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This paper is concerned with scattering resonances of a 1D photonic crystal of finite extent.

We propose a general perturbation approach to study the resonances that are close to the

bound-state frequency of the infinite structure when some defect is embedded in the interior.

It is shown that near bound-state resonances exist on the complex plane and the distance

between the resonance and the associated bound-state frequency decays exponentially as a

function of the number of periodic cells. A numerical approach based upon the perturbation

theory is also proposed to calculate the near bound-state resonances accurately.
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1 Introduction

The design of photonic crystals with high quality factors (low radiative leakage) has

been extensively investigated in recent years, due to its potentially significant applications

in areas of electron–photon interactions, nonlinear optics and quantum information

processing [11, 17, 21]. The photonic crystals are periodic dielectric materials, and the

ability to achieve low radiative leakage is usually achieved through the introduction of

defects for the periodic structure. We refer the readers to [1,8,9,24] and references therein

for both the experimental and numerical design of photonic structures of high quality

factor that use such configurations.

In this paper, we consider the one-dimensional structure, which is essentially a layered

dielectric medium as shown in Figure 1. The photonic crystal is homogeneous on the yz

plane. It consists of periodic cells and some defect in the interior along the x direction. Let

us denote the defect region (0, D) by ID and the length of each period cell by L. The defect

medium may be inhomogeneous, whereas it is assumed that each period cell outside the

defect region consists of two constant layers with length L1 and L2 respectively. Consider

a TM polarized electromagnetic wave that propagates perpendicular to the layers (yz

plane), and the magnetic field H = (0, 0, u). Then, the Maxwell equations that model

the electromagnetic wave propagation are reduced to the following scalar wave equation

for u:

1

c2
∂2u

∂t2
− ∂

∂x

(
1

ε

∂u

∂x

)
= 0, (1.1)
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Figure 1. One-dimensional photonic crystal with a defect embedded in the interior. The medium

is homogeneous in y and z directions. The defect region is denoted by ID := (0, D), and each period

cell has a length of L.

where c is the wave speed. The relative permittivity ε is a positive function, and is given

as follows inside the photonic structure:

ε(x) = εd(x), x ∈ ID (defect);

ε(x) = εp(x+ nL), x ∈ (−nL,−(n− 1)L), n = 1, 2, 3, . . . Nl;

ε(x) = εp(x− D − nL), x ∈ (D + nL,D + (n+ 1)L), n = 0, 2, 3, . . . Nr − 1;

Here, Nl and Nr are the number of periods on each side, εd(x) ∈ C1(ID), and εp is the

relative permittivity inside each period defined by

εp(x) = ε1 x ∈ (0, L1);

εp(x) = ε2 x ∈ (L1, L).

For brevity, let us denote a = −NlL and b = D +NrL as the boundaries of the photonic

structure. The region (a, b) is also known as the photonic cavity. It is assumed that the

photonic structure is placed in the vacuum so that the relative permittivity ε = 1 outside

the region (a, b).

By assuming a time harmonic magnetic field u(x, t) = ψ(x)e−iωt for the wave equation,

the scattering resonances are cast as solutions of the following eigenvalue problem:⎧⎪⎪⎨
⎪⎪⎩

− d

dx

(
1

ε

dψ

dx

)
= k2ψ, a < x < b,

1

ε(a)

dψ

dx
(a) + ikψ(a) = 0,

1

ε(b)

dψ

dx
(b) − ikψ(b) = 0,

(1.2)

where ω = ck. At each interface between two layers, the differential equation is interpreted

in the sense that both the magnetic field ψ and the electric field 1
iωε

dψ
dx

are continuous across

the interface. Outgoing radiation conditions are imposed on the boundaries by noting

the fact that an outgoing wave takes the form ψ = A+eikx when x > b (ψ = A−e−ikx

when x < a respectively), and the continuity of the electromagnetic fields at x = b (x = a

respectively). The eigenvalue problem (1.2) attains a sequence of complex resonances
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kj with the imaginary part Imkj < 0 (see the Appendix), and the corresponding quasi-

modes ψj(x) are locally integrable.

In general, the electromagnetic energy leaks from photonic cavity (a, b) as time evolves,

due to scattering or radiation loss to the surrounding medium. Such energy leakage is

closely related to scattering resonances associated with the cavity as defined in (1.2). More

precisely, the solution of the wave equation (1.1) can be approximated by the modes

e−ickj tψj(x) in a manner that, for any K > 0,

∥∥∥∥∥∥u(·, t) −
∑

Imkj>−K

cje
−ickj tψj

∥∥∥∥∥∥
L2(a,b)

= O(e−K(1+δ)t), for t � τ, (1.3)

where δ(a, b,K), τ(a, b,K) are some positive constants and cj are some complex coefficients.

We refer the reader to [22] for more details of such an approximation. As indicated by

(1.3), intuitively the imaginary part of resonances Imkj determines the rate of the energy

leakage. Thus, it is imperative to investigate the resonances so as to understand the

radiation loss of the photonic cavity, and to develop efficient numerical methods to obtain

those resonances accurately.

As the number of periodic cells becomes large, two types of complex resonances emerge

for the photonic structure in the lower half plane:

(i) A set of discrete resonances in the neighbourhood of each eigenvalue (bound-state

frequency) for the infinite layered structure. The eigenvalues, which are induced by

the presence of the defect, are located in the band gaps of the continuous spectrum.

Such resonances are referred to as near bound-state resonances, and as to be shown

later in this paper, they converge exponentially fast to the associated eigenvalues.

(ii) A family of discrete resonances that lies underneath the continuous spectrum of the

infinite structure. As N increases, such resonances become increasingly clustered and

converge toward each closed interval of the continuous spectrum with a much slower

rate [14, 15].

We would like to mention a closely related problem, in which the scattering resonances

are defined as the complex eigenvalues of the Schrödinger operator with a potential

barrier [23]. Two classes of resonances also arise in the lower complex plane when the

potential is a low-energy well surrounded by a thick barrier, wherein a finite number

of low-frequency resonances converge exponentially fast to the real eigenvalues and an

infinite family of discrete scattering resonances approaches the continuous spectrum as

the thickness of the barrier increases [3, 16, 23].

The goal of this paper is to develop a general perturbation theory to study the near

bound-state resonances of the photonic structure. We show that for each non-degenerate

bound-state frequency kb belonging to the point spectrum σp, there exists some resonance

k close to kb. In addition, the distance |k − kb| decays exponentially as a function of the

number of periodic cells. This implies that the negative imaginary part is exponentially

small, and according to (1.3), the radiation loss for the associated photonic structure is

small. A similar decay rate for near bound-state resonances has also been investigated

in [15] for a symmetric structure with ε(x) = ε(−x) and a constant defect layer. It should
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be pointed out that for the symmetric case, one has initial conditions that can be exploited

and the eigenvalue problem (1.2) can be reduced to an initial value problem. In addition,

the defect is assumed to be a constant layer such that an explicit expression for the

wave fields at the edges of defect become possible [15]. No such equivalent conditions

are available for a general asymmetric structure and inhomogeneous defects. Instead, a

boundary value problem has to be investigated. As such, in order to analyse near bound-

state resonances, we have to devise an entirely different approach. A key ingredient of the

new approach is to reformulate the bound-state and scattering resonance problems over

the defect region by introducing suitable boundary conditions, and obtain an equivalent

resonance condition by examining the associated boundary value problem for the difference

between the bound state and the quasi-mode. The study of resonances for the photonic

crystal is then based upon the perturbation analysis of the nonlinear resonance condition.

The idea of obtaining the resonance condition is suggested by our recent studies on

the Schrödinger operator [16]. Very interestingly, the perturbation analysis also suggests

a natural non-iterative numerical scheme to calculate the near bound-state resonances

accurately. This is also discussed at the end of the paper. Finally, we would like to

point out [18], in which the calculation is also presented for resonances of the structure

considered in this paper.

The rest of the paper is organized as follow. Section 2 introduces the propagation

matrix method, which converts solving the wave equation over the periodic structures

to a matrix recurrence equation on the boundaries of dielectric layers. The spectrum for

the structure with infinite periodic cells is briefly reviewed in Section 3, followed by the

statement of the main theorem for near bound-state resonances. We derive the resonance

condition in Section 4 in an innovative way through the solvability condition in elliptic

theory, and give the proof of the main theorem in Section 5. A numerical perturbation

approach is presented in Section 6 to calculate the near bound-state resonance accurately,

and the paper is concluded with a general discussion.

2 Preliminaries

In this section, we introduce the propagation matrix briefly and collect some useful results

to be used in later sections. The readers are referred to [15] for the details of the proof.

Let us introduce the vector wave function

Ψ (x; k) =

⎡
⎢⎣ψ(x; k)

1

ε(x)

dψ(x; k)

dx

⎤
⎥⎦ , (2.1)

where ψ(x; k) is the solution of the ordinary differential equation (ODE):

d

dx

(
1

ε

dψ

dx

)
+ k2ψ = 0. (2.2)

Then, the propagation of the wave field over each layer with constant permittivity ε can

be expressed as

Ψ (x; k) = P (x− x0; ε, k)Ψ (x0; k) for x > x0,
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where the propagation matrix is

P (l; ε, k) =

⎡
⎢⎢⎣

cos(k
√
ε l)

√
ε

k
sin(k

√
ε l)

− k√
ε

sin(k
√
ε l) cos(k

√
ε l)

⎤
⎥⎥⎦ . (2.3)

Here, l denotes the propagation distance. It is well known that P is related to the

fundamental matrix of the ODE defined in (2.2). In addition, P (l; ε, k) is unimodular in

the sense that det(P (l; ε, k)) ≡ 1. In this way, the propagation matrix PL(k) for each period

cell of the photonic crystal is the product of the associated propagation matrix over each

constant layer, and is given by

PL(k) = P (L2; ε2, k)P (L1; ε1, k). (2.4)

First, we have the following lemma for P ′
L, the derivative of PL with respect to k.

Lemma ([15]) Let Ψ0 be a vector in �2, k ∈ �\{0}, then

P ′
L(k)Ψ0 = PL(k)

∫ L

0

P−1(x; k)O(k)P (x; k)Ψ0dx, (2.5)

where

O(k) =

[
0 0

−2k 0

]
, (2.6)

and P (x; k) is the propagation matrix inside one period cell given by

P (x; k) =

{
P (x; ε1, k), x ∈ [0, L1];

P (x− L1; ε2, k)P (L1; ε1, k), x ∈ [L1, L].
(2.7)

Let k0 ∈ �\{0} be such that PL(k0) has two distinct eigenvalues λ1(k0) and λ2(k0).

Then the two eigenvalues λ1(k) and λ2(k) are analytic functions in the neighbourhood of

k0 [10, 12, 15]. The corresponding eigenvectors for the two distinct eigenvalues λ1(k) and

λ2(k) can be expressed explicitly. Indeed, let us denote each entry of the matrix PL(k) by

pLij , and define V1, V2, U1 and U2 as follows:

V1(k) =

[
pL21(k)

λ1(k) − pL11(k)

]
, V2(k) =

[
pL21(k)

λ2(k) − pL11(k)

]
; (2.8)

and

U1(k) =

[
λ1(k) − pL22(k)

pL21(k)

]
, U2(k) =

[
λ2(k) − pL22(k)

pL21(k)

]
. (2.9)
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Then, it can be shown that the above vectors are the left and right eigenvectors of PL(k)

respectively such that

VT
1 PL = λ1V

T
1 , V T

2 PL = λ2V
T
2 ;

PLU1 = λ1U1, PLU2 = λ2U2.

For brevity, here and henceforth, we adopt the notation below to denote entries of the

eigenvectors U1 and U2:

u11 = λ1(k) − pL22(k), u21 = pL21(k); (2.10)

u12 = λ2(k) − pL22(k), u22 = pL21(k). (2.11)

We also normalize the left eigenvectors by letting

V 1(k) =
1

pL21(2λ1 − (pL11 + pL22))
V1(k), and V 2(k) =

1

pL21(2λ2 − (pL11 + pL22))
V2(k). (2.12)

Then, it follows that V
T

i (k)Uj(k) = δij .

It is clear that the eigenvectors V1(k), V2(k), U1(k), and U2(k) are also analytic in the

neighbourhood of k0 since λ1(k), λ2(k) and pLij(k) are analytic. Furthermore, the sensitivity

of the right eigenvectors on the parameter k may be characterized in the following Lemma.

We refer to [15] for its proof (Lemma 2.2).

Lemma Let k ∈ �\{0} such that λ1(k) and λ2(k) are two distinct eigenvalues of PL(k). The

corresponding left and right eigenvectors V 1(k), V 2(k), U1(k), U2(k) are defined by (2.12)

and (2.9) respectively. Define the matrix U(k) = [U1(k), U2(k)], then the derivative U ′(k)

exists. Furthermore, there exists a 2 × 2 complex matrix Q(k) such that U ′(k) = U(k)Q(k),

where the off-diagonal entries of Q(k) are

qij(k) =
1

λj − λi
V
T

i (k)PL
′(k)Uj(k) i� j, i, j = 1, 2.

We end this section with an auxiliary lemma, which is useful for the proof of the main

theorem in Section 5.

Lemma Let O(k) and P (x; k) be the matrices given by (2.6) and (2.7) respectively, and

V2(k) and U1(k) be the left and right eigenvectors of PL(k) defined in (2.8)–(2.9). If k is a

real positive number, then∫ L

0

VT
2 (k)P−1(x; k)O(k)P (x; k)U1(k) dx > 0.

Proof. First it is observed that V2 = RU1, where

R =

[
0 1

−1 0

]
.
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Therefore, the integral

∫ L

0

VT
2 (k)P−1(x; k)O(k)P (x; k)U1(k) dx =

∫ L

0

UT
1 [ RTP−1(x; k)O(k)P (x; k) ] U1 dx.

For each x ∈ [0, L], let us denote the entry of the propagation matrix P (x; k) by pij(x; k).

Using the fact that det(P (x; k)) ≡ 1, then P−1(x; k) can be expressed explicitly as

P−1(x; kb) =

[
p22(x; k) −p12(x; k)

−p21(x; k) p11(x; k)

]
,

and a direct calculation yields

RTP−1(x; k)O(k)P (x; k) = 2k

[
p2

11(x; k) p11(x; k)p12(x; k)

p11(x; k)p12(x; k) p2
12(x; k)

]
.

Let A(x; k) = RTP−1(x; k)O(k)P (x; k). Then from the above formula, it is seen that A(x; k)

is a semi-positive definite matrix such that

UT
1 A(x; k) U1 � 0 ∀x ∈ [0, L].

Furthermore

UT
1 A(x; k) U1 = 0 if and only if U1 · ζ̃(x; k) = 0,

wherein the vector ζ(x; k) = [p11(x; k), p12(x; k)]
T .

The direction of the non-zero vector ζ(x; k) is not constant inside the interval [0, L1],

while U1 is independent of x. Hence, there exists at least one point x0 ∈ [0, L1] such that

U1 · ζ̃(x0; k)� 0, and UT
1 A(x0; k) U1 > 0. Consequently

∫ L

0

UT
1 A(x; k) U1 dx > 0.

follows by the continuity of the matrix A(x; k). �

3 Near bound-state resonances

In this section, we state the main theorem for the resonances of (1.2) that are close to the

bound-state frequency of the infinite structure, or so-called near bound-state resonances.

To this end, we first recall the spectrum of the photonic structure with infinite period cells

on each side of the defect in Section 3.1.

3.1 Spectrum of the photonic structure with infinite periods

If Nl = Nr = +∞, the associated eigenvalue problem becomes

− d

dx

(
1

ε∞

dψ

dx

)
= k2ψ, −∞ < x < ∞, (3.1)

where ε∞ is the relative permittivity for the infinite structure with the defect. Let us denote

the associated operator in (3.1) by H∞. Then H∞ is an unbounded self-adjoint operator

in L2(�), and its spectrum consists of a set of continuous spectrum and a point spectrum

https://doi.org/10.1017/S0956792515000340 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000340


European journal of applied mathematic 73

Figure 2. Spectrum of H∞.

on the real line as shown in Figure 2. In the following, we discuss briefly the spectrum

of H∞ and its relation to eigenvalues of the propagation matrix PL(k). The readers are

referred to [4, 15] for more details.

The continuous spectrum σc = ∪∞
n=1[k

+
n−1, k

−
n ], where k+

n−1 < k−
n < k+

n , and each subset

[k+
n−1, k

−
n ] is separated by the band gap (k−

n , k
+
n ) (cf. Figure 2). The continuous spectrum

σc coincides with the entire spectrum of the same periodic structure without the defect.

This follows from the stability of essential spectrum by the Weyl’s Theorem [5, 19]. The

point spectrum σp = ∪j=1kbj is induced by the defect inside the photonic structure. It has

been shown that as long as the defect is large enough, eigenvalues with finite multiplicity

exist [5,6]. The point spectrum consists of a set of discrete numbers with each eigenvalue

kbj located in some band gap (k−
n , k

+
n ). The associated eigenmode is a localized function

that decays exponentially away from the defect. For this reason, the eigenmode is usually

called a bound state, and we call the associated eigenvalue kbj the bound-state frequency.

As illustrated by the following theorem, the spectrum of H∞ is closely related to the

eigenvalues of the propagation matrix PL(k) defined in (2.4).

Theorem 3.1 Let λ1(k) and λ2(k) be the eigenvalues of PL(k).

(i) If k ∈ σc, then λ1(k) and λ2(k) are conjugate pairs with |λ1(k)| = |λ2(k)| = 1.

(ii) If k ∈ σp and the associated eigenmode decays exponentially away from the defect, then

(a) |λ1(k)| > 1 > |λ2(k)|;
(b) Ψ (0; k) ‖ U1(k) and Ψ (D; k) ‖ U2(k), wherein Ψ (0; k) and Ψ (D; k) are the wavefields

at the edges of the defect layer.

We refer the readers to Section 3 of [4] and [15] for a detailed justification of the above

theorem.

3.2 Estimate of near bound-state resonances

As demonstrated in the Appendix, all resonances of (1.2) lie in the lower half complex

plane. Here, we are interested in those that are close to the bound-state frequency of the

infinite structure. The main result regarding the near bound-state resonances is stated as

follows:

Theorem 3.2 Let N = min{Nl,Nr}. Assume that kb ∈ σp is a bound-state frequency for the

infinite structure with multiplicity one, then there exists an integer N0 such that if N � N0,

there is a resonance k of (1.2) such that

| k − kb| � C(ε, kb)e
−μ(ε,kb)N.

Here, C(ε, kb) and μ(ε, kb) are positive constants independent of N.
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Table 1. Near bound-state resonances (first column), and the difference between resonances

and the bound-state frequency for different number of periodic cells (second column)

N k k − kb

2 0.5852454436 − 0.0183888293i −1.290 × 10−2 − 1.839 × 10−2i

4 0.5960350399 − 0.0030827089i −2.108 × 10−3 − 3.083 × 10−3i

8 0.5980658187 − 0.0001120105i −7.747 × 10−5 − 1.120 × 10−4i

16 0.5981431787 − 0.0000001626i −1.126 × 10−7 − 1.626 × 10−7i

To validate the conclusion of Theorem 3.2, let us consider a photonic structure with

the size of the defect D = 6. The length of two layers in one period cell is L1 = 2

and L2 = 1 respectively. The relative permittivity of each layer inside one period is

given by ε1 = 4 and ε2 = 1. We also assume that the defect is a constant layer with

εD = 2.

The smallest bound-state frequency in the point spectrum can be calculated by the

Newton’s method and its value kb = 0.598143291317602. Let Nl = Nr = N, then the

resonance near kb is given in Table 1 for the considered photonic structure with different

number of periods. It is seen that the difference between k and kb decays exponentially as

a function of N.

4 Resonance condition

To prove Theorem 3.2, we first establish a nonlinear equation for the scattering resonances

of (1.2) (resonance condition) in this section. As it can be seen in the following, this is

accomplished by examining the associated boundary value problem for the difference

between the bound state and the quasi-mode, and obtained through the solvability

condition in elliptic theory. To this end, the bound-state problem (3.1) and the scattering

resonance problem (1.2) are reformulated over the defect region by introducing suitable

boundary conditions at the edges of the defect (Section 4.1). We point out that it is

essential to choose the domain for the boundary value problem to be the defect region so

as to obtain the desired estimates for the near bound-state resonances. In what follows,

for brevity we denote the differential operator − d
dx

( 1
εd(x)

d
dx

) by L.

4.1 Boundary value problems in the defect region

Let kb be a non-degenerate bound-state frequency, and ψb be the corresponding eigen-

function. By virtue of Theorem 3.1, we have two distinct eigenvalues of PL(kb) with

|λ1(kb)| > 1 > |λ2(kb)|. Let U1(kb) and U2(kb) be the corresponding eigenvectors of PL(kb)

given by (2.9). Then the wave fields at boundaries of the defect region are parallel to the

eigenvectors in a manner that Ψ (0; kb) ‖ U1(kb) and Ψ (D; kb) ‖ U2(kb). This implies the

boundary conditions

1

εd(0)

dψb

dx
(0) − β0ψb(0) = 0, and

1

εd(D)

dψb

dx
(D) − βDψb(D) = 0.
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Here, we adopt the notation given in (2.10), and define β0 and βD as

β0 =
u21(kb)

u11(kb)
, and βD =

u22(kb)

u12(kb)
. (4.1)

Using the boundary conditions at x = 0 and x = D, the bound-state problem (3.1) can be

reformulated in the defect region as

⎧⎪⎨
⎪⎩

L ψb = k2
bψb in ID,

1

εd(0)

dψb

dx
(0) − β0ψb(0) = 0,

1

εd(D)

dψb

dx
(D) − βDψb(D) = 0.

(4.2)

It is clear that (4.2) is self-adjoint since β0 and βD are real numbers.

For the resonance problem (1.2), by expanding Ψ (D; k) in the neighbourhood of kb as

Ψ (D; k) = c1U1(k) + c2U2(k),

for some coefficients c1 and c2, the wave vector Ψ (b; k) at the right boundary of the

photonic structure (x = b) becomes

Ψ (b; k) = c1λ
Nr

1 U1(k) + c2λ
Nr

2 U2(k).

On the other hand, note that

ψ = A+eikx for x > b.

Imposing the continuity conditions over x = D and x = b leads to the boundary condition

1

εd(D)

dψ

dx
(D) − αD(k)ψ(D) = 0, (4.3)

where the coefficient

αD(k) =
λNr

2 (k)(u22(k) − iku12(k))u21(k) + λNr

1 (k)(iku11(k) − u21(k))u22(k)

λNr

2 (k)(u22(k) − iku12(k))u11(k) + λNr

1 (k)(iku11(k) − u21(k))u12(k)
. (4.4)

Again the notation in (2.10) is used above. Similarly, for x = a, by imposing the continuity

conditions over x = 0 and x = a, it can be obtained that

1

εd(0)

dψ

dx
(0) − α0(k)ψ(0) = 0, (4.5)

where the coefficient

α0(k) =
λNl

1 (k)(u22(k) + iku12(k))u21(k) − λNl

2 (k)(u21(k) + iku11(k))u22(k)

λNl

1 (k)(u22(k) + iku12(k))u11(k) − λNl

2 (k)(u21(k) + iku11(k))u12(k)
. (4.6)
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Now by using (4.3) and (4.5), the resonance problem (1.2) can be recast as the following

boundary value problem:⎧⎨
⎩

L ψ = k2ψ in ID,

1

εd(0)

dψ

dx
(0) − α0(k)ψ(0) = 0,

1

εd(D)

dψ

dx
(D) − αD(k)ψ(D) = 0.

(4.7)

4.2 Resonance condition

Let kb be a non-degenerate bound-state frequency of (4.2), and ψb be the corresponding

eigenfunction. Let (k, ψ) be a resonance pair of (4.7) such that k is a scattering resonance

and ψ is the associated quasi-mode. We define the difference ξ = ψ − ψb. By a direct

comparison of (4.2) and (4.7), it is observed that ξ is a solution of following boundary

value problem:⎧⎨
⎩

L ξ − k2
bξ = (k2 − k2

b)ψ in ID,

1

εd(0)

dξ

dx
(0) − β0ξ(0) = γ0(k)ψ(0),

1

εd(D)

dξ

dx
(D) − βDξb(D) = γD(k)ψ(D).

(4.8)

It is clear that the coefficients γ0(k) and γD(k) above are given respectively by

γ0(k) = α0(k) − β0 and γD(k) = αD(k) − βD. (4.9)

Note that the corresponding homogeneous (self-adjoint) problem coincides with the

boundary value problem for the bound state as stated in (4.2). Since kb is a non-degenerate

bound-state frequency, it follows that the solution space N for the homogeneous problem

is given by span{ψb}.

Let us denote the standard inner product

∫ D

0

ξ(x)η(x)dx on L2(ID) by (ξ, η). Then, ξ

solves the variational problem

a(ξ, η) = b(η) ∀η ∈ H1(ID),

where the bilinear form

a(ξ, η) =

(
1

εd
ξ′, η′

)
− k2

b(ξ, η) + β0ξ(0)η(0) − βDξ(D)η(D),

and the linear functional

b(η) = (k2 − k2
b)(ψ, η) − γ0(k)ψ(0)η(0) + γD(k)ψ(D)η(D).

Since kb has multiplicity one, following the standard argument for second order elliptic

equations, the solvability condition for the boundary value problem (4.8) reads:

(k2 − k2
b)(ψ,ψb) − γ0(k)ψ(0)ψb(0) + γD(k)ψ(D)ψb(D) = 0. (4.10)

The nonlinear equation (4.10) is referred to as the resonance condition. We give its

derivation briefly and introduce notation to be used in the proof of the main theorem.
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Let us choose a suitable function ρ(x, k) ∈ H2(ID) such that

1

εd(0)

dρ

dx
(0, k) − β0ρ(0, k) = γ0(k)ψ(0),

1

εd(D)

dρ

dx
(D, k) − βDρ(D, k) = γD(k)ψ(D), (4.11)

and

||ρ(·, k)||H2(ID) � C
(
|ψ(0)| + |ψ(D)|

)
� C||ψ||H1(D).

By setting ζ = ξ − ρ, (4.8) is reduced into the following boundary value problem:

⎧⎨
⎩

L ζ = (k2 − k2
b)ψ + φ in ID,

1

εd(0)

dζ

dx
(0) − β0ζ(0) = 0,

1

εd(D)

dζ

dx
(D) − βDζ(D) = 0,

(4.12)

wherein φ = −Lρ and ||φ||L2(ID) � C||ψ||H1(D). Let

r(x; k) = (k2 − k2
b)ψ + φ. (4.13)

From the Lax–Milgram theorem, it is known that the variational problem a(ζ, η)+ν(ζ, η) =

(r, η) has a unique solution in H1(ID) for some sufficiently large constant ν. Hence the

induced operator K−1
ν : r → ζ is bounded from L2(ID) to H1(ID), and compact from

L2(ID) to L2(ID). Therefore, ζ is a weak solution of (4.12) if and only if

ζ − νK−1
ν ζ = K−1

ν r. (4.14)

The solution of the corresponding homogeneous (self-adjoint) problem (4.2) satisfies

ψb − νK−1
ν ψb = 0. (4.15)

Employing the Fredholm alternative and integrations-by-parts, we arrive at (4.10).

Remark For clarity, here we may set ρ(x, k) to be the solution of the elliptic equation

− d
dx

( 1
εd

dρ
dx

) + ν0ρ = 0 with the boundary condition (4.11), where ν0 is a sufficiently large

constant. Define the vector γ(k) = [γ0(k), γD(k)]T . From previous discussion, it is clear that

the operator Mγ(k) : ψ → ρ(·, k) is bounded from H1(ID) to H2(ID), and the composition

operator −L ◦ Mγ(k) : ψ → φ(·, k) is bounded from H1(ID) to L2(ID).

If we decompose L2(ID) by letting L2(ID) = N
⊕

N⊥, then (4.15) admits only trivial

solution in N⊥. Accordingly, (4.14) has a unique solution in N⊥, which can be expressed

as

ζ̂ = (I − νK−1
ν )−1K−1

ν r =: Kbr. (4.16)

The subscript b indicates that the operator depends only on bound-state frequency kb. Let

ξ̂ = ζ̂ + ρ, and ψ̂b = ψ − ξ̂, (4.17)
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and substitute these into (4.10), then the solvability condition (resonance condition) is

recast as

(k2 − k2
b)(ψ,ψ− ξ̂(· ; k)) − γ0(k)ψ(0)

(
ψ(0) − ξ̂(0; k)

)
+ γD(k)ψ(D)

(
ψ(D) − ξ̂(D; k)

)
= 0.

(4.18)

Hence, if (k, ψ) is a resonance pair for (4.7), it satisfies the resonance condition (4.18). On

the other hand, it is straightforward that those k satisfying (4.18) are scattering resonances

of (4.7). Therefore, (4.18) is an equivalent condition for the resonances.

5 Proof of the main result

The spectrum for the infinite structure is symmetric with respect to the origin, thus we

only need to consider positive kb in the proof. Here and henceforth, we use the notation

C to denote some generic positive constant independent of Nl and Nr .

Let us decompose the coefficients α0(k) and αD(k) given in (4.6) and (4.4) as

α0(k) = α0,p(k) + α0,s(k), and αD(k) = αD,p(k) + αD,s(k), (5.1)

where

α0,p(k) =
u21(k)

u11(k)
, αD,p(k) =

u22(k)

u12(k)
, (5.2)

α0,s(k) =
−

(
λ2

λ1

)Nl

(u21 + iku11) det[U1, U2]

(u22 + iku12)u
2
11 −

(
λ2

λ1

)Nl

(u21 + iku11)u11u12

, (5.3)

and

αD,s(k) =
−

(
( λ2

λ1

)Nr

(u22 − iku12) det[U1, U2](
λ2

λ1

)Nr

(u22 − iku12)u11u12 + (iku11 − u21)u
2
12

. (5.4)

Note that α0,p and αD,p(k) are independent of the number of periods Nl and Nr . Further-

more, α0,p(kb) and α0,D(kb) coincide with the impedance coefficients β0 and βD (cf.(4.1)) for

the infinite structure.

Theorem 5.1 Let γ0(k) be defined by (4.9) for k ∈ �. If kb > 0 belongs to the point

spectrum σp of the infinite structure with the defect, then γ′
0(kb) can be decomposed as

γ′
0(kb) = −γ′

0,p + γ′
0,s, where

γ′
0,p > 0, and |γ′

0,s| < CNle
−μNl

for some positive constant C and μ, provided that Nl is sufficiently large.

Proof In light of (4.9) and (5.1), it follows that

γ′
0(kb) = α′

0(kb) = α′
0,p(kb) + α′

0,s(kb). (5.5)
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By a direct calculation, the following estimate holds for some positive constant C inde-

pendent of Nl:

|α′
0,s(kb)| < CNl

∣∣∣∣λ2(kb)

λ1(kb)

∣∣∣∣
Nl

.

Since kb ∈ σp, from Theorem 3.1 we see that two eigenvalues of PL(kb) are distinct:

|λ1(kb)| > 1 > |λ2(kb)|. Thus

|α′
0,s(kb)| < CNle

−μNl , (5.6)

wherein μ = log |λ1(kb)|
|λ2(kb)| > 0. Next we show that α′

0,p(kb) < 0. Then from (5.5) and (5.6), the

proof is complete by setting γ′
0,p = −α′

0,p(kb) and γ0,s = α′
0,s(kb).

First, we note that the derivative

α′
0,p(kb) =

det[U1(kb), U
′
1(kb)]

u2
11(kb)

.

From Lemma 2, there exist complex numbers q11 and q21 such that

U ′
1(kb) = q11U1(kb) + q21U2(kb), where q21 =

1

λ1(kb) − λ2(kb)
V
T

2 (kb)PL
′(kb)U1(kb).

Substitute the above formula into det[U1(kb), U
′
1(kb)], and using the fact that det[U1, U2] =

pL21(λ1 − λ2), we obtain

det[U1(kb), U
′
1(kb)] = pL21V

T

2 (kb)PL
′(kb)U1(kb).

This can be further simplified as

det[U ′
1(kb), U1(kb)] =

1

λ2(kb) − λ1(kb)
VT

2 (kb)PL
′(kb)U1(kb), (5.7)

by using the formula (2.12) for the normalized left eigenvector V 2(kb) and the trace
formula pL11 + pL22 = λ1 + λ2.

By virtue of Lemma 2,

P ′
L(kb)U1 = PL(kb)

∫ L

0

P−1(x; kb)O(kb)P (x; kb)U1 dx,

with the matrices O(k) and P (x, k) given by (2.6) and (2.7) respectively. It is obtained that

det[U ′
1(kb), U1(kb)] =

1

λ2(kb) − λ1(kb)
VT

2 (kb)PL(kb)

∫ L

0

P−1(x; kb)O(kb)P (x; kb)U1 dx

=
λ2(kb)

λ2(kb) − λ1(kb)

∫ L

0

VT
2 P

−1(x; kb)O(kb)P (x; kb)U1 dx, (5.8)

since VT
2 PL = λ2V

T
2 . From λ1(kb)λ2(kb) = 1 and |λ1(kb)| > 1 > |λ2(kb)|, we deduce that

λ2(kb)

λ2(kb) − λ1(kb)
< 0.

Applying Lemma 2 for (5.8), it is concluded that det[U1(kb), U
′
1(kb)] < 0, and α′

0,p(kb) < 0

follows. �
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Following a similar proof as in Theorem 5.1, the following theorem also holds.

Theorem 5.2 Let γD(k) be defined by (4.9) for k ∈ �. Assume that kb ∈ σp and kb is

positive. If Nr is sufficiently large, then γ′
D(kb) = γ′

D,p + γ′
D,s where

γ′
D,p > 0, and |γ′

D,s| < CNre
−μNr

for some positive constant C and μ.

Next, we analyse the roots for the resonance condition (4.18). Let us rewrite it as

f(k) = (k2 − k2
b)||ψ||2L2(ID) − (k2 − k2

b)(ψ, ξ̂(· ; k)) − γ0(k)|ψ(0)|2 + γD(k)|ψ(D)|2

+γ0(k)ψ(0)ξ̂(0; k) − γD(k)ψ(D)ξ̂(D; k) = 0. (5.9)

The function f(k) is analytic in the neighbourhood of kb on the complex plane. For

clarity, let us denote this neighbourhood as Ω. In addition, the eigenvalues of PL(kb)

satisfy |λ1(kb)| > 1 > |λ2(kb)|. Thus the eigenvalues λ1(k) and λ2(k) of PL(k) are distinct in

the neighbourhood of kb. Without loss of generality, we may assume that

|λ1(k)| > 1 > |λ2(k)| for k ∈ Ω.

Let Γ be the boundary of the disk with radius δ centred at kb such that its interior is

contained in Ω. Let κ = k − kb. By Taylor’s theorem [2], we have

f(k) = f(kb) + f1(kb)κ+ f2(k)κ
2, (5.10)

where

f1(kb) = f′(kb), f2(k) =
1

2πi

∫
Γ

f(s)

(s− kb)2(s− k)
ds. (5.11)

To obtain f(kb) and f1(kb) explicitly, we expand γ0(k) and γD(k) at the bound-state

frequency kb:

γ0(k) = γ0(kb) + γ′
0(kb)κ+ γ0,h(k); γD(k) = γD(kb) + γ′

D(kb)κ+ γD,h(k), (5.12)

where γ0,h(k) and γD,h(k) represent the high order terms. Let ρ(x, k) and φ(x, k) be the

functions as defined in Section 4.2. Similarly, we may expand ρ and φ as

ρ(·, k) = ρ0 + κρ1 + ρh(k),

φ(·, k) = φ0 + κφ1 + φh(k).

It follows from a direct comparison that

ρ0 = Mγ(kb)(ψ), ρ1 = Mγ ′(kb)(ψ), ρh = Mγh(k)(ψ),

φ0 = −Lρ0, φ1 = −Lρ1, φh = −Lρh.

Here the vectors

γ(kb) = [γ0(kb), γD(kb)]
T , γ ′

1(kb) = [γ′
0(kb), γ

′
D(kb)]

T , and γh(kb) = [γ0,h(k), γD,h(kb)]
T .
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The operators Mγ(kb), Mγ ′(kb), and Mγh(kb) are bounded from H1(ID) to H2(ID) (cf. Section

4.2). From (4.13), (4.16), (4.17), and using the above expansions, we see that ξ̂ can be

written as

ξ̂(·, k) = ξ̂0 + κξ̂1 + ξ̂h(k), (5.13)

wherein ξ̂0 = Kbφ0 + ρ0, ξ̂1 = Kb[2kbψ + φ1] + ρ1 and ξ̂h = Kb[κ
2ψ + φh(k)] + ρh.

Substituting the expansions (5.12)–(5.13) into (5.9), it is obtained that

f(kb) = −γ0(kb)|ψ(0)|2 + γD(kb)|ψ(D)|2 + γ0(kb)ψ(0)ξ̂0(0) − γD(kb)ψ(D)ξ̂0(D);

f1(kb) = 2kb||ψ||2L2(ID) − 2kb(ψ, ξ̂0) − γ′
0(kb)|ψ(0)|2 + γ′

D(kb)|ψ(D)|2 + γ′
0(kb)ψ(0)ξ̂0(0)

−γ′
D(kb)ψ(D)ξ̂0(D) + γ0(kb)ψ(0)ξ̂1(0) − γD(kb)ψ(D)ξ̂1(D).

Theorem 5.3 Let N = min{Nl,Nr}. There exist an integer N0 that if N � N0, then

|f(kb)| < C0e
−μN, and f1(kb) � c0

for some positive constants C0, c0, and μ independent of N.

Proof From (4.1), (4.9), and (5.1)–(5.2), it is apparent that

γ0(kb) = α0,s(kb), and γD(kb) = αD,s(kb).

Note that at the bound-state frequency kb, the eigenvalues for PL(kb) satisfy |λ1(kb)| > 1 >

|λ2(kb)|. We deduce from the expansion of α0,s and αD,s in (5.3)–(5.4) that, for sufficiently

large N,

|γ0(kb)| < Ce−μN, and |γD(kb)| < Ce−μN, (5.14)

where μ = log |λ1(kb)|
|λ2(kb)| > 0. In addition, the standard energy estimate for ξ̂0 and ξ̂1 defined

in (5.13) yields

||ξ̂0||H1(ID) � C
(
||φ0||L2(ID) + ||ρ0||H1(ID)

)
� C||ψ||H1(ID), (5.15)

||ξ̂1||H1(ID) � C(||ψ||L2(ID) + ||φ1||L2(ID) + ||ρ1||H1(ID)) � C||ψ||H1(ID). (5.16)

From (5.14)–(5.15), and the trace theorem, it is deduced that

|f(kb)| < Ce−μN ||ψ||2H1(ID). (5.17)

Employing Theorems 5.1 and 5.2, γ′
0(kb) and γ′

D(kb) can be decomposed as

γ′
0(kb) = −γ′

0,p + γ′
0,s, and γ′

D(kb) = γ′
D,p + γ′

D,s,

where γ′
0,p and γ′

D,p are positive constants independent of N, and

|γ′
0,s| < CNe−μN, |γ′

D,s| < CNe−μN for sufficiently large N. (5.18)
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Consequently

f1(kb) > 2kb||ψ||2L2(ID) −
{

2kb|(ψ, ξ̂0)| + |γ′
0,s(kb)||ψ(0)|2 + |γ′

D,s(kb)||ψ(D)|2
}

−
{

|γ′
0(kb)||ψ(0)|

∣∣∣ξ̂0(0)
∣∣∣ + |γ′

D(kb)||ψ(D)|
∣∣∣ξ̂0(D)

∣∣∣ + |γ0(kb)||ψ(0)|
∣∣∣ξ̂1(0)

∣∣∣
+|γD(kb)||ψ(D)|

∣∣∣ξ̂1(D)
∣∣∣ }
.

In light of (5.14)–(5.16), and (5.18), we see that there exist an integer N0 such that if

N � N0,

f1(kb) > kb||ψ||2L2(ID) � c0, (5.19)

and c0 is some constant independent of N.

�

Proof of Theorem 3.2. Since f1(kb) > 0 in the Taylor expansion (5.10) (cf. Theorem 5.3),

we may rewrite the resonance condition (5.9) as

κ = − f(kb)

f1(kb)
+ κ2Λ(κ),

where Λ(κ) = − f2(kb+κ)
f1(kb)

, and f1(kb), f2(k) are given by (5.11). We recall that Γ is the

boundary of the disk with radius δ centred at kb such that its interior is contained in Ω,

the neighbourhood of kb.

Define the iteration sequence

κ0 = − f(kb)

f1(kb)
, and κn+1 = κ0 + κ2

nΛ(κn), n � 1. (5.20)

In the following, we show that κn+1 remains in the neighbourhood of the origin, and

κ2Λ(κ) is a contraction map. As such, the nonlinear equation attains a solution κ, and

the iterations sequence {κn}∞
n=0 converges to κ. Moreover, for all n, it is shown that

|κn| � Ce−μN for some constant C > 0 independent of N.

First, a combination of (5.17) and (5.19) in Theorem 5.3 leads to

|κ0| �
C

2
e−μN.

Without loss of generality, it is assumed that Ce−μN � δ
2
. Suppose that

|κn| � Ce−μN,

then

|κn+1| �
C

2
e−μN (

1 + 2|κn||Λ(κn)|
)
.

Therefore

|κn+1| � Ce−μN,

if |κn||Λ(κn)| � 1
2
. In what follows, we establish such an estimate.
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For any k ∈ Γ , using (4.9) and (5.1), it is observed that γ0(k) = α0,p(k) − β0(k) + α0,s(k).

It is apparent that |α0,p − β0| is bounded in Ω̄, and the bound is independent of N. On

the other hand, by noting that |λ1(k)| > 1 > |λ2(k)| in Ω, we have |α0,s| � 1 for sufficiently

large N. Thus, there exists a constant C0 such that

sup
k∈Ω

|γ0(k)| � C0.

Similarly, supk∈Ω |γD(k)| � CD for positive constant CD . By the definition of ξ̂ in (4.17),

we deduce that

sup
k∈Ω

||ξ̂(· ; k)||H1(ID) � C||ψ||H1(ID).

By combining all the above estimates for f(k) in (5.9), it is obtained that supk∈Ω |f(k)| � C .

A direct estimate for f2(k) now yields

|f2(kb + κn)| �
1

2π

∫
Γ

|f(s)|
|s− kb|2|s− (kb + κn)|

ds �
C

δ2
,

and

|κn||Λ(κn)| � Ce−μN |f2(kb + κn)|
|f1(kb)|

�
1

2
,

follows provided N is large. We thus have shown that |κn+1| � Ce−μN and, in particular,

|κn+1| � δ
2
.

To show that κ2Λ(κ) is a contraction map in the neighbourhood of origin, note that

(κ2Λ(κ))′ = 2κΛ(κ) + κ2Λ′(κ). Following the parallel lines as above, it can be shown that

|(κ2Λ(κ))′| < 1 if |κ| � δ
2
. We omit the proof the clarity of exposition. �

6 A perturbation approach to calculate near bound-state resonances

The iteration scheme (5.20) suggests a natural numerical method to obtain the near

bound-state resonance. In practice, the calculation of the bound-state frequency kb and

corresponding eigenfunction ψb can be implemented efficiently by the supercell method

[20]. Since |k − kb| ∼ O(e−μN) for sufficiently large N, if one knows the bound-state

frequency kb and corresponding eigenfunction ψb, then without resorting to the iteration

process, a simplified perturbation approach may be employed to calculate the resonance k

via a linear approximation of the resonance condition (5.9). That is, by neglecting the high

order terms in (5.10) and exponentially small terms for f(kb) and f1(kb), an approximation

of κ is computed by

κapprox =
−γ0(kb)|ψb(0)|2 + γD(kb)|ψb(D)|2

2kb||ψb||2L2(ID)
+ γ′

0,p(kb)|ψb(0)|2 + γ′
D,p(kb)|ψb(D)|2

. (6.1)

The approximate resonance

kapprox = kb + κapprox. (6.2)

Next, we present an example to show the accuracy of the approximation. Let us consider

the same photonic structure as in Section 3.2, i.e., the parameters are specified by D = 6,

https://doi.org/10.1017/S0956792515000340 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000340


84 J. Lin

Table 2. Resonance kNewton and the associated linear approximation kapprox for different

number of periodic cells

N kNewton kapprox

2 0.585245443593 − 0.018388829293i 0.598143178712 − 0.000000162563i

4 0.596035039932 − 0.003082708901i 0.596167795232 − 0.003053231994i

8 0.598065818707 − 0.000112010544i 0.598065956311 − 0.000111825473i

16 0.598143178712 − 0.000000162563i 0.598143178610 − 0.000000162560i

L1 = 2, L2 = 1, and Nl = Nr = N. The permittivity of each layer is given by εD = 2,

ε1 = 4, and ε2 = 1, respectively. In order to make a comparison, we set up a direct

resonance condition by letting the wave propagate from the left endpoint of the photonic

structure (x = a) to the right (x = b), and imposing the continuity conditions at the

interfaces of layers. The resonance are then obtained by solving this nonlinear equation

directly via Newton’s method (denoted as kNewton). In Table 2, we compare kNewton and the

calculation obtained by the approximation formula (6.2). It is seen that the resonance is

approximated accurately by the proposed perturbation formula. In particular, the errors

decay with increasing number of periodic cells.

7 Discussions

A general perturbation approach has been proposed to study the near bound-state

resonances for one-dimensional photonic crystal with some defect. It is shown that near

bound-state resonances exit and the distance between the resonance and the associated

bound-state frequency decays exponentially as a function of the number of periodic

cells. Some challenging research in this direction is to extend such perturbation theory

for the study of resonances in higher dimensions. As indicated in the derivation of the

resonance condition in Section 4, the key is to reformulate eigenvalue problems in the

defect region by introducing suitable Dirichlet-to-Neumann maps on its boundary, and

obtain an equivalent resonance condition by examining the associated equation for the

difference between the bound state and quasi-mode. This is our ongoing work and will

be reported elsewhere.
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Appendix A

Lemma Let k ∈ �\{0} be a resonance of (1.2), then k has negative imaginary part.

Proof Multiply the differential equation in (1.2) by ψ̄ and integrate by parts, it follows

that ∫ b

a

1

ε

∣∣∣∣dψdx
∣∣∣∣
2

− k2 |ψ|2 dx− ik(|ψ(a)|2 + |ψ(b)|2) = 0. (A 1)

Let k = Rek + i Imk. First, let us consider the case when the real part Rek � 0. By

a simple calculation, it can be shown that the imaginary part of the left-hand side

https://doi.org/10.1017/S0956792515000340 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000340


86 J. Lin

of (A 1) is

−Rek

(
2 Imk

∫ a

0

|ψ|2 dx+ |ψ(a)|2 + |ψ(b)|2
)
.

If Imk � 0, then ψ(a) = ψ(b) = 0, and dψ(a)
dx

= dψ(a)
dx

= 0 by the boundary condition. It

follows that ψ ≡ 0 in (a, b), which contradicts ψ� 0.

Now if the Rek = 0, (A 1) becomes

∫ b

a

1

ε

∣∣∣∣dψdx
∣∣∣∣
2

+ (Imk)2 |ψ|2 dx+ Imk(|ψ(a)|2 + |ψ(b)|2) = 0.

If Imk > 0, again we see that ψ ≡ 0 in (a, b). Consequently, Imk has to be negative. �
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