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Lactoperoxidase (LPO) is an antimicrobial protein present in milk that plays an important role in
natural defence mechanisms during neonatal and adult life. The antimicrobial activity of LPO has
been commercially adapted for increasing the shelf life of dairy products. Immobilization of LPO
on silver nanoparticles (AgNPs) is a promising way to enhance the antimicrobial activity of LPO.
In the current study, LPO was immobilized on AgNPs to form LPO/AgNP conjugate. The immobi-
lized LPO/AgNP conjugate was characterized by various biophysical techniques. The enhanced
antibacterial activity of the conjugate was tested against E. coli in culture at 2 h intervals for 10 h.
The results showed successful synthesis of spherical AgNPs. LPO was immobilized on AgNPs
with agglomerate sizes averaging approximately 50 nm. The immobilized conjugate exhibited stron-
ger antibacterial activity against E. coli in comparison to free LPO. This study may help in increasing
the efficiency of lactoperoxidase system and will assist in identifying novel avenues to enhance the
stability and antimicrobial function of LPO system in dairy and other industries.
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Lactoperoxidase (LPO) is a heme-containing antimicrobial
enzyme present in human and animal secretory fluids,
such as milk, saliva and tears (Sharma et al. 2013; Bafort
et al. 2014). It is a member of the mammalian peroxidase
family, which also includes myeloperoxidase, eosinophil
peroxidase and thyroid peroxidase (Zamocky & Obinger,
2010). The antimicrobial activity of LPO is due to produc-
tion of potent oxidizing and bactericidal compounds in
the presence of hydrogen peroxide (H2O2), as LPO cata-
lyzes the oxidation of many organic molecules including
halides (Furtmuller et al. 2002) and nitrates (Van der Vlict
et al. 1997). Pseudohalide thiocyanate (SCN−) has been
reported to be the most specific substrate for LPO (Sheikh
et al. 2009) and oxidation of SCN− leads to production
of antimicrobial compound hypothiocyanate (OSCN−)
(Furtmuller et al. 2002).

LPO has been reported to have microbicidal or microbio-
static activity against a wide range of microorganisms such
as viruses (Courtois et al. 1990), fungi (Popper & Knorr,

1997) and bacteria (Kussendrager & Von Hooijdink,
2000). Within the human body, LPO plays a key role in
humoral defence mechanisms against microorganisms
(Zamocky & Obinger, 2010) including protecting the lactat-
ing mammary gland of the mother and the intestinal tract
of new born infants (Zhang et al. 2008). Lactoperoxidase
system has three components, i.e. LPO, hydrogen peroxide
and halides/pseudohalides, and has assumed considerable
importance in the dairy industry (Lonnerdal & Lien,
2003). The use of LPO system for increasing the shelf life
and preservation of milk and milk products is an easy
and alternative way, particularly in areas where refriger-
ation facilities are not available (Garcia-Graells et al.
2000). This is done by adding small quantities of H2O2 to
milk. Use of natural antimicrobial systems is important to
improve the safety and to maintain high quality, natural
freshness and healthiness of the food items (Gould, 1996).
However, these systems are hampered by limitations such
as selective inhibition, resistance development, and adsorp-
tion of antimicrobial components by fat, protein, and other
molecules present in food items (Garcia-Graells et al.
2000).*For correspondence; e-mail: iasheikh@kau.edu.sa

Journal of Dairy Research (2018) 85 460–464. © Hannah Dairy Research Foundation 2018
doi:10.1017/S0022029918000730

460

https://doi.org/10.1017/S0022029918000730 Published online by Cambridge University Press

mailto:iasheikh@kau.edu.sa
https://doi.org/10.1017/S0022029918000730


In view of the importance of the LPO system, it is highly
advantageous to maximize the stability, activity, and recov-
ery of LPO, thus improving the efficiency of the system.
Recently, nanotechnology has been gaining tremendous
importance in various fields of science and industry, and
commercial applications of nanoparticles in many areas,
such as chemistry, catalysis, electronics, medicine, and
energy have multiplied (Masala & Seshadri, 2004). In this
regard, silver in the form of nanoparticles has been known
to have inhibitory and bactericidal effects (Kora & Rastogi,
2013) and has been shown to increase the antimicrobial
activities of various antibiotics against bacteria (Shahverdi
et al. 2007). Immobilization of LPO on AgNPs is a promising
way to enhance the efficiency of LPO and is expected to be
commercially beneficial because of the broad working
spectrum of LPO. To our knowledge, there are no studies
available on enhancing the antimicrobial activity of LPO
using AgNP-based approach. Therefore, the objective of
our study was to increase the antimicrobial efficiency of
the LPO enzyme by immobilizing it on AgNPs. The LPO/
AgNP immobilized complex was physicochemically char-
acterized and tested for enhanced antimicrobial activity
against Escherichia coli (E.coli) and bacterial growth both
in liquid culture and agar plates was monitored and
recorded at different time intervals.

Materials and methods

Purification of LPO from milk

For purification of LPO from camel milk, the procedure
previously described in detail for water buffalo milk was
followed (Sheikh et al. 2009). Purified LPO protein was
lyophilized and used for immobilization on AgNPs.

Synthesis of AgNPs

Aqueous solution of AgNO3 and purified LPO enzyme were
used as salt precursor and capping agent, respectively, for
AgNPs. The aqueous freshly prepared solution of NaBH4

was added as a reducing agent. The colorless reaction
mixture transformed into yellow color after the addition of
NaBH4 which was due to growth of AgNPs. The growth of
AgNPs was monitored by measuring the absorbance by
UV–vis spectroscopy of the reaction product using spectro-
photometer at 200–800 nm. The surface morphology of the
nanoparticles was studied using field emission scanning
electron microscopy (FESEM; JEOL JSM-7600F, Japan).
Elemental analysis was carried out using energy-dispersive
spectroscopy (EDS).

Bacterial cultures and antibacterial activity

Antibacterial activities of the LPO and LPO/AgNP conjugate
were determined using Gram-negative bacteria E. coli.
The E. coli cells were grown in 3 culture tubes overnight

in 5 ml Luria–Bertani (LB) broth containing 1·0% tryptone,
0·5% yeast extract and 1·0% sodium chloride. Each tube
was inoculated aseptically with 50 µl of E. coli bacterial
suspension (∼104 CFUs/ml). The culture tubes were
randomly kept as control, LPO alone and LPO/AgNP. The
control culture tube for the E. coli growth was inoculated
with 50 µl of E.coli suspension (∼104 CFU/ml) only. The
LPO alone culture tube was inoculated with 50 µl of
E. coli suspension and also received 1 mg/ml of LPO. The
LPO/AgNP culture tube was inoculated with 50 µl of
E. coli suspension and received 2 mg/ml of LPO/AgNP
conjugate. The LPO alone and LPO/AgNP culture tubes
also received other two components of LPO system,
SCN− at 10 µM concentration and H2O2 at 5 µM in phos-
phate buffer at pH 7·4. All the three culture tubes were
kept on horizontal shaker at speed of 200 rpm at 37 °C
for 10 h. The bacterial growth was monitored by optical
density (OD) at 600 nm and by number of colony forming
units (CFUs) at 2 h intervals (2, 4, 6, 8, 10 h) until 10 h to
analyze the inhibitory activity of the LPO and LPO/AgNP
conjugate.

Results

AgNP synthesis and characterization

The AgNPs formation in the reaction mixture of AgNO3 and
LPO was confirmed by the color change (colorless to
yellow) supporting the reduction of Ag (I) ions to Ag (0).
Further, UV–vis spectroscopy revealed a single surface
plasmon absorption band of AgNP at 400 nm. The morph-
ology and size distributions of AgNP/LPO conjugate from
FESEM measurements are presented in Fig. 1. The particle
shapes were spherical and the average size of the nanopar-
ticles in the pure micelle was ∼50 nm. The results of elem-
ental analysis of silver nanoparticles using EDS are depicted
in Fig. 2. The EDS spectrum showed peaks or signals of silver
atoms at 2·6 and 3·0 keV in the AgNP/LPO nanoparticles. In
addition, peaks for carbon and oxygen were also shown at
0·3 and 0·5 keV.

Bacterial culture and antibacterial activity

The optical density (OD) of E. coli cultures in control, LPO
alone and LPO/AgNP is presented in Fig. 3. For control
culture tube, a progressive increase in OD indicating bacter-
ial growth is shown from 2 to 10 h (end of experiment). For
the culture tube with LPO alone, the optical density
remained low until 6 h and then began to increase and
was high at 10 h. However, at 10 h the OD was lower
than the control. In the culture tube with LPO/AgNP conju-
gate the OD remained low until the end of experiment (did
not increase until 10 h). Similar results were also observed
for the number of CFU (data not shown) with progressive
increase in number of CFUs from 2 to 10 h in control and
comparatively slower increase in number of CFUs from
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2 to 6 h in LPO alone. The number of CFUs increased more
rapidly from 8 to 10 h in LPO alone, however, the number of
CFUs at 10 h was less than the control. In LPO/AgNP conju-
gate, the number of CFUs were already lower at 2 h in
comparison to control and LPO alone, and no CFUs were
observed at 4, 6, and 10 h.

Discussion

LPO is an important constituent of the lactoperoxidase
system with considerable potential for industrial applica-
tions. Improvement of traditional methods and development

of novel techniques for increasing the shelf life of milk and
milk products are of high importance to commercial dairy
industry. The immobilization of enzymes is being consid-
ered as an important development for increasing their
process utilization and reducing operational expenses
in commercial applications (Johnson et al. 2011).
Immobilized enzymes show greater stability at higher tem-
peratures for longer periods of time and in comparison to
their native soluble form are more denature resistant.
Nanoparticles have generated considerable scientific inter-
est recently in view of their wide-ranging potential for use
in diverse fields in industry and medicine (Rai et al. 2012).
Immobilization with nanoparticles provides greater surface
area that increases the enzyme loading, less fouling effect
and lower mass transfer resistance

In the current study, immobilization of LPO on AgNPs
resulted in enhancement of antimicrobial activity of LPO.
The successful synthesis of AgNPs in our study was shown
by production of yellow color of colloidal AgNPs with an
absorption spectrum at 400 nm and particle sizes of
approximately 50 nm. Nanoparticles emit bright colors
due to oscillations of the surface electron cloud of these
particles, and the interaction of combined oscillations of
electrons with light of suitable energy imparts to nanoparti-
cles a color that is specific to the particular metal to which
the nanoparticles belong (Link & El-Sayed, 1999). A pale
yellow color is specific for silver and indicated formation
of silver nanoparticles in our study as has been reported pre-
viously in many studies (Geethalakshmi & Sarada, 2012;
Huo et al. 2017). In addition, the results of UV–Visual spec-
troscopy showing a band at 400 nm in our study are similar
to previous reports showing a silver band at 340 and 400 nm
(Pal et al. 2016; Huo et al. 2017).

The LPO was assumed to be immobilized entirely on the
AgNPs and FESEM imaging demonstrated homologous
morphology of LPO/AgNP agglomerates with particle sizes
averaging approximately 50 nm. Synthesis of diverse sizes
of AgNPs and the agglomerates of AgNP conjugates with

Fig. 1. Field emission scanning electron micrograph showing
morphology and size distribution of silver nanoparticles and
lactoperoxidase (LPO) conjugate obtained from reaction mixture
of AgNO3, NaBH4 and lactoperoxidase. The nanoparticle shapes
are spherical and the sizes in the pure micelle are ∼50 nm.

Fig. 2. Energy-dispersive spectroscopy spectrum showing
elemental analysis of silver nanoparticles and lactoperoxidase
(LPO) conjugate obtained from reaction mixture of AgNO3,
NaBH4 and LPO. Peaks or signals of silver atoms at 3 keV,
carbon (C) at 0·3 keV and oxygen (O) at 0·5 keV are shown.

Fig. 3. Optical density of E. coli cultures at different time intervals
in culture tubes of control, lactoperoxidase (LPO) alone and LPO
conjugated with silver nanoparticles (LPO/AgNP).
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peptides and polypeptides have been reported previously
(Dumri & Hum Anh, 2014; Brahmkhatri et al. 2015; Pal
et al. 2016). The variations in the particle size probably
occurred due to synthesis occurring for different times
(Geethalakshmi & Sarada, 2012).

The elemental analysis by EDS also confirmed the
successful synthesization of LPO/AgNPs conjugates, as the
peaks showed the presence of the C, O and Ag in grown
nanoparticles. The C and O peaks indicated that the
enzyme (LPO) was successfully immobilized on AgNPs.
The EDS spectrum peaks of 2·6 and 3·0 keV showed the
presence of silver atoms in the conjugate and peaks at
this optical absorption are typical for silver nanocrystallites
due to surface plasmon resistance, and absorption peaks
ranging from 2·5 to 4·0 keV have been reported in previous
studies on AgNPs (Gardea-Torresdey et al. 2003;
Geethalakshmi & Sarada, 2012; Huo et al. 2017).

Antimicrobial activity experiment using E. coli culture
showed that AgNP conjugation with LPO resulted in
increased antimicrobial activity of LPO in comparison to
LPO alone. Monitoring of E. coli growth by taking OD at
2, 4, 6, 8 and 10 h after inoculation and counting of CFUs
on agar plates inoculated with E. coli cultures from culture
tubes at 2, 4, 6 , 8 and 10 h was done. E. coli cultures
showed minimal growth until 6 h after inoculation in LPO
alone as indicated by lack of OD increase, where as in
control, OD increased progressively from 2 to 10 h.
Therefore, the results indicate that LPO alone exerted and
maintained its activity of inhibiting bacterial growth until
6 h. From 6 h onwards LPO started to lose its antimicrobial
activity as shown by the OD increase of E. coli culture. This
could be attributed to many factors such as temperature,
protein stability etc. In the cultures containing LPO immobi-
lized on AgNPs, the bacterial growth did not occur as
shown by lack of increase in OD until the end of experiment
reflecting that the immobilization of LPO on AgNPs
enhanced the antimicrobial activity of LPO beyond 6 h
and potentially for longer than 10 h. This indicated that
LPO/AgNP conjugate retains its efficiency for longer time
in comparison to free LPO enzyme. Similar conclusions
were derived from number of CFUs observed in E. coli
grown on plates.

Studies on immobilization of LPO on AgNPs are not avail-
able, whereas studies of LPO immobilization on nanoparti-
cles of other metals are limited. In a comparative study on
four different proteins including LPO, degree of coverage
on silica nanoparticle surface was studied and was reported
to be influenced by both protein structural stability and
charge distribution at surface of protein (Turci et al. 2010).
In another study (Samani et al. 2016a), LPO immobilized
on silica coated magnetic nanoparticles displayed
enhanced efficiency in presence of cadmium chloride
(inhibitor). In a similar study (Samani et al. 2016b), LPO
immobilized on Fe3O2 exhibited higher thermal stability
in comparison to free LPO enzyme. In none of the three indi-
cated studies, antimicrobial properties of LPO conjugates
were analyzed.

Peptides, including the commercially available poly-
myxin B, had enhanced antimicrobial activity after conjuga-
tion with AgNPs (Ruden et al. 2009). Similarly, preparation
of AgNPs using a cell penetrating 20 amino acid peptide as
capping agent resulted in enhanced antimicrobial activity of
the conjugate compared to AgNP alone (Liu et al. 2013). In a
recent study (Pal et al. 2016), conjugation of an antimicro-
bial peptide with AgNPs enhanced its antimicrobial activity.
The mechanisms involved in interaction of AgNP with
LPO in the conjugate and increased antimicrobial activity
of the LPO/AgNP conjugate are not well understood and
need further studies. However, dynamic interactions of
silver nanoparticles with a cysteine rich antimicrobial
peptide that resulted in significantly increasing the activity
and stability of the complex have been shown (Pal et al.
2016). Further, when AgNPs are in conjugation with
polypeptides, the stability is enhanced and is due to the
steric repulsion between proteins that does not allow
nanoparticles to approach each other and thus prevents
aggregation (Brahmkhatri et al. 2015). The stability of the
conjugate allows its multiple recycling without losing
potency as recently indicated for AgNP-ubiquitin conju-
gates (Brahmkhatri et al. 2015). Part of the antimicrobial
activity of the LPO/AgNP conjugate is also due to AgNPs.
Silver and nanoparticles of silver are known to have anti-
microbial activity (Morones et al. 2005; Sharma et al.
2009; Omprakash & Sharada, 2015).

The antimicrobial action of LPO is through oxidoreduc-
tases activity involving production in situ of reactive
compounds which inhibit microorganisms. LPO catalyzes
oxidation of SCN− in presence of H2O2 resulting in produc-
tion of short-lived reactive oxidation product, −OSCN
(Bafort et al. 2014). −OSCN rapidly oxidizes many biomole-
cules including, in relation to antimicrobial activity, the
exposed sulfhydryl containing enzymes in the bacterial
cell membranes causing membrane disruption, pH gradient
disbalance, K ion leakage, and inhibition of solute transport.
The AgNPs are thought to produce their antimicrobial
effects by attaching or penetrating the bacterial cell wall
and disrupting the cellular signaling by dephosphorylation
of tyrosine residues on key peptide substrates (Shrivastava
et al. 2007). Our opinion is that the increased antimicrobial
activity of immobilized LPO with AgNPs is by increased
stability of protein and increased surface area which
allows for oxidation of the substrate for longer duration
thus producing greater amounts of −OSCN. However,
further studies and characterization of the interactions of
AgNP with LPO and molecular mechanisms underlying
the antimicrobial property enhancing mechanisms are
needed.

In conclusion, an immobilized LPO/AgNP conjugate was
characterized by UV–vis spectroscopy, FESEM, and EDS.
We showed that AgNPs were successfully synthesized and
LPO immobilized on AgNPs exhibited stronger antibacterial
activity against E. coli in comparison to free LPO. The study
will be helpful in identifying novel avenues to enhance the
stability and antimicrobial function of LPO system.
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