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SUMMARY
The balancing of robotic systems is an important issue,
because it allows significant reduction of torques. However,
the literature review shows that the balancing of robotic
systems is performed without considering the traveling
trajectory. Although in static balancing the gravity effects
on the actuators are removed, and in complete balancing the
Coriolis, centripetal, gravitational, and cross-inertia terms
are eliminated, but it does not mean that the required torque
to move the manipulator from one point to another point
is minimum. In this paper, “optimal spring balancing” is
presented for open-chain robotic system based on indirect
solution of open-loop optimal control problem. Indeed,
optimal spring balancing is an optimal trajectory planning
problem in which states, controls, and all the unknown
parameters associated with the springs must be determined
simultaneously to minimize the given performance index for
a predefined point-to-point task. For this purpose, on the
basis of the fundamental theorem of calculus of variations,
the necessary conditions for optimality are derived that lead
to the optimality conditions associated with Pontryagin’s
minimum principle and an additional condition associated
with the constant parameters. The obtained optimality
conditions are developed for a two-link manipulator in detail.
Finally, the efficiency of the suggested approach is illustrated
by simulation for a two-link manipulator and a PUMA-like
robot. The obtained results show that the proposed method
has dominant superiority over the previous methods such as
static balancing or complete balancing.

KEYWORDS: Optimal balancing; Robot manipulators;
Trajectory planning; Optimal control; Pontryagin minimum
principle; Springs.

1. Introduction
Achieving the optimal performance of robot manipulators
in repeating tasks has attracted lot of attention over the
recent years. In an optimal task, minimum consumed energy,
minimum torque, or minimum time can be considered. Often
the used manipulators in an assembly or manufacturing
line are fixed so for a new product, the end effectors of
the manipulators and their predefined trajectories can be
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changed. Since changing the robot and its structure is a hard
task or often impossible, besides the trajectory planning,
one efficient way to increase the robot performance is
balancing. Balancing introduces some simple modifications
in the architecture of the original mechanism, which actually
simplifies its dynamic model and, as a result, its control
as well. Besides control simplification, balancing can also
provide reduction of driving torques. Basically, balancing can
be categorized into two types: active and passive balancing. In
active balancing, an external electric, pneumatic, or hydraulic
force is applied to the system,1 while in passive balancing,
compensation inertias2,3 or springs4,5 are used. Since the
additional actuators are not required in passive balancing, it
is more economical and simpler than the active one.

Two methods studied in literature for passive balancing
are using counter-weights and using springs. The balancing
by masses is due to added counter-weights or due to link’s
mass redistribution. Counter-weight balancing is simple and
has some advantages, but it increases the inertia of the
manipulators. In case of balancing by springs, changes in
the mass and inertia parameters of the robot mechanism are
insignificant because the weight of the springs is very less
in comparison with link weight.4 Unlike the counter-weight
balancing, which is straightforward and almost simple, spring
balancing can be performed in different forms5 as: balancing
by springs jointed directly with links,6 balancing by using
a cable and pulley arrangement,7 balancing by using an
auxiliary linkage,8 balancing by using a cam mechanism,9

and balancing by using gear train.10 Arakelian et al. [5] have
reviewed different types of spring balancing mechanisms.
Ulrich et al.11 presented a cable–pulley-spring compensation
method for illuminating the influence of gravity for one-link
manipulator. Kolarski et al. [12] compared the dynamical
behavior of the unbalanced spring and counter-weight-
balanced PUMA robot configuration. Agrawal et al. [8,
13, 14] presented spring balancing for two-degree-of-
freedom (DOF) spatial manipulator and three-DOF spatial
manipulator. They described the theory of gravity-balanced
spatial robotic manipulators through a hybrid strategy that
uses springs in addition to identification of the center of mass
using auxiliary parallelograms. Herder et al. [15] have used
the storage spring concept for spring-to-spring balancing as
energy-free adjustment method in gravity equilibrators.

On the other hand, passive balancing approaches
can be classified into four types: static balancing,12,16
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dynamic balancing,17 complete balancing,18,3 and optimal
balancing.19–21 A machine is said to be static-balanced if its
potential energy is constant for all possible configurations.12

Dynamic balancing has one step more than static balancing,
and it is reducing the reaction forces and moments on the base
and among actuators, for all situations. Thus, the dynamic-
balanced robot will lightly transfer some reactions to its
adjacent actuators and environments when it is operated.17

Complete balancing is the third type of balancing technique
that brings some modifications to unbalanced mechanisms in
such a way as to obtain static balancing and complete decoup-
ling of dynamic equations.18 All of these methods are applied
without considering the trajectory of robot, whereas in
optimal balancing, this aspect is also considered. Saravanan
et al. performed optimum balancing for an industrial robot,
while a rectangular path must be tracked.19 Ravichandran
et al. by considering a nonlinear proportional-derivative (PD)
controller for a two-DOF robot manipulator applied optimal
balancing in order to determine the controller parameters
and counter-weight values.20 Optimal balancing problem has
been solved for counter-weight-balanced robot manipulators
in point-to-point motion by Nikoobin et al. [21].

In all the above-mentioned balancing methods, it is
assumed that the structure and parameter of the robot are
predefined and only balancing elements such as spring or
mass are added to the main mechanism in order to achieve the
desired performance. While for designing a new mechanism,
there are other methods to attain the given objective function.
Gosselin et al. based on the conditions of dynamic balancing,
without using the separate counter-rotations, determined the
proper architecture and parameters for a planar four-bar
linkage.22 The Design for control (DFC) approach in which
the structure and parameter of both the machine body and
the control algorithm are designed to fulfill the specific task
has been presented for a five-bar close-chain robot by Cheng
et al. [23, 24]. To this end, a PD plus robust term control
algorithm in the DFC approach has been proposed to obtain
the desired performance in terms of change of tasks.23

Generally speaking, optimal balancing is the trajectory
planning problem with some unknown parameters. Optimal
trajectory planning of manipulators is based on optimizing
the objective function while the dynamic equations of motion
as well as bounds on joint positions, velocities, and torques
must be taken into account.25 This generic optimal control
problem is so complicated that it can only be solved by a
computer.26 At this point, two strategies are well-known for
path optimization: indirect methods27 and direct methods.28

These techniques are used in many articles and they have
own benefits and weaknesses.25–31

Nikoobin and Moradi have presented optimal balancing
for counter-weight-balanced robot manipulators based on
an indirect solution of the optimal control problem.21 In
fact, an optimal trajectory planning problem is outlined in
which the states, the controls, and the values of counter-
weights are determined simultaneously in order to minimize
the given performance index for a predefined point-to-point
task. Although the optimal counter-weight balancing method
in comparison with previous methods such as unbalancing,29

static balancing,12 or complete balancing3 has significant
superiorities to optimize the given performance index, it

suffers from increasing inertia. In order to overcome this
drawback in this paper, optimal balancing is developed for
the spring-balanced robot manipulators and it is shown that
spring balancing is more practical and efficient than counter-
weight balancing.

The paper is organized as follows: general formulation
of optimal balancing and static balancing is presented in
Sections 2 and 3, respectively. Then, in Section 4, using
the obtained general formulation, modeling, and optimality
conditions are derived for a two-link manipulator in detail.
Finally, in order to verify the method, simulation results for a
two-link manipulator and a PUMA-like robot are presented
in Section 5.

2. Optimal Balancing Approach
Optimal balancing is simultaneous achievement of unknown
parameters and trajectory of system using optimal control.
The optimal control problem for a dynamic system involving
parameters can be stated as follows:21,30

Find the parameter vector b and continuous admissible
control history u = [t0, tf ] → � ⊆ R

m generating the
corresponding state trajectory, x = [t0, tf ] → R

n, which
minimizes the objective function

J = φ(xf , b) +
∫ tf

t0

L (x, u, b) dt, (1)

subject to the system dynamics

M(q, b)q̈ + C(q, q̇, b) + G(q, b) = u, (2)

where M ∈ R
n×n is the mass matrix, C ∈ R

n is the coupling
matrix, G ∈ R

n is a gravity-dependent term, q ∈ R
n is the

position vector of manipulator, and b ∈ R
r is the parameter

vector. Generally, vector b contains all the unknown constant
parameters in which their optimal value must be obtained
during the problem solution. u ∈ R

m is the control vector, �

is an acceptable control region in R
m, t0 and tf are initial

and final time, and xf is the predefined final state. φ and L
are scalar continuously differentiable functions in which φ is
the final state penalty term and L is the integrand of the cost
function. φ and L can be selected to obtain different optimal
control problems such as minimum time, terminal control,
minimum effort, tracking problem, or regulator problem.32

By defining the continuous state vector as

x = [
xT

1 xT
2

]T = [
qT q̇T

]T
, (3)

the dynamic Eq. (2) can be written in state space form as

f =
[

f1

f2

]
=

[
x2

M−1(x1, b)[u − C(x1, x2, b) − G(x1, b)]

]
,

(4)

where f is piecewise continuous in the variables u and t, and is
continuously differentiable with respect to x. So, the system
dynamics can be written finally as

ẋ = f (x, u, b) (5)
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Fig. 1. The general representation of open-chain robot manipulator
including springs.

with the given initial condition

x (t0) = x0 (6)

and the prescribed final conditions

x (tf ) = xf , (7)

where x ∈ R
n is the state vector and t0 is initial time. The

constant state vector can be appended for considering the
parameters as ḃ = 0. Then, by defining the Hamiltonian
function as

H = L + λT f + μTb, (8)

optimality conditions to minimize the objective function Eq.
(4), subject to dynamic Eq. (5), and boundary condition Eqs.
(6) and (7) can be derived as follows:

ODEs : ẋ = ∇λH, λ̇ = −∇xH, μ̇ = −∇bH,

Algebraic Equations: ∇uH = 0,

BCs : x(t0) = x0, μ(0) = 0, x(tf ) = xf , μ(tf ) = φb. (9)

Derivation of the aforesaid optimality conditions are
given in ref. [21] in detail. With the realization that the
parameters behave like states, for the optimal control u∗ the
Legendre–Clebsch condition,

∇2H (x, u∗, λ, b) ≥ 0, (10)

must be satisfied.

3. Static Balancing of Robot Manipulators

3.1. General formulation
The general spring balancing schematic is presented in Fig. 1
for open-chain robots, and it has been used for structure in
static and optimal balancing. In this figure, ki denotes the
spring between bodies whereas the ground body is inertial
and considered as the 0th body.

The existence of spring in the manipulator will change the
potential energy of the manipulator. For statically balanced
robotic systems, the weight of the links does not exert
any force at the actuators for any configuration. In other

words, it removes the gravitational effects in mechanical
systems.2 Another appropriate and practical meaning of this
concept can be stated to be the constant potential energy
of the manipulator. This can be applied by establishing the
additional mechanical elements into the system, such as
counter-weights or springs to make potential energy constant.
The use of counter-weights has some advantages along with
disadvantages that serve to limit its usefulness. For instance,
it is undesirable to provide an extra mass on robot where
minimum weight is an important criterion. Also, adding
the counter-weights increases the moment of inertia of the
manipulator. So, applying the springs instead of counter-
weights affords more convenience. Here, the general theory
for static balancing of manipulator-based energy method is
developed. The static balancing using energy index can be
stated as

∂P

∂qi

= 0, i = 1, . . . , n, (11)

where P is the total potential function of the manipulator and
qi is the position of link i as generalized coordination of the
system. Consequently, for systems consisting of springs, the
unknown parameters can be found by using these n equations.
In some cases, these equations have no solution and this
means such systems are not completely balanceable. For the
general system shown in Fig. 1, the potential energy can be
computed as

P =
nm∑
j=1

PjG +
nk∑

j=1

PjE

=
nm∑
j=1

(
1

2
kj (l′j − lj )2

)
+

nk∑
j=1

(mjghj ), (12)

where PG is the gravitational potential function and PE is the
elastic potential of the system. l denotes initial length of the
spring, l′ denotes deflected length of the spring, m denotes
mass of the link, h denotes the height of center of gravity for
the link, k denotes spring stiffness, g denotes gravitational
acceleration, nk denotes number of springs, and nm denotes
number of masses in the system. Substituting Eq. (12) into
Eq. (11) yields

nm∑
j=1

[
kj (l′j − lj )

∂l′j
∂qi

]
+

nk∑
j=1

(
mjg

∂hj

∂qi

)
= 0

i = 1, . . . , n, (13)

where represents n nonlinear equations with n unknown
parameters, which depend on the choice of springs structure,
which may have one, many, or no solution. If there is a
solution for Eq. (13), n unknown parameters are obtained,
which eliminates the gravitational forces as

G(q) = 0. (14)

So, the system dynamic described in Eq. (2) reduces to

û = M̂q̈ + Ĉ (q, q̇) , (15)
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where M̂ is the inertia matrix and Ĉ is the vector of centripetal
and Coriolis forces of the static balanced manipulator.

3.2. Static balancing in term of optimal balancing
In order to show the relation between static and optimal
balancing, the scaled time τ ∈ [0 1] is defined to represent
the time as

t = tf τ. (16)

Using this time-scaling, the derivatives of position vector
become

q̇ = dq
dt

= dq
tf dτ

= q′

tf
, q̈ = d2q

dt2
= q′′

t2
f

, (17)

so Eq. (2) can be rewritten as follows:

M(q, b)
q′′

t2
f

+ C
(

q,
q′

tf
, b

)
q′′

tf
+ G(q, b) = u. (18)

The effort-optimal pay-off functional is now selected as

J =
∫ 1

0
‖u‖2 dτ . (19)

By substituting Eq. (18) into Eq. (19), one can write

J =
∫ 1

0

∥∥∥∥M(q, b)
q′′

t2
f

+ C
(

q,
q′

tf
, b

)
q′′

tf
+ G(q, b)

∥∥∥∥
2

dτ .

(20)
By approaching tf → ∞, since the mass matrix and

coupling/Coriolis are norm bounded matrices thus, all terms
in Eq. (20) will vanish except the gravitational one. Thus,

lim
tf →∞ J =

∫ 1

0
‖G(qs, bs)‖2 dτ , (21)

where qs denotes the optimal static trajectory and bs

the static-balanced vector. The minimum solution of this
function is defined as static balancing of the robotic
manipulator in terms of optimal balancing.

As usual, static balancing is considered as solution of the
vector equation

G(qs, bs) ≡ 0. (22)

It is obvious that this leads to global minimum of Eq. (21).
Thus, by approaching the final time to infinity, optimal
balancing leads to static balancing.

4. Static and Optimal Balancing of Two-Link
Manipulator

4.1. Modeling of two-link manipulator
Here, three different conditions are considered: unbalanced,
statically balanced, and optimally balanced manipulator.
Dynamic equations of all these cases can be presented in
the general form. Using the structure presented in Fig. 2

1θ

2θ

mpl 2

l 1

K
1

K 2

s3

d

s1

s2

Fig. 2. (Colour online) Two-link manipulator with balancing
springs.

introduced by Agrawal,14 a two-link manipulator can be
statically balanced.

In deriving the dynamic equations, the zero-free-length
springs are supposed. For zero-free-length springs, the
potential energy using Eq. (12) can be written as follows:

P = −m1grg1 sin θ1 − m2grg2 sin(θ1 + θ2)

+ ms1g

[(
l1 − 1

2
s1

)
sin θ1 + 1

2
s2 cos (θ1 + θ2)

]
− ms2g [s1 sin θ1 + s2 sin(θ1 + θ2)] + mp[l1 sin θ1

+ l2 sin(θ1 + θ2)] + 1

2
k1x

2
1 + 1

2
k2x

2
2 , (23)

where ms1 and ms2 are mass of the fractional mechanism,
m1 and m2 are mass of links, mp is the payload mass, l1 and
l2 are length of links, rgidenotes the distance from joint i to
the center of mass of the link i, k1 and k2 are stiffness of
springs, x01 and x02 are initial length of springs, and d, s1,
s2, and s3 are the connecting position of springs as shown in
Fig. 2. x1 and x2 are instantaneous length of springs, which
are functions of θ1 and θ2 as follows:

x2
1 = 2(l1 − s3)(s2 cos θ2 − d sin θ1) − 2ds2 sin(θ1 + θ2)

+ d2 + s2
2 + (l1 − s3)2, (24)

x2
2 = s2

1 + (l1 − s2)2 + 2s2(l1 − s1) cos θ2.

For convenience, the parameters α and β are defined as
follows:

α = m2rg2 + l2mp, β = m1rg1 + (m2 + mp)l1. (25)

The dynamic equations for such a general two-link
manipulator can be described as follows:[

M11 M12

M12 M22

] [
θ̈1

θ̈2

]
+

[
C1

C2

]
+

[
G1

G2

]
=

[
τ1

τ2

]
, (26)

where
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M22 = m2r
2
g2 + mpl2

2 + I2,

M11 = m1r
2
g1 + (m2 + mp)l2

1 + I1 + 2l1α cos θ2 + M22,

M12 = l1α cos θ2 + M22,

C1 = −l1α sin θ2(2θ̇1 + θ̇2)θ̇2,

C2 = l1αθ̇2
1 sin θ2, (27)

G1 = cos θ1(k1d(s3 − l1) + βg)

+ cos(θ1 + θ2)(−k1ds2 + αg),

G2 = (s2(k2(s1 − l1) − k1(l1 + s3))) sin θ2

+ (αg − k1ds2) cos(θ1 + θ2),

where Ii denotes the mass moment of inertia of links.

4.2. Static balancing of two-link manipulator
In an unbalanced case, the spring parameters of the
manipulator are zero (k1 = k2 = 0), which is called normal
case in this paper. Now, in order to achieve the static
balancing, s1, d, and s3 must be obtained in such a way that
the gravity effects in Eq. (27) vanish. Here, k1, k2, and s2 are
supposed to be known parameters. Static balancing implies
that G1 = G2 = 0, so by defining the spring parameters as
follows:

d = gα

k1
, s1 = l1 + k1

k2

β

α
s2, s3 = l1 − β

α
s2, (28)

static balancing is applied and then, the dynamic parameters
in Eq. (27) become

M22 = m2r
2
g2 + mpl2

2 + I2,

M11 = m1r
2
g1 + (m2 + mp)l2

1 + I1 + 2l1α cos θ2 + M22,

M12 = l1α cos θ2 + M22, (29)

C1 = −l1α sin θ2(2θ̇1 + θ̇2)θ̇2,

C2 = l1αθ̇2
1 sin θ2,

G1 = G2 = 0.

4.3. Optimality conditions for normal
and static-balanced case
In this section, using the general formulation mentioned
in Section 2, optimality conditions are derived for the
considered two-link manipulator at unbalanced and static-
balanced cases. For the unbalanced case, all the parameters
associated with the springs are supposed to be zero, and
finding the optimal trajectory between the two given points
of the end-effector is considered. For the static-balanced case,
at first, unknown parameters are obtained using Eq. (28), then
the optimal trajectory for the given performance index will
be achieved. Consequently, in both unbalanced and statically
balanced cases, the unknown parameters do not appear in
the trajectory optimization procedure. The initial position of
the end-effector in XY plane at t = 0 is P0 = (x0,y0) and the
final position at t = tf is Pf = (xf ,yf ). The initial and final
velocities are considered to be zero. So, by solving the inverse

kinematic equations, one can write the boundary conditions
as follows:

θ1(0) = θ10, θ2 (0) = θ20, θ1(tf ) = θ1f , θ2 (tf ) = θ2f
(30)

θ̇1(0) = θ̇2(0) = θ̇1(tf ) = θ̇2(tf ) = 0.

At the first step, using Eq. (3) and by defining the continuous
state vector as follows:

X1 =
[
θ1(t)
θ2(t)

]
=

[
X1(t)
X2(t)

]
, X2 =

[
θ̇1(t)
θ̇2(t)

]
=

[
X3(t)
X4(t)

]
, (31)

the state space form of Eq. (26), using Eq. (4) becomes

ẋ1 = x3,

ẋ2 = x4,

ẋ3 =
M22(X1)(τ1 − C1(X1, X2) − G1(X1))

−M12(X1)(τ2 − C2(X1, X2) − G2(X1))

M11(X1)M22(X1) − M12(X1)M21(X1)
, (32)

ẋ4 =
M11(X1)(τ2 − C2(X1, X2) − G2(X1))

−M21(X1)(τ1 − C1(X1, X2) − G1(X1))

M11(X1)M22(X1) − M12(X1)M21(X1)
,

where Mij , Ci , and Gi (i, j = 1, 2) are substituted from Eqs.
(27) and (29) for the normal case and static-balanced case,
respectively. For the unbalanced case, unknown parameters
are considered to be zero in Eq. (27).

Now, according to Eq. (8), by considering the performance
index as minimum control effort defined as follows:

J =
∫ tf

t0

(
τ 2

1 + τ 2
2

)
dt (33)

and the costate vector as λ = [x5 x6 x7 x8 ], the Hamiltonian
function becomes

H = τ 2
1 + τ 2

2 + x5ẋ1 + x6ẋ2 + x7ẋ3 + x8ẋ4, (34)

where ẋi , i = 1, . . . , 4 can be substituted from Eq.
(32). Then, by substituting Eq. (32) into Eq. (34), and
differentiating the Hamiltonian function with respect to the
states, according to Eq. (9), the costate equations are obtained
as follows:

ẋ5 = −∂H

∂x1
= − ∂

∂x1

×
(

(−C1−G1)(x7M22−x8M12) + (−C2−G2)(−x7M12 + x8M11)

M11M22 − M12M21

)
,

ẋ6 = −∂H

∂x2
= − ∂

∂x2

×
(

(−C1−G1)(x7M22−x8M12) + (−C2 − G2)(−x7M12 + x8M11)

M11M22 − M12M21

)
,

ẋ7 = −∂H

∂x3
= −x5 − ∂

∂x3

×
(

(−C1)(x7M22 − x8M12) + (−C2)(−x7M12 + x8M11)

M11M22 − M12M21

)
,
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ẋ8 = −∂H

∂x4
= −x6 − ∂

∂x4

×
(

(−C1)(x7M22 − x8M12) + (−C2)(−x7M12 + x8M11)

M11M22 − M12M21

)
. (35)

After that, the control values can be obtained by solving the
following equations:

∂H

∂τ1
= 0,

∂H

∂τ2
= 0. (36)

So, by substituting the Hamiltonian function from Eq. (34)
into Eq. (36), the optimal control laws become

τ1 = 0.5

M11M22 − M12M21
(−X7M22 + X8M21),

(37)
τ2 = 0.5

M11M22 − M12M21
(X7M12 + X8M11).

Finally, by substituting Eq. (37) into Eqs. (32) and
(35), eight nonlinear ordinary differential equations will
be obtained and this combined with the eight boundary
conditions given in Eq. (30), lead to a two-point boundary
value problem. This problem can be solved using the bvp4c
command in MATLAB R©.

4.4. Optimal spring balancing of two-link manipulator
Unlike the static-balanced case in which the unknown
parameters are dependent on manipulator parameters as in
Eq. (28), in the optimal-balanced case the values of unknowns
are dependent on dynamic equations, performance index,
and boundary conditions according to Eq. (9). Therefore,
the unknown parameters and optimal trajectory are obtained
simultaneously in such a way that the given performance
index is minimized. In this case, the optimal control problem
involving parameters, with its optimality conditions given in
Eq. (9), must be considered. All of the dynamic equations,
costate equations, and optimal control law are the same as
unbalanced case obtained in the last section. For convenience,
the optimization process selection of unknown parameters is
divided into two steps. At the first step, k1, k2, and s2 are
considered to be known parameters and the optimal value of
s1, d, and s3 are obtained, on the other hand the parameter
vector in Eq. (2) is considered to be b = [s1 d s3]T . At
the second step, the obtained values for s1, d, and s3 at the
first step are rounded, and unknown parameters vector is
considered to be b = [k1 k2]T . In the first step, by defining
the three new state variables as x9, x10, and x11, the optimality
conditions associated with the parameters become

ẋ9 = −∂H

∂s1
, ẋ10 = −∂H

∂d
, ẋ11 = −∂H

∂s3
, (38)

where according to Eq. (9), the associated boundary
conditions become

x9,10,11 (0) = x9,10,11(tf ) = 0. (39)

Table I. Parameters of two-link manipulator21.

Parameters Values Unit

Mass m1 = m2 = 1 kg
Payload mass mp = 2 kg
Length of links L1 = L2 = 1 m
Moment of inertia I1 = I2 = 1/12 kg m2

Length of adjacent links r1 = r2 = 0.5 m
Length of parallelogram side s2 = 0.5 m

For the second step, by defining two new state variables as
x9 and x10, one can write the optimality conditions as

ẋ9 = −∂H

∂k1
, ẋ10 = −∂H

∂k2
, (40)

where according to Eq. (9), the associated boundary
conditions become

x9,10 (0) = x9,10(tf ) = 0. (41)

At last, by substituting Eq. (37) into Eqs. (32), (35), and (38),
11 nonlinear ordinary differential equations in terms of the
state [x1 x2 x3 x4], costate [x5 x6 x7 x8], new states [x9 x10 x11],
and unknown parameters (s1, d, s3) will be achieved. These 11
equations with 14 boundary conditions given in Eqs. (30) and
(39) construct a two-point boundary value problem solving
which all the states and unknown parameters can be obtained.

5. Simulation Results

5.1. Simulation results for a two-link manipulator
A two-link manipulator at vertical plan is considered as
shown in Fig. 2. All required parameters of the robot
manipulator are given in Table I. In this simulation, the
five different methods are as follows: normal case means
the unbalanced form of the manipulator, counter-weight-
static balanced means static-balanced manipulator using
mass, counter-weight-optimal means optimally balanced
manipulator using mass,21 zero-free-length spring-static
means static-balanced with spring, and zero-free-length
spring-optimal means optimally balanced manipulator using
spring.

The initial position of the end-effector in the XZ plan at t
= 0 is p0 = (1, 0) m and the final position at t = 1 s is pf =
(0, 1.73) m. The initial and final velocities are zero. From the
inverse kinematic equations, the boundary condition can be
expressed as

θ1(0) = 60◦, θ2(0) = 120◦, θ1(tf ) = 120◦, θ2(tf ) = −60◦,

θ̇1(0) = θ̇2(0) = θ̇1(tf ) = θ̇2(tf ) = 0. (42)

The results of simulations for the normal case, counter-
weight-static-balanced case, and counter-weight-optimal-
balanced case are the same as reported in ref. [21]. For
spring-static-balanced case, at first, the values of parameters
are obtained using Eq. (28). Then, the corresponding
boundary value problem derived in Section 4.3 is solved to
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Table II. Manipulator parameters for static and optimal-balanced
cases.

Parameter Static Optimal

Ground joint of spring, d (m) 0.4905 1.3
Length of parallelogram sides, 1.7, 0.5, 0.3 0.4, 0.5, 0.2

s1, s2, s3 (m)
First spring stiffness, k1 (N/m) 100 82.02
Second spring’s stiffness, k2 (N/m) 100 0

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
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m
)

 

Normal

CW-static

CW-optimal
ZFS-static

ZFS-optimal

Fig. 3. (Colour online) Optimal trajectories for different cases.

obtain the states and controls. For spring-optimal-balanced
case, the corresponding boundary value problem derived
in Section 4.4 is solved to obtain states, controls, and
unknown parameters. The manipulator parameters for static-
and optimal-balanced cases are given in Table II. In the
optimal case, since the second spring’s stiffness k2 is zero,
the value of s1 is unimportant and it probably eliminate the
second spring in practice.

The obtained optimal trajectories between the initial and
final points for the five cases are shown in Fig. 3. Figure 4
shows the obtained torque of motors. The angular position

Fig. 4. (Colour online) Input torques of motors 1 and 2 (effect of optimal spring and mass balancing).

Table III. Comparison of performance indexes.

Pay-off Reduction Amplification
Case (N m2/s) (times) (times)

Normal 1090 1 1
Counter-weight-static- 5770 – 5.29

balanced
Counter-weight-optimal- 564 1.93 –

balanced
Spring-static-balanced 361 3.02 –
Spring-optimal-balanced 52 20.96 –

Table IV. Denavit–Hartenberg parameters for a PUMA-like
robot31.

Link θi (rad) α (rad) ai (m) di (m)

1 q1 π /2 0 0.4
2 q2 0 0.5 0
3 q3 0 0.5 0

and angular velocity of links are illustrated in Fig. 5. The
second column of Table III shows the values of performance
index defined in Eq. (33) for five considered cases. The third
and forth columns represent the improvement relative to the
normal case in state of amplification or reduction. As reported
in ref. [21] and can be shown in Table III, the performance
index for counter-weight-optimal-balanced case is less than
the normal case and counter-weight-static-balanced case.
While the performance index for spring-optimal-balanced
case is less than all other cases. In the following figures,
readers should notice optimal balancing decrement of input
torques, and its effect on the trajectory (path and velocity
profile of joints).

5.2. Simulation results for PUMA-like robot
A spatial three-jointed PUMA robot is considered as shown
in Fig. 6. All of the manipulator parameters are the same
used in ref. [31]. Denavit–Hartenberg (DH) parameters and
links parameters are given in Tables IV and V, respectively.
In this robot, the first spring is connected between the base
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Fig. 5. (Colour online) Angular position and angular velocity of links (optimal balancing effect on velocity).

Table V. Link parameters and inertia properties31.

Length Mass Moment of inertia Link center
Link (m) (kg) (kg m2) of mass (m)

1 0.4 12 0 0 0 0
0 0.2 0 −0.2
0 0 0 0

2 0.5 10 0 0 0 −0.25
0 0.2 0 0
0 0 0.2 0

3 0.5 5 0 0 0 −0.25
0 0.1 0 0
0 0 0.1 0

and the parallel fractional mechanism. The second spring is
connected between the second and third link as shown in
Fig. 6.

For obtaining the dynamic equations, the Lagrangian
formulation is used. Total Lagrangian for this robot can be
written as follows:

Lt = L + Lsp, (43)
Fig. 6. (Colour online) PUMA-like robot with additional springs
and parallelogram mechanism.
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Fig. 7. (Colour online) Input torques of motors.

where Lt is the total Lagrangian, L is the Lagrangian of
robot, and Lsp is additional Lagrangian due to springs. The
additional Lagrangian can be stated as

Lsp = K − U = 0 − U = −
2∑

i=1

1

2
kix

2
i , (44)

where ki is the stiffness of the springs and xi is the deformed
length of springs. After deriving the dynamic equations
for this robot, using Eq. (9), the optimality condition can
be obtained in the same way as presented for two-link
manipulator. The boundary conditions are considered as

follows:

θ1(0) = 17◦, θ1(tf )=29.22◦, θ2(0)=29◦, θ2(tf )=−24◦

θ3(0) = 11.45◦, θ3(tf ) = 32.23◦, (45)

θ̇1(0) = θ̇1(tf ) = θ̇2(0) = θ̇2(tf ) = θ̇3(0) = θ̇3(tf ) = 0.

For this robot, simulations are performed for two cases:
normal case and optimal-balanced case. For the normal case,
all the parameters dealing with the springs are considered to
be zero. For the optimal-balanced case, at first, the stiffness of
springs, k1 and k2 are considered to be known and the values
of distance between joints and spring connection points are

Fig. 8. (Colour online) Angular position and velocity of links.
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Table VI. Optimal values of parameters for PUMA-like robot.

Parameter Value (Unit)

First spring stiffness, k1 1.23 N/m
Second spring stiffness, k2 0 N/m
Ground joint of spring, s1 1.3 m
Length of second spring application point, s2 0.186 m

Fig. 9. (Colour online) Optimal trajectories for normal cases.

Fig. 10. (Colour online) Optimal trajectories for optimal cases.

determined. In the next step, by considering the rounded
position values, the optimal value of stiffness is obtained.
Optimal values of parameters are listed in Table VI.

The obtained optimal controls are shown in Fig. 7. The
angular position and angular velocity of links are illustrated
in Fig. 8. The optimal trajectories for normal and optimal-
balanced cases are given in Figs. 9 and 10, respectively.
Performance index for normal case is found to be 8.81 N m2

and for spring-optimal-balanced case is found to be 7.08 N
m2 and that that this value is 20% less than the normal case.

6. Conclusion
In this paper, the formulation of optimal spring balancing
for robotic system in point-to-point motion, based on the
indirect solution of optimal control problem, is presented.
After deriving the dynamic equation using the Lagrange
formulation, optimality conditions are derived using the
Pontryagin’s minimum principle as well as an additional
condition associated with the constant parameters. The
obtained equations lead to a standard form of a two-point
boundary value problem, which should be solved.

The efficiency of the proposed method is investigated
through computer simulations for a two-link manipulator.
The obtained results show that although the performance
index for the static-balanced manipulator has been reduced
1.93 times (66.8%) with respect to unbalanced case, by
applying the proposed method this reduction reaches to
21 times (95%). It is also shown that the performance
index for spring balancing is very less than the performance
index for the counter-weight balancing reported in ref. [21].
This result is expected, because in counter-weight balancing
the moment of inertia increases due to the added masses.
Finally, simulation is performed for a PUMA-like robot
and the capability of the method to solve the complicated
problem is shown. For this case study, performance index
for optimal-balanced case is obtained which is 20%
less than the unbalanced case. In the future work, by
building the prototype, the efficiency of spring balancing
method versus the other balancing approach will be shown
experimentally.
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