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The flow of a thin film coating the underside of an inclined substrate is studied.
We measure experimentally spatial growth rates and compare them to the linear
stability analysis of a flat film modelled by the lubrication equation. When forced by
a stationary localized perturbation, a front develops that we predict with the group
velocity of the unstable wave packet. We compare our experimental measurements
with numerical solutions of the nonlinear lubrication equation with complete curvature.
Streamwise structures dominate and saturate after some distance. We recover their
profile with a one-dimensional lubrication equation suitably modified to ensure an
invariant profile along the streamwise direction and compare them with the solution
of a purely two-dimensional pendent drop, showing overall a very good agreement.
Finally, those different profiles agree also with a two-dimensional simulation of the
Stokes equations.

Key words: absolute/convective instability, nonlinear instability, thin films

1. Introduction
A thin film coating a flat substrate in a position where gravity tends to pull off

the fluid may lead to amplifying disturbances of the interface, possibly leading to
dripping. For thin films flowing down the underneath of inclined surfaces, a complete
description of this phenomenon remains to be assessed and we aim at having a
detailed characterization of the intermediate steps leading from a flat film to the
dripping of drops.

A horizontal flat interface separating a heavier fluid and a lighter fluid in two
semi-infinite regions will deform with time if the overlaying fluid is the heaviest one
(Rayleigh 1882; Taylor 1950). Adding surface tension stabilizes the small-scale
disturbances of the interface, but large-scale disturbances are always unstable
(Chandrasekhar 1961). The instability is driven by a competition between gravity,
which pulls the heavy fluid down, and surface tension that tends to restore a flat
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interface and pushes it back. This instability is of prime concern when coating
surfaces e.g. with paint or lubricants as coating irregularities or detachment of
droplets may appear. As such, many studies have focused on means of controlling
or suppressing the growth of pendant drops. This can be achieved, for example, by
surface tension gradients arising from a temperature difference across the thin film or
from the evaporation of the solvent in a multicomponent liquid (Burgess et al. 2001;
Bestehorn & Merkt 2006; Alexeev & Oron 2007; Weidner, Schwartz & Eres 2007).
The Rayleigh–Taylor instability can also be controlled by high-frequency vibrations
of the substrate (Lapuerta, Mancebo & Vega 2001; Sterman-Cohen, Bestehorn &
Oron 2017) or by the application of an electric field (Barannyk, Papageorgiou &
Petropoulos 2012; Cimpeanu, Papageorgiou & Petropoulos 2014).

When the film is located underneath a substrate, its thickness is limited by gravity
to typically a few millimetres, and the flow is thus strongly confined which enhances
viscous dissipation. In this situation, regular patterns ranging from hexagons to
squares are observed (Fermigier et al. 1992). This problem is usually tackled by
assuming that the wavelength of the perturbations is larger than the film thickness
and that the Reynolds number based on the film thickness is small, leading to
the lubrication approximation, (Kapitza 1965; Babchin et al. 1983; Chang 1994).
These patterns are periodic nonlinear structures composed of a repetition of lenses
that, assuming a linearized expression of the curvature, do not saturate but slowly
grow algebraically (Lister, Rallison & Rees 2010). For sufficiently small initial
thicknesses, and considering instead the full curvature, the lenses asymptotically
approach axisymmetric pendant drop shapes (Marthelot et al. 2018). Spontaneous
sliding of the droplets across the planar surface of the substrate can occur (Glasner
2007) due to a symmetry-breaking instability (Dietze, Picardo & Narayanan 2018).

When the substrate is tilted, the film is still unstable but has a smaller growth
rate as gravity is projected orthogonally to the substrate. The tangential component
of the gravity then induces a flow that advects perturbations and, depending on the
inclination angle and the film thickness, the instability can switch from convective to
absolute. Brun et al. (2015) experimentally show the agreement between the linear
prediction of the onset of the absolute instability and the onset of dripping. Inertial
effects and viscous extensional stresses are added to the latter stability prediction by
Scheid, Kofman & Rohlfs (2016). Kofman et al. (2018) demonstrate using a hierarchy
of computational models that the absolute regime does not predict the onset of two-
dimensional dripping satisfactorily.

To date, experiments are mostly transient in nature since a finite volume of fluid
was released (Fermigier et al. 1992; Brun et al. 2015), with the noticeable exceptions
of Rietz et al. (2017), in which the wall normal gravity component is replaced by
a centrifugal acceleration, and Charogiannis et al. (2018). The difference between
transient release dynamics and alimented flows appears to be significant. For the
classical Rayleigh–Taylor instability under a flat ceiling, permanent-fed experiments
through a porous supply have been mostly done in a horizontal annular geometry,
which effectively mimics a one-dimensional substrate (Limat et al. 1992; Abdelall
et al. 2006). This latter configuration gives rise to a particularly rich and complex
dynamics of interacting dripping drops or continuous columns (Pirat et al. 2004;
Brunet, Flesselles & Limat 2007), and may even lead to massive dripping within
corrugated sheets (Yoshikawa et al. 2019).

We thus propose a new experimental set-up, combining a permanent liquid supply
to a tilted and flat coated surface, in contrast to recent studies on cylindrical
and spherical substrates displaying a stabilizing effect on the film thanks to
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drainage-induced thinning and stretching (Balestra et al. 2018a; Balestra, Nguyen
& Gallaire 2018b). In order to overcome the limitation of a transient experiment, we
impose a constant flow rate so that the flow can reach a steady state or an asymptotic
behaviour. The Reynolds number of our flow is as small as possible, using very
viscous oils, as simple non-inertial models already incur complex nonlinearities. The
experiment allows us to explore a wide range of parameters, i.e. all angles from
vertical to horizontal and large variations of the film thickness. In this experiment
we can observe a whole variety of patterns, from almost unperturbed flat films to
heavy rains of oil droplets (Lerisson et al. 2019). In particular, we study the stability
of the flat film solution, and identify a range of parameters within which the film
destabilizes into long rivulet structures.

In this work, we study the steady patterns emerging from natural and external
forcing, describing the behaviour of such a thin film continuously flowing under
an inclined flat substrate with a combination of experiments, numerical simulations
and linear stability theory. The experimental set-up is described in § 2 together with
the measurement techniques, which are illustrated by a first spatially forced film, as
well as the necessary scalings. Section 3 is devoted to a theoretical spatial stability
analysis, which is compared to experimental measurements. Section 4 is devoted to the
measurements of a freely flowing film together with numerical simulations. Again, the
results are compared to the predictions of a local linear stability analysis. We finally
discuss the nature of fully nonlinear static rivulet solutions, which naturally emerge
in these steady patterns. We show that they have the shape of purely two-dimensional
(2-D) pendent drops, known to adopt the shape of an elastica. In this paper, we only
focus on steady flows; the dynamics and transients that lead to those patterns are not
investigated.

2. Methods
2.1. Experimental apparatus

The experiment (figure 1) consists of injecting a Newtonian fluid on the underside
of an inclined flat substrate with a constant flow rate. The substrate is a glass plate
(dimensions 600× 300 mm) attached on an orientable structure, forming an angle θ
with the vertical axis. In the present study, θ is varied from 20◦ to 55◦. The fluid
is silicon oil (Bluestar Silicons 47V1000) of measured viscosity µ = 1089 mPa s,
density ρ = 974 kg m−3, kinematic viscosity ν = µ/ρ = 1.12 × 10−3 m2 s−1 and
surface tension γ = 21 mN m−1. The fluid is injected through a horizontal slit-shaped
inlet from a closed reservoir fully filled with oil and connected to an open reservoir.
The open reservoir, placed above the inlet, is constantly filled and the height of
the liquid is kept constant by the use of an overflow. The oil flowing down the
substrate is collected in a home reservoir and loops back during the experiment. The
flow rate is set by varying the height difference H between the closed reservoir and
the open reservoir, giving an upper bound of 1.7 × 10−3 kg s−1 (corresponding to
a film of equivalent thickness hN = 1.5 mm) and down to arbitrary low flux values.
The flow rate is measured by collecting the oil leaving the substrate during three
minutes, and weighing it. Before any experiment, the substrate is prewetted to ensure
a zero contact angle (total wetting). All the experimental results presented here are
measured on stationary films, i.e. the thickness reaches a stationary state. A forcing
blade, consisting of a laser-cut rectangle with a sinusoidal long edge (sketched in
figure 1b), can be placed just below the inlet. The blade does not occlude the flow
and is spaced from the glass by lateral spacers. An acute angle (approximately 30◦)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

39
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.396


898 A6-4 G. Lerisson, P. G. Ledda, G. Balestra and F. Gallaire

Open reservoir
Clamp
Injector slit
Forcing blade
Sensor

Pump

Home reservoir

30°Blade sketch

Spacers
Sinus edge

Filter

H

(a) (c)

(b)

œ g

h (x, y, t)

œ
ey

ex

Wi

Wi

FIGURE 1. (a) Sketch of the experimental apparatus, (b) details of the forcing blade used
to perturb the film and (c) picture of the experimental apparatus. Rivulets can be observed
under the glass plate.

is introduced between the blade and the glass. The liquid fully fills the created gap
underneath the blade and slightly spreads spanwise. The blade is always larger than
the initial inlet and the lateral spreading remains in the sinusoidal part. The modified
width W∗i is measured systematically, resulting in a new equivalent thickness hN .
The sine wave has a peak-to-peak amplitude of 0.5 mm and the spacers of 1 mm
which should be projected with the acute angle, giving a perturbation of amplitude
≈250 µm. The blade acts as a new initial condition and is taken as a new inlet
reference for the flow.

We measure the film thickness ĥ with a confocal chromatic sensor (STIL CCS)
located on the upper (dry) side of the substrate. The sensor gives a point thickness
measurement at an acquisition rate of 500 Hz. The sensor is attached on a two-axis
linear stage and we perform horizontal scans of length L̂s= 200 mm in the ŷ direction
(4 s per scan). The sensor performs two scans back and forth and returns to its
initial position; we thus obtain the thickness profile twice. We compute the difference
between these two measurements and remove errors by discarding values with a
difference greater than 50 µm and values where the variation between successive
points is larger than 500 µm. We map the whole substrate every 10, 30 or 50 mm in
the x̂ direction. The optical measurement cannot access to film thickness distributions
with a surface steepness higher than 40◦, following the STIL CCS specifications.

In addition, we set up another acquisition method based on the absorption of a
coloured liquid. The same silicon oil is mixed with Sudan Black B that has a peak of
absorption at 595 nm. A flat screen of light covers the whole glass plate. A camera
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(Nikon D850 with a Nikon 50 mm lens) is then attached on the structure at 85 cm
from the glass plate, giving a resolution of 7.6 pixels mm−1. The luminance measured
by each pixel is related to the thickness with the Beer–Lambert law (Limat et al.
1992)

ĥ(x̂, ŷ, t̂)=
1
C

log
(

I0(x̂, ŷ)
I(x̂, ŷ, t̂)

)
, (2.1)

where I0 is the initial luminance measured without any liquid, I the luminance at time
t and C is a constant value that is determined with a calibration procedure that consists
in measuring the luminance through a known wedge.

Finally, we can optically enhance film perturbations and identify phases and patterns.
The visualization technique is based on the distortion of a regular grid through the
transparent liquid film. The grid has been fixed to a square light screen, placed behind
the glass plate. In order to reduce the parallax effect, we placed the camera at a
distance of 5 m from the plate.

2.2. Scalings
The reduced capillary length is given by a balance between surface tension and gravity
projected perpendicularly to the substrate. In order to conveniently scale the in-plane
(x̂, ŷ) length scales, we define the reduced capillary length `∗c ,

`∗c =
`c
√

sin θ
, (2.2)

where `c =
√
γ /ρg = 1.49 mm is the capillary length. With the angle variation, it

gives a range for the reduced capillary length of 1.85 mm < `∗c < 2.54 mm. For a
given volumetric flow rate q, we can define the Nusselt flat film thickness hN , used
to define the wall-normal (ẑ) length scale

hN =

(
3νq

Ŵig cos θ

)1/3

, (2.3)

which is the constant thickness of an equivalent flat viscous film of width Ŵi,
assuming a half-plane Poiseuille flow in the ex direction and no flow in the ey and
ez directions. In this study, hN is varied from 0.5 to 1.5 mm.

3. Forced dynamics

For a certain range of θ and hN , the flat film is convectively unstable (Brun et al.
2015); perturbations grow and are advected downstream. We first study the film
response to a spatially periodic forcing.

3.1. Experimental results
We place a horizontal blade with a sinusoidal-shaped edge against the substrate. The
height of the liquid film is imposed by the distance separating the blade and the
substrate. The blade is located just below the inlet (at x = 0) and imposes an inlet
condition with dimensionless horizontal wave vector kf and corresponding wavelength
λf in the y direction, with kf = 2π/λf . We design a set of blades for a range of
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FIGURE 2. Film thickness for θ = 39◦ and hN = 1515 µm (u = 1.5), forcing at the
optimal wavelength λf = 8.90. The thickness is measured with the absorption method and
normalized by the flat film thickness hN .

spacings that goes from 5 to 1 cm, leading to a variation of the horizontal wave vector
0.32< kf < 1.44 for an inclination angle θ = 20◦, and 0.15< kf < 0.75 for θ = 39◦.

Figure 2 shows a typical measurement of the entire film thickness h by absorption,
with hN = 1515 µm and θ = 39◦. The film is flowing in the positive x direction. The
sinusoidal shape of the forcing propagates downwards, forming mainly streamwise
phase lines. The amplitude of the response grows with x between x = 0 and x = 50
in a self-preserving manner. Between x = 50 and x = 200, the amplitude reaches a
plateau and the shape is no longer sinusoidal. Beyond x = 200, the shapes start to
develop streamwise oscillations. These oscillations are unsteady and their occurrence
is not studied here. The flow rate and inclination angle chosen for this particular case
of figure 2 are larger than the ones considered in the rest of the study, in which the
responses are always stationary.

We first focus on the spatial growth phase. We follow the evolution of the thickness
for several position x between x= 19.7 and x= 118 for different wavelengths and a
fixed flow rate. We observe three regimes.

Figure 3(a) shows the forcing propagating downstream with a decreasing amplitude,
until vanishing around x= 50. The film is then flat except on its lateral sides where
thickness perturbations with respect to a flat condition propagate and grow. In
panels (b,c), the forcing propagates in all the domain with an amplitude that slightly
increases in the streamwise direction. On the lateral sides, the signal is deformed
and this deformation propagates inward. In panel (c), the profile never follows the
forced wavelength but follows λf /2; similarly the obtained pattern is deformed when
penetrating away from the lateral sides.

3.2. Linear stability
We compare these experimental results to the linear prediction obtained from the
dispersion relation of the linearized thin film equation. The nonlinear thin film
equation is based on the assumption that the orthogonal derivatives (ẑ) are much
larger than the in-plane (x̂, ŷ) derivatives. We define the characteristic time scale τ ,

τ =
ν`2

c

h3
Ng sin2 θ

. (3.1)
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FIGURE 3. Evolution of the film thickness for θ = 20◦ and hN = 560 µm (u = 12.5)
and forced wavelengths: (a) λf = 4.37; (b) λf = 7.87; and (c) λf = 19.67. The thickness
is measured using the STIL CCS scanning every 10 mm (in dimensionless form δx =

10 mm/`∗c = 3.9). The red line shows the imposed inlet thickness at x= 0.

Spatial directions x̂ and ŷ are non-dimensionalized by `∗c , thickness ĥ by hN and time
t̂ by τ ,

x= x̂/`∗c, (3.2)
y= ŷ/`∗c, (3.3)
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h= ĥ/hN, (3.4)
t= t̂/τ . (3.5)

Following previous works (Ruschak 1978; Wilson 1982; Kheshgi, Kistler &
Scriven 1992; Weinstein & Ruschak 2004), the full curvature term is retained. In
non-dimensional form, the equation reads

∂h
∂t
+ ˜̀c

∗

cot (θ)h2 ∂h
∂x
+

1
3
∇ · (h3(∇h+∇κ))= 0, (3.6)

where ∇ operates in the (x, y) plane, ˜̀c
∗

= `∗c/hN and κ is the mean curvature

κ =

∂2h
∂x2

(
1+

∂h
∂y

2)
+
∂2h
∂y2

(
1+

∂h
∂x

2)
− 2

∂h
∂x
∂h
∂y

∂2h
∂x∂y(

1+
∂h
∂x

2

+
∂h
∂y

2)3/2 . (3.7)

In the following, we focus on the emergence of steady states in response to a
stationary forcing. We thus assume no time variations and we consider a stationary
perturbation with respect to the flat film condition. Introducing h = 1 + εh′ with a
steady perturbation h′ ∝ eik·x where k= (kx, ky), equation (3.6) is linearized to obtain
the dispersion relation

i
3
(|k|2 − |k|4)+ cot θ ˜̀c

∗︸ ︷︷ ︸
u

kx = 0, (3.8)

where u is the coefficient of a linear phase advection which corresponds to the surface
film velocity that advects the linear perturbations downstream.

We neglect the lateral side and assume the forcing and the response to be
homogeneous and purely in the spanwise direction, i.e. Im(ky) = 0 and ky = kf .
For each forcing wavelength 2π/ky, we thus obtain the corresponding spatial growth
rate kx(ky) by solving the equation

(k2
y − k4

y)+ (k
4
x + k2

x + 2k2
xk2

y)− 3iukx = 0, (3.9)

which is a fourth-order polynomial in kx which can be solved for as a function of ky.
Among all the four roots of the complex polynomial, we discard solutions which
have Re(kx) 6= 0, i.e. solutions that oscillate along the streamwise direction. There is
only one branch that corresponds to a purely growing, downstream amplified, spatial
wave (Re(kx) = 0). The maximum growth rate is not attained exactly at ky = 1/

√
2,

as for the temporal growth rate (Brun et al. 2015) but it deviates by no more than
0.2 % for the cases considered in this study (see figure 11 in appendix A). In such a
convective situation where we have u> cg0 with u= 12.5 (figure 3) and the absolute
group velocity cg0 = 0.54 (Brun et al. 2015), the streamwise growth of spanwise
wavenumbers strongly resembles their temporal growth, a property similar to the
Gaster transformation (Gaster 1962), though not directly related to it.

Experimentally, we measure the spatial growth rate and compare it to Im(kx) by
measuring the amplitude A(x) defined by

A(x)=

√∫ ŷ=0.8L̂s

ŷ=0.2L̂s

(ĥ(x, y)− hN)2 d ŷ, (3.10)
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FIGURE 4. (d) Theoretical (red curve) and experimental (black crosses) spatial growth
rates as a function of the forcing wavelength ky; yellow curve is the theoretical prediction
for the harmonic 2ky. (a–c) Experimental amplitudes (crosses) and theoretical prediction
(red lines) for the three cases presented in figure 3. The yellow line in panel (c) is the
prediction for the harmonic 2ky. The corresponding measurements are reported as points A,
B and C in panel (d).

along the x direction. Results corresponding to the three cases presented in figure 3 are
plotted in figure 4(a–c) (black crosses) in log scale as a function of x along with the
theoretical prediction (red lines) normalized by the first measurement. Panel (a) shows
an exponentially decreasing amplitude up to x= 40 before saturating to a lower noisy
value. The decrease is well captured by the linear prediction (3.9). Panel (b) shows
an exponentially increasing amplitude all over the x measurement range which is well
predicted by the theory. In panel (c) the amplitude is also following an exponential
increase but at a rate that is much faster than the prediction for the corresponding
wavelength; we also plot the growth predicted for the superharmonic wavelength (λ=
λf /2) that almost perfectly matches the experimental measurement.
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The measurements are summarized in figure 4(d) where we plot the growth rates
for 0< ky < 2. The predicted growth rate (red line, solution of (3.9)) is in excellent
agreement with the experimental data (crosses). In addition, we plot in yellow the
solution of (3.9) for ky= 2kf . The measured points labelled A, B and C correspond to
the full measurements showed in panels (a–c).

The linear dispersion relation shows a cutoff wavenumber at ky = 1, corresponding
to a dimensional wavelength of 2π`∗c . So when we increase the angle θ , the range
of unstable wavelength decreases. The spatial growth rate kx is a decreasing function
of u which depends on the two parameters, hN and θ . Increasing θ (toward a more
horizontal substrate) leads to a decrease of u and an increase of kx. If the forced
wavelength is unstable, its amplitude grows and saturates close to the inlet. Similarly,
increasing hN leads to a decrease of u and an increase of kx, while the dimensional
velocity of the flat film surface is, however, increased. This comes from the time scale
that is inversely proportional to h3

N ; while perturbations are advected faster with an
increase of hN (that would lead to a smaller spatial growth rate), they are amplified
even more (resulting in the spatial growth rate eventually to increase).

4. Natural dynamics
Even without the inlet device shown in figure 1(b), thickness perturbations with

respect to the flat film grow from the sides and may invade the entire domain,
as shown in figure 5(a,c,e). Far from the sides, the film thickness is constant for
all x in panels (a,c). In panel (e), the perturbation invades the entire film. The side
perturbations penetrate inside while also being advected downstream. In panels (b,d, f ),
we perturb the film by placing a small cylinder (of diameter 2 mm) in the middle
of the film and close to the inlet. The perturbation is stationary and propagates both
downstream and in the spanwise direction. The perturbation amplitude grows with the
streamwise direction and high amplitude variations cannot be captured in panel ( f ).

In this context of highly advected perturbations, we look for the steady front of the
region invaded by the perturbation.

4.1. ‘Spatio-spatial’ stability analysis
Instead of focusing on the spatio-temporal growth and propagation of this wave
packet in two dimensions of space, we assume steady patterns and only consider
a ‘spatio-spatial’ wave packet growth. The classical absolute/convective calculation
can be generalized to the streamwise spatial growth of spanwise spatially periodic
disturbances. In this analogy, x plays the role of time and kx that of the complex
frequency while ky is the complex spatial wavenumber; the dispersion relation (3.9)
now takes into account for complex wavenumbers, D(kx, ky, u)= 0.

We can make an analogy with a spatio-temporal analysis, where the front is defined
by a particular ray x/t= v for which the perturbation is marginally stable, as t→∞
(Huerre & Monkewitz 1990; Van Saarloos 2003; King et al. 2016). In this approach,
the front is the velocity, i.e. the amount of space per unit of time, at which the
perturbation spreads in the domain while being advected. Here, we look for the front
angle y/x = tan(φ), i.e. the amount of spanwise space per unit of streamwise space,
separating the perturbed domain from the region where the perturbation does not
propagate, as x→∞.

We then numerically determine the angle φ for which ∂Im(kx)/∂Im(ky) = tan(φ),
imposing ∂Re(kx)/∂Im(ky)= 0. It consists of the extraction of the relevant roots from
a complex fourth-order polynomial, which is performed using the built-in Matlab
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FIGURE 5. Evolution of the film thickness without forcing in case of: (a) hN = 678 µm,
θ = 20◦ (u = 10.3); (c) hN = 1142 µm, θ = 20◦ (u = 6.1); (e) hN = 726 µm, θ = 40◦
(u = 3.0). Evolution of the film thickness with a stationary localized forcing in case of:
(b) hN = 1334 µm, θ = 20◦ (u = 5.2); (d) hN = 390 µm, θ = 40◦ (u = 5.7); ( f ) hN =

1357 µm, θ = 30◦ (u = 2.7). The red lines are the theoretical predictions for the front
propagation computed with the help of (3.9).

function ‘fsolve’ for a two-variable system. For a given u, we increase y/x and plot
Im(kx) − y/xIm(ky), tracking the saddle points in the complex ky plane until we
find the ones that have a zero spatial growth rate Im(kx)= 0 and a non-zero Re(ky).
According to Barlow, Helenbrook & Weinstein (2015) and Huerre & Monkewitz
(1990), we verified that the maximum growth rate in the spatial dispersion, i.e.
∂Im(kx)/∂Re(ky) = 0 is a contributing saddle point and identified its locus as y/x is
varied, which implies that it contributes to the asymptotic behaviour of the solution.
The results are shown in appendix A in figure 12 where the dependency of the front
angle φ on the velocity u is reported.

In figure 5(a,c,e), we assume the system to be dominantly perturbed by the lateral
side of the film, at the worst position, i.e. at the inlet, and that this perturbation
excites all wavelengths. We thus define two front lines (drawn in red) that follow the
front propagation angle φ and which start from the inlet sides. All the considered
perturbation waves that are able to go within those two front lines are stable, while
all the perturbation waves that propagate outside are unstable. Those front lines thus
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separate the region where the side perturbations have invaded the domain (outside the
lines) from the region where they have not (within the lines).

In figure 5(b,d, f ), we perturb the system and therefore draw the red front lines
starting from the edge of the perturbing cylinder. Similarly, the front lines separate an
inner region where the perturbation spreads from an outer a region where it cannot
invade.

In the first two cases (panels a,c), the lines well predict the limit of penetration
for the perturbations. This validates our hypothesis that the perturbation is mostly
composed of spanwise waves that are mostly excited by the side boundary condition.

Moreover, the unstable waves have a vanishing growth rate close to the front lines
which qualitatively explains the vanishing amplitude of the perturbation approaching
the front. Similarly, at a fixed x position and varying the y position, the wavelength
is not constant, which is qualitatively expected from the front velocity criterion that
is different for each wavelength. From the calculation, fast propagating waves have a
larger wavelength than slow propagating ones, which is what we qualitatively observe.

In the last case (panel e), the lines cross before the x end of the experiment and
the film is fully invaded downstream. We also see perturbations growing above the
lines. The presence of imperfections within the inlet slit is evidenced here thanks to
large growth rates for this set of parameters, i.e. at large angle θ and high initial
thickness hN . This faults the assumption of a system solely perturbed on the sides
of the inlet.

In the forced cases (panels b,d, f ), the agreement between the observed front and
the prediction is good. Note that the perturbation coming from the sides enters
downstream in the measured region in panel ( f ).

4.2. Nonlinear simulations
In this section, we perform numerical simulations of the thin film equation with
complete curvature (3.6). Numerical simulations are performed with the finite element
software COMSOL. In COMSOL, the equation is solved for a thickness h and a
curvature κ . In the numerical method, we use a time-marching technique and an
additional term is added to (3.6) in order to account for the outlet condition, imposed
using a sponge method and resulting in the following equation to be numerically
solved:

∂h
∂t
+

1
3
∇ · (h3(uex +∇h+∇κ))=−M(x)h. (4.1)

The function M(x) is a mask function for the sponge method that relaxes the thickness
to zero (Högberg & Henningson 1998)

M(x)=
1+ tanh(x− 6Lx/7)

2
. (4.2)

This avoids reflection effects from the outlet.
The domain is a rectangle of dimension Lx× Ly with Dirichlet boundary conditions.

On the lateral boundaries and on the outlet, the thickness h and the curvature κ are
set to zero. Before the outlet, 10 % of the domain is damped by a sponge method.
The inlet imposes a jet function J(y) (Monkewitz & Sohn 1988) that reproduces the
experimental inlet conditions

J(y)=
1

1+

(
exp

(
2|y|
Wi

)2

− 1

)Nj
, (4.3)
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FIGURE 6. Comparison of experiment (black circles) and numeric (blue lines) for (a) hN=

1142 µm θ = 20◦ (u= 6.1), (b) hN = 678 µm θ = 20◦ (u= 10.3), (c) hN = 726 µm θ = 40◦
(u= 3.0).

of parameters Nj= 20 and width Wi= Ŵi/`
∗

c . The inlet curvature imposed is computed
from the inlet thickness distribution, setting the streamwise curvature to zero. The
initial condition for the thickness follows the jet function on the y direction

h(x, y, t= 0)= J(y)(1−M(x)), (4.4)

and the initial curvature is computed from the initial thickness.
The triangular mesh is created in COMSOL with the largest element smaller than
˜̀c
∗

. We use cubic elements for the thickness and the curvature, and the time solver
uses a fully implicit method. A simulation consists in a time stepping of the equations
until a stationary solution is obtained. A typical simulation lasts Tf = 1000τ .

On figure 6, we plot transverse profiles (along the y direction) of the thickness h at
three x positions obtained numerically (blue curves) and experimentally (black dots)
for three couples (hN, θ). Figure 6(a,b) share the same angle θ while figure 6(b,c)
share the same hN (i.e. the same flow rate). In all figures and simulations, the film
thickness is stationary, even though the liquid is flowing downstream.

Figures 6(a) and 6(b) are similar and the numerical prediction is in remarkably
good agreement (the only fitting parameter being the inlet jet width that fits the
experimental inlet). The thickness goes to zero on lateral boundaries and equals
one in the centre. The film span decreases with increasing x. A perturbation grows
equally from the sides with an oscillatory shape and spreads with increasing x. The
perturbation grows and penetrates inside the film with increasing x.

On figure 6(c), the agreement is good on the sides. The sensor is unable to measure
steep films but the lateral peaks are well predicted by the simulation. However, the
central part of the film, that remained flat in the other cases, is now perturbed. This
perturbation is not captured by the simulation as there are no variations at the inlet
(except at the sides) while, in the experiment, the inlet generates noise at the centre.

At x = 216, the sensor is unable to measure steep films, but the lateral peaks
captured are well predicted by the numerical simulation. The experiment is supposed
to be in total wetting condition (zero contact angle) since the substrate is prewetted,
avoiding any contact line dynamic as in the simulated equation. The lateral sides of
the film are free to move and relax to very thin film thicknesses where the temporal
evolutions are very small (scaling with h3), and the validity of this side dynamics is
confirmed by the good agreement.
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As seen before, side perturbations penetrate inside the film with increasing x and
have, in figure 6(c), invaded all the film downstream. The nonlinear simulations
capture the peak positions contrarily to the linear prediction that only captures the
front position. The peak amplitudes are also captured and we observe that they
saturate, which cannot be described by a linear theory.

It is remarkable to note the validity of the thin film equation with complete
curvature in cases where the assumptions implied by this equation are not obviously
satisfied, for instance in presence of order-one slopes (Krechetnikov 2010).

Increasing hN or θ leads to an increase of the peak numbers and their penetration.
However, we do not observe strong variations of the maximum peak amplitude when
varying the parameters. The next section will focus on the saturated amplitude and
the associated streamwise structures.

5. Nonlinear saturated rivulet solutions
Downstream, as shown in the full profile figure 2, the system exhibits long

structures called rivulets.

5.1. Nonlinear structures
To study these structures, we look at the most unstable forcing, i.e. at the wavelength
at which the growth rate is maximum. We plot in figure 7 a comparison between
numerical and experimental results. In panel (a) we measure the maximal and
minimal values of the thickness along x. Again, we note a good agreement between
experiment and simulations. The amplitude increases as the structures penetrate
downstream to reach a saturated value at large x. We choose a streamwise position
where the structures are saturated and do not vary with x (x = 200). We compare
these saturated rivulets with the simulation (figure 7b) and find a good agreement.
We then vary the parameters (θ, hN). The measurements are plotted in figure 7(c)
for 10 different equivalent film thicknesses hN and two angles θ (a total of 20 cuts).
As the linearly most unstable wavelength λmax depends on the angle, the abscissa
is non-dimensionalized by λmax. Except from the sides, all the curves collapse to
the same profile, which suggests the existence of a unique, universal and attracting,
rivulet shape.

5.2. Range of possible rivulets
In contrast to § 3, we now consider the case of a high amplitude forcing. We use a
comb-like blade, with constant spacing, placed at the inlet. The comb teeth (figure 8a),
of width l̂t = 2 mm, are parallel to the glass plate and cover the inlet injection slit.
The teeth are placed l̂dt = 5 mm downstream of the inlet and present a thickness of
t̂t = 1 mm. The comb occludes the inlet in correspondence of the teeth and covers
the latter as it is welled up by capillarity. We focus on the observed spanwise
peak-to-peak distance Lobs of the obtained periodic structures. We fix θ = 55◦, and
hN = 0.4 lc = 594 µm and look at a regular grid through the thin film. The resulting
distorted pattern clearly captures the presence of rivulets. We define Kobs = 2π/Lobs;
in figure 8(a) a typical pattern is visualized, for a forcing of kf = 0.41. We identify
the presence of peaks, following the yellow lines; in this case the observed spacing
is half the forced one (superharmonic). Figure 8(b) shows Kobs as a function of
the forced wavenumber. The three solid lines correspond to the cases Kobs = 2 kf
(superharmonic, orange line), Kobs = kf (fundamental harmonic, red line), Kobs = kf /2
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FIGURE 7. (a,b) Comparison of an experimental cut (black circles) of parameters θ = 39◦,
hN=1515 µm, forced at the dominant wavelength λmax and the same parameters numerical
simulation (blue line). Panel (a) shows a projection of the maximal and minimal thickness
over y, along x and (b) is a transverse cut at x= 156. Panel (c) compares 20 transverse
measurement cuts at x= 156 and x= 187 for a range of hN and two different angles (θ =
26◦, 39◦). The y axis is non-dimensionalized by the dominant wavelength. The darkness
of each curve is proportional to hN .

(subharmonic, blue line); the experimental results are reported with black dots. The
spacing is the same as the forced one, for kf = 0.47, 0.55, 0.71, 0.76, 0.78. In the case
kf = 0.95, 1.19 the periodic structures length is twice the forced one (subharmonic).
We note a transition from Kobs = 2 kf to Kobs = kf for 0.41 < kf < 0.47, and to
Kobs = kf /2 for 0.78< kf < 0.95. In figure 8(c) we plot the three dispersion relations
for the fundamental harmonic, subharmonic and superharmonic. The fundamental
harmonic dispersion relation intersects the superharmonic at k(1)f = 1/

√
5 ' 0.45,

and the subharmonic at k(2)f = 2/
√

5 ' 0.89. The grey-shaded areas in figure 8(b,c)
identify the region in which the fundamental harmonic has a greater growth rate,
(k(1)f < kf < k(2)f ). In this region we experimentally observe Kobs = kf . The film selects
the most unstable harmonic among the unstable ones. Even in presence of a high
amplitude forcing, the linear theory well predicts the resulting pattern. In particular,
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FIGURE 8. (a) Detail of the comb-like blade and rivulets visualization using the distortion
technique, for θ = 55◦, hN = 0.4 lc = 594 µm, kf = 0.41 (u = 1.9). The forcing comb is
placed over the inlet (red lines on the top of the figure); the white lines represent the
film thickness. The dashed yellow lines have been added in post-processing to highlight
the rivulets peaks. In this case, we have Kobs = 2 kf . (b) Kobs as a function of the forcing
wavenumber kf ; the black dots are the experimental results. (c) Linear dispersion relations
for the fundamental harmonic, superharmonic and subharmonic. In (b, c), the solid lines
are, respectively, Kobs= 2 kf (superharmonic, orange line), Kobs= kf (fundamental harmonic,
red line), Kobs= kf /2 (subharmonic, blue line); the grey shaded area is the region in which
the fundamental harmonic has the highest growth rate.

there is a narrow range of possible rivulets, of periodic length
√

5π< Ly < 2
√

5π. In
the following, we focus on the wavelength that has the maximum growth rate in the
linear dispersion relation, i.e. Ly = 2π

√
2' 8.89.

5.3. The optimal rivulet
In § 5.1, the simulations indicate the emergence of a rivulet state which is invariant
both in time and along the streamwise direction. Exploiting the time invariance, the
steady version of the general thin film equation (3.6) could be solved but it remains
an elliptic nonlinear partial differential equation in (x, y). Under the assumption
∂/∂x� ∂/∂y, this equation can be further parabolized and marched downstream in x
to yield the fully developed x and t invariant rivulet profile. Alternatively, we preferred
to exploit directly the streamwise x-invariance observed sufficiently downstream and
solve the naturally parabolic time evolution towards the steady rivulet profile. However,
the resulting one-dimensional problem in y satisfies the conservation of mass in the
cross-section; on the other hand, in the initial two-dimensional problem the flow
rate, and not the mass, is conserved, for each transversal section. We refer to the
first case as closed flow condition and to the second as open flow condition. Here,
the concepts of open and closed flow conditions slightly differ from the definitions
given in Kalliadasis et al. (2011), in which they relate to the streamwise boundaries,
since, in our case, the flow is perpendicular to the wavy profile. In order to impose
the open flow condition in the one-dimensional problem in y, we start from the
Stokes equations in (y, z), complemented by the boundary conditions. We impose the
constraint on the transverse flow rate (in the x direction) by introducing a parameter
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σ(t) in the continuity equation, i.e. ∂uy/∂y + ∂uz/∂z = σ , relaxing the hypothesis
of mass conservation in the cross-section. The derivation of the thin film equation
follows the classical one and leads to the following equation to be numerically solved:

∂h
∂t
+

1
3
∂

∂y

[
h3

(
∂κ

∂y
+
∂h
∂y

)]
= σh, (5.1)

with periodic boundary conditions at the border of the domain y ∈ [0, 2π
√

2]; the
curvature can be expressed as κ = (∂2h/∂y2)/(1+ ∂h/∂y2)3/2.

We consider the non-dimensionalized Nusselt streamwise velocity profile (Kalliadasis
et al. 2011) at each spanwise location

uN(y, z, t)= cot(θ) ˜̀c
∗ 1

2 z(2h(y, t)− z). (5.2)

The flow rate can be expressed as

q(t)=
∫ 2π

√
2

0

{∫ h(y)

0
uN(y, z, t) dz

}
dy. (5.3)

Starting from a flat film (i.e. h(y, t = 0) = 1), the initial flow rate is qi =

(1/3)2π
√

2 cot(θ) ˜̀c
∗

. At each time t the flow rate is required to stay constant and
equal to its initial value qi; this condition can be achieved by imposing the correct
value of σ at each time t. In the equation q(t) = qi the term cot(θ) ˜̀c

∗

simplifies
and so both the flow rate constraint and the non-dimensionalized equation (5.1) are
independent on the angle θ and ˜̀c

∗

.
The numerical implementation is based on a Fourier spectral method for the spatial

derivatives, and on a second-order Crank–Nicolson scheme, implemented in the
built-in MATLAB routine ode23t, for the time integration. At each time step the value
of σ is obtained iteratively imposing the condition on the flow rate. The numerical
simulation is stopped at t = t∗, when the L2 norm of the difference between two
successive time steps ‖ δh ‖L2= 1/δt ‖ h(t+ δt)− h(t) ‖L2 is less than a fixed tolerance
ε = 10−6. During the simulation σ is always smaller than 10−2 and approaches 10−6

when the simulation is stopped. In figure 9(a) we see the evolution of the maximum
and minimum thickness of the rivulet profile (red lines). The maximum thickness
over the domain reaches a constant value maxy(h)= 1.71. The minimum thickness is
decreasing and decays with the law miny(h) ∼ t−1/2 (black dotted line in figure 9a),
as already observed in Yiantsios & Higgins (1989). In figure 9(b) the rivulet profiles
for different models are reported. The red solid line indicates the model defined
above. We can distinguish between two regions: a side lobe, characterized by a very
low thickness, and a central lobe, in which the maximum thickness is localized.
The limit of these regions is defined by the position ymin of the minimum thickness;
this position is slowly moving. The evolution of the central lobe reveals that in a
large region near the maximum thickness the profile reaches a saturated state, while
near the minimum thickness the shape is slowly evolving. The comparison with the
two-dimensional (x, y) simulations of the lubrication equation (black circles) shows
a very good agreement between the two models, in particular in terms of maximum
thickness and central lobe profile. We define the equivalent Nusselt thickness h̄N
of the rivulet profile as the mean of the thickness across the width of the rivulet
(h̄N = (1/Ly)

∫ Ly

0 h dy), when t= t∗. The equivalent Nusselt thickness of our computed
solution is h̄N = 0.54. In figure 9(a,b) we show the case of closed flow condition,
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FIGURE 9. (a) Evolution of the maximum and the minimum thickness for the
one-dimensional model, open flow condition (red lines) and closed flow condition
with h(y, t = 0) = 0.54 (black lines). The dashed lines are the long-time behaviour
of the maximum and minimum thickness. (b) Rivulets profile for different models:
one-dimensional open flow model (red solid line); closed flow model with initial condition
h(y, t= 0)= 0.54 (black dashed line); two-dimensional thin film equation (black circles);
and one-dimensional open flow model with linearized curvature (blue dashed line). The
vertical black dotted lines identify the minimum thickness locations, that separate the side
lobes region and the central lobe.

obtained imposing σ = 0 in (5.1), with the fictitious initial thickness h(y, t= 0)= 0.54
(black lines). The comparison reveals that the long-time behaviour of the maximum
and minimum thickness of the two models is the same, and the profiles are perfectly
matching.

The hypothesis of the existence of a saturated state in the streamwise direction is
confirmed by our one-dimensional analysis, which agrees with the two-dimensional
simulations and consequently with the experimental profiles. Thanks to the chosen
non-dimensionalization, the profile does not depend on the flow parameters, and is
therefore unique for all the flow conditions. The agreement between the open and
closed flow models is related to the evolution of the rivulet profile at long times.
The flow rate can be seen as the sum of two contributions, one given by the side
lobes region and the other by the central lobe. At long times the relative evolution of
the thickness in the central lobe is negligible, in particular in the regions in which
the thickness is high. Conversely the side lobe regions are draining. From a more
physical point of view, we expect the film to continue thinning until intermolecular
forces arise (≈100 nm), which can either lead to de-wetting (as in thermocapillary
or Marangoni instability (Scheid 2013)) or to more complex phenomena (Boos &
Thess 1999; Craster & Matar 2009). The physics at the molecular scale is beyond
the scope of this paper. The flow rate is related to the cube of the thickness; the
contribution of the side lobes region and near ymin (h∼10−1) is negligible compared to
the contribution near the maximum height (h∼1). When the central lobe has saturated,
the overall flow rate evolution becomes extremely small. Consequently, σ ' 0, and the
mass is eventually also conserved. This leads to a good agreement between open and
closed flow conditions with appropriate parameters, h(y, t= 0)= 0.54.

The present study can be repeated in the case of linearized curvature, i.e. κ =
∂2h/∂y2, which is reported in figure 9(b), for the one-dimensional open flow case (blue
dashed line). The model with linearized curvature shows a different profile, and in
particular the maximum thickness is underestimated. The use of linearized curvature
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may indeed lead to an incorrect evaluation of the equivalent Nusselt thickness and the
flow rate.

5.4. The two-dimensional static pendent drop
In this section we analyse the static equilibrium of a two-dimensional pendent drop.
We consider a two-dimensional thin liquid film on the underside of a wall; we define a
coordinate system (y, z), where z is the normal direction to the substrate. We introduce
a curvilinear abscissa ŝ on the interface, and the angle ψ between the interface and
the substrate.

The pressure drop at the interface is given by the Laplace law

p̂= p̂0 − γ
dψ
d ŝ

at ẑ= ĥ(ŝ), (5.4)

where γ is the surface tension and p̂0 the exterior pressure. The normal to the
substrate component of the momentum equation reads

∂ p̂
∂ ẑ
=−ρg sin(θ)ẑ. (5.5)

We derive with respect to ŝ the equation (5.4) and we substitute the pressure
gradient (5.5)

γ
d2ψ

d ŝ2
=−ρg sin(θ)

d ẑ
d ŝ

at ẑ= ĥ(ŝ), (5.6)

Using the geometrical relation dĥ/d ŝ= sin(ψ), the equation in dimensional form reads

d2ψ

d ŝ2
=−

1
`∗2c

sin(ψ). (5.7)

We non-dimensionalize ŝ with respect to the reduced capillary length `∗c and recover
the pendulum equation

d2ψ

ds2
=−sin(ψ). (5.8)

As first pointed out by Maxwell (1875), there is an analogy between the shape of
the interface of a pendent drop and the large deformations of a compressed elastic rod
(the ‘elastica’). Both phenomena are described by the pendulum equation (Roman, Gay
& Clanet 2020; Zaccaria et al. 2011; Duprat & Stone 2015).

We compare the central lobe of the rivulet profile with a two-dimensional pendent
drop in total wetting conditions, i.e. ψ(0) = 0 and h(0) = 0. The thickness and
the corresponding spanwise location are recovered integrating dh/ds = −sin(ψ) and
dy/ds = cos(ψ). The last boundary condition is relative to the initial curvature of
the profile: dψ/ds(0) = ψ ′0. The simulation is stopped when a second zero of the
thickness h(s∗)= 0 is reached; the width 1Ly between the two zeros is the lateral size
of the pendent drop. We obtain a family of profiles depending on ψ ′0. Each profile
has a different maximum height and width 1Ly, and thus in equivalent flow rate
qs = q/ cot(θ) ˜̀c

∗

(that can be evaluated using (5.2), (5.3)). According to figure 10(a),
the flow rate increases monotonically with the initial curvature: for each value of ψ ′0,
there is a unique value of the flow rate. Increasing ψ ′0 leads to an increase of the
maximum thickness and a decrease of 1Ly. We choose the initial curvature to obtain
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FIGURE 10. (a) Evolution of the equivalent flow rate qs = q/ cot(θ) ˜̀c
∗

with the initial
curvature, for different two-dimensional pendent drops, using the pendulum equation; the
red dashed lines identify the flow rate and the initial curvature for the rivulet profile.
(b) Rivulet profile for the one-dimensional open-flow model (red line), pendulum equation
(black diamonds) and Stokes equations (blue crosses).

the correct rivulet flow rate (i.e. qs = (1/3)2π
√

2 ' 2.96). In this way, we neglect
the flow rate in the side lobes regions. The value of the initial curvature that ensures
the correct flow rate is ψ ′0 = 0.86. In figure 10(b) the solution (black diamonds)
is compared with the solution of the one-dimensional open flow thin film equation
(red solid line, already shown in figure 9b). The pendulum equation result agrees
with the rivulet profile; the maximum height is maxy(h) = 1.713, the first minimum
thickness is located at ymin = 1.77 and 1Ly = 5.346, close to the thin film equation
values (hmax= 1.7096, ymin= 1.74, 1Ly= 5.405). In the thin film equation results, the
side lobes regions are draining; the minimum location is moving and 1Ly is slowly
getting closer to the value identified with the pendent drop analogy.

As a final point, we compare the results with a direct numerical simulation of the
2-D Stokes equation in the (y, z) plane. Using the built-in COMSOL Multiphysics
moving mesh solver for the Stokes equations, we study the evolution in the (y, z)
plane of a static two-dimensional pendent drop on the underside of a flat wall. The
domain is a rectangular box of lateral size Ly = 2π

√
2, in which periodic conditions

are imposed on the sides. On the upper boundary we apply a no-slip condition, while
on the lower one the free-interface conditions. Moreover, the lower boundary is free to
deform and move according to the interface deformation. The initial condition is given
by the initial mesh, which vertical size is equal to h(x, t= 0)= h̄N(1+A cos(2πy/Ly)),
where A = 10−3; h̄N = 0.54 is the equivalent Nusselt thickness that gives the correct
flow rate at long times. The results (blue crosses in figure 10b) agree with the previous
models.

While the side lobes region is characterized by a slowly decreasing small thickness,
the central lobe saturates. The shape of the central lobe is governed by the statics of
the interface, and in particular by the equilibrium of hydrostatic pressure and capillary
effects, described by the pendulum equation. This balance perfectly predicts the rivulet
profile.

6. Conclusion and discussion
In this work, we have built a novel experiment of a continuously flowing viscous

film below an inclined flat substrate.
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We first verified the validity of the simplest thin film equation with a quantitative
comparison with experimental thickness profiles obtained with a forcing at the inlet.
We measured the perturbation penetration based on a calculation of the front angle,
using a standard method (spatial theory) with a novel approach (two-dimensional
‘spatio-spatial’ theory). We found a good agreement with our experiment meaning
that the front velocity is dictated by the linear behaviour (Van Saarloos 2003). This
front calculation was similar to previous temporal studies of the front velocity below
a horizontal substrate (Limat et al. 1992) and of absolute to convective transition
below a tilted substrate (Brun et al. 2015). In our case, we exploited the steadiness
of the experimental film response to compute a time-independent linear response.

The flow was modelled by a thin film equation, with a low Reynolds number
and a curvature term that is not simplified. Numerical simulations showed a good
agreement with our experiment. In this equation, short waves were linearly inherently
damped by surface tension and nonlinear structures quickly saturate when the film
becomes thinner. The most non-stationary structures are spanwise invariant, as they
have an oscillating phase when advected downstream. However, those spanwise
structures are nonlinearly damped by the system which selects streamwise structures,
i.e. stationary rivulets. We observed that the linear wavelength selection mechanism
still applies when the film is strongly forced with a non-sinusoidal function. The
selected wavelength is chosen among the spatial period of the forcing and its multiples.
This selection implies a narrow range of possible rivulets, centred around the most
unstable linear wavelength. Within this range we studied the rivulet that has the
same period as the most unstable linear wave. We showed that the rivulet profile
can be recovered with a flow rate-preserving (open flow condition), one-dimensional
lubrication equation in the spanwise direction accounting for the full curvature. We
managed to obtain exactly the same profile without the open flow condition but with
an appropriate initial condition that matches the correct final flow rate (closed flow
condition). We compared the obtained central rivulet profile with a 2-D pendent drop
in total wetting and obtain a perfect agreement. The rivulet shape results from a
perfect balance between gravity and surface tension of a two-dimensional drop. We
then compare the different models with a 2-D direct numerical simulation of a Stokes
flow in a periodic domain and find a good agreement.

In conclusion, we found a wide range of parameters for which rivulets are quasi-
saturated and steady while the flat film is linearly convectively unstable. In this case,
the thin film is unlikely to drip even though the flat film is linearly unstable. In the
whole scenario of dripping of an overhanging liquid, these results suggest that a thin
film would not immediately go from a flat state to a dripping state, but rather go by
an intermediate state. In a certain range of parameters, the final state would be rivulets
that are exactly two-dimensional pendent drops. The dripping might be linked to the
secondary instability, i.e. the stability of the rivulet itself, more than to the stability of
the flat film. In this process, we saw that the dripping could be stabilized by rivulets,
but, dripping might also be enhanced by rivulets, that could act as a catalyst.
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FIGURE 11. (a) Comparison of spatial growth rate to rescaled temporal growth rate
ω/(3u) for different u (from curve with highest to lowest growth rate, u= 0.6; 1.5; 3; 5).
(b) Comparison as a function of u of the dominant wavenumber Re(ky) from the spatial
theory (blue) and the temporal theory (red).
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Appendix A. Spatio-temporal theory
The purpose of this appendix is to show the close link between the ‘spatio-spatial’

dispersion relation kx(ky) properties and those of the temporal dispersion relation ω(k).
We begin by comparing the spatial growth rate, −Im(kx(ky)), to its temporal

approximation, Im(ω(ky))/u, in figure 11(a). For high values of u (the one considered
in the present study), the spatial growth rate is very well predicted by the temporal
growth rate of a wave advected at the velocity u. We observe a small shift of the
dominant wavenumber that we plot as a function of u in figure 11(b); the temporal
approximation for the dominant wavenumber is valid in our range of u.

In a spatio-temporal theory, we compute the maximum velocity cg0 at which
an unstable wave packet can propagate, and similarly to the temporal growth rate
prediction, we will assume this wave packet to be advected at velocity u. Due
to the isotropy of the dispersion relation, except within the purely non-dispersive
ukx advection part, the prediction obtained in one dimension of space immediately
translates to two dimensions, i.e. an initially isotropic wave packet grows with a
circular edge invading the flat film at a front velocity of (u cos(α)+ cg0)eα in any eα
direction.

With the ansatz h′ ∝ e(kx−ωt) in (3.6), the spatio-temporal dispersion relation reads

ω(k)=
i
3
(|k|2 − |k|4)+ cot θ ˜̀c

∗︸ ︷︷ ︸
u

kx. (A 1)

We assume ω and k to be complex

ωr =
1
3 kr(ki(4k2

r − 2)− 4k3
i + 3u), (A 2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

39
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.396


Thin viscous film flowing under an inclined planar substrate 898 A6-23

0 2 4
u

6

10

20

30

ƒ 
(d

eg
.)

40

50

60

FIGURE 12. Prediction of the front angle φ as a function of u according to
the ‘spatio-spatial’ theory described in the body of the text (blue curve) and the
spatio-temporal theory (dashed red curve).

ωi =
1
3(−k4

i + k2
i (6k2

r − 1)+ k2
r − k4

r ). (A 3)

We then look for a real group velocity cg = ∂ωi/∂ki, imposing ∂ωi/∂kr = 0 which
implies if kr 6= 0,

kr =

√
6k2

i + 1
2

, (A 4)

and then
cg =

1
3(32k3

i + 4ki). (A 5)

In order to determine the fastest velocity at which a perturbation can invade the
domain, i.e. the front velocity cg0, we look for the velocity on rays where the spatio-
temporal growth rate is equal to zero, i.e. (Van Saarloos 2003; King et al. 2016)

ωi|cg =ωi − cg0ki = 0, (A 6)

cg0 =
1
3

√
34+ 14

√
7

√
27

≈ 0.54. (A 7)

This calculation was done in Duprat et al. (2007) and Brun et al. (2015) and was
applied in Limat et al. (1992) to compute the front velocity of the perturbation in the
horizontal case θ =π/2.

In the present study, we can focus on a perturbation composed of waves that have
their wave vectors (and their group velocity) along the spanwise y direction, k= (0, ky)
and cg= cgey. The fastest group velocity cg0 and the downstream advection u are now
orthogonal and we define the front angle as

φ = arctan
cg0

u
. (A 8)

The resulting φ obtained with the spatio-temporal theory is plotted in figure 12
along with the front angle computed from the ‘spatio-spatial’ theory used in the study.
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