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Anisotropy and energy flux in wall turbulence

By D. C. DUNN† AND J. F. MORRISON
Department of Aeronautics, Imperial College, London SW7 2AZ, UK

(Received 20 June 2002 and in revised form 5 March 2003)

A term-by-term wavelet decomposition of the equation for turbulence kinetic energy
in turbulent channel flow is used to provide a dual space-scale description of the
production and flux of energy. Wavelet filtering, analogous to that used in large-
eddy simulation, is performed on the nonlinear term that constitutes the energy flux.
Meneveau’s term, π(m)

sg [i] is used to represent forward scatter and backscatter. This
term is highly intermittent, much more so than the equivalent terms for production
at the same scale. Virtually all of π(m)

sg [i] appears in only two components that involve
subgrid flux of streamwise momentum in the wall-normal and spanwise directions. An
equivalent term that is the wavelet transform of the pressure-gradient term is shown to
be several orders of magnitude smaller, consistent with its neglect in current subgrid
modelling techniques. However, the mean-square pressure-gradient fluctuations (that
reach a maximum in the range of wavenumbers in which the velocity spectra exhibit
a −5/3 slope) are responsible for the significant spatial intermittency observed in the
energy flux.

1. Introduction
One of the most intractable problems in large-eddy-simulation (LES) is the

modelling of turbulence affected by a solid surface, in terms of both the modelling of
the unresolved scales that are smaller than the filter or grid size (the ‘subgrid’ scales)
and the implementation of an appropriate surface condition. This arises because
near a surface all the scales are ‘small’ so that the energy-containing scales may be
smaller than the grid size. Moreover, grid requirements make the use of approximate
‘off-the-surface’ boundary conditions very attractive (e.g. Piomelli & Balaras 2002).
Subgrid-scale (SGS) modelling is particularly difficult near solid surfaces where the
energy spectrum becomes complicated by the prevalence there of ‘backscatter’, the
transfer of energy away from the small scales to the large ones. Meneveau (1994) has
discussed which statistics a SGS model should reproduce in order to be considered
sound. Such quantities include the low-order statistics of the energy transfer. Popular
eddy-viscosity models present difficulties because they are absolutely dissipative:
Mason & Thomson (1992), for example, show that only with the use of a stochastic
backscatter model can the log law be obtained accurately when it is used as a
time-dependent surface boundary condition. The dynamic model of Germano et al.
(1991) also presents problems concerning backscatter although Porté-Agel, Meneveau
& Parlange (2000) have generalized the model to improve predictions of a neutral
atmospheric surface layer. Recent attempts by Redelsperger, Mahé & Carlotti (2001)
to use SGS models based on the supposed self-similarity of surface-parallel velocity

† Present address: School of Mathematics, University of Bristol, University Walk, Bristol BS8
1TW, UK.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

03
00

55
48

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112003005548


354 D. C. Dunn and J. F. Morrison

spectra as a function of streamwise wavenumber may lack generality: Morrison et al.
(2002b) have shown that spectra of the streamwise velocity component do not exhibit
self-similarity even at very high Reynolds numbers. Further difficulties arise in the
definition of a suitable SGS lengthscale, which is usually related simply to the grid
size. The grid must have very large aspect ratios in order that the essential properties
of the turbulence are captured (Ferziger & Perić 1996), but a model with a single
lengthscale is unlikely to represent spectral transfer in wall turbulence accurately.
Anisotropy of the turbulence near the wall extends to anisotropy in the SGS stresses.

Further difficulties stem from the fact that, in order to obtain the required level of
detail, some surface models are developed using linear stochastic estimation applied
to simulation databases (e.g. Nicoud et al. 2001). But Morrison et al. (2002a) have
recently demonstrated that the anisotropy of near-wall turbulence increases as the
Reynolds number increases. This is due to the anisotropy of turbulence structures
induced by the mean shear: Robinson (1991) shows that in wall turbulence, quasi-
streamwise vortices are typically 1000 viscous units long, while they are only 30–50
viscous units in diameter. A structure-based model of wall turbulence must surely
embody these effects, but it is by no means clear which turbulence structures are
responsible for spectral transfer. Robinson (1991) shows that, at low Reynolds number,
spatial transport is largely caused by the circulation of quasi-streamwise vortices, in
terms either of ‘ejections’ of low-momentum fluid away from the wall, or of ‘sweeps’
of high-momentum fluid towards the wall. Our own view is coloured largely by the
experimental results of Morrison, Subramanian & Bradshaw (1992) who suggest that
ejections and sweeps in the local-equilibrium region constitute a ‘first-order’ inertial
subrange, a sufficient criterion for which is that energy sources or sinks are a small
fraction of the energy transfer. Formally, this does not require local isotropy in a
wavenumber range in which the spectral shear correlation coefficient may be expected
to be rapidly decreasing with increasing wavenumber (Saddoughi & Veeravalli 1994).
Bradshaw (1967) suggests a suitable criterion for a first-order subrange is that the
Taylor microscale Reynolds number, Rλ > 100. This is a much less stringent condition
than local isotropy, which Durbin & Speziale (1991) show is not justifiable even at
high Reynolds numbers if the mean rate of strain is not small. For these reasons, we
refer to a spectral region in which the cutoff is placed to be one in which the slope is
−5/3, rather than making explicit reference to a supposed inertial subrange.

There has been extensive research concerning backscatter and its relevance to the
dynamics of the viscous sublayer (see Piomelli, Yu & Adrian 1996; Härtel & Kleiser
1998; Domaradzki et al. 1994). The origin of this reverse cascade is of fundamental
interest, not only for LES modelling, but also for control of turbulence in engineering
applications. In fact, such results are relevant to any small-scale forcing. Härtel et al.
(1994), Härtel & Kleiser (1998) and Domaradzki et al. (1994) have undertaken a
priori studies of the subgrid-scale energy transfer using the quantities derived from
the filtered Navier–Stokes equations. The drawback of this approach is that only
the bulk transfer between the resolved and subgrid-scale motion is calculated, i.e.
there is no reference to which of the resolved scales are involved in the transfer.
Härtel & Kleiser (1998) and Piomelli et al. (1996) have suggested that sweeps and
ejections play a critical role in energy transfer. More recently, Akhavan et al. (2000)
have suggested that spectral energy transfers in a free jet comprise two effects: one
involves forward scatter from non-local interactions that could suitably be modelled
by eddy viscosity; the other involves local interactions around the cutoff generating
bi-directional transfers. They suggest that this latter effect arises due to the presence
of organized vortical structures, and owing to their coherent and scale-dependent
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nature, the energy transfer is unlikely to be modelled successfully by a stochastic
force (e.g. Mason & Thomson 1992).

From the foregoing, it is clear that a dual space-scale description of the energy
processes in wall turbulence is called for. Orthogonal wavelets provide a compromise
between the two descriptions. Here we use the orthogonal wavelet transform of the
Navier–Stokes equations for fully developed turbulent channel flow applied to direct-
simulation databases. For generality, we use the term ‘flux’ to describe the mixed
spatial transport and scale-to-scale transfer of energy. Such a decomposition has
been suggested by Meneveau (1991) who analysed (largely) the decay of isotropic
turbulence and homogeneous turbulence subject to mean shear. Meneveau (1991)
concentrated on flux quantities derived from the nonlinear and pressure-gradient
terms. Here we take the analysis further and concentrate not only on the flux
term, but also on the production of turbulence kinetic energy. In addition to the
corresponding viscous term, these terms were identified by Dunn & Morrison (2003)
who show that both the production and viscous terms occur across a range of scales
and are intermittent. However, the greatest intermittency appears in the flux term.
See also Dunn & Morrison (2000a, b, 2001) for fuller descriptions and earlier results.

Here, our examination of the nonlinear and pressure-gradients terms separately
leads to some important conclusions. Moreover, in recognition of the pronounced
anisotropy of wall turbulence, individual components of the non-linear term are
examined. Given that most of the energy enters the turbulence via the streamwise
velocity component and is redistributed by pressure fluctutations (strictly, the
pressure–strain terms), we also investigate the role of pressure fluctuations in
the wavelet domain. The mixed space-scale description offered by orthonormal
wavelets is also a useful tool for investigating the relationship between energy flux
and other simpler flow scalars representative of flow structure, but this is reported
elsewhere. Preliminary studies using the wavelet representation have been undertaken
by Westbury & Sandham (1996) and Westbury, Sandham & Morrison (1998), who
show at least a qualitative relationship between regions of significant energy flux and
sweeps and ejections. The aim of this paper is to elucidate and quantify (at least in
some average sense) the effects of anisotropy on the flux of energy and this is done
by a further decomposition of the dominant flux quantities. However, the present
work also highlights a principal limitation of the orthonormal wavelet algorithm used
here, namely the loss of ‘identity’ between the wavelet quantities and the primitive
variables of the DNS database used to define them.

In the next section, we briefly summarize those quantities used in LES that are
relevant to the present work. Section 3 offers a brief review of the wavelet technique
and summarizes results that aid description of the DNS databases. Section 4 outlines
a decomposition that defines the SGS stresses and subsequent sections provide results
for the production and flux quantities.

2. LES equations
The LES equations are obtained by applying a low-pass filter to the Navier–Stokes

equations (the filter must commute with differentiation; see e.g. Leonard 1974; Lund
1997). Decomposing a flow variable f = f̃ + f ′, where f̃ is the filtered variable, the
Navier–Stokes equations become

∂ũi

∂t
+

∂ũi ũj

∂xj

= − 1

ρ

∂p̃

∂xi

− ∂τij

∂xj

+ ν
∂2ũi

∂xj∂xj

,
∂ũi

∂xi

= 0. (2.1a, b)
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The unknown terms, which require modelling, are the subgrid-scale (SGS) stresses

τij = ũiuj − ũi ũj . (2.2)

In the balance equation for the grid-scale (GS) kinetic energy τkk , the term representing
the exchange of energy between the resolved and subgrid scales is

εsg = ũi

∂

∂xj

τij =
∂

∂xj

ũiτij − τij S̃ij , (2.3)

where the resolved-scale strain-rate tensor is

S̃ij =
1

2

(
∂ũi

∂xj

+
∂ũj

∂xi

)
. (2.4)

The terms on the right-hand side of (2.3) are the SGS diffusion and the SGS
dissipation, both of which appear in the equation for the GS kinetic energy (e.g.
Piomelli et al. 1996). The SGS diffusion represents a spatial redistribution of GS
energy by the SGS motion, whereas the SGS dissipation, T = −τij S̃ij , represents a
true source or sink of GS energy. Piomelli et al. (1996) reason that the SGS model
should reproduce the SGS dissipation, but not necessarily the diffusion.

The present analysis uses DNS channel flow data (Sandham & Howard 1995) at
Reynolds number, Reτ = 300 (based on the friction velocity, uτ , and channel half-
height δ). The computational domain is 13δ × 2δ × 6δ in the x- (streamwise, i =1), y-
(wall-normal, i = 2) and z- (spanwise, i = 3) directions respectively. The grid spacings
in the x- and z-directions are uniform, while those in the y-direction are finer closer
to the wall. In the following, superscript + denotes scaling in wall units. The data
are analysed in two-dimensional, homogeneous (x, z)-planes. This is not anticipated
to lead to spurious results, except perhaps in the linear sublayer: Murray, Piomelli
& Wallace (1996) have shown that two-dimensional filtering (using a Fourier cutoff
filter) is equivalent to three-dimensional filtering only for y+ > 10.

Leaving aside the more pragmatic details of wall modelling for LES at high
Reynolds number, and taking y+ to be a local Reynolds number, it is clear that
the energy flux as deduced from DNS databases is relevant to flows with much
higher bulk Reynolds numbers. However, by any standard, the Reynolds number is
‘low’ and, particularly in the context of energy flux, this should be dealt with in the
analysis. Härtel et al. (1994) and Härtel & Kleiser (1998) investigate low-Reynolds-
number effects in near-wall turbulence, and their decomposition is briefly reviewed
here. The SGS dissipation is decomposed by dividing the subgrid-scale stresses into
a statistically stationary mean value, 〈τij 〉, here averaged over homogeneous planes,
and a fluctuating part, τ ′

ij , so that

T = T ms + T f s, (2.5)

where

T ms = −〈τij 〉〈S̃ij 〉, T f s = −〈τ ′
ij S̃

′
ij 〉. (2.6a, b)

Here T ms represents kinetic energy production in the SGS motion and T f s represents
a redistribution of kinetic energy within the turbulence spectrum. In ideal high-
Reynolds-number LES modelling (figure 1), the following relationships hold:

T f s = ε, T ms = 0, εν = 0, (2.7)

where εν = ν〈S̃ ′2
ij 〉 is the mean viscous dissipation in the GS motion. In the case of

low Reynolds number (figure 2), the wavenumbers at which production occurs are
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Grid
scales

Subgrid
scales

Wavenumber

Energy from
mean flow

Viscous
dissipation

�

Tfs
ε

Figure 1. LES modelling in high-Reynolds-number flow. Production, P, and dissipation, ε,
are well-separated in wavenumber space. The LES cutoff wavenumber lies in the inertial range
and the effect of the subgrid-scale motion is to drain grid-scale energy at a rate T f s = ε.

Grid
scales

Subgrid
scales

Wavenumber

�–Tms

Tfs

Tms

ε–ε
ν

ε
ν

Figure 2. Schematic diagram of low-Reynolds-number flow. Prodution and dissipation are
not separated in wavenumber space. Production occurs in the subgrid-scale motion (T ms).
There is viscous dissipation of grid-scale energy (εν) and T f s < ε.
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m r+
m kmη m r+

m kmη

1 20.86 0.518 5 333.8 0.032
2 41.72 0.259 6 667.6 0.016
3 83.45 0.129 7 1335. 0.008
4 166.9 0.065 8 2670. 0.004

Table 1. Values for r+
m and kmη available for the wavelet analysis, at Reτ = 300. Here, the

Kolmogorov length scale, η, has been calculated at y+ ≈ 15. In the remaining plots the full
y-dependence of η is retained.

not well separated from the dissipation range. In this case there is production in the
subgrid scales, and viscous dissipation in the resolved scales. Low-Reynolds-number
effects cause a decrease in the value of T f s relative to ε. Dunn & Morrison (2003)
show that production and viscous effects are present in all scales of the motion, and
that both processes are very intermittent in space.

3. The wavelet transform
Mallat (1989) provides a fast wavelet algorithm, the details of which have appeared

several times in the literature (for applications in turbulence, see e.g. Meneveau 1991;
Do-Khac et al. 1994; Farge 1989). Like the Fourier transform, the square of the
wavelet coefficients can be interpreted as the kinetic energy of the signal. The benefit
of the wavelet transform is that it provides a description which is local in both scale
and spatial location. Specifically, a function, f (x, y), can be written

f (x, y) =

∞∑
m=−∞

3∑
q=1

∑
i

w(m,q)[i]Ψ (m,q)[x − 2m i], (3.1)

where [i] is a variable two-dimensional position index. The basis functions Ψ (m,q) are
generated by wavelet and smoothing functions, which have the shape of band-pass
and low-pass filters respectively. The wavelet coefficients are

w(m,q)[i1, i2] =

∫ ∞

−∞

∫ ∞

−∞
f (x, y)Ψ (m,q)[x − 2m i] dx dy. (3.2)

For a periodic signal on 2M × 2M grid points, 22(M−m) wavelet coefficients can be
obtained for m =1, . . . , M , corresponding to scales of a characteristic size rm = 2m

(	x	z)
1/2, where 	x and 	z are the grid spacings (here streamwise and spanwise

respectively). Table 1 shows the range of scales for the DNS databases. The
wavenumber is km = 2π/rm.

At higher wavenumber, the spatial localization is greater, but wavenumber locali-
zation is lost. This ‘leakage’ means that at large wavenumbers, the wavelet coefficients
contain information from smaller wavenumbers. According to Qiu, Paw & Shaw
(1995) the LeMarie–Meyer–Battle (LMB) wavelets minimize this effect. After Mallat
(1989) and Meneveau (1991), LMB wavelets are also used for the present analysis.

Meneveau (1991) defines the energy spectral tensor,

Eij (km) =
2−m(	x	z)

1/2

π
√

2

〈
e

(m)
ij [i]

〉
, (3.3)
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where the average is over all spatial locations, and

e
(m)
ij [i] =

3∑
q=1

w
(m,q)
i [i]w(m,q)

j [i]. (3.4)

The two-dimensional energy spectrum is the trace of (3.3), and the total energy
satisfies

〈q〉 =

M∑
m=1

E
(m)
ii (km)	km. (3.5)

Dunn & Morrison (2003) show E
(m)
ii (km, y+), together with the contributions by the

various velocity components. The kinetic energy reaches a maximum at y+ ≈ 15, which
coincides with the peak in turbulence kinetic energy production (e.g. Mansour, Kim
& Moin 1988). The flow is highly anisotropic across the whole of the wall region, at
all scales, including those near the viscous cutoff. The effect of this anisotropy on the
exchange of energy between the GS and SGS motion is the subject of the rest of this
paper.

4. SGS stress tensor based on wavelet filtering
It is straightforward to define low- and high-pass filtering operations based on the

wavelet transform. The present analysis is that of Meneveau (1991), where details can
be found. Here, the formulation is adapted for the channel flow data, and written
to make the relationship with LES modelling explicit. A smoothed approximation
(band-pass filtered) version, u

(m)
i [i], of the velocity field can be computed such that

ui(x) =

M∑
m=1

u
(m)
i [i]. (4.1)

The velocity field can be written,

ui(x) = u<m
i (x) + u>m

i (x), (4.2)

where

u<m
i [i] =

m−1∑
n=1

u
(n)
i [i], u>m

i [i] =

M∑
n=m

u
(n)
i [i]. (4.3a, b)

In practice these quantities are calculated by setting to zero the wavelet coefficients at
the scales to be ignored, and then inverting the transform. The operation can be
thought of as a wavelet cutoff filter. The fields corresponding to (4.3a, b) are, res-
pectively, high- and low-pass filtered velocity fields, similar to those produced by
a Fourier cutoff filter, but with the filtering being ‘local’ in physical as well as
wavenumber space. The ‘> m’ and ‘< m’ superscripts can be taken to represent
‘grid-scale’ and ‘subgrid-scale’ motion, respectively. Subgrid-scale stresses can be
constructed:

τ
(m)
ij = uiuj − u>m

i u>m
j . (4.4)

Clearly, this definition is not quite the same as the SGS stresses defined by (2.2):
while it yields all the cross-stresses and Reynolds stresses, as products they remain
unfiltered, in contrast to the SGS stresses defined by (2.2). However, this difference is
addressed in § 6 where we define a quantity that represents the flux of energy between
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Figure 3. The components of the wavelet-based subgrid-scale stress tensor 〈τ (m)
ij 〉. (a) m= 1,

(b) 2, (c) 3, (d) 4, (e) 5, (f ) 6. Note that the scale on the vertical axis varies between plots.

the GS and SGS motion. Figure 3 shows the mean values of the SGS stresses: those
for m =3, 4 and 5, correspond to wavenumbers lying in the −5/3 region, and so
are most relevant to LES modelling. Only five of the nine terms are non-zero in the
mean, i.e. the diagonal stresses and the stresses aligned with the mean strain rate,
τ

(m)
12 = τ

(m)
21 . All of the terms show maxima (and/or minima) either in or just above the

sublayer, indicating that a significant proportion of the turbulence kinetic energy is
contained in the small scales. They also exhibit the expected anisotropy, the normal
stress aligned in the streamwise direction being significantly larger than those in the
wall-normal and spanwise directions. This behaviour is consistent with that of the
Reynolds stresses (Dunn & Morrison 2003). Each of the SGS stress terms shows an
increase with increasing m, i.e. as the filter width in Fourier space decreases. Therefore,
the anisotropy of the Reynolds stresses that arises because of the different effects that
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the viscous and impermeability constraints have on near-wall turbulence also appears
in the SGS stresses, down to the viscous cutoff.

These curves are not directly comparable with the plots of the SGS stresses
calculated by Härtel & Kleiser (1998), since, in order to retain a physical description,
we have not subtracted out the isotropic part of the SGS stress tensor. This is
usually done for consistency in eddy-viscosity modelling so that the SGS stresses are
trace-free as is the resolved strain-rate tensor. It should also be noted that, because a
wavelet filter produces SGS and GS scales that overlap in spectral space, the resulting
components of the SGS stresses, (4.4), are not Galilean invariant. However, we do
not separate the SGS stresses into those components that contain a plane-averaged
velocity and those that do not. Therefore the question of Galilean invariance does
not arise. Härtel & Kleiser (1997) deal with issues of Galilean invariance in detail.
Moreover, Härtel & Kleiser (1998) show that, in terms of energy transfer, the cross-
stresses and the SGS Reynolds stresses behave in a very similar fashion. It would
therefore seem appropriate to model them together. What we will show however, is
that the individual components of the SGS stress tensor behave very differently.

5. Energy production in wavelet space
While it is not possible to separate the SGS diffusion and dissipation in the

othogonal wavelet representation (see below), it is possible to separate the mean flow
effects from the flux due only to the turbulence. The term

P (m)[i] =

3∑
i=1

3∑
q=1

w
(m,q)
i [i]

{
uj

∂Ui

∂xj

}(m,q)

[i], (5.1)

is the production of turbulence kinetic energy in a region of characteristic size rm

at the point [i] (see Dunn & Morrison 2003). Here {·}(m,q)
[i] denotes the wavelet

coefficients of a quantity other than velocity. The spectrum of P (m)[i] at fixed y+ is

Pw(y+, km) =
2−m(	x	y)

1/2

π
√

2
〈P (m)[i]

〉
. (5.2)

Figure 4 shows Pw(y+, km) as a function of y+. Summing Pw(y+, km)	km over all m

yields the total production of turbulence kinetic energy. For m = 1, corresponding to
scales near the viscous cutoff, there is no production. However, across the rest of the
range of scales production is significant. Pw has maxima close to y+ = 15, but moves
to slightly larger values of y+ as m increases. Maximum production occurs for m =4,
the region where a cutoff wavenumber might be selected for LES at high Reynolds
numbers. Dunn & Morrison (2003) show that the wavelet-transformed viscous term
also reaches a maximum at m = 4.

The standard deviation of P (m)[i], in the same units as Pw is

σP(y+, km) =
2−m(	x	y)

1/2

π
√

2

(〈
P (m)[i]2

〉
−

〈
P (m)[i]

〉2)1/2
. (5.3)

Dunn & Morrison (2003) show a ‘dual bi-spectrum’ of production, Pw +σP, at values
of y+ lying in the linear sublayer, the buffer region, the log-law region and the outer
region; σP is a measure of the spatial variablility of Pw , and this is largest where the
production reaches a maximum, y+ ≈ 15, kmη ≈ 0.07. Figure 5 shows the flatness of
P (m)[i]: except for m = 1 and 2, it is very large, increasing more or less monotonically
as m decreases.
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Figure 4. Production term, Pw(y+, km) as a function of y+.
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Figure 5. Flatness of P (m)[i].
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Figure 6. π
(m)
ms , the production of turbulence kinetic energy in all scales smaller than rm.

Summing P (k)[i] over k for k = 1, ..., m leads to a term

π(m)
ms [i] =

m∑
k=1

22(M−k)P (k)[2m−k i], (5.4)

which is the production of turbulence kinetic energy at all scales smaller than rm, i.e.
the SGS production. In figure 6, π(m)

ms increases monotonically with m and the position
of the peak is rather less dependent on m than is the case with P (m)[i]. Figure 7 shows
the flatness of π(m)

ms , a direct analogue of the flatness of P (m)[i], figure 5. Given that
calculation of π(m)

ms involves summation over all modes smaller than m, its flatness is
very similar to that of P (m)[i] for m = 1, 2. At larger m however, the flatness of the
former increases tenfold. This implies that the modes are statistically independent.

Figure 8 shows T ms , (2.6), which has been calculated using a Fourier cutoff filter, the
width of which corresponds to the values of m used for the wavelet filter (table 1). The
behaviour of π(m)

ms is very similar to that of T ms , even with regard to the small increase
in the value of y+ at which π(m)

ms reaches a maximum as the filter width increases.
Note also that the values of the two quantities are very similar, the differences being
attributable only to differences in filter shape.

6. Energy flux in wavelet space
Using the SGS stress tensor, a term describing the flux of energy in wavelet space

to scales of size rm from all scales smaller than rn at position [i] is

t (m,n)[i] = −
3∑

i=1

3∑
q=1

w
(m,q)
i [i]

{
∂

∂xj

τ
(n)
ij

}(m,q)

[i]. (6.1)
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Figure 7. Flatness of π
(m)
ms .
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Figure 8. Plot of T ms , the production of turbulence kinetic energy in the SGS motion,
calculated using a Fourier cutoff filter of the same size as the wavelet filter, figure 6.
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Figure 9. Wavelet dual bispectrum of subgrid transfer, Tw(y+, km|kn) against y+,
for Reτ = 300.

The sign is negative when backscatter of energy occurs. The corresponding term used
by Meneveau (1991) includes the pressure-gradient term which we have chosen to
omit here. Flux due to the pressure gradient is addressed separately in the next section.
Meneveau (1991) defines a ‘dual bi-spectrum of transfer’ to scale rm by interactions
with scales smaller than rn, (n � m), as

Tw(y+, km | kn) =
2−m(	x	z)

1/2

π
√

2
〈t (m,n)[i]〉, (6.2)

the standard deviation of which is

σm|n =
2−m(	x	z)

1/2

π
√

2

(
〈t (m,n)[i]2〉 − 〈t (m,n)[i]〉2

)1/2
. (6.3)

Figure 9 shows Tw(y+, km|kn), for n = 4 and 5. The flux is numerically largest when
n= m and it is therefore local in scale, but the flux both to and from non-adjacent
scales is also non-zero on average. In the sublayer, it is predominantly from large to
small scales, but note that it is numerically largest when the flux is from the small
to the large scales at y+ ≈ 15–20. This is consistent with the results of Piomelli et al.
(1996), Härtel & Kleiser (1998) and Domaradzki et al. (1994), who have also shown
that backscatter is predominant in the buffer region. Dunn & Morrison (2003) show
that, for y+ ≈ 30, some transfer can be non-local with one leg of the triad close to the
viscous cutoff (n = 1). Interestingly, the same phenomenon is observed in a plane jet
(also at low Reynolds numbers) by Akhavan et al. (2000).

Figure 10 shows the dual bi-spectrum of transfer in wavenumber space for n = 4,
at several values of y+ across the boundary layer. The largest numerical values
occur again for m = n. The variance is also greatest for m = n, but the flux to all
‘resolved’ scales exhibits both non-zero mean and non-zero variance: the flux can
take either sign at different positions in physical space. The greatest spatial variation
occurs in the region where the flux has its largest magnitude, y+ ≈ 15. The variance
of Tw(y+, km|kn) is significantly larger than that of any of the quantities in the
turbulence kinetic energy budget (see Dunn & Morrison 2003) and it is clear that
the mean flux is the small difference between fluxes of large magnitude but of opposite
sign. Figure 11 shows the contribution by each velocity component to the flux, i.e.
the spectrum (6.1), but with the subscript i fixed. The flux is mainly to (or from)
the streamwise component, but the other components exhibit much smaller fluxes
which tend to have the same variation with y+ as the streamwise component. Dual
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Figure 10. Wavelet dual bispectrum of subgrid transfer against kmη, Reτ = 300, n = 4.
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Figure 11. Components of Tw(y+, km|kn) for n = 3: (a) i = 1; (b) i = 2; (c) i = 3.
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bi-spectra (not shown) indicate that the variance in the streamwise component is
similar to that for the flux term as a whole, while the variances for the spanwise and
wall-normal components are much smaller. In summary therefore, the variances of a
specific component are large when its mean flux at that wavenumber is large.

The anisotropy of the Reynolds (and subgrid) stresses is usually explained in
terms of the change in sign of the wall-normal component of the pressure–strain
term at y+ ≈ 30 (see, for example, Moin & Kim 1982). The correlation between
the pressure and components of the strain rate is responsible for the transfer of
energy from the wall-normal stress to the wall-parallel ones. In the case of the
components of Tw(y+, km | kn) (figure 11), the explanation requires rather more detail
since there appears to be no simple amplification of the wall-parallel components
at the expense of the wall-normal one, as a simple ‘splatting’ argument suggests.
Here, the anisotropy arises due to the large wall-normal strain rate, ∂U/∂y, the only
component with non-zero mean. Large strain rates are also closely associated with the
appearance of quasi-streamwise vortices (see Lee, Kim & Moin 1990), and therefore
of large instantaneous pressure gradients in the spanwise and wall-normal directions.
The anisotropy of pressure-gradient fluctuations is explored in the next section.

The quantity of most interest for LES modelling is the effective sink (or source) of
energy to the subgrid scales. Meneveau (1991) defines the local subgrid flux in wavelet
space, by summing the local subgrid transfer over the resolved scales. Specifically, the
quantity

π(m)
sg [i] =

M∑
k=m

22(M−k)t (k,m)
[
2(m−k) i

]
, (6.4)

is the local flux of energy from the resolved-scale motion to the SGS motion, and
is positive when the flux is from the resolved scales to the SGS motion (forward
scatter) and negative otherwise (backscatter). The interpretation of π(m)

sg requires some
care. In our definition of the subgrid stresses, we have not introduced filtering of the
products on the right-hand side of (4.4), as is usually done in LES, (2.2). However,
in the definition of π(m)

sg , a summation over all modes above the cutoff is made so
that, loosely speaking, summation of a band-passed wavelet flux at each mode is
qualitatively equivalent to the low-pass filtering of conventional filters such as the
sharp Fourier cutoff. However, since the orthogonal wavelet filtering operation does
not commute with differentiation, it is not possible to split π(m)

sg into two terms, one
representing SGS diffusion, the other SGS dissipation (the transfer between resolved
and subgrid scales). Hence, π(m)

sg contains spatial flux, which cannot be separated from
the true SGS dissipation. However, note that in calculating π(m)

sg only the fluctuating
velocity components have been used, i.e. production due to the mean strain rate is
not included. Therefore, π(m)

sg is analogous to εsg , (2.3), but calculated using only the
fluctuating velocity components. Alternatively, π(m)

sg is equivalent to the term T f s of
(2.6b), but with an additional component of SGS diffusion. The spectra of subgrid
flux,

πsg(y
+, km) = 2−2m

〈
π(m)

sg [i]
〉
, (6.5)

are plotted in figure 12. For m = 1, lying close to the viscous cutoff, the flux is
small and positive across the whole channel, in keeping with the conventional energy
cascade. For m = 3, 4 and 5, lying in the −5/3 region of the energy spectra, the
subgrid flux is largest in magnitude. In the linear sublayer, it is positive for all scales,
indicating that energy flux is to smaller scales, consistent with an unsteady, linear,
Couette-like vortex stretching. At larger y+, the flux becomes dominated by nonlinear
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Figure 12. Subgrid flux, πsg(y
+, km) for Reτ = 300.
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Figure 13. (a) T f s and (b) εsgs against y+. The values of m in the legend refer to use of a
cutoff filter with the same width as the wavelet scale, rm.

processes, and is large and negative across the buffer region. Backscatter is most
significant in the region of maximum production (y+ ≈ 15).

For comparison, figure 13 shows T f s and εsg , evaluated using a Fourier cutoff filter
of the same width as the wavelet modes. It is apparent that εsg is very similar to
π(m)

sg , exhibiting a positive peak in the sublayer and a larger negative peak in the
buffer region. These peaks are, in fact, slightly smaller than the equivalent ones for
π(m)

sg because of the effects of the single-signed mean strain rate. On the other hand,

T f s (figure 13a) shows a region of backscatter only for m = 4 and 5. This is because
a Fourier cutoff filter operation operates over all space and so is immune to large
spatial variations in energy flux evident in the equivalent wavelet terms.
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Figure 14. Anisotropy of the SGS flux. (a) Plane-averages of π
(m)
sg,12 (no symbols); π

(m)
sg,13

(diamonds) and π
(m)
sg,11 (crosses). (b) Plane-average of the sum π

(m)
sg,11 + π

(m)
sg,12 + π

(m)
sg,13. The bottom

two plots are dual bispectra of SGS flux components: (c) π
(m)
sg,12 and (d) π

(m)
sg,13, both evaluated

at y+ ≈ 16.

To investigate the effects of anisotropy further, we consider

π(m)
sg,ij [i] =

M∑
k=m

22(M−k)t
(k,m)
ij

[
2(m−k) i

]
, (6.6)

where

t
(m,n)
ij [i] = −

3∑
i=1

3∑
q=1

w
(m,q)
i [i]

{
∂

∂xj

τ
(n)
ij

}(m,q)

[i], (6.7)

and no summation on i and j is implied – that is π(m)
sg,ij is the flux due only to

the ij component of the SGS stress tensor. Figure 14(a) shows the components of
π(m)

sg,ij which include the streamwise velocity component (i.e. ij = 11, 12 and 13).
Figure 14(b) shows the sum of these components for each m. Comparison with
figure 12 shows that most of the mean SGS flux involves SGS stresses that include
streamwise momentum. Moreover, the component that is aligned with the largest
component of the resolved strain-rate tensor (ij = 12) is large and negative in the
mean. The component containing spanwise momentum, corresponding to a zero-
mean component of the resolved strain-rate tensor (ij = 13), is large and positive.
The remaining component (ij = 11) involves the streamwise SGS kinetic energy, the
largest component of the SGS stresses, but has a very small mean contribution to the
SGS flux. The components not shown exhibit negligible mean values.
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Figures 14(c) and 14(d ) show dual bispectra of π(m)
sg,12 and π(m)

sg,13, calculated at

y+ ≈ 16. The standard deviation is greatest for scales near the viscous cutoff and in the
−5/3 spectral region. It is of similar magnitude in the sublayer and decreases towards
the centre of the channel (not shown). Therefore it is clear that both components
of the SGS flux can take either sign locally. The standard deviation of these two
components is the largest of all nine and is about twice that of π(m)

sg,11. The spatial
variability of the other six components is typically an order of magnitude less, even
though they all have standard deviations which, as multiples of mean, are as large
as those for components in which the spatial variability is the largest. An important
feature of figure 14(c, d) is the large spatial variability even in the scales near the
viscous cutoff when π(m)

sg,12 and π(m)
sg,13 are small. This is in contrast to other wavelet

quantities such as P(m), V(m) and the other components of π(m)
sg and first appears in

the transfer term, Tw(y+, kn|km). This indicates that the spatial intermittency appears
largely in those components of the nonlinear inertial flux term, π(m)

sg , that contain the
gradients of SGS stress components, ∂τ12/∂y and ∂τ13/∂z.

7. The pressure-gradient term
We now turn our attention to subgrid flux effected by the pressure-gradient term

in the Navier–Stokes equations,

π(m)
sg,p[i] =

M∑
k=m

22(M−k)t (k,m)
p

[
2(m−k) i

]
, (7.1)

where

t (m,n)
p [i] = −

3∑
i=1

3∑
q=1

w
(m,q)
i [i]

{
1

ρ

∂p<n

∂xi

}(m,q)

[i], (7.2)

which has so far been neglected. Note that t (m,n)
p relates to the small-scale pressure

field as it is the result of the same high-pass filtering operation already applied to
the velocity field in § 4. Dunn & Morrison (2003) provide further details. Figure 15
shows that π(m)

sg,p is about two orders of magnitude smaller than π(m)
sg , and is, in fact,

comparable to π(m)
sg,ij for ij �= 12 or 13. This supports the neglect of energy transfer

by the pressure gradient in almost all subgrid models and filters. Note that when
n = 8 in (7.2), and π(m)

sg,p is summed over all m, the velocity/pressure-gradient term
appearing in the conventional energy balance, Πkk , is recovered (see Mansour et al.
1988).

More physically, Kim (1989) shows that, in channel flow at Reτ = 179, the static
pressure is only slightly negatively skewed, but has flatness factors that are typically
twice the Gaussian value of 3 over much of the channel height. Batchelor & Townsend
(1956) have suggested that, at Reynolds numbers high enough for local isotropy, the
mean-square pressure gradient is much larger than the mean-square viscous force,

1

ρ2

(
∂p

∂xi

)2

≈ 20ν2

(
∂2ui

∂x2
j

)2

, (7.3)

in which the term involving viscous diffusion is ignored. Figure 16 shows that, outside
the viscous sublayer, the factor of 20 is about right, even at low Reynolds numbers.
Equation (7.3) suggests that the mean-square acceleration comprises prolonged viscous
intervals ‘pulsed’ periodically by the mean-square pressure gradient. Thus a pressure
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Figure 15. Plane-averages of π
(m)
sg,p as a function of y+.
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Figure 16. Mean-square pressure gradient and mean-square viscous force, defined by (7.3).

field of small skewness, but large flatness, gives rise to a pressure-gradient distribution
of which the first moment is very small, but of which even moments are significantly
larger. Kim (1989) also shows that contributions to the mean-square wall pressure
are principally local in nature even though the instantaneous wall pressure receives
significant contributions from the opposite wall. Therefore, the mean-square pressure
close to the surface is intimately related to the structure there. In terms of the sublayer
populated with quasi-streamwise vortices, this means merely that a low-pressure
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Figure 17. π
(m)
sg,p as a function of kmη, evaluated at y+ ≈ 16.

region (approximately coinciding with the vortex core) always has two opposite-
signed pressure gradients in the cross-sectional plane of the vortex. The present data
show that, at y+ ≈ 25, (∂p/∂x)2 ≈ 0.5(∂p/∂y)2 ≈ 0.5(∂p/∂z)2. Kim (1989) also notes
that ∂p/∂x is not a good indicator of quasi-streamwise vortices while vertical and
spanwise gradients are.

Statistically, this means that quantities such as π(m)
sg,p involving the first moment of

pressure-gradient fluctuations are small. This is true of the individual components
of π(m)

sg,p,i (not shown). Mansour et al. (1988) show that Π11 ≈ Π22 + Π33 and π(m)
sg,p,1 ≈

π(m)
sg,p,2 + π(m)

sg,p,3 too. While the spanwise component makes the largest (positive)
contribution in the linear sublayer, the streamwise component makes the largest
(negative) contribution near y+ ≈ 25. This means that the component terms, π(m)

sg,p,i ,
are not much larger than π(m)

sg,p itself.
In contrast, quantities involving even moments are large, so that the mean-square

pressure gradient contributes nearly all of the mean-square acceleration even in the
viscous sublayer where it reaches a maximum at y+ ≈ 25. This is just the region in
which the spatial variability (the root-mean-square) of π(m)

sg,p and all the components of
π(m)

sg are greatest. In terms of SGS modelling, pressure fluctuations which reside mostly
in the large scales effect negligible local transfer of energy between the resolved and
subgrid scales. Similarly, pressure-gradient fluctuations which reside predominantly
in the small scales do not contribute to energy flux either. On the other hand, the
mean-square pressure gradient makes the dominant contribution to the mean-square
acceleration, and therefore pressure-gradient fluctuations contribute directly to the
spatial intermittency of energy flux even when, on average, some of its components
are small.

Figure 17 shows the spatial variability of π(m)
sg,p . It is similar to that for the com-

ponents of π(m)
sg,ij , ij �= 12 or 13, in that it falls sharply towards the viscous cutoff. By
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comparison, the components π(m)
sg,ij , ij = 12 or 13 do not (figures 14a and 14b). In

fact, the largest spatial variability of π(m)
sg,p tends to occur at wavenumbers only slightly

higher than those at which the two-dimensional energy spectra reach a maximum
(Dunn & Morrison 2003). Kim (1989) shows that pressure fluctuations are well-
correlated across the channel height and one might therefore speculate that pressure
fluctuations in the outer region, carried by the large scales, also have an important role
nearer the wall. Holmes, Lumley & Berkooz (1996) have suggested that outer-region
pressure fluctuations trigger the bursting process.

8. Discussion and conclusions
The wavelet transform has been used to study energy flux in turbulent channel flow

in a manner that is similar to the usual a priori testing via conventional real-space
or Fourier-space filters. This has enabled mixed spatial and scale-to-scale statistics
to be constructed, offering a compromise between a spatial description (e.g. Härtel
& Kleiser 1998; Härtel et al. 1994; Piomelli et al. 1996) and a Fourier description
(Domaradzki et al. 1994). The orthogonal wavelet transform of Mallat (1989) used
here gives the best compromise between resolution in real space and wavenumber
space (Meneveau 1991). By paying particular attention to production in the subgrid
scales and dissipation in the resolved scales, we have been able to make a detailed
study of energy flux. Since the orthogonal wavelet transform does not commute
with differentiation, it has not been possible to construct precise analogues of all
conventional LES quantities. In order to show relevance to current LES practice,
we have compared the wavelet-transformed quantities with equivalent quantities
computed using the Fourier cutoff filter. A particular advantage of the mixed space-
scale description of energy flux is that its spatial variability has been highlighted.

Particular attention has been paid to low-Reynolds-number effects in the form of
production in the SGS motion, and direct viscous dissipation in the GS motion.
Following Härtel & Kleiser (1998), we have generated an equivalent wavelet quantity,
π(m)

ms , similar to T ms calculated using a sharp Fourier cutoff. The maximum spatial
variation of production, P (m), occurs for y+ ≈ 15 and for wavenumbers lying in the
−5/3 region of the velocity spectra. While the skewness of P (m) is not particularly
large, its flatness at these locations is as much as 30. Production is therefore highly
intermittent and, in an Eulerian frame, occurs in localized, intense bursts. Dunn &
Morrison (2003) have shown that the wavelet-transformed viscous term shows similar
effects.

The maximum value of Rλ for the present data set is about 100, but is strongly
dependent on y+. Figure 18 shows the ratio π(m)

sg /Pw which has magnitudes (of either
sign) close to 9 and 7 for y+ ≈ 5 and 15 respectively, for modes in the −5/3 range.
Thus in the present context, an equivalent criterion to Bradshaw’s (Rλ > 100) for the
existence of a first-order subrange is π(m)

sg /Pw > 10. This is very much within the spirit
of his suggestion that sources or sinks are a small fraction of the spectral transfer.
Since local isotropy could not be considered a reasonable approximation so close to
the wall under any circumstance, such a definition is a more appropriate one for LES
of wall-bounded flows.

Using the wavelet-based filter, the term t (m,n), representing the flux of energy
between scales of size rm and all scales smaller than rn, has been calculated. This
term is unique to the wavelet representation: a Fourier cutoff filter simply yields the
bulk transfer between the resolved scales and the SGS motion, without reference to
which of the resolved scales are involved. Analysis of t (m,n) reveals that the transfer is
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Figure 18. The ratio π
(m)
sg /Pw .

predominantly local, in keeping with Kolmogorov (1941) phenomenology. The details
are more complicated however. Energy can be transferred between the SGS motion
and any of the resolved scales. As in the case of P (m), the variance of t (m,n) is largest
when n corresponds to a scale in the −5/3 range. The flux can take either sign locally,
but is predominantly negative (backscatter) for y+ ≈ 15, in agreement with the results
of Härtel & Kleiser (1998), Piomelli et al. (1996) and others.

Assuming that the spatial variability observed is closely related to the appearance
of coherent structures, in this case quasi-streamwise vortices, and that, by definition,
these structures are persistent, then it is very likely that intermittency manifests itself
not only spatially, but also temporally. Härtel & Kleiser (1998) indicate that the time
derivative of the ‘13’ component of the SGS stress is dominant. Figure 19 shows
the correlation of π(m)

sg with streamwise and spanwise separations for m = 1. The
loss of spatial resolution when using the wavelet transform limits the usefulness of
correlations for large values of m. While the SGS flux has a correlation lengthscale
of about 200 wall units in the streamwise direction, it is only about 50 wall units in
the spanwise direction. A clear physical picture emerges based on a quasi-streamwise
vortex. Its stretching and rotation leads to local scale-to-scale energy transfer while
its circulation leads to lateral and wall-normal transport of streamwise momentum.

A particular difficulty arises in attempting to condition π(m)
sg based on the appearance

of ejections or sweeps: while the latter are defined with respect to the DNS grid, the
former are sparsely defined in the larger modes. In future work, we propose to use
undecimated wavelets so that by retaining some redundancy, quantities such as π(m)

sg

may be specified at every DNS mesh point. An approximate idea of the suggested
relationship between ejections, sweeps and spectral flux may be gained by using T f s .
Figure 20 shows contributions made by ejections (uv2) and sweeps (uv4) to T f s .
Here, ensemble averages of T f s are made using points for which uv >var(uv), where
var(uv) is the local variance of the uv-signature. T f s is calculated with a cutoff in the
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Figure 19. The streamwise and spanwise correlation functions of π
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sg for m = 1.

0

0.02

–0.02
10–1 100 101 102

y+

0.01

–0.01

0.03 , Sweep contributions to backscatter
, Ejection contributions to forward scatter

(Tfs)+

Figure 20. Contributions by ejections and sweeps to Tf s .

−5/3 spectral region. Although the results are dependent on the sampling used and
the filter size, they do show that sweeps are significant contributors to backscatter in
the sublayer. Clearly a wavelet representation would be much more revealing.

It is highly likely that the anisotropy of the Reynolds stresses and the subgrid
stresses is not limited to wall flows, but applies to any flow with large-scale anisotropy.
In the Fourier transformed Navier–Stokes equations, the nonlinear term couples the
motion at any particular wavenumber with all other wavenumbers. Brasseur & Wei
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(1994) have shown that distant triadic interactions tend to transmit any large-scale
anisotropy down to the smallest scales of the flow. In the context of wall turbulence,
the pressure is important in this respect. Anisotropy also appears in π(m)

sg , the SGS
flux term that is analogous to εsg in LES modelling. The SGS flux involving the ‘12’
component of the SGS stress tensor, and so aligned with the mean strain rate, is the
largest in magnitude and is responsible for backscatter across the wall region. The
SGS flux involving the ‘13’ component of the SGS stress tensor is responsible for the
forward scatter near the wall. Note that in this case, the corresponding strain rate of
the resolved scales has a zero mean value. Both 12 and 13 components are unique in
that they exhibit large spatial variability down to the viscous cutoff. This is consistent
with the suggested importance of quasi-streamwise vortices to energy flux. The other
components of the SGS stress tensor do not contribute significantly to the SGS flux
in the mean.

The energy flux due to the pressure-gradient term has been shown to be negligibly
small and the component terms are also. The importance of the pressure gradients
lies in their even moments and the second moment contributes nearly all of the
mean-square acceleration. While spatial variability is apparent in all the wavelet-
transformed quantities irrespective of direction, it is considerably larger (by a factor
of 5 or 6) for quantities involving the nonlinear term. Because the standard deviation
as a multiple of the mean is large for all components of the flux, and it occurs in
the wavenumber range in which it is expected that the spectrum of pressure-gradient
fluctuations reaches a maximum (equivalent to the −5/3 range of the velocity spectra),
spatial variability may be explained as a consequence of the dominant contribution
made by the mean-square pressure gradient to the mean-square acceleration.

The present results appear to be consistent with the suggestion by Akhavan et al.
(2000) that structure is the cause of spatial variability and that therefore detailed
behaviour of flux is unlikely to be captured by eddy viscosity models. This is certainly
the case for local fluxes. Dunn & Morrison (2003) show that there is also non-local
flux, which although small, is always positive and therefore appropriately modelled
by eddy viscosity models.

We are indebted to Philippa Westbury who undertook much early work and to Neil
Sandham of the University of Southampton for access to the DNS data generated
as part of the efforts of the UK Turbulence consortium (EPSRC GR/M08424,
GR/R26368 & GR/R64957). We are indebted to Charles Meneveau for helpful
correspondence. We acknowledge financial support from EPSRC (GR/M31187).
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Härtel, C., Kleiser, L., Unger, F. & Friedrich, R. 1994 Subgrid-scale energy transfer in the
near-wall region of turbulent flows. Phys. Fluids 6, 3130–3143.

Holmes, P., Lumley, J. L. & Berkooz, G. 1996 Turbulence, Soherent Structures, Dynamical Systems
and Symmetry . Cambridge University Press.

Kim, J. 1989 On the structure of pressure fluctuations in simulated turbulent channel flow. J. Fluid
Mech. 205, 421–451.

Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluids for very
large reynolds numbers. C. R. Akad. Sci. SSSR 30, 301–305.

Lee, M. J., Kim, J. & Moin, P. 1990 Structure of turbulence at high shear rate. J. Fluid Mech. 216,
561–583.

Leonard, A. 1974 Energy cascade in large-eddy simulation of turbulent fluid flow. Adv. Geophys.
A 18, 237–248.

Lund, T. S. 1997 On the use of discrete filters for large eddy simulations. Center for Turbulence
Research Annual Research Briefs. Stanford University.

Mallat, S. G. 1989 A theory for multireslution signal decomposition: the wavelet representation.
IEEE Patt. Anal. Mach. Intl 11, 674–693.

Mansour, N. N., Kim, J. & Moin, P. 1988 Reynolds-stress and dissipation rate budgets in a
turbulent channel flow. J. Fluid Mech. 194, 15–44.

Mason, P. J. & Thomson, D. J. 1992 Stochastic backscatter in the large-eddy simulations of
boundary layers. J. Fluid Mech. 242, 51–78.

Meneveau, C. 1991 Analysis of turbulence in the orthonormal wavelet representation. J. Fluid
Mech. 232, 469–520.

Meneveau, C. 1994 Statistics of turbulence subgrid-scale stresses: Necessary conditions and
experimental tests. Phys. Fluids 6, 815–833.

Moin, P. & Kim, J. 1982 Numerical investigation of turbulent channel flow. J. Fluid Mech. 118,
341–377.

Morrison, J. F., Jiang, W., McKeon, B. J. & Smits, A. J. 2002a Reynolds-number dependence of
streamwise velocity fluctuations in turbulent pipe flow. AIAA Paper 2002-0574.

Morrison, J. F., Jiang, W., McKeon, B. J. & Smits, A. J. 2002b Reynolds-number dependence of
streamwise velocity spectra in turbulent pipe flow. Phys. Rev. Lett. 88, 214501.

Morrison, J. F., Subramanian, C. S. & Bradshaw, P. 1992 Bursts and the law of the wall in
turbulent boundary layers. J. Fluid Mech. 241, 75–108.

Murray, J. A., Piomelli, U. & Wallace, J. M. 1996 Spatial and temporal filtering of experimental
data for a priori studies of subgrid stresses. Phys. Fluids 8, 1978–1980.

Nicoud, F., Baggett, J. S., Moin, P. & Cabot, W. 2001 Large eddy simulation wall-modeling based
on suboptimal theory and linear stochastic estimation. Phys. Fluids 13, 2968–2984.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

03
00

55
48

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112003005548


378 D. C. Dunn and J. F. Morrison

Piomelli, U. & Balaras, E. 2002 Wall-layer models for large-eddy simulations. Annu. Rev. Fluid
Mech. 34, 349–374.

Piomelli, U., Yu, Y. & Adrian, R. J. 1996 Subgrid-scale energy transfer and near-wall turbulence
structure. Phys. Fluids 8, 215–224.
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