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In this paper, we consider a discrete-time quantum walk on the N-cycle governed by the

condition that at every time step of the walk, the option persists, with probability p, of

exercising a projective measurement on the coin degree of freedom. For a bipartite quantum

system of this kind, we prove that the von Neumann entropy of the total density operator

converges to its maximum value. Thus, when influenced by decoherence, the mutual

information between the two subsystems corresponding to the space of the coin and the

space of the walker must eventually diminish to zero. Put plainly, any level of decoherence

greater than zero forces the system to become completely ‘disentangled’ eventually.

1. Introduction

A quantum walk (QW) is a reversible process that is commonly described as the quantum-

mechanical analogue of a classical random walk. In recent times, quantum walks have

attracted extensive attention, mainly for their value as potential sources of new algorithms

(Kempe 2003; Ambainis 2003; Kendon 2006; Venegas-Andraca 2008; Konno 2008).

Like classical random walks, quantum walks are classified into two main types: discrete-

time quantum walks (Nayak and Vishwanath 2000; Ambainis et al. 2001; Aharanov

et al. 2001) and continuous-time quantum walks (Fahri and Gutmann 1998; Childs

et al. 2002). Both types exhibit similar dynamical properties, and the continuous type

can be obtained from the discrete type through a suitable limiting process (Strauch 2006;

Childs 2010).

Whereas continuous-time quantum walks can be modelled in terms of a single position

Hilbert space Hp, discrete-time quantum walks cannot be modelled except in terms of

a bipartite system involving the tensor product of the position Hilbert space Hp and

an auxiliary coin Hilbert space Hc. The conditional shift operator, which governs the

itinerary of the walker, induces entanglement between the degree of freedom of the coin

and the spatial degree of freedom of the walker.

To capture the full computational power inherent in any quantum-mechanical process,

it is essential to be able to model the phenomenon of quantum entanglement. Recently,
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several important studies of quantum entanglement in discrete-time quantum walks have

been completed, from both a numerical perspective (Carneiro et al. 2005; Maloyer and

Kendon 2007; Venegas-Andraca and Bose 2009) and an analytical perspective (Abal

et al. 2006; Annabestani et al. 2010a).

In recent years, several schemes have been proposed for the implementation of quantum

walks in realistic media (Travaglione and Milburn 2002; Dur et al. 2002; Sanders

et al. 2003; Du et al. 2003; Ryan et al. 2005; Eckert et al. 2005; Zou et al. 2006; van

Hoogdalem and Blaauboer 2009). However, any attempt to implement a quantum system

in a physical channel must take into consideration the critical issue of ‘decoherence’,

whereby the idiosyncratic features of a quantum system succumb to macroscopic (clas-

sical) manifestations. Various mathematical models of decoherence in discrete-time QWs

have been investigated both numerically and analytically (Kendon and Tregenna 2002;

Brun et al. 2003a; Brun et al. 2003b; Kendon and Tregenna 2003a; Kendon and

Tregenna 2003b; Romanelli 2005; Kosik et al. 2006; Richter 2007; Zhang 2008; Banerjee

et al. 2008; Shikano et al. 2010; Liu and Petulante 2010; Annabestani et al. 2010b).

In this paper, as in Brun et al. (2003a; 2003b), we adopt a specific model of decoherence,

which might best be described as follows. At each time step of the quantum walk, an

observer stands ready to perform a projective measurement on the coin degree of freedom.

The probability of performing a measurement is given by a fixed parameter p, called the

‘decoherence rate’.

There is not much evidence in the current literature of any attempts to provide a

precise formulation of the relationship between entanglement and decoherence. A notable

exception is the numerical study given in Maloyer and Kendon (2007). However, the

measure of entanglement employed in Maloyer and Kendon (2007), which they called the

negativity measure, differs considerably from the measure of entanglement adopted in this

paper.

Here, we utilise the concept of von Neumann entropy to quantify the information

content of the various components of the quantum walk system, including the mutual

information shared between its subsystems (coin and position). This approach enables us

to provide a precise formulation of the measure of entanglement between the subsystems.

In the presence of any non-zero level of decoherence, the von Neumann entropy associated

with the total probability density of the system tends to its maximum value, implying the

total collapse of entanglement between subsystems.

2. Quantum walks on the N-cycle subject to decohrence

We begin by defining the elements, as formulated in Liu and Petulante (2010), of a

quantum random walk on the N-cycle – the definitions and corresponding notation are

analogous to those outlined in Liu and Petulante (2010). Let t denote the number of

time steps from the moment the discrete quantum walk is launched on the N-cycle. The

temporal evolution of the system is modelled by ψt = Utψ0, where ψ0 is the initial state

and U = S(� ⊗Uc) is the evolution operator on the Hilbert space H = HN ⊗ H2. Here

Uc denotes the coin operator on the coin subspace H2 spanned by an orthonormal basis

{|j〉, j = 1, 2.}, and S denotes the conditional shift operator on the position subspace HN
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spanned by an orthonormal basis {|x〉, x ∈ �N}. Thus, a typical state ψ in H may be

expressed as ψ =
∑

x

∑
j ψ(x, j)|x〉 ⊗ |j〉.

For a QW launched with initial state ψ0, the probability P (x, t) of finding the walker at

the position x ∈ �N at time t is given by the standard formula P (x, t) = Tr
(
|x〉〈x|ρ(t)

)
,

where the time-dependent density operator ρ(t) is defined by

ρ(t) = ψtψ
†
t = Ut|ψ0〉〈ψ0|U†t. (1)

During the evolution of the quantum walk, the history of decoherence-inducing events,

if any, including any acts of measurement, may be modelled by the probabilistic option

of applying to the coin degree of freedom, at each time step of the walk, a unital family

of operators {An}0�n�ν , jointly satisfying the condition∑
0�n�ν

Â
†
nÂn = I. (2)

Accordingly, when adjusted for decoherence, the density operator of the system acts on

the probability density function ρ via the formula

ρ(t+ 1) =
∑

0�n�ν

UÂnρ(t)Â
†
nU

†. (3)

For simplicity, and without loss of generality, we will assume from this point onward

that every quantum walk under consideration is launched from position |0〉 in coin

state ψ0. Upon applying Fourier transformations to all elements of the QW system, the

formulation of the density operator assumes the following form:

ρ(t) =
1

N

∑
k

∑
k′

|k〉〈k′| ⊗ Lt
kk′ |ψ0〉〈ψ0|, (4)

where

|k〉 =
1√
N

∑
x

exp(i2πxk/N)|x〉

and where the so-called ‘decoherence super-operator’ Lkk′ is defined by the formula:

Lkk′ |ψ0〉〈ψ0| =
∑
n

Uc(k)Ân|ψ0〉〈ψ0|Â†
nU

†
c (k

′) (5)

=

[
A11(1, k, k

′) A12(1, k, k
′)

A21(1, k, k
′) A22(1, k, k

′)

]
,

in which

Uc(k) =

[
e− 2πik

N 0

0 e
2πik
N

]
Uc. (6)

Note that all essential features of the quantum walk, including all peculiarities of

quantum behaviour connoted by the words ‘decoherence’ and ‘entanglement’, are fully

encoded in the anatomy of the super-operator Lkk′ . This is what enables us to study the

level of quantum entanglement in quantum walks subject to decoherence.
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After t iterations, let the elements of the 2 × 2 matrix Lt
kk′ |ψ0〉〈ψ0| be denoted by

Lt
kk′ |ψ0〉〈ψ0| =

[
A11(t, k, k

′) A12(t, k, k
′)

A21(t, k, k
′) A22(t, k, k

′)

]
. (7)

In terms of the standard basis for the 2N-dimensional Hilbert space H = HN ⊗ H2,

the density operator ρ(t) is given by

ρ(t) =
∑

1�x,y�N

∑
1�j,l�2

Pxyjl(t)|x〉〈y| ⊗ |j〉〈l|, (8)

where

Pxyjl(t) =
1

N

∑
k

∑
k′

〈x|k〉〈k′|y〉Ajl(t, k, k′). (9)

In terms of the above definitions, the probability P (x, t) of finding the walker at position

x at time t is given by

P (x, t) = Tr
(
|x〉〈x|ρ(t)

)
=

1

N

∑
k

∑
k′

〈x|k〉〈k′|x〉Tr
(
Lt

kk′ |ψ0〉〈ψ0|
)

=
1

N

∑
k

∑
k′

〈x|k〉〈k′|x〉
(
A11(t, k, k

′) + A22(t, k, k
′)

= Pxx11(t) + Pxx22(t). (10)

To avoid unpleasant complications and to permit us more easily to illustrate our

approach to the analysis of a QW on the N-cycle subject to decoherence-inducing

influences, we will confine our attention in this paper to a specific model. Let β ∈ (0, π
2
)

and k ∈ {0, 1, . . . , N − 1}. To serve as the coin operator of the system, we choose

Uc(β) =

[
cos β sin β

sin β −cos β

]
, (11)

whose Fourier dual is given by

Uc(β, k) =

[
e− i2πk

N cos β e− i2πk
N sin β

e
i2πk
N sin β −e i2πkN cos β

]
. (12)

Note that when β = π
4
, the operator given by Equation 12 is none other than the

Hadamard coin operator.

By the same token, we specialise to the following choice of three (ν = 2) operators to

serve as the unital family {Ân}0�n�ν of decoherence-inducing operators on the coin degree

of freedom, as in Equation 2:

Â0 =
√

1 − pσ0

Â1 =

√
p

2
(σ0 + σz)

Â2 =

√
p

2
(σ0 − σz)
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where 0 � p � 1 and σ0 and σz are the Pauli matrices. The level of decoherence induced

by these operators is reflected by the value of p, which is called the decoherence rate.

Specifically, the QW evolves as if the state of the coin is measured at each time step with

probability p. Thus, when p = 0, the QW evolves as a purely coherent quantum process.

At the other extreme, when p = 1, the QW behaves exactly like a classical random walk.

Now let L(�2) denote the Hilbert space of all 2×2 complex matrices with inner product

given by

〈M1,M2〉 ≡ tr(M†
1M2). (13)

Lemma 1. Let S be a superoperator on the Hilbert space L(�2) defined by

S =

2∑
n=0

U1Ân · Â†
nU2 : B 
→

2∑
n=0

U1ÂnBÂ
†
nU2,

where U1, U2 are 2 × 2 unitary matrices and B ∈ L(�2). Then 〈SB,SB〉 � 〈B,B〉. In

particular, 〈SB,SB〉 = 〈B,B〉 for all B ∈ L(�2) if and only if the decoherence rate p = 0.

Proof. See Liu and Petulante (2010).

An immediate corollary of this lemma, and one that is essential to our analysis, is the

fact that |λ| � 1 for every eigenvalue λ of S. To justify this assertion, suppose Bλ is an

eigenvector of S belonging to λ. Then 〈SBλ,SBλ〉 = 〈λBλ, λBλ〉 = |λ|2〈Bλ, Bλ〉. But since,

according to the lemma, 〈SB,SB〉 � 〈B,B〉, we see that |λ| � 1.

We will now cast our reasoning in terms of the super-operator Lk,k′ , which maps L(�2)

to L(�2). If we choose the Pauli matrices σ0, σx, σy and σz as a basis for L(�2), then, in

terms of this basis, the 4 × 4 matrix representation of Lk,k′ is given by

Lk,k′ =

⎡
⎢⎢⎢⎢⎣
c− iqs− sin 2β 0 is− cos 2β

0 −qc+ cos 2β qs+ c+ sin 2β

0 −qs+ cos 2β −qc+ s+ sin 2β

is− qc− sin 2β 0 c− cos 2β

⎤
⎥⎥⎥⎥⎦ (14)

where, for brevity, we have set q = 1 − p and

c+ = cos
2π(k′ + k)

N

s+ = sin
2π(k′ + k)

N

c− = cos
2π(k′ − k)

N

s− = sin
2π(k′ − k)

N
.
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After a somewhat tedious, but not very difficult calculation, we arrive at the following

explicit formula for the characteristic polynomial f(λ) of Lk,k′ :

f(λ) = det
(
λ�4 − Lk,k′

)
= λ4

+ (1 + cos 2β)
(
qc+ − c−)

λ3

+
((

1 + q2
)
cos 2β − 2qc+c−(1 + cos 2β)

)
λ2

+ q(1 + cos 2β)
(
c+ − qc−)

λ

+ q2. (15)

The following proposition summarises some basic attributes of the eigenvalues of Lk,k′ .

Proposition 1. Suppose 0 < p < 1. Let a typical eigenvalue of Lk,k′ be denoted by λ.

Then:

(i) ‖λ‖ � 1.

(ii) If ‖λ‖ = 1, then λ = ±1.

(iii) λ = 1 when and only when k = k′, in which case the algebraic multiplicity of λ = 1

is 1.

(iv) λ = −1 when and only when |k′ − k| = N
2
, in which case the algebraic multiplicity of

λ = −1 is 1.

Proof. See Appendix A.

Proposition 1 enables us to specify the long-term behaviour of the matrix components

of the total density operator given by Equation 8.

Proposition 2. For the matrix defined in Equation 7, the following assertions hold:

(i) Suppose k = k′:

If j = l,

lim
t→∞

Ajl(t, k, k
′) =

1

2
.

If j �= l,

lim
t→∞

Ajl(t, k, k
′) = 0.

(ii) Suppose |k − k′| = N/2:

If j = l,

lim
t→∞

(−1)tAjl(t, k, k
′) =

1

2
.

If j �= l,

lim
t→∞

Ajl(t, k, k
′) = 0.
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(iii) Suppose |k − k′| �= N/2 and �= 0:

Then, for all combinations of j, l, we have

lim
t→∞

Ajl(t, k, k
′) = 0.

Proof. See Appendix B.

In view of Proposition 2, the behaviour as t → ∞ of the operator in Equation 8 can be

specified as follows.

Theorem 1. For a quantum walk on the N-cycle, let the total density operator ρ(t) be

defined as in Equation 8. Then:

(i) Suppose N is odd:

If x = y and j = l,

lim
t→∞

Pxyjl(t) =
1

2N
.

If x �= y or j �= l,

lim
t→∞

Pxyjl(t) = 0.

(ii) Suppose N is even:

If x = y and j = l and if t− x is even,

lim
t→∞

Pxyjl(t) =
1

N
.

Otherwise,

lim
t→∞

Pxyjl(t) = 0.

Thus, in every case, as t → ∞, the operator ρ(t), viewed as a 2N × 2N matrix, converges

to a diagonal matrix. If N is odd, the diagonal elements all converge to 1/2N. If N is

even, the diagonal elements converge in an alternating pattern to 1/N or 0.

Proof. See Appendix C.

As noted in Zurek (2003), decoherence on a quantum system is manifested through its

density matrix by the vanishing of the off-diagonal elements. In the context of a coin-driven

quantum walk on the N-cycle, this is precisely what Theorem 1 asserts. Note that the off-

diagonal elements of the density matrix are precisely the elements that represent the

quantum correlations (also known as entanglement) between the coin subsystem and the

position subsystem. Unsurprisingly, at least for quantum walks, decoherence turns out

to be practically synonymous with ‘disentanglement’. A more precise elaboration of the

relationship between decoherence and entanglement is deferred to the next section.

For the position distribution P (x, t) (see Equation 10), Theorem 1 has an immediate

corollary, which echoes a similar result given in Liu and Petulante (2010).

Corollary 1. Suppose a quantum walk on the N-cycle is launched from the origin with

initial coin state |ψ0〉 and with decoherence rate p > 0. If N is odd, P (x, t) converges to

1/N on all nodes of the cycle. If N is even, P (x, t) converges to 2/N on the supporting

nodes of the cycle and to 0 on the non-supporting nodes of the cycle.
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3. Entanglement versus decoherence

Since a purely coherent QW is a reversible process, the von Neumann entropy of the total

density operator is invariant with respect to time. If the QW is launched in a pure state,

then it will continue to evolve in a pure state and the entropy of the reduced density

operator on the coin subsystem can serve as a measure of its degree of entanglement

relative to the subsystem of the walker (Carneiro et al. 2005; Abal et al. 2006; Venegas-

Andraca and Bose 2009; Annabestani et al. 2010a).

Unlike the purely coherent case, a quantum walk, when subject to decoherence, evolves

in a mixture of states. If the ‘decoherence rate’ is non-zero, the von Neumann entropy of

the total density operator is no longer invariant. Using a very simple argument, it can be

shown that the entropy of the total density operator is a strictly increasing function of

time. The following two facts constitute a basis for the argument:

(a) projective measurements increase entropy; and

(b) the entropy is a concave function of its inputs.

Thus, to measure the level of quantum entanglement in a QW subject to non-zero

decoherence, the von Neumann entropy must be considered separately for each of the

subsystems as well as for the total system.

The von Neumann entropy of a quantum system A, denoted S(A), is a measure of the

uncertainty implied by the multitude of potential outcomes, as reflected by its density

matrix ρ(A). By definition, S(A) = S(ρ(A)) = −Tr(ρ ln ρ).

For a composite system with two components A and B, the joint entropy of their

conjunction, denoted by S(A,B), is defined by the formula S(A,B) = −Tr(ρAB ln ρAB),

where ρAB is the density matrix of the composite quantum system AB.

A good measure of the level of quantum entanglement between the two components A

and B is the so-called mutual information S(A : B) defined by the formula S(A : B) =

S(A) + S(B) − S(A,B).

We continue to confine our attention to the case of a quantum walk on the N-cycle

subject to decoherence on the coin degree of freedom. Our main objective in the rest of

this paper is to show that whenever the decohrence rate p > 0, the mutual information

between the subsystem of the coin and the subsystem of the walker must eventually

diminish to 0.

The following Lemma, which is due to Watrous, is essential to our reasoning.

Lemma 2 (Watrous 2008). Let X denote a complex Euclidean space and Pos(X) denote

the set of positive semidefinite operators defined on X with norm

‖ρ‖tr = Tr
(√

ρ†ρ
)
.

Then, with respect to this norm, the von Neumann entropy S(ρ) is continuous at every

point ρ ∈ Pos(X).

Proof. See Watrous (2008).

The operator norm ‖ · ‖tr, which appears in the statement of Lemma 2, is known as the

Schatten 1-norm or sometimes simply as the ‘trace norm’.
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Theorem 2. Suppose the QW is launched on the N-cycle with initial coin state |ψ0〉
and decoherence rate p > 0. let ρ(t) denote the time-dependent density operator of

the overall system. If N is odd, then limt→∞ S(ρ(t)) = 1 + log2N. If N is even, then

limt→∞ S(ρ(t)) = log2N.

Proof. See Appendix D.

A basic fact from information theory is that for any operator ρ defined on a Hilbert

space of dimension d, the maximum value of the entropy S(ρ) is log2 d. This implies that

the limiting entropy values given by Theorem 2 are actually maximal, for both even and

odd values of the cycle length N. To see this, note that the overall Hilbert space H2 ×HN ,

over which the quantum walk evolves, is of dimension 2N. This easily explains why, when

N is odd, the entropy is maximal. However, when N is even, exactly half of the nodes

of the cycle (every second one) are necessary and sufficient for completely determining

the position distribution of the walker’s itinerary. So, when N is even, the quantum walk

evolves over a Hilbert space that is effectively of dimension N.

Finally, we consider separately the long-term trend of the entropies associated with the

reduced density operators of the two constituent subsystems (coin and position) and the

mutual information between them.

For the subsystem associated with the coin, the time-dependent reduced density operator

ρc(t) is given by ρc(t) = tracew(ρ(t)), where the subscript w signifies exclusion or ‘tracing

out’, relative to the overall system density operator ρ(t), of the walker’s degrees of freedom.

Similarly, for the subsystem associated with the walker, the time-dependent reduced density

operator ρw(t) is given by ρw(t) = tracec(ρ(t)), where the subscript c signifies exclusion or

‘tracing out’, relative to the overall system density operator ρ(t), of the coin’s degrees of

freedom.

The following theorem summarises our main finding.

Theorem 3. Suppose a quantum walk is launched on the N-cycle with initial coin state

|ψ0〉 and decoherence rate p > 0. Let ρc(t) and ρw(t) denote the time-dependent reduced

density operators associated with the subsystems of the coin and the walker, respectively.

Then the long-term trend of the mutual information between the coin subsystem and the

walker subsystem is given by limt→∞ S (ρc(t) : ρw(t)) = 0.

Proof. See Appendix E.

Finally, it can be shown, without much difficulty, that as t → ∞, the entropy values of

the reduced density operators ρc(t) and ρw(t) each converges to its maximum value. To

do this, it is enough to employ some elementary calculus based on Theorem 2, together

with the following basic facts:

(1) S(ρc(t)) � 1;

(2) S(ρw(t)) � lnN when N is odd; and

(3) S(ρw(t)) � ln(N/2) when N is even.
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Corollary 2. Suppose a quantum walk is launched on the N-cycle with initial coin state

|ψ0〉 and decoherence rate p > 0. Then:

(i) limt→∞ S(ρc(t)) = 1.

(ii) If N is odd, then limt→∞ S(ρw(t)) = lnN.

(iii) If N is even, then limt→∞ S(ρw(t)) = ln(N/2).

4. Conclusions and further questions

The model of decoherence used in this article is only one of several prevalent in the

current literature. It would be interesting to investigate how quantum entanglement

responds to other models of decoherence, and not just for quantum walks on the N-

cycle, but for quantum walks over other kinds of topological networks as well. We

speculate that, in every case, decoherence serves to erase quantum entanglement between

the subsystems of a given quantum system. This implies that, as noted in Zurek (2003), the

progressive disappearance of entanglement should be accompanied by the corresponding

disappearance of the off-diagonal elements of the density operators. Ultimately, the density

operators should become indistinguishable from diagonal matrices.

The natural question arising in this context is how long does it take for a quantum

system subject to decoherence to reach its stationary state devoid of any entanglement?

To address this question, we propose a definition of decoherence time analogous to the

measure of mixing time used in the literature. Let ρ∞ denote the limiting (stationary)

density operator of the quantum system and || · ||tr denote the trace norm as defined

above. Then, for every ε > 0, we define

D(ε) = min {τ |∀t > τ : ||ρ(t) − ρ∞||tr < ε} . (16)

To estimate D(ε), it would suffice to have good control over the eigenvalues and

eigenvectors of the superoperator Lt
kk′ . Unfortunately, even for very simple systems, the

task of specifying the eigenvalues and eigenvectors of the superoperator Lt
kk′ can be a

challenge. But the rewards of success would be worth the effort. Among other things, it

would permit us to compare mixing time and decoherence time, since the relationship

could prove quite interesting.

Appendix A. Proof of Proposition 1

Proof of (i). Lk,k′ is a special case of the superoperator S in Lemma 1, according to

which, the moduli of all eigenvalues of Lk,k′ are less than or equal to unity.

Proof of (ii). Suppose eiθ is a non-real eigenvalue of Lk,k′ , where θ is a real number.

Then the conjugate e−iθ also must be an eigenvalue and e−iθ �= eiθ . Hence

f(λ) = (λ− eiθ)(λ− e−iθ)[λ2 + aλ+ (1 − p)2]

for some a ∈ �. For brevity, let q = 1 − p. Comparing corresponding coefficients of both

sides of Equation 15, we obtain the following system of equations:

a− 2 cos θ = (1 + cos 2β)
(
qc+ − c−)

1 + q2 − 2a cos θ = −2qc+c− +
(
1 + q2 − 2qc+c−)

cos 2β

a− 2q2 cos θ = (1 + cos 2β)
(
qc+ − q2c−)

. (17)
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After some elementary algebraic manipulations, we infer that

1 + q2 = −q(1 + cos 2β) cos
2π(k′ + k)

N
cos

2π(k′ − k)

N
,

which is impossible since the modulus of the left-hand side is strictly greater than the

modulus of the right-hand side. More precisely, note that the modulus of the right-hand

side is strictly less than 2q which, in turn is less than 1 + q2. This contradiction implies

that any unit eigenvalue of Lk,k′ must be real.

Proof of (iii). λ = 1 is an eigenvalue of Lk,k′ if and only if

f(1) = (1 + cos 2β)

(
1 − cos

2π(k′ − k)

N

)
[1 + 2(1 − p) cos

2π(k′ + k)

N
+ (1 − p)2] = 0,

if and only if

1 − cos
2π(k′ − k)

N
= 0,

which implies k′ = k. Moreover, since

f′(1) = (1 − cos 2β)[1 − (1 − p)2] �= 0,

the algebraic multiplicity of λ = 1 is 1.

Proof of (iv). λ = −1 is an eigenvalue of Lk,k′ if and only if

f(−1) = (1 + cos 2β)

(
1 + cos

2π(k′ − k)

N

)
[1 − 2(1 − p) cos

2π(k′ + k)

N
+ (1 − p)2] = 0

if and only if

1 + cos
2π(k′ − k)

N
= 0,

which implies

|k′ − k| =
N

2
.

In this case, since

f′(−1) = (1 − cos 2β)[(1 − p)2 − 1] �= 0,

the algebraic multiplicity of λ = −1 is 1.

Appendix B. Proof of Proposition 2

Proof. Viewed as a 2 × 2 matrix, Lt
k,k′ |ψ0〉〈ψ0| is a linear combination of the Pauli

matrices σ0, σx, σy and σz with corresponding weights given by

W (t, k, k′) = Lt
k,k′

⎡
⎢⎢⎣
α1

α2

α3

α4

⎤
⎥⎥⎦ ,

where the column vector [α1, α2, α3, α4]
T represents |ψ0〉〈ψ0| with α1 = 1

2
for all choices of

|ψ0〉.
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Proof of (i). For brevity, let

q = 1 − p

c̃ = cos
4πk

N

s̃ = sin
4πk

N
.

When k = k′, we have

Lk,k =

[
1 0

0 Q0

]
, (18)

where

Q0 =

⎡
⎣ qc̃ cos 2β qs̃ c̃ sin 2β

−qs̃ cos 2β −qc̃ s̃ sin 2β

q sin 2β 0 cos 2β

⎤
⎦ . (19)

Therefore

Lt
k,k =

[
1 0

0 Qt0

]
, (20)

in terms of which, the four components of Lt
k,k|ψ0〉〈ψ0| can be expressed as follows:

A11 =
1

2
+ ε1

A22 =
1

2
− ε1

A12 = A21 = ε2

where ε1 and ε2 are linear combinations of the elements of the matrix Qt0. By Proposition

2, the eigenvalues of Q0 all possess moduli strictly less than 1. Therefore Qt0 → 0 as t → ∞,

from which we have assertion (i) of the proposition.

Proof of (ii). Using similar reasoning to the above, when |k − k′| = N/2, we have

Lt
k,k′ =

[
(−1)t 0

0 Qt1

]
, (21)

where Q1 is the 3 × 3 matrix adjoint to the leading entry c− of the 4 × 4 matrix Lk,k′ in

Equation 14. The conclusion follows by a line of reasoning analogous to that used in the

proof of part (i).

Proof of (iii). If |k − k′| �= N/2 and �= 0, then, by Proposition 1, the modulus of

every eigenvalue of Lk,k′ is strictly less than 1. Thus Lt
k,k′ → 0 as t → ∞, which proves

assertion (iii).

This completes the proof of Proposition 2
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Appendix C. Proof of Theorem 1

Proof of (i). For this part we assume N is odd. We consider three sub-cases:

(a) x = y and j = l:

By Equation 9, we have

N2Pxxjj(t) =
∑
k=k′

e
2πix (k−k′ )

N Ajj(t, k, k
′) +

∑
k �=k′

e
2πix (k−k′ )

N Ajj(t, k, k
′)

=

N−1∑
k=0

Ajj(t, k, k) +
∑
k �=k′

e
2πix (k−k′ )

N Ajj(t, k, k
′). (22)

By Proposition 2, If k = k′, the term Ajj(t, k, k) in (22) converges to 1
2
. If k �= k′, the

term Ajj(t, k, k
′) in (22) converges to zero. So

lim
t→∞

Pxyjl(t) =
1

2N
.

(b) x �= y and j = l:

By Equation 9,

N2Pxyjj(t) =

N−1∑
k=0

e
2πik(x−y)

N Ajj(t, k, k) +
∑
k �=k′

e
2πi(xk−yk′ )

N Ajj(t, k, k
′). (23)

As in the previous case, Proposition 2 enables us conclude that

lim
t→∞

Pxyjl(t) = 0.

(c) j �= l:

In this case, by Proposition 2, Ajl(t, k, k
′) → 0 as t → ∞. Since Pxyjl(t) is a linear

combination of Ajl(t, k, k
′) for k, k′ = 0, 1, 2, ..., N − 1 and j, l = 1, 2, it follows that

Pxyjl(t) =
1

N

∑
k

∑
k′

〈x|k〉〈k′|y〉Ajl(t, k, k′) → 0

as t → ∞.

Proof of (ii). In this part N is even. We consider the same three sub-cases as in part (i):

(a) x = y and j = l:

Suppose x = y and j = l. By Equation 9,

N2Pxxjj(t) =
∑
k=k′

e
2πix (k−k′ )

N Ajj(t, k, k
′) +

∑
|k−k′ |= N

2

e
2πix (k−k′ )

N Ajj(t, k, k
′)

+
∑

|k−k′ |�= N
2 ,0

e
2πix (k−k′ )

N Ajj(t, k, k
′)

=

N−1∑
k=0

Ajj(t, k, k) +
∑

|k−k′ |= N
2

(−1)xAjj(t, k, k
′)

+
∑

|k−k′ |�= N
2 ,0

e
2πix (k−k′ )

N Ajj(t, k, k
′). (24)
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By Proposition 2, the first and third summands of Equation 24 converge to N/2 and

0, respectively, and the second summand converges to

(−1)x−t N

2
.

It follows that

lim
t→∞

Pxxjj(t) =
1

N

when x− t is even and

lim
t→∞

Pxxjj(t) = 0

when x− t is odd.

(b) x �= y and j = l:

By Equation 9,

N2Pxyjj(t) =
∑
k=k′

e
2πik(x−y)

N Ajj(t, k, k
′) +

∑
|k−k′ |= N

2

e
2πix k
N e

−2πiy k′
N Ajj(t, k, k

′)

+
∑

|k−k′ |�= N
2 ,0

e
2πix k
N e

−2πiy k′
N Ajj(t, k, k

′)

=

N−1∑
k=0

e
2πik(x−y)

N Ajj(t, k, k) +
∑

|k−k′ |= N
2

(−1)xe
2πik′(x−y)

N Ajj(t, k, k
′)

+
∑

|k−k′ |�= N
2 ,0

e
2πi(xk−yk′ )

N Ajj(t, k, k
′). (25)

By Proposition 2, Ajj(t, k, k) converges to 1/2 for all k, which implies that the first

summand of Equation 25 converges to 0 as t → ∞. In the third summand, all of the

terms Ajj(t, k, k
′) converge to 0. That just leaves us to evaluate the second summand,

which can be reconstituted as

(−1)x−t

2

∑
|k−k′ |= N

2

e
i2πk′(x−y)

N (−1)tAjj(t, k, k
′). (26)

By Proposition 2,

lim
t→∞

(−1)tAjj(t, k, k
′) =

1

2
.

Thus the third summand also converges to 0 as t → ∞, and we conclude that

lim
t→∞

Pxyjj(t) = 0.

(c) j �= l:

The assertion is proved in exactly the same way as in the corresponding case in part (i),

when N is odd – see part(i)(c) above.
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Appendix D. Proof of Theorem 2

Proof. Let ρ(∞) denote the diagonal matrix

diag

(
1

2N
,

1

2N
, . . . ,

1

2N

)
.

If N is odd, Theorem 1 implies that

lim
t→∞

‖ρ(t) − ρ(∞)‖tr = 0.

By Lemma 2, we have

lim
t→∞

S(ρ(t)) = S(ρ(∞)) = 1 + lnN.

When N is even, we can prove the assertion

lim
t→∞

S(ρ(t)) = lnN

in the same way.

Appendix E. Proof of Theorem 3

Proof. When combined with Theorem 2, the inequality

S(ρc(t), ρw(t)) � S(ρc(t)) + S(ρw(t)) � 1 + lnN

implies that

lim
t→∞

S(ρc(t), ρw(t)) = 1 + lnN.

Thus,

lim
t→∞

[S(ρc(t)) + S(ρw(t))] = 1 + lnN.

And since

S(ρc(t) : ρw(t)) = S(ρc(t)) + S(ρw(t)) − S(ρc(t), ρw(t)),

we have

lim
t→∞

S(HN : Hc) = lim
t→∞

S(ρc(t) : ρw(t))

= lim
t→∞

[S(ρc(t)) + S(ρw(t))] − lim
t→∞

S(ρc(t), ρw(t))

= 0.
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