, transient properties
are derived for random vorticity and scalar fields, showing that the second-order
Lagrangian derivatives of vorticity and passive scalar gradients may behave differently.
Cascades obtained in numerical simulations of decaying and forced incompressible
turbulence are analysed. First-order analysis reveals that the direct cascade in elliptic
domains is more efficient than previously suspected. While several first-order diag-
nostics collapse to a single curve for vorticity and passive scalars, second-order
diagnostics consistently show that the vorticity gradient exhibits faster temporal fluc-
tuations than the passive scalar gradient, a property which we anticipate qualitatively
in the study of random fields.

1. Introduction
Two-dimensional vorticity is a Lagrangian-conserved scalar quantity in the absence

of sources and sinks. It formally obeys the same advection equation as a passive tracer
and the direct cascade of vorticity variance (enstrophy) is considered in theories as
the process of stretching and folding of passive vorticity filaments, creating smaller
and smaller scales in the vorticity field (Kraichnan 1971; Falkovich & Lebedev
1994). The effectiveness of this process crucially depends on how the filaments are
aligned with respect to the external straining field (Saffman 1971). However, unlike
the linear problem of passive advection, the dynamics of vorticity is nonlinear due
to the direct connection between velocity and vorticity. This fundamental difference,
and subsequently the effect of nonlinear processes on the alignment structure, should
distinguish the enstrophy cascade from the transfer of passive scalar variance to small
scales at some point (Babiano et al. 1987).

It is well known that the two-dimensional dynamics of a passive scalar is gene-
rically characterized by geometrical alignments of the scalar gradient with preferred
directions prescribed by the flow (Okubo 1970; Weiss 1991; Protas, Babiano &
Kevlahan 1999; Lapeyre, Klein & Hua 1999; Klein, Hua & Lapeyre 2000). It is
therefore natural to try to distinguish active and passive scalars using their alignment
properties in connection with a complex distribution of strain. In particular, a basic
issue consists of understanding whether each kind of topological domain which
manifest the non-homogeneous character of the flow may be associated with alignment
properties that differ between vorticity and passive scalar (Lapeyre, Hua & Klein
2001). Diagnostics used in this work are global spatial averages based on a local

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

03
00

55
85

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112003005585


132 T. Dubos and A. Babiano

analysis that is eventually restricted to either elliptic or hyperbolic regions. While
a transient difference is observed in the first states of vorticity and passive scalar
cascades, the diagnostics used in (Lapeyre et al. 2001) collapse to a single value in
the long term and it is not possible to characterize their difference. We suggest that
more local quantities should be more able to reveal the expected difference.

The main purpose of the present contribution is to revisit this problem and propose
suitable indicators for more detailed statistics in physical space. An element of the
problem is that the spatial structure of vorticity and passive scalar fields in physical
space is qualitatively very similar and it is impossible to decide whether the local
differences are to be attributed to a random fluctuation or a dynamical origin. On
the other hand, geometrical properties are much more explicit in physical space than
in Fourier space in which they result only in phase relations that are not simple
to capture. We will therefore restrict our analysis to the physical space using, as in
Lapeyre et al. (2001), objective criteria that significantly enhance the Okubo–Weiss
criterion which classifies spatial regions as elliptic or hyperbolic (Klein et al. 2000).
The point is that the evolution of the scalar gradient under the action of a given
flow is invariant under a change of rotating reference frame. Hence, in order to
retain a certain amount of locality while ensuring that the random fluctuations are
smoothed out by an averaging operation, we will use as diagnostics a conditional
average involving local, frame-invariant characteristics of the flow. We can state two
main results of our analysis. First, it appears that the transfer of vorticity and passive
scalar variance in elliptic regions is more efficient than previously suspected. Second,
we extend our study to a second-order statistic and show that only these are successful
in revealing the active-passive difference.

The organization of the paper is as follows. In § 2 we sketch the main results
obtained from the Lagrangian analysis of the gradients growth. They are used in § 3
to define quantities that diagnose the cascades following the guidelines found above.
In § 4 we present several numerical experiments on two-dimensional turbulence with
vorticity and passive scalars. We diagnose them and discuss the observations. Finally,
the work is summarized and its implications are discussed.

2. Lagrangian dynamics of scalar gradients
2.1. Stretching and rotation

We outline in this section the basic ingredients of the two-dimensional Lagrangian
dynamics of scalar gradients. Considering a scalar T transported by an incompressible
fluid. Neglecting the molecular diffusivity, the evolution equations for T and its
gradient q = ∇T are:

∂T

∂t
+ u · ∇T =0, (2.1)

d

dt
q +AT q = 0, (2.2)

where AT denotes the transpose matrix of the velocity gradient Aij = ∂jui and d/dt

is the Lagrangian derivative. The velocity gradient A= S + 1
2
ω J decomposes into the

symmetric strain-rate tensor

S = 1
2
(A + AT ) ∼ 1

2

[
σ

−σ

]

that stretches q and the vorticity ω that rotates it. Here 4σ 2 = −det S and J refers the
two-dimensional antisymmetric unit matrix.
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Comparing the cascades of vorticity and a passive scalar 133

The question one asks is whether the growth and orientation of the scalar gradient
can be predicted from the local properties of the velocity field such as the velocity
gradient A. The difficulty comes from the time dependence of S since S, in contrast to
ω, evolves along a Lagrangian path even in the absence of sources and sinks. Under
the assumption of slow evolution dS/dt � σ 2, (2.2) reduces to a simple eigenvalue
problem (Okubo 1970; Weiss 1991). The evolution of q depends on whether −AT has
real or imaginary eigenvalues, which can be deduced from the sign of

Q = −4 detA = σ 2 − ω2. (2.3)

If the so-called Okubo–Weiss criterion Q, diagnosing the competition between
stretching and rotation, is positive then −AT has two real and opposite eigenvalues
and the gradient is predicted to grow exponentially and to align with the corresponding
eigenvector. Conversely, if Q < 0, the eigenvalues are purely imaginary and the
gradient is expected to rotate without growing. Regions where gradients grow are
called hyperbolic while no-growth regions are called elliptic. Particle dispersion,
alignment properties and other features of two-dimensional dynamics have been
discussed by categorizing the incompressible turbulent field according to (2.3)
(Ohkitani 1991; Elhmaidi, Provenzale & Babiano 1993; Provenzale 1999; Protas
et al. 1999; Babiano 2001). The consistency of such a categorization is based on the
diagnostic relation Q = −2�P between Q and the Laplacian of pressure (Larchevêque
1993).

2.2. Objective parameters

The assumption of slow strain-rate evolution is known to fail in many situations, but
not for instance at saddle points and in vortex cores (Basdevant & Philipovitch 1994).
Instead of purely neglecting the temporal evolution of S, one can partly take it into
account by decomposing it into the fluctuation dσ/dt of its eigenvalues σ and −σ

and the rotation of its eigenvectors at the angular speed dφ/dt:

dS

dt
=

1

σ

dσ

dt
S − 2

dφ

dt
JS. (2.4)

The rotation of the strain-rate axes is taken into account by expressing (2.2) on the
strain basis (Dresselhaus & Tabor 1991). The role of vorticity is played by an effective
rotation ω + 2dφ/dt and the competition between stretching and rotation is measured
by the non-dimensional parameter introduced in Lapeyre et al. (1999):

r ≡ ω +2dφ/dt

σ
. (2.5)

In hyperbolic regions (|r | < 1), exponential growth is predicted together with an
alignment of the scalar gradient with an eigenvector of S − (ω + 2dφ/dt) J . This
prediction is supported by numerical experiments (Lapeyre et al. 1999). In elliptic
regions (|r | > 1), the no-growth prediction can be improved by also taking into account
dσ/dt through the non-dimensional quantity (Klein et al. 2000):

s ≡ 1

σ 2

dσ

dt
. (2.6)

Let us stress here that the Okubo–Weiss criterion Q (equation (2.3)) is not invariant
under a change of rotating reference frame. This could be cured by subtracting from
the vorticity its global average. This would however be at the price of the locality,
since the average vorticity is not accessible from a local point of view. It is a merit
of the parameters r and s that they are frame indifferent and defined from only
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134 T. Dubos and A. Babiano

local characteristics of the flow. In what follows, we shall therefore employ only such
objective quantities when constructing our diagnostics.

3. Gradient evolution as a basis for local diagnostics
3.1. Physical interpretation of Lagrangian derivatives

The first-order Lagrangian derivative is both a local indicator of the cascade, as it
measures the creation of small scales in the scalar field, and a geometric quantity
through its connection to the strain-rate tensor S:

d

dt
q2 = −2q · S · q. (3.1)

The sign of the production of scalar gradients by stirring depends on the orientation
of q with respect to the compressional axis of the strain-rate tensor S. If the angle is
less than 45◦, there will be production of gradient, and vice versa (Protas et al. 1999;
Lapeyre et al. 2001; Dubos & Babiano 2002). The interpretation of (3.1) in terms of
a cascade is therefore simple: a growth of the gradients indicates a direct cascade,
and vice versa.

The second-order Lagrangian derivative, although slightly more difficult to interpret
geometrically, provides complementary information on the growth process:

d2

dt2
q2 = q · N · q, (3.2)

N = σ 2δij − 2Ŝ, (3.3)

Ŝ=
dS

dt
− ωJS, (3.4)

where the tensor N involves the corotational derivative of S, Ŝ. The second-order
Lagrangian derivative (3.2) gives information about the concavity or convexity of the
curve q2(t). Thus in a hyperbolic region with potentially exponential growth, it can be
expected to be positive. Conversely, a negative value would correspond to a temporal
oscillation and an elliptic region.

The basic idea consisting of considering a local cascade-related quantity such as the
growth rate of the scalar gradient and directly comparing the two fields corresponding
to vorticity and passive scalar is however intractable. As an illustration we display in
figure 1 the second Lagrangian time derivative of the squared gradient of vorticity
(a) and passive scalar (b) in a stationary, large-scale forced simulation at resolution
10242 described in detail in Dubos & Babiano (2002). We focus on a 300 × 400
region containing a pair of vortices. Both fields d2q2

ω/dt2 and d2q2
T /dt2 have an

extremely similar spatial structure with tiny local discrepancies which cannot be
straightforwardly attributed to a dynamical or random origin. In order to keep a
certain amount of locality while ensuring that the random fluctuations are smoothed,
for our diagnostics we will consider conditional averages of the first- and second-order
Lagrangian derivatives of the scalar-gradient-squared norm.

3.2. A kinematic property of vorticity

The usefulness of the second-order Lagrangian derivative is most evident at the
initial stage of a mixing process, before the advection has built a correlation between
the scalar gradient and velocity fields. At this instant the scalar field is statistically
independent of the velocity. Furthermore the spatial average 〈dq2/dt〉 vanishes for
both the vorticity gradient qω and the passive scalar gradient qT . This first-order
diagnostic thus contains no useful information on the average growth of the gradients.
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(a)

(b)

–10 –8 –6 –4 –2 0 2 4 6 8 10

Figure 1. Second Lagrangian time derivative of the squared gradient of vorticity dq2
ω/dt2 (a)

and passive scalar dq2
T /dt2 (b) in a stationary, large-scale forced simulation. The unit is the

spatial average of each field. Enlargement of a 300 × 400 area out of a 10242 box.

The missing information is provided by the second-order derivative because for short
enough times

〈q2(t)〉 ≈ 〈q2〉t=0 + t

〈
d

dt
q2

〉
t=0

+
t2

2

〈
d2

dt2
q2

〉
t=0

. (3.5)
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136 T. Dubos and A. Babiano

Given a tensor M and a random vector q independent of M with an isotropic
distribution, a general result is

〈q · M · q〉 = 1
2
〈q2〉TrM. (3.6)

Taking for M the tensor N (equation (3.3)) and using 〈σ 2〉 = 〈ω2〉 = 2Z with Z the
enstrophy of the flow gives for the passive scalar〈

d2

dt2
q2

T

〉
t=0

= 2Z
〈
q2

T

〉
t=0

(3.7)

so that passive scalar gradients always initially grow with a time scale given by the
enstrophy Z. This is not true in general for vorticity. Indeed, assuming an initial energy
spectrum peaked around a wavenumber k0 (as in the simulation large diagnosed in
Lapeyre et al. (2001) and in what follows), the flow is quasi-stationary at short times
because ω = −�ψ ≈ k2

0ψ , so that ∂ω/∂t ≈ 0 and 〈d2q2
ω/dt2〉 ≈ 0. There is therefore in

this case on average an initial stagnation of the palinstrophy 1
2
〈q2

ω〉.
From a more local point of view, one can use equation (3.6) to derive the following

relation between conditional averages with respect to the strain-rate σ :

E
(
d2q2

T

/
dt2; σ

)
E

(
q2

T ; σ
) = σ 2. (3.8)

This holds for the passive scalar gradient qT which is initially independent of the
velocity field but not for the vorticity gradient qω which is correlated with the tensor

Ŝ. Using (3.3) we find

E
(
d2q2

ω

/
dt2; σ

)
E

(
q2

ω; σ
) = σ 2 − 2

E(qω · Ŝ · qω; σ )

E
(
q2

ω; σ
) . (3.9)

Conditional averages should thus enable one to distinguish between regions where
the vorticity gradients grow or decay, while passive scalar gradients initially grow
everywhere in a statistical sense.

We exhibit here a special property of vorticity: its connection to the flow, which
translates into correlations between the vorticity gradient qω and the tensor Ŝ, modifies
its cascade properties with respect to those of a passive scalar uncorrelated with the
flow. We call this property ‘kinematic’ because it holds for a random field and does
not require the flow to be turbulent, indicating that it only relies on the connection
between the vorticity field and the flow and not on the statistical structure of a
turbulent flow.† It is now to be determined whether this difference persists a long
time after the passive scalar is put in a turbulent flow.

3.3. Conditional diagnostics

We have shown that the difference between vorticity and passive scalar detected by the
second-order Lagrangian derivative of gradients is much larger when the spectrum
is peaked. This spectrum corresponds to a linear relation between vorticity ω and
stream function ψ:

ω = k2
0ψ. (3.10)

In a turbulent field, this relation does not hold globally. However, it may hold locally
in a coherent structure: relation (3.10) is a widely used empirical characterization of

† What we observe in what follows is that turbulence actually tends to bring the passive scalar
and vorticity to a similar statistical structure and to hide this kinematic difference.
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First order

d
dt

q2 = −q · S · q

Second order

d
2

dt2
q2 = q · N · q

Global h ≡ 〈dq2/dt〉
〈q2〉 z ≡ 〈d2q2/dt2〉

〈q2〉

r ≡ ω + 2dφ/dt

σ
h(r) ≡ E(dq2/dt; r)

E(q2; r)
z(r) ≡ E(d2q2/dt2; r)

E(q2; r)

s ≡ 1

σ 2

dσ

dt h(s) ≡
E(dq2/dt; s)|r | > 1

E(q2; s)|r | > 1

z(s) ≡
E

(
d2q2/dt2; s

)
|r | > 1

E
(
q2; s

)
|r | > 1

Table 1. Diagnostic quantities.

coherent structures (Lamb 1932; Batchelor 1967). One can approximately† identify
them with the elliptic domains defined by the parameter r (equation (2.5)). A first set
of diagnostics will thus be obtained by conditional averages with respect to r .

In elliptic domains, the second parameter s (equation (2.6)) is important for the
gradient dynamics (Klein et al. 2000). This leads us to also consider conditional
averages with respect to s and limited to elliptic domains (|r | > 1). Our diagnostics
will therefore be the four quantities h(r), h(s), z(r) and z(s) summarized in table 1.
They all provide a time scale for the cascade, h (first-order diagnostic) being the
inverse of a time and z (second-order diagnostic) the inverse of a squared time.

4. Numerical experiments and results
4.1. Numerical experiments

The diagnostics defined in the previous section are computed on vorticity and
passive scalar fields obtained from direct numerical simulations of incompressible
two-dimensional turbulence. The Navier–Stokes equations are solved using a fully
dealiased pseudo-spectral code at resolution 10242. One or two passive scalars are
present in the flow and obey the same equation as vorticity. We consider three different
experiments, all using a Newtonian viscosity/diffusivity:

(i) The simulation labelled ‘small’ in Lapeyre et al. (2001), kindly provided by
Guillaume Lapeyre. This is a simulation of decaying turbulence containing one passive
scalar:

∂ω

∂t
+ ∇ · (ωu) = ν�ω, (4.1)

∂T

∂t
+ ∇ · (T u) = ν�T . (4.2)

Vorticity and passive scalar are initialized with a prescribed spectrum and random,
uncorrelated phases. The chosen spectrum is wide, Z(k) = ZT (k) ∝ k−1. We will

† It is clear that the condition |r | < 1 does not uniquely identify coherent structures (Basdevant
& Philipovitch 1994). There are for instance points in the turbulent background surrounding the
vortices that satisfy |r | < 1. Nevertheless the cores of coherent vortices all satisfy |r | < 1.
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138 T. Dubos and A. Babiano

consider the initial random fields and the state reached after about 100 turnover
times. At that instant, both cascades present the same characteristics according to
Lapeyre et al.’s analysis. The flow is dominated by two large-scale vortices but the ens-
trophy and passive scalar spectra remain close to a k−1 law at small scales, indicating
still active cascades.

(ii) A simulation equivalent to that labelled ‘large’ in Lapeyre et al. (2001). This
is again decaying turbulence but with a different initial spectrum, concentrated at
a single wavenumber k0 = 10. The difference is now that two passive scalars with
independent initial conditions are inserted. We will consider the initial state and the
final state obtained after 70 turnover times. The flow then contains many vortices and
filaments, though the development of turbulence is not as advanced as in small.

(iii) A forced, statistically stationary simulation, containing two passive scalars.
The forcing consists of keeping constant the amplitude of the wavenumber k =4.
Due to the inverse energy cascade, a large-scale dissipation is necessary to enforce
the stationarity of the vorticity field. For the sake of the comparison, this unphysical
dissipation is also employed for the passive scalars. The equations governing the
vorticity and the two passive scalars are thus

∂ω

∂t
+ ∇ · (ωu) = γ�−1ω + ν�ω + fω, (4.3)

∂T

∂t
+ ∇ · (T u) = γ�−1T + ν�T + fT . (4.4)

Although long-time, asymptotic properties are best observed in statistically stationary
turbulence, decaying simulations avoid the problem of defining the forcing method
and the large-scale dissipation. The presence of two passive scalars ensures that an
eventually observed vorticity–scalar difference is indeed significant. The two scalars
might present slightly different values of a given diagnostic and only vorticity–scalar
differences above this scalar–scalar fluctuation can be considered to be due to the
dynamical character of vorticity.

At the final instant of all these simulations, the diagnostics h and z (table 1) based
on global spatial averages take identical values for vorticity and a passive scalar.

4.2. Results

4.2.1. Kinematic properties

We checked relation (3.8) and the discrepancy between vorticity and passive scalar
for two pairs of random fields, each pair consisting of a vorticity and a passive scalar
field with the same prescribed spectrum. The first pair has a peaked spectrum and the
second a broad spectrum Z(k) = ZT (k) ∝ k−1. We present in figure 2 the ratios zT (σ )
and zω(σ ) obtained in each case:

zT (σ ) ≡
E

(
d2q2

T

/
dt2; σ

)
E

(
q2

T ; σ
) , (4.5)

zω(σ ) ≡
E

(
d2q2

ω

/
dt2; σ

)
E

(
q2

ω; σ
) . (4.6)

First, we do indeed have zT (σ ) = σ 2 as expected from equation (3.8). It turns out
that zω(σ ) is an affine function of σ 2 with slope one and zT (σ ) − zω(σ ) is a
positive constant z0. According to relation (3.9), this means that the correlation
E(qω · Ŝ · qω; σ ) is proportional to E

(
q2

ω; σ
)
. This is an empirical observation which

seems very difficult to derive ab initio. It is nevertheless possible to obtain the
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Figure 2. Diagnostics zω(σ ) (solid) and zT (σ ) (dashed) for random fields of passive scalar
T and vorticity ω with the same spectrum. (a) Spectrum peaked around wavenumber k = 10.
(b) Broad spectrum Z(k) =ZT (k) ∝ k−1.

value of the constant z0 in experiment large by taking into account the fact that
E(q2

ω; σ ) is actually independent of σ (and therefore equal to 〈q2
ω〉), which we checked

numerically in our data. Indeed if we let p(σ ) be the probability density function of σ

we have 〈
d2

dt2
q2

ω

〉
=

∫ ∞

0

E

(
d2

dt2
q2

ω; σ

)
p(σ ) dσ

=

∫ ∞

0

E
(
q2

ω; σ
)
zω(σ )p(σ ) dσ

=
〈
q2

ω

〉 ∫ ∞

0

(σ 2 − z0)p(σ ) dσ

=
〈
q2

ω

〉
(〈σ 2〉 − z0).

Since in experiment large 〈d2q2
ω/dt2〉 = 0, we find z0 = 〈σ 2〉 = 2Z. In the present case,

2Z = 280 which agrees rather well with figure 2(a). The inequality zT (σ ) >zω(σ ) fits
with the fact that the vorticity cascade (solid) is initially less efficient than the passive
scalar cascade (dashed) (Holloway & Kristmannsson 1984; Lapeyre et al. 2001). It
is worth noting that below a certain value of the strain rate σ , zω(σ ) takes negative
values. This is required by the global stagnation of palinstrophy and means that
in regions of low strain the vorticity gradients will initially decay. Such a decay is
impossible for a passive scalar.

However this effect strongly depends on the spectra as is shown by figure 2(b): in
the case of a broad spectrum, the quantities zT (σ ) and zω(σ ) collapse to a single curve.
Furthermore, as time passes the passive scalar field acquires a correlation with the
velocity field which breaks relation (3.8) and the curves zT (σ ) and zω(σ ) are attracted
towards each other. We illustrate this in figure 3, displaying the curves zω(σ ) (solid)
and zT (σ ) (dashed) at later times: after 10 turnover times (crosses) and after 70
turnover times (circles). The affine dependence of z(σ ) on σ is lost, and the two curves
approach each other and collapse in the long term. Also we found in the final stages
of experiments small and forced that zT (σ ) and zω(σ ) are also identical, leading us
to study the other four diagnostics h(r), h(s), z(r), z(s).
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Figure 3. Diagnostics zω(σ ) (solid) and zT (σ ) (dashed) for passive scalar T and vorticity ω in
experiment large after 10 turnover times (crosses) and after 70 turnover times (circles).

4.2.2. First-order diagnostics: local cascade efficiency

We present in figure 4 the diagnostics based on the first Lagrangian derivative, h(r)
(figure 4a) and h(s) (figure 4b). Experiments large, small and forced are presented
from top to bottom.

The r-conditioned growth rate h(r) is positive and increases when |r | decreases
(α ≡ (1 + r2)−1 increases). This reflects the fact that the gradient growth is stronger
in very hyperbolic regions (low |r |). More precisely, the gradient not only grows
in hyperbolic regions as predicted by the analysis based on |r | but also in elliptic
regions, although less strongly. The cascade efficiency continuously increases from zero
in strongly elliptic regions (|r | � 1, α ≈ 0) then approximately saturates in hyperbolic
regions (|r | < 1, α > 1/2). This is consistent with the analysis of Klein et al. (2000)
according to which the strain-rate fluctuation expressed by s (equation (2.6)) affects
the gradient orientation and growth and must be taken into account in elliptic
regions. This effect is not negligible since the cascade efficiency h(r) has already
reached roughly 50% of its maximum when r = 1 (α =1/2) whereas neglecting the
strain-rate fluctuation s as in Lapeyre et al. (1999) would lead to h(r) = 0 for |r | > 1.

The s-conditioned growth rate h(s) is also positive and is found to increase when
|s| decreases (β ≡ (1 + s2)−1 increases). Thus the cascade in elliptic regions is most
efficient where the strain rate is most persistent (least fluctuating) in time. However,
neither of these two quantities seems to make a significant difference between vorticity
(solid) and passive scalar (dashed) in all three experiments. The curves hω(r) and hT (r)
slightly differ in the hyperbolic regions of experiments small and forced but not in
experiment large. Concerning hω(s) and hT (s), the differences observed in the three
experiments are again not significantly larger than their own fluctuations.

Although our main interest is in the common features of the three experiments, it
is instructive to compare the behaviours of h(r) and h(s) in the three regimes. The
behaviour of h(s) does not show any qualitative difference between large, small and
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Figure 4. Diagnostics h(r) and h(s) (see table 1) based on the first Lagrangian derivative of
the squared scalar gradient of vorticity (solid) and passive scalar (dashed). (a) Conditional
averages with respect to the reduced effective rotation r . The abscissa is α ≡ (1 + r2)−1 for
graphical convenience. Elliptic regions correspond to α < 1/2. (b) Conditional averages with
respect to the reduced strain-rate fluctuation s and restricted to elliptic regions. The abscissa
is β ≡ (1 + s2)−1. From top to bottom: simulations large, small (both decaying) and forced

(forced).

forced, in contrast to the cascade efficiency h as a function of r . As noticed before, h

continuously increases with α. The maximum growth occurs in the weakly elliptic or
weakly hyperbolic region 0.4 � α � 0.6. We can observe that this recurrent maximum
growth rate is relatively stronger in the forced case. This feature is essentially the
same for vorticity and passive scalars.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

03
00

55
85

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112003005585


142 T. Dubos and A. Babiano

0 0.2 0.4 0.6 0.8 1.0

z(r) z(s)

(a) (b)

α = (1 + r2)–1 β = (1 + s2)–1

–80

–40

0

40

80

0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

–100

–80

–60

–40

–20

0

20

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

–20

–10

0

10

20

–25

5

–20

–15

–10

0

–5

–400

–200

0

200

400

–400

–300

–200

–100

z(r)

z(r)

z(s)

z(s)

Figure 5. Diagnostics z(r) and z(s) (see table 1) based on the second Lagrangian derivative
of the squared scalar gradient of vorticity (solid) and passive scalar (dashed). (a) Conditional
averages with respect to the reduced effective rotation r . The abscissa is α ≡ (1 + r2)−1 for
graphical convenience. Elliptic regions correspond to α < 1/2. (b) Conditional averages with
respect to the reduced strain-rate fluctuation s and restricted to elliptic regions. The abscissa
is β ≡ (1 + s2)−1. From top to bottom: simulations large, small (both decaying) and forced

(forced).

4.2.3. Second-order diagnostics: local cascade fluctuations

We present in figure 5 the diagnostics based on the second Lagrangian derivative,
z(r) (figure 5a) and z(s) (figure 5b). Experiments large, small and forced are presen-
ted, from top to bottom. Concerning the r-conditioned growth rate z(r) (column a),
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one can see as discussed in § 3.1 that it is positive in hyperbolic regions (α > 1/2,
|r | > 1) corresponding qualitatively to an exponential growth of the gradient norm,
and negative in elliptic regions, corresponding to a temporal oscillation with a much
slower net growth. As a consequence the s-conditioned growth rate z(s), being limited
to elliptic regions, is negative too (column b).

The qualitative argument developed in § 3.2 suggests that, in elliptic regions, zT for
the passive scalar should be larger (less negative) than zω for vorticity. This is indeed
what we observe for both diagnostics z(r) and z(s). Concerning z(r), the inequality
zT (r) > zω(r) is satisfied in elliptic domains (|r | > 1, α < 1/2) and compensated in
hyperbolic domains by the converse inequality as is required by the observed equality
of the global diagnostics zT = zω.

This inequality is best satisfied for z(s): the conditional averages are performed
in elliptic domains only and the inequality zT (s) > zω(s) is robustly observed in
all three simulations. The difference zT (s) − zω(s) is much higher than the typical
fluctuation indicated by the superimposed curves for two different passive scalars
(dashed, experiments large and forced) and can be higher than 20% of the value of
z(s) itself. Interpreting z(s) as giving a time scale for the fluctuations of the gradient,
the fact that zω(s) is more negative than zT (s) indicates that the vorticity gradient has
faster temporal fluctuations than the passive scalar gradient.

For completeness, let us mention that the same study performed on random fields
does not provide additional information. The curves zT (r) and zω(r) (not shown)
essentially behave as zT (σ ) and zω(σ ) apart from the fact that they are no longer
linear. The main property missing in these random flows is that the growth rate for
the passive scalar zT (r) is bound to be positive even in elliptic regions, at contrast to
turbulent fields.

Finally, one can examine the sensitivity of the second-order diagnostics to the
turbulent regime. Concerning z(r), the main observation is that the r-conditioned
growth rate z(r) depends smoothly on r in decaying turbulence (large and small)
whereas in the forced case only small variations of z(r) occur inside the elliptic and
hyperbolic regimes, which are separated by a sharp transition when 0.4 � α � 0.6.

5. Discussion
We have compared the direct cascades of vorticity and a passive scalar analysed

in terms of the growth process of their gradients. This lead us to define diagnostic
quantities following two guidelines. First, they make a compromise between the
local and global points of view, hence the conditional averages. Second, they only
rely on objective (frame-invariant) quantities: Lagrangian time derivatives of the
gradient-squared-norm, non-dimensional objective parameters r and s. In a very
simple situation, we argued that the second Lagrangian derivative may provide
interesting information on the problem at hand, the comparison of the two cascades.

We performed numerical simulations of both forced and free two-dimensional
turbulence with different kinds of initial conditions. We diagnosed them, and found
that the dynamical nature of vorticity does not consistently appear in a first-order
analysis of the Lagrangian dynamics of scalar gradients but is revealed at the second
order. Furthermore, the observed passive–active difference is consistent with that
previously obtained in a simple situation and indicates that the vorticity gradient has
faster temporal fluctuations than the passive scalar gradient.

For smooth velocity fields like those produced by the two-dimensional direct
enstrophy cascade, there is an analogy between the relative dispersion of pairs of
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particles and the growth of scalar gradients. For certain ranges of scales, the relative
dispersion has been observed to be exponential in time (Morel & Larchevêque
1974; Babiano et al. 1990). With this in mind, the first-order diagnostic h(r) can
be interpreted as an inverse time scale for the exponential growth of the scalar
gradient, which is expected to hold in hyperbolic regions (Lapeyre et al. 1999). The
first-order analysis of the two cascades (figure 4) exhibits differences between vorticity
and a passive tracer but not in all of the three numerical experiments. Indeed, one
observes that in the hyperbolic domains of experiments small and forced the time
scale h−1(r) is slightly shorter for vorticity than for the passive scalar. Thus there
are signs of an r-dependent exponential behaviour that is slightly different for vorticity
and passive scalar gradients, although not in all the cases considered in this work.

Finally, we briefly considered the influence of the turbulent regime on our cascade
diagnostics, in addition to our main goal of characterizing the passive–active difference
independently of this regime. The turbulent regime unquestionably effects on the scalar
cascades and we pointed out two typically different behaviours of h(r) and z(r) in
decaying and forced cases. This has a larger impact than the active–passive difference
itself, and so the discussion of their dependence on the turbulent regime would be
very hazardous without additional specific numerical investigations.

Although we consistently show a difference between the cascades of vorticity and a
passive scalar, this was not easy to demonstrate as illustrated by the collapse to a single
curve of several first-order diagnostics. One may then wonder how important this
difference can be from theoretical and practical points of view. From the theoretical
point of view, it is admitted that calculations treating vorticity essentially as a
passive scalar stretched by the velocity field (Kraichnan 1971; Falkovich & Lebedev
1994) produce correct predictions at least for the statistical properties of spectra
and structure functions, apart from disputed logarithmic corrections (Lindborg &
Alvelius 2000; Jullien et al. 2000). What we may infer from the present study is that
the ‘passive vorticity’ assumption is probably a good approximation provided second-
order Lagrangian dynamics properties are not involved, i.e. suitable to explore global
properties and more questionable when addressing issues involving the partition of
physical space and coherent structures. From a more practical point of view, it is
common in geophysics to consider that the spatial structure of active scalars like
density or temperature merely results from passive advection. Here it is important to
remark that vorticity is in some sense the most active scalar one can imagine since it
completely determines the velocity field. Active scalars like density or temperature act
on the velocity field through the buoyancy force but cannot be deduced from it nor
vice versa. One may then expect the signature of such active scalars to be even weaker
than that produced by vorticity. It is thus reasonable to consider the assumption of
passivity to be appropriate, especially compared to other sources of approximation
in a geophysical context.

We wish to thank Dr. Lien Hua for active discussions about this work. The
paper also benefited from valuable remarks by anonymous referees. This work was
supported by the Ministère de l’Éducation Nationale, de la Recherche et de la
Technologie (A.C.I. jeunes chercheurs 0693) and by IDRIS, project 940338.
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