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Abstract We formulate and study a new coarse (co-)assembly map. It involves a modification of the
Higson corona construction and produces a map dual in an appropriate sense to the standard coarse
assembly map. The new assembly map is shown to be an isomorphism in many cases. For the underlying
metric space of a group, the coarse co-assembly map is closely related to the existence of a dual Dirac
morphism and thus to the Dirac dual Dirac method of attacking the Novikov conjecture.
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1. Introduction

It is shown in [7] that a torsion free discrete group G with compact classifying space BG

has a dual Dirac morphism (in the sense of [17]) if and only if a certain coarse co-assembly
map

µ∗ : K̃∗+1(c(G)) → KX∗(G)

is an isomorphism. The C∗-algebra c(G) is called the stable Higson corona of G and up to
isomorphism only depends on the coarse structure of G. The Z/2-graded Abelian group
KX∗(G) is called the coarse K-theory of G and also depends only on the coarse structure
of G. Essentially the same result holds for torsion free, countable, discrete groups with
finite-dimensional BG. In particular, for this class of groups, the existence of a dual
Dirac morphism is a geometric invariant of G. In this article we introduce and study the
map µ∗ in detail. In particular, we

(1) examine the relationship between µ∗ and the ordinary coarse Baum–Connes assem-
bly map, and between c(G) and compactifications of G;

(2) establish isomorphism of µ∗ for scalable spaces;

(3) establish isomorphism of µ∗ for groups which uniformly embed in Hilbert space.

https://doi.org/10.1017/S147474800500023X Published online by Cambridge University Press

https://doi.org/10.1017/S147474800500023X


162 H. Emerson and R. Meyer

The stable Higson corona c(X) has better functoriality properties than the C∗-algebra
C∗(X) that figures in the usual coarse Baum–Connes assembly map (see [13,19,20,24–
27]). The assignment X �→ c(X) is functorial from the coarse category of coarse spaces to
the category of C∗-algebras and C∗-algebra homomorphisms. The analogous statement
for the coarse C∗-algebra C∗(X) is true only after passing to K-theory. Moreover, the
C∗-algebra c(X) is designed to be closely related to certain bivariant Kasparov groups.
This is the source of a homotopy invariance result, which implies our assertion for scalable
spaces. Another advantage of the stable Higson corona and the coarse co-assembly map is
their relationship with alternative approaches to the Novikov conjecture, namely, almost
flat K-theory (see [4]) and the Lipschitz approach of [5].

The map µ∗ is an isomorphism for any discrete group G that has a dual Dirac mor-
phism, without any hypothesis on BG. This is how we are going to prove isomorphism
of µ∗ for groups that uniformly embed in a Hilbert space: we show that such groups have a
dual Dirac morphism. Actually, already the existence of an approximate dual Dirac mor-
phism implies that µ∗ is an isomorphism. Using results of Kasparov and Skandalis [16],
it follows that the coarse co-assembly map is an isomorphism for groups acting properly
by isometries on bolic spaces. The usual coarse Baum–Connes conjecture for a group G is
equivalent to the Baum–Connes conjecture with coefficients �∞(G) [25]. Despite this, it
is not known whether the existence of an action of G on a bolic space implies the coarse
Baum–Connes conjecture for G. The existence of a dual Dirac morphism only implies
split injectivity of the coarse Baum–Connes assembly map.

Given the above observations, we expect the coarse co-assembly map to become a
useful tool in connection with the Novikov conjecture. However, at the moment we have
no examples of groups for which our method proves the Novikov conjecture while others
fail. We also remark that we do not know whether the map µ∗ is an isomorphism for the
standard counterexamples to the coarse Baum–Connes conjecture.

2. Coarse spaces

We begin by recalling the notion of a coarse space and some related terminology (see [13,
20]). Then we introduce σ-coarse spaces, which are useful to deal with the Rips complex
construction.

Let X be a set. We define the diagonal ∆X , the transpose of E ⊆ X × X, and the
composition of E1, E2 ⊆ X × X by

∆X := {(x, x) ∈ X × X | x ∈ X},

Et := {(y, x) ∈ X × X | (x, y) ∈ E},

E1 ◦ E2 := {(x, z) ∈ X × X | (x, y) ∈ E1 and (y, z) ∈ E2 for some y ∈ X}.

Definition 2.1. A coarse structure on X is a collection E of subsets E ⊆ X ×X—called
entourages or controlled subsets—which satisfy the following axioms:

(1) if E ∈ E and E′ ⊆ E, then E′ ∈ E as well;

(2) if E1, E2 ∈ E , then E1 ∪ E2 ∈ E ;
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(3) if E ∈ E , then Et ∈ E ;

(4) if E1, E2 ∈ E , then E1 ◦ E2 ∈ E ;

(5) ∆X ∈ E ;

(6) all finite subsets of X × X belong to E .

A subset B of X is called bounded if B × B is an entourage. A collection of bounded
subsets (Bi) of X is called uniformly bounded if

⋃
Bi × Bi is an entourage.

A topology and a coarse structure on X are called compatible if

(7) some neighbourhood of ∆X ⊆ X × X is an entourage;

(8) every bounded subset of X is relatively compact.

A coarse space is a locally compact topological space equipped with a compatible
coarse structure.

Since the intersection of a family of coarse structures is again a coarse structure, we
can define the coarse structure generated by any set of subsets of X ×X. We call a coarse
structure countably generated if there is an increasing sequence of entourages (En) such
that any entourage is contained in En for some n ∈ N. If X is a coarse space and Y ⊆ X

is a closed subspace, then E ∩ (Y × Y ) is a coarse structure on Y called the subspace
coarse structure.

Let X be a coarse space. Then the closure of an entourage is again an entourage. Hence
the coarse structure is already generated by the closed entourages. Using an entourage
that is a neighbourhood of the diagonal, we can construct a uniformly bounded open
cover of X. This open cover has a subordinate partition of unity because X is locally
compact. We shall frequently use this fact.

Example 2.2. Let (X, d) be a metric space. The metric coarse structure on X is the
countably generated coarse structure generated by the increasing sequence of entourages

ER := {(x, y) ∈ X × X | d(x, y) � R}, R ∈ N.

A subset E ⊆ X×X is an entourage if and only if d : X×X → R+ is bounded on E. Note
that this coarse structure depends only on the quasi-isometry class of d. The metric d

also defines a topology on X. This topology and the coarse structure are compatible and
thus define a coarse space if and only if bounded subsets of X are relatively compact.
We call (X, d) a coarse metric space if this is the case.

Conversely, one can show that any countably generated coarse structure on a set X

can be obtained from some metric on X as above. However, if X also carries a topology,
it is not clear whether one can find a metric that generates both the coarse structure and
the topology.

Example 2.3. Any locally compact group G has a canonical coarse structure that is
invariant under left translations. It is generated by the entourages

EK := {(g1, g2) ∈ G × G | g−1
1 g2 ∈ K},
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where K runs through the compact subsets of G. Together with the given locally compact
topology on G, this turns G into a coarse space.

A coarse map φ : X → Y between coarse spaces is a Borel map which maps entourages
in X to entourages in Y and which is proper in the sense that inverse images of bounded
sets are bounded. Two coarse maps φ, ψ : X → Y are called close if (φ×ψ)(∆X) ⊆ Y ×Y

is an entourage. The coarse category of coarse spaces is the category whose objects are
the coarse spaces and whose morphisms are the equivalence classes of coarse maps, where
we identify two maps if they are close. A coarse map is called a coarse equivalence if it is
an isomorphism in this category. Two coarse spaces are called coarsely equivalent if they
are isomorphic in this category.

Lemma 2.4. Let X be a countably generated coarse space. Then there exists a countable
discrete subset Z ⊆ X such that the inclusion Z → X is a coarse equivalence. Here we
equip Z with the subspace coarse structure and the discrete topology. Thus X is coarsely
equivalent to a countably generated, discrete coarse space.

Proof. We claim that any countably generated coarse space is σ-compact. To see this,
fix a point x0 ∈ X and an increasing sequence (En) of entourages that defines the coarse
structure. The sets Kn := {x ∈ X | (x, x0) ∈ En} are bounded and hence relatively
compact. Their union is all of X because

⋃
En = X × X. Thus X is σ-compact. Let (Bi)

be a uniformly bounded open cover of X. By σ-compactness, we can choose a countable
partition of unity (ρn) on X subordinate to this covering. Let B′

n := ρ−1
n ((0,∞)). These

sets form a countable, locally finite, uniformly bounded open covering of X. Choose a
point xn in each B′

n. The subset Z := {xn} has the required properties. �

We shall also use formal direct unions of coarse spaces, which we call σ-coarse spaces.
Let (Xn)n∈N be an increasing sequence of subsets of a set X with X =

⋃
Xn such that

each Xn is a coarse space and the coarse structure and topology on Xm are the subspace
coarse structure and topology from Xn for any n � m. Then we can equip X with
the direct limit topology and with the coarse structure that is generated by the coarse
structures of the subspaces Xn. This coarse structure is compatible with the topology,
but the topology need not be locally compact. In this situation, we call the inductive
system of coarse spaces (Xn) or, by abuse of notation, its direct limit X a σ-coarse space.
We define σ-locally compact spaces similarly. Notice that the system (Xn) is part of the
structure of X even if the direct limit topology on X is locally compact.

Example 2.5. Let (X, d) be a discrete metric space with the property that bounded
subsets are finite. Let Pn(X) denote the set of probability measures on X whose support
has diameter at most n. This is a locally finite simplicial complex and hence a locally
compact topological space. We equip Pn(X) with the coarse structure generated by the
increasing sequence of entourages

{(µ, ν) ∈ Pn(X) × Pn(X) | suppµ × supp ν ⊆ ER}
for R ∈ N, with ER as in Example 2.2. This turns Pn(X) into a coarse space for any
n ∈ N and turns PX :=

⋃
Pn(X) into a σ-coarse space. We discuss this example in

greater detail in § 4.
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Example 2.6. Let G be a second countable, locally compact group and let X be a
G-compact, proper G-space. We equip X with the coarse structure that is generated by
the G-invariant entourages

EL :=
⋃
g∈G

gL × gL, L ⊆ X compact.

Since X is necessarily σ-compact, this coarse structure is countably generated. It is also
compatible with the topology of X, so that X becomes a countably generated coarse
space. For X = G with the action by left translation, this reproduces the coarse struc-
ture of Example 2.3. For any x ∈ X, the orbit map G → X, g �→ g · x, is a coarse
equivalence, and these maps for different points in X are close. Thus we obtain a canon-
ical isomorphism X ∼= G in the coarse category of coarse spaces.

Let E
¯
G denote a second countable, not necessarily locally compact model for the

classifying space for proper actions of G as in [1]. We can write E
¯
G as an increasing union

of a sequence of G-compact, G-invariant, closed subsets Xn ⊆ E
¯
G. Turning each Xn into

a coarse space as above, we turn E
¯
G into a σ-coarse space.

In the above two examples, the maps Xn → Xn+1 are coarse equivalences. This hap-
pens in all examples that we need, and the general case is more difficult. Therefore, we
restrict attention in the following to σ-coarse spaces for which the maps Xn → Xn+1 are
coarse equivalences.

3. Functions of vanishing variation

Let X be a coarse space and let D be a C∗-algebra. We define the C∗-algebras c̄(X, D)
and c(X, D) and discuss their relationship to the Higson compactification and the Hig-
son corona and to admissible compactifications. Then we investigate their functoriality
properties.

Definition 3.1. Let X be a σ-coarse space and let Y be a metric space. Let f : X → Y be
a Borel map (that is, f |Xn

is a Borel map for all n ∈ N). For an entourage E ⊆ Xn ×Xn,
n ∈ N, we define

VarE : Xn → [0,∞), VarE f(x) := sup{d(f(x), f(y)) | (x, y) ∈ E}.

We say that f has vanishing variation if VarE vanishes at ∞ for any such E, that is, for
any ε > 0 the set of x ∈ Xn with VarE f(x) � ε is bounded.

If the coarse structure comes from a metric d on X, we also let

VarR f(x) := sup{d(f(x), f(y)) | d(x, y) � R}

for R ∈ R+. This is the variation function associated to the entourage ER defined in
Example 2.2. Hence we can also use the functions VarR f to define vanishing variation.

Definition 3.2. For any coarse space X and any C∗-algebra D, we let c̄(X, D) be
the C∗-algebra of bounded, continuous functions of vanishing variation X → D ⊗ K.
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Here K denotes the C∗-algebra of compact operators on a separable Hilbert space. The
quotient c(X, D) := c̄(X, D)/C0(X, D ⊗ K) is called the stable Higson corona of X with
coefficients D.

Note 3.3. When D = C we abbreviate c̄(X, D) and c(X, D) to c̄(X) and c(X), respec-
tively, and call c(X) the stable Higson corona of X.

The reason for our terminology is the analogy with the Higson corona constructed
in [11]. Let X be a coarse metric space. The Higson compactification ηX of X is the
maximal ideal space of the C∗-algebra of continuous, bounded functions X → C of
vanishing variation. The Higson corona of X is ∂ηX := ηX\X. By construction, Mn(C)⊗
C(ηX) = C(ηX, Mn) is the C∗-algebra of bounded, continuous functions X → Mn(C)
of vanishing variation and C(∂ηX, Mn(C)) = C(ηX, Mn(C))/C0(X, Mn(C)). Of course,
these C∗-algebras are contained in c̄(X) and c(X), respectively. Since K = lim−→ Mn(C),
we also obtain canonical embeddings

K ⊗ C(ηX) ∼= C(ηX, K) ⊆ c̄(X), K ⊗ C(∂ηX) ∼= C(∂ηX, K) ⊆ c(X).

Similarly, we obtain embeddings

C(ηX, D ⊗ K) ⊆ c̄(X, D), C(∂ηX, D ⊗ K) ⊆ c(X, D)

for any C∗-algebra D. It turns out that c̄(X) is strictly larger than C(ηX, K). If f ∈
C(ηX, K), then f(X) ⊆ f(ηX) must be a relatively compact subset of K. Conversely,
one can show that a continuous function X → K of vanishing variation with relatively
compact range belongs to C(ηX, K). However, functions in c̄(X) need not have relatively
compact range.

It is often preferable to replace the Higson compactification by smaller ones that are
metrizable. This is the purpose of the following definition.

Definition 3.4 ([12]). Let X be a metric space and let i : X → Z be a metrizable
compactification of X. We call Z admissible if there is a metric on Z generating the
topology on Z for which the inclusion i : X → Z has vanishing variation.

Example 3.5. The following are examples of admissible compactifications:

(1) the one-point compactification of an arbitrary metric space;

(2) the hyperbolic compactification of a metric space that is hyperbolic in the sense of
Gromov;

(3) the visibility compactification of a complete, simply connected, non-positively
curved manifold.

Proposition 3.6. Let X be a metric space and let i : X → Z be an admissible com-
pactification of X. Then there are canonical injective ∗-homomorphisms

C(Z, D ⊗ K) → C(ηX, D ⊗ K) → c̄(X, D),

C(Z \ X, D ⊗ K) → C(∂ηX, D ⊗ K) → c(X, D)

for any C∗-algebra D.
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Any class in K∗(C(∂ηX, D ⊗ K)) is the image of a class in K∗(C(Z \ X, D ⊗ K)) for
some admissible compactification Z.

Proof. The admissible compactifications of X are exactly the metrizable quotients of the
Higson compactification ηX. Thus the C∗-algebras C(Z) for admissible compactifications
of X are exactly the separable C∗-subalgebras of C(ηX). This implies the corresponding
assertion for C(Z\X) and C(∂ηX) and also for tensor products with D⊗K. The assertion
about K-theory follows because any C∗-algebra is the inductive limit of its separable C∗-
subalgebras and K-theory commutes with inductive limits. �

Even on the level of K-theory, C(ηX, K) and c̄(X) are drastically different. The induced
map K∗(C(ηX, K)) → K∗(c̄(X)) is uncountable-to-one already in rather simple examples,
as we shall see in § 5. The map K∗(C(ηX, K)) → K∗(c̄(X)) may also fail to be surjective.
For instance, this happens for the well-spaced ray (see Example 6.5 below). However,
we do not know of a uniformly contractible example with this property. If the map
K∗(C(ηX, K)) → K∗(c̄(X)) is surjective, then Proposition 3.6 yields that any class in
K∗(c̄(X)) can already be realized on some admissible compactification.

Now we turn to the functoriality of the algebras c̄(X, D) and c(X, D) with respect to
the coarse space X. The functoriality in the coefficient algebra D is analysed in § 7. It is
evident that c̄(X, D) and c(X, D) and the extension

0 → C0(X, D ⊗ K) → c̄(X, D) → c(X, D) → 0

are functorial for continuous coarse maps X → X ′. Of course, the morphisms in the
category of C∗-algebras are the ∗-homomorphisms. We can drop the continuity hypothesis
for c(X, D).

Proposition 3.7. Let D be a C∗-algebra and let X and Y be coarse spaces. A coarse
map φ : X → Y induces a ∗-homomorphism φ∗ : c(Y, D) → c(X, D). Close maps induce
the same ∗-homomorphism c(Y, D) → c(X, D). Thus the assignment X �→ c(X, D) is
a contravariant functor from the coarse category of coarse spaces to the category of
C∗-algebras.

Proof. We identify c(X, D) with another C∗-algebra that is evidently functorial for
Borel maps. Let B0(X, D⊗K) be the C∗-algebra of bounded Borel functions X → D⊗K

that vanish at infinity. Let b̄(X, D) consist of bounded Borel functions X → D ⊗ K

with vanishing variation and let b(X, D) := b̄(X, D)/B0(X, D ⊗ K). It is evident that
B0(X, D ⊗ K) and b̄(X, D) and hence b(X, D) are functorial for coarse maps. Moreover,
if φ, φ′ : X → Y are close and f ∈ b(Y, D), then f ◦ φ − f ◦ φ′ vanishes at infinity. Hence
φ and φ′ induce the same map b(Y, D) → b(X, D).

It is clear that

C0(X, D ⊗ K) ⊆ B0(X, D ⊗ K), c̄(X, D) ⊆ b̄(X, D).

Hence we get an induced ∗-homomorphism j : c(X, D) → b(X, D). We claim that this
map is an isomorphism. Once this claim is established, we obtain the desired functoriality
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of c(X, D). Injectivity and surjectivity of j are equivalent to

C0(X, D ⊗ K) = B0(X, D ⊗ K) ∩ c̄(X, D),

b(X, D) = c(X, D) + B0(X, D ⊗ K),

respectively. The first equation is evident. We prove the second one. Let E ⊆ X × X be
an entourage that is a neighbourhood of the diagonal. We remarked after Definition 2.1
that there exists a uniformly bounded open cover (Bi) of X with

⋃
Bi × Bi ⊆ E. Let (ρi)

be a partition of unity subordinate to (Bi) and fix points xi ∈ Bi. Take f ∈ b(X, D) and
define

Pf(x) :=
∑

ρi(x)f(xi).

It is clear that Pf is continuous. Since f has vanishing variation, there exists a bounded
set Σ ⊆ X such that ‖f(x) − f(y)‖ < ε for (x, y) ∈ E and x /∈ Σ. Hence

‖(f − Pf)(x)‖ �
∑

ρi(x)‖f(x) − f(xi)‖ �
∑

ρi(x)ε = ε

for all x /∈ Σ. This means that f −Pf vanishes at infinity, that is, f −Pf ∈ B0(X, D⊗K).
It follows that Pf ∈ c̄(X, D). This finishes the proof. �

We are interested in the K-theory of the stable Higson corona c(X, D). We can identify
D ⊗ K with the subalgebra of constant functions in c(X, D). It is often convenient to
neglect the part of the K-theory that arises from this embedding. This is the purpose of
the following definition.

Definition 3.8. Let X be an unbounded coarse space and let D be a C∗-algebra. The
reduced K-theory of c̄(X, D) and c(X, D) is defined by

K̃∗(c̄(X, D)) := K∗(c̄(X, D))/range[K∗(D ⊗ K) → K∗(c̄(X, D))],

K̃∗(c(X, D)) := K∗(c(X, D))/range[K∗(D ⊗ K) → K∗(c(X, D))].

Remark 3.9. If X is a bounded coarse space, then c̄(X, D) = C(X, D ⊗ K) and
c(X, D) = 0. In this case, the above definition of K̃∗(c(X, D)) is not appropriate and
many things obviously fail. In order to get true results in this trivial case as well, we
should define K̃∗(c(X, D)) := K∗(cred(X, D)) using the C∗-algebra cred(X, D) introduced
in Definition 5.4 below.

Lemma 3.10. Let X be an unbounded coarse space. Then the inclusions D ⊗ K →
c̄(X, D) and D ⊗ K → c̄(X, D) → c(X, D) induce injective maps in K-theory.

Proof. Let j : C0(X, D ⊗ K) → c̄(X, D) and ῑ : D ⊗ K → c̄(X, D) be the inclusions, let
π : c̄(X, D) → c(X, D) be the quotient map, and let ι := π ◦ ῑ : D ⊗ K → c(X, D). To see
that ῑ∗ is injective, consider the evaluation map evx : c̄(X, D) → D ⊗ K for x ∈ X. This
map splits ῑ, from which the assertion follows.

To check that ι∗ is injective, choose a ∈ K∗(D) with π∗ῑ∗(a) = ι∗(a) = 0. Hence
ῑ∗(a) = j∗(b) for some b ∈ K∗(C0(X, D ⊗ K)) by the K-theory long exact sequence. Let
ev0

x : C0(X, D⊗K) → D⊗K denote the restriction of the evaluation map to C0(X, D⊗K).
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Since X is unbounded and K-theory is compactly supported, we have (ev0
x)∗(b) = 0 for all

x ∈ X outside some compact set. Then a = (evx)∗ῑ∗(a) = (evx)∗j∗(b) = (ev0
x)∗(b) = 0,

which concludes the proof. �

Remark 3.11. For any unbounded coarse space X and any C∗-algebra D, consider the
long exact sequence

K0(C0(X) ⊗ D) �� K0(c̄(X, D))
π∗ �� K0(c(X, D))

∂

��
K1(c(X, D))

∂

��

K1(c̄(X, D))
π∗�� K1(C0(X) ⊗ D)��

associated to the exact sequence of C∗-algebras

0 → C0(X) ⊗ D ⊗ K → c̄(X, D) → c(X, D) → 0.

By construction, the map ι∗ : K∗(D ⊗ K) → K∗(c(X, D)) factors through the map
π∗ : K∗(c̄(X, D)) → K∗(c(X, D)), whence ∂ ◦ ι∗ = 0. Lemma 3.10 shows that we get
a long exact sequence

K0(C0(X) ⊗ D) �� K̃0(c̄(X, D))
π∗ �� K̃0(c(X, D))

∂

��
K̃1(c(X, D))

∂

��

K̃1(c̄(X, D))
π∗�� K1(C0(X) ⊗ D).��

Finally, we extend the above definitions to the case of σ-coarse spaces. This is necessary
to construct the coarse co-assembly map in the next section.

Let X =
⋃

Xn be a σ-coarse space and let D be a C∗-algebra. We let

C0(X , D) := {f : X → D | f |Xn ∈ C0(Xn, D) for all n ∈ N},

c̄(X , D) := {f : X → D ⊗ K | f |Xn ∈ c̄(Xn, D) for all n ∈ N}.

Both C0(X , D) and c̄(X , D) are σ–C∗-algebras in the terminology of [18] with respect
to the sequence of C∗-seminorms

‖f‖n := sup{‖f(x)‖ | x ∈ Xn}.

We evidently have

C0(X , D) = lim←−C0(Xn, D ⊗ K), c̄(X , D) = lim←− c̄(Xn, D ⊗ K),

where lim←− denotes the projective limit in the category of σ–C∗-algebras.
Recall that we assumed the maps Xn → Xn+1 to be coarse equivalences. Proposi-

tion 3.7 implies that the induced maps c(Xn+1, D) → c(Xn, D) are ∗-isomorphisms.
Hence the inverse limit

c(X , D) := lim←− c(Xn, D)
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is again a C∗-algebra: it is isomorphic to c(Xm, D) for any m ∈ N. The following lemma
asserts that we also have a natural isomorphism

c(X , D) ∼= c̄(X , D)/C0(X , D ⊗ K).

Lemma 3.12. The sequence of σ–C∗-algebras

0 → C0(X , D) → c̄(X , D) → c(X , D) → 0

is exact.

Proof of Lemma 3.12. The maps αn : C0(Xn+1, D⊗K) → C0(Xn, D⊗K) associated to
the inclusions Xn ⊆ Xn+1 are clearly surjective. The maps γn : c(Xn+1, D) → c(Xn, D)
are surjective because they are isomorphisms. The Snake Lemma of homological algebra
provides us with a long exact sequence

· · · → Coker αn → Coker βn → Coker γn → 0.

Hence the maps βn : c̄(Xn+1, D) → c̄(Xn, D) are surjective as well. Now the assertion
follows from the following lemma from [18]. �

Lemma 3.13 ([18]). Suppose that αn : An+1 → An, n ∈ N, is a projective system
of C∗-algebras with surjective maps αn for all n. Let Jn be ideals in An such that the
restriction of αn to Jn+1 maps Jn+1 surjectively onto Jn. Then

0 → lim←−Jn → lim←−An → lim←−An/Jn → 0

is an exact sequence of σ–C∗-algebras.

4. The coarse co-assembly map

We first define the coarse K-theory of X with coefficients D, which is the target of
the coarse co-assembly map. Its definition is based on the Rips complex construction of
Example 2.5. We reformulate it in terms of entourages and check carefully that we obtain
a σ-coarse space. We require the coarse structure to be countably generated. Otherwise
the construction below gives an uncountable system of coarse spaces, which we prefer to
avoid. We begin with the case where X is discrete.

We fix an increasing sequence (En) of entourages such that any entourage is contained
in some En. We assume that E0 = ∆X is the diagonal. Let PX be the set of probabil-
ity measures on X with finite support. This is a simplicial complex whose vertices are
the Dirac measures on X. We give it the corresponding topology. Hence locally finite
subcomplexes of PX are locally compact. Let

Pn := {µ ∈ PX | suppµ × suppµ ⊆ En}.

In particular, P0 ∼= X. We have
⋃

Pn = PX because any finite subset of X × X is con-
tained in En for some n. Each Pn is a locally finite subcomplex of PX and hence a locally
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compact topological space because bounded subsets of X are finite. We give PX and its
subspaces Pn the coarse structure En that is generated by the sequence of entourages

{(µ, ν) | suppµ × supp ν ⊂ Em}, m ∈ N.

The embeddings X ∼= P0 → Pn are coarse equivalences for all n ∈ N. Thus PX is a
σ-coarse space.

The K-theory of the σ–C∗-algebra C0(PX , D) is going to be the coarse K-theory of X.
In order to extend this definition to non-discrete coarse spaces, we must show that it is
functorial on the coarse category of coarse spaces.

We first observe that the σ–C∗-algebra C0(PX , D) does not depend on the choice of
the generating sequence (En). A function f : PX → D belongs to C0(PX , D) if and only if
its restriction to Pn is C0 for all n ∈ N. If E′ ⊆ X ×X is any entourage, then E′ ⊆ En for
some n ∈ N. If we define PE′(X) ⊆ PX in the evident fashion, we obtain a subcomplex of
Pn(X). Thus the restriction of f to PE′(X) is C0 for all entourages E′. Conversely, this
condition implies easily that f ∈ C0(PX , D). Hence we can describe C0(PX , D) without
using the generating sequence En. Similar arguments apply to c̄(PX , D) and, of course,
to c(PX , D). Actually, up to an appropriate notion of isomorphism of inductive systems,
the σ-coarse space PX is independent of the choice of (En).

To discuss the functoriality of PX , we define morphisms between σ-coarse spaces.
Let X =

⋃
Xn and Y =

⋃
Yn be σ-coarse spaces. Let f : X → Y be a map with the

property that for any m ∈ N there is n = n(m) ∈ N with f(Xm) ⊆ Yn. We say that f is
Borel, continuous, or coarse, respectively, if the restrictions f |Xm : Xm → Yn(m) have this
property for all m ∈ N. Here the choice of n(m) is irrelevant because Yn is a subspace
of Yn′ for all n � n′. Similarly, two coarse maps X → Y are called close if their restrictions
to Xm are close for all m ∈ N. It is clear that C0(X , D) and c̄(X , D) are functorial for
continuous coarse maps.

Lemma 4.1. Let X and Y be discrete, countably generated coarse spaces. Then a coarse
map X → Y induces a continuous coarse map PX → PY .

Let X be a σ-coarse space and let φ0, φ1 : X → PY be two continuous coarse maps
that are close. Then there exists a homotopy Φ : X × [0, 1] → PY between φ0 and φ1 that
is close to the constant homotopy (x, t) �→ φ0(x). The homotopy Φ induces a homotopy
C0(PY ) → C([0, 1]) ⊗ C0(X ).

Proof. A coarse map φ : X → Y induces a map φ∗ : PX → PY by pushing forward
probability measures. It is easy to see that φ∗ is continuous and coarse.

We want to define Φ(x, t) := (1−t)φ0(x)+tφ1(x). It is clear that Φ(x, t) is a probability
measure on Y with finite support for all (x, t) ∈ X × [0, 1]. We claim that Φ has the
required properties. Fix n ∈ N and an entourage E ⊆ Xn ×Xn. Since φ and φ′ are close,
there is an entourage E′ ⊆ Y × Y such that

φ0 × φ1(E) ⊆ {(µ, ν) | suppµ × supp ν ⊆ E′}.

Let E′′ := E′ ∪ (E′ ◦ (E′)t). Since suppΦ(x, t) ⊆ suppφ0(x) ∪ suppφ1(x), we obtain
Φ(x, t) ∈ PE′′ and suppφ0(x)× suppΦ(x, t) ⊆ E′′ for all x ∈ Xn, t ∈ [0, 1]. That is, Φ is a
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coarse map that is close to the map (x, t) �→ φ0(x). Continuity is easy to check. We also
get an induced homotopy for the associated σ–C∗-algebras because C0(X , D)⊗C([0, 1]) ∼=
C0(X × [0, 1], D). �

Since K-theory for σ–C∗-algebras is still homotopy invariant, we obtain the following
corollary.

Corollary 4.2. The assignment X �→ K∗(C0(PX , D)) is a functor from the coarse cate-
gory of discrete, countably generated coarse spaces to the category of Z/2-graded Abelian
groups.

Definition 4.3. Let X be a countably generated coarse space and let D be a C∗-algebra.
Let Z ⊆ X be a countably generated, discrete coarse space that is coarsely equivalent
to X. This exists by Lemma 2.4. We let

KX∗(X, D) := K∗(C0(PZ , D))

and call this the coarse K-theory of X with coefficients D.

Note 4.4. When D = C is trivial we simply write KX∗(X) := KX∗(X, C) and refer to
this as the coarse K-theory of X.

By construction, the discrete coarse space Z is uniquely determined up to coarse equiv-
alence. Hence Corollary 4.2 yields that KX∗(X, D) is independent of the choice of Z and
is a functor from the coarse category of countably generated coarse spaces to the cat-
egory of Z/2-graded Abelian groups. Since the homotopy type of PZ is independent of
the choice of Z, we also write PX for this space.

Remark 4.5. Phillips shows in [18] that K-theory for σ–C∗-algebras can be computed
by a Milnor lim←−

1-sequence. In our case, we obtain a short exact sequence

0 → lim←−
1K∗+1(C0(Pn(Z), D)) → KX∗(X, D) → lim←− K∗(C0(Pn(Z), D)) → 0.

For D = C, this becomes a short exact sequence

0 → lim←−
1K∗+1(Pn(Z)) → KX∗(X) → lim←− K∗(Pn(Z)) → 0.

We are now in a position to define our coarse co-assembly map. Let D be a C∗-algebra
and let X be a coarse space. By Lemma 3.12 the sequence

0 → C0(PX , D ⊗ K) → c̄(PX , D) → c(PX , D) ∼= c(X, D) → 0 (4.1)

is exact. In [18] it is shown that an exact sequence of σ–C∗-algebras induces a long exact
sequence in K-theory. As in Remark 3.11, one shows that this remains exact if we use
reduced K-theory everywhere (and assume X to be unbounded).

Definition 4.6. Let X be a countably generated, unbounded coarse space and let D be
a C∗-algebra. The coarse co-assembly map for X with coefficients D is the map

µ∗
X,D : K̃∗+1(c(X, D)) → KX∗(X, D)

that is obtained from the connecting map of the exact sequence (4.1).
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We conclude this section by noting that the coarse K-theory of X is equal to the usual
K-theory of X if X is a uniformly contractible metric space of bounded geometry. An
analogous assertion holds for the coarse K-homology.

Definition 4.7. A metric space (X, d) is uniformly contractible if for every R > 0 there
exists S � R such that for any x ∈ X, the inclusion BR(x) → BS(x) is nullhomotopic.

Theorem 4.8. Let X be a uniformly contractible metric space of bounded geometry.
There exists a canonical isomorphism KX∗(X, D) ∼= K∗(C0(X, D)) making the following
diagram commute:

K∗+1(c(X, D))
µ∗

X,D ��

∂ �����������
KX∗(X, D)

K∗(C0(X, D)).

∼=

����������

Here ∂ is the boundary map associated to the exact sequence of C∗-algebras

0 → C0(X, D ⊗ K) → c̄(X, D) → c(X, D) → 0.

The proof uses the following lemma.

Lemma 4.9. Let X be a uniformly contractible metric space of bounded geometry, and
let φ : X → X be a continuous coarse map which is close to the identity map X → X.
Then φ and id are homotopic, and the homotopy F : X × [0, 1] → X can be chosen to be
close to the coordinate projection (x, t) �→ x.

Proof. Choose a uniformly bounded open cover (Ui)i∈I of X. For Σ ⊆ I let UΣ =⋂
i∈ΣUi and let ∆Σ be the simplex

∆Σ :=
{

(xi) ∈ [0, 1]Σ
∣∣∣ ∑

xi = 1
}

.

By the bounded geometry assumption we may choose the cover so that UΣ = ∅ whenever
|Σ| > N for some N ∈ N. By induction on n = |Σ| � 1, we construct continuous maps
HΣ : UΣ × ∆Σ × [0, 1] → X such that

(1) HΣ(x, p, 0) = x and HΣ(x, p, 1) = φ(x) for all x ∈ UΣ , p ∈ ∆Σ ;

(2) HΣ(x, p, t) = Hsupp(p)(x, p, t) for all x ∈ UΣ , p ∈ ∂∆Σ , t ∈ [0, 1];

(3) d(HΣ(x, p, t), x) � Cn for all x, p, t for some constant Cn � 0.

If |Σ| = 1, then Σ = {i} for some i ∈ I, UΣ = Ui and ∆Σ is a point, denote it �.
The map HΣ must satisfy HΣ(x, �, 0) = x and HΣ(x, �, 1) = φ(x) for all x ∈ Ui. By
the uniform contractibility, we can extend this to a continuous map on Ui × [0, 1] with
the required properties. Now assume that HΣ has been defined for |Σ| < n and take
Σ ⊆ I with |Σ| = n. The previous induction step and our requirements determine HΣ

on (UΣ × ∂∆Σ × [0, 1]) ∪ (UΣ × ∆Σ × ∂[0, 1]). The uniform contractibility assumption
of X allows us to extend this to UΣ × ∆Σ × [0, 1] as required.
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Finally, we choose a partition of unity (ρi)i∈I subordinate to the cover (Ui)i∈I and
define F : X × [0, 1] → X as follows. For x ∈ X, let Σ := {i ∈ I | ρi(x) �= 0} and
F (x, t) := HΣ(x, (ρi(x))i∈Σ , t). This defines a continuous map that is close to the identity
map because UΣ = ∅ for |Σ| > N . �

Proof of Theorem 4.8. Let Z ⊆ X be a discrete subspace coarsely equivalent to X

as in Lemma 2.4. For sufficiently large r, the balls of radius r centred at the points of Z

cover X. Let Pr(Z) be the Rips complex with parameter r as in Example 2.5. The natural
maps Z → X and Z → Pr(Z) are coarse equivalences. Hence we obtain canonical coarse
equivalences X → Pr(Z) and Pr(Z) → X. We want to represent these morphisms in the
coarse category by continuous coarse maps F : X → Pr(Z) and G : Pr(Z) → X.

Let (ρi) be a partition of unity subordinate to the cover of X by r-balls centred at the
points of Z. Choose xi ∈ Z close to supp ρi and define

F : X → Pr(Z) ⊆ PZ , F (x) :=
∑

i

ρi(x)δxi .

This is a continuous coarse map, and its restriction to Z is close to the standard map
Z → Pr(Z) as desired. Notice that this map exists for any countably generated coarse
space X.

We define the maps G : Pr(Z) → X for any r � 0 by induction on skeletons. On the
0-skeleton Z, we let G be the inclusion Z → X. Suppose that G has already been defined
on the (n − 1)-skeleton and let σ be an n-cell. Then the vertices of σ constitute a subset
of Z ⊆ X of diameter at most r. By our induction assumption, G maps the boundary
of σ to a subset of X of diameter at most Cn−1(r) for some constant depending only on
r and n − 1. By uniform contractibility, we can extend G to a map σ → X in such a
way that G(σ) has diameter at most Cn(r) for some constant Cn(r). Proceeding in this
fashion, we construct a continuous coarse map G : Pr(Z) → X whose restriction to Z is
the inclusion map.

The compositions F ◦ G and G ◦ F are continuous coarse maps which are close to the
identity maps on Pr(Z) and X, respectively. Lemmas 4.1 and 4.9 yield that F ◦ G and
G ◦ F are homotopic to the identity maps on PZ and X, respectively. Therefore, we get
an isomorphism K∗(C0(X, D)) ∼= K∗(C0(PZ , D)) as desired. Since F and G extend to
∗-homomorphisms between c̄(X, D) and c̄(PX , D), the naturality of the boundary map
in K-theory yields the commutative diagram in the statement of the theorem. �

5. A first vanishing theorem

We now calculate an example that illustrates the distinction between the stable and
unstable Higson coronas. We begin by recalling the following result of [6].

Proposition 5.1. Let X = [0,∞) be the ray with its (Euclidean) metric coarse structure.
Then the reduced K-theory of the Higson compactification ηX of X is uncountable.

This implies by the Five Lemma that the same is true for the Higson corona ∂ηX

of X. In contrast, we show that the reduced K-theory of the stable Higson corona of X is
trivial. Since it involves no additional effort, we show the following more general result.
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Theorem 5.2. Let Y be an arbitrary coarse space and D a C∗-algebra. Let the ray
[0,∞) be given its Euclidean coarse structure and let X = Y × [0,∞) with the product
coarse structure. Then K̃∗(c(X, D)) = 0 for ∗ = 0, 1.

Remark 5.3. This result is consistent with the analogous assertion K∗(C∗(X)) = 0 for
the Roe C∗-algebras of such spaces.

For the purposes of this computation and for many others, it turns out to be much
easier to work not with the reduced K-theory of the algebras c̄ and c, but rather with the
ordinary K-theory of modified (or reduced) versions of these algebras. Thus we introduce
the following definition. If D is a C∗-algebra, we let M(D) be its multiplier algebra and
Ms(D) be the multiplier algebra of D ⊗ K. We also define Qs(D) := Ms(D)/D ⊗ K.

Definition 5.4. Let X be a coarse space and let D be a C∗-algebra. We let c̄red(X, D) be
the C∗-algebra of bounded continuous functions of vanishing variation f : X → Ms(D)
such that f(x) − f(y) ∈ D ⊗ K for all x, y ∈ X. We let cred(X, D) be the C∗-algebra
c̄red(X, D)/C0(X, D ⊗ K).

Proposition 5.5. For every unbounded metric space X and every C∗-algebra D, we
have natural isomorphisms

K∗(c̄red(X, D)) ∼= K̃∗(c̄(X, D)),

K∗(cred(X, D)) ∼= K̃∗(c(X, D)).

Proof. Choose any point x ∈ X, and consider the composition

c̄
red(X, D) → Ms(D) → Qs(D),

where the first map is evaluation at x ∈ X and the second is the quotient map. This map is
surjective and its kernel is the unreduced algebra c̄(X, D). Therefore, it descends to a map
on the quotient cred(X, D). Applying the Bott periodicity isomorphisms K∗(Qs(D)) ∼=
K∗+1(D), we obtain a long exact sequence

K0(c̄(X, D)) �� K0(c̄red(X, D)) �� K1(D)

ῑ∗

��
K0(D)

ῑ∗

��

K1(c̄red(X, D))�� K1(c̄(X, D)).��

One can show that the boundary maps are induced by the inclusion ῑ : D⊗K → c̄(X, D).
Since the vertical maps are injective by Lemma 3.10, we obtain two exact sequences

0 → K∗(D) ῑ∗→ K∗(c̄(X, D)) → K∗(c̄red(X, D)) → 0

for ∗ = 0, 1. This proves the first assertion. The second one is proved in the same fashion.
�
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Proof of Theorem 5.2. We may replace Y × [0,∞) by the coarsely equivalent space
Y × N. Thus we let X := Y × N with its product coarse structure. By Lemma 5.5 it
suffices to calculate the K-theory of the algebras c̄red(X, D). Implicit in the definition of
c̄red(X, D) is a Hilbert space. Let us integrate this Hilbert space temporarily into our
notation by denoting c̄red(X, D), built on the Hilbert space V , by c̄red(X, D, V ).

Now fix a Hilbert space H, and let H̃ := H ⊕ H ⊕ · · · . The C∗-algebras c̄(X, D, H) and
c̄(X, D, H̃) are (non-canonically) isomorphic. The inclusion H → H̃ as the nth summand
induces a ∗-homomorphism in : c̄red(X, D, H) → c̄red(X, D, H̃) of the form

in(f)(x) = 0 ⊕ · · · ⊕ 0 ⊕ f(x) ⊕ 0 ⊕ 0 ⊕ · · · ∈ B(D ⊗ H̃)

for n ∈ N. Standard arguments yield that the maps (in)∗ all induce isomorphisms on
K-theory and that (in)∗ = (im)∗ for any n, m ∈ N. Define a ∗-homomorphism

S : c̄
red(X, D, H) → c̄

red(X, D, H), Sf(y, n) := f(y, n + 1).

The variation condition implies that ‖Sf(y, n) − f(y, n)‖ = ‖f(y, n + 1) − f(y, n)‖ → 0
for (y, n) → ∞ for all f ∈ c̄red(X, D, H). That is, Sf − f ∈ C0(X, D ⊗ K). Hence S

induces the identity map cred(X, D, H) → cred(X, D, H).
We claim that S̃f :=

⊕∞
n=0 in(Snf), that is,

S̃f(y, n) = f(y, n) ⊕ f(y, n + 1) ⊕ f(y, n + 2) ⊕ · · ·

defines a ∗-homomorphism S̃ : c̄red(X, D, H) → c̄red(X, D, H̃). Since f is bounded, S̃f(x)
is a bounded operator for all x ∈ X. We claim that S̃f(x) − S̃f(x′) is compact for
all x = (y, n), x′ = (y′, n′) in Y × N. The kth direct summand of S̃f(x) − S̃f(x′)
is given by f(y, n + k) − f(y′, n′ + k) and hence lies in D ⊗ K(H). The sequence
((y, n + k), (y′, n′ + k))k∈N in X × X lies in an entourage and converges to ∞. Hence
the vanishing variation of f implies

lim
k→∞

‖f(y, n + k) − f(y′, n′ + k)‖ = 0.

Consequently, S̃f(x) − S̃f(x′) is a compact operator as claimed. The same reasoning
shows that S̃f satisfies the variation condition. Thus S̃f ∈ c̄red(X, D, H̃).

Now let f ∈ cred(X, D, H) represent a class [f ] in either K0(cred(X, D, H)) or
K1(cred(X, D, H)). We have to show that [f ] = 0. Recall that S represents the iden-
tity map on cred(X, D, H) and that (in)∗ = (im)∗ for all n, m. Hence

[S̃f ] =
[ ∞⊕

n=0

in ◦ Sn(f)
]

= (i0)∗[f ] + [S̃f ].

Since (i0)∗ is an isomorphism, we get [f ] = 0 as desired. �

Remark 5.6. The proof of Theorem 5.2 exhibits the difference between c(X) and
C(ηX, K). If f : ηX → K is a continuous function, then f must satisfy the variation
condition and, in addition, have compact range in K. The function S̃f need not have
compact range and therefore can only be formed in the larger algebra c(X).
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Remark 5.7. Theorem 5.2, a Mayer–Vietoris argument and induction can be used to
prove that the reduced K-theory for c(Rn) is given by

K̃i(c(Rn)) ∼=
{

Z if i = n − 1,

0 otherwise.

We omit the argument because this also follows from our results on scalable spaces. This
calculation shows clearly that the algebra c(X) plays the role, at least K-theoretically, of
a boundary of X.

6. Relationship with the coarse Baum–Connes assembly map

Let X be a coarse space and define PX =
⋃

Pn as above. One can extend K-homology
and even bivariant KK-theory from the category of C∗-algebras to the category of σ–C∗-
algebras (see [3,22,23]). For K-homology, one obtains

K∗(C0(PX)) = K∗(lim←−C0(Pn)) ∼= lim−→ K∗(C0(Pn)) ∼= lim−→ K∗(Pn).

The latter is, by definition, the coarse K-homology of X (see [26]). Thus we get a natural
isomorphism

KX∗(X) ∼= K∗(C0(PX)).

The canonical pairing between the K-theory and K-homology for σ–C∗-algebras special-
izes to a natural pairing

KX∗(X) × KX∗(X) → Z.

Let C∗(X) be the C∗-algebra of the coarse space X (see [13,26]). The coarse Baum–
Connes assembly map for X is a map

µ : KX∗(X) → K∗(C∗(X)).

The next theorem asserts that this map is dual to our coarse co-assembly map

µ∗ : K̃∗+1(c(X)) → KX∗(X).

Theorem 6.1. Let X be an unbounded, countably generated coarse space X. Then
there exists a natural pairing

K̃∗+1(c(X)) × K∗(C∗(X)) → Z

compatible with the pairing KX∗(X) × KX∗(X) → Z in the sense that

〈µ(x), y〉 = 〈x, µ∗(y)〉 for all x ∈ KX∗(X), y ∈ K̃∗+1(c(X)).

Proof. Without loss of generality, we may assume that X is discrete. Let W be a
separable Hilbert space, and form the ample Hilbert space HX = �2(X) ⊗ W over X

(see [13]). We use HX to construct C∗(X). Thus C∗(X) becomes the C∗-subalgebra
of B(HX) generated by the ∗-algebra of locally compact finite propagation operators
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on HX . Let V be another separable Hilbert space and let K ∼= K(V ) be represented on V

in the obvious way. Let (ex)x∈X be the canonical basis of �2(X). We represent c̄red(X)
on HX ⊗ V by the map f �→ Mf with

Mf (ex ⊗ w ⊗ v) = ex ⊗ w ⊗ f(x)v,

for all f ∈ c̄red(X), viewed as a function X → K(V ). Represent C∗(X) on HX ⊗ V

by T �→ T ⊗ 1V . The variation condition on f ∈ c̄red(X) and the definition of finite
propagation imply easily that the commutator [Mf , T ⊗1V ] is compact for all f ∈ c̄red(X)
and T ∈ C∗(X). Hence we have defined a ∗-homomorphism from c̄red(X) into D(C∗(X))
in the notation of [13]. If f ∈ C0(X, K), then both Mf · (T ⊗ 1V ) and (T ⊗ 1V ) · Mf are
compact. That is, C0(X, K) is mapped to D(C∗(X)//C∗(X)). Hence c̄red(X) is mapped
to the relative dual

Dred(C∗(X)) := D(C∗(X))/D(C∗(X)//C∗(X))

and we obtain a map K∗(cred(X)) → K∗(Dred(C∗(X))). For every C∗-algebra A regard-
less of separability there is a canonical index pairing

K∗+1(A) × K∗(Dred(A)) → Z.

Since K̃(c(X)) ∼= K(cred(X)), we obtain the required pairing.
We omit the details of the proof that µ and µ∗ are compatible. First, one shows that

it suffices to look at a fixed parameter in the Rips complex construction. The result then
follows from the definition of µ given in terms of dual algebras (see [13]), our definition
of µ∗, and the axioms for a Kasparov product. �

Corollary 6.2. Let X be a uniformly contractible metric space of bounded geome-
try, endowed with the metric coarse structure. If the coarse co-assembly map for X is
surjective, then the coarse assembly map is rationally injective.

Proof. In this case, we can use X itself instead of the Rips complex by Theorem 4.8.
Hence the pairing between KX∗(X) ⊗ Q and KX∗(X) ⊗ Q is non-degenerate. �

In particular, let X be the universal cover of a compact aspherical spin manifold. The
surjectivity of µ∗ for X implies rational injectivity of µ for X. This in turn implies that
the manifold does not admit a metric of positive scalar curvature.

A natural question is whether or not rational surjectivity of µX can be detected by
injectivity, or even bijectivity, of µ∗

X . There seems, however, little hope for this, as the
following example illustrates. Let X1, X2, . . . be a sequence of finite metric spaces and let
X =

⊔
Xn be their coarse (uniform) disjoint union, whose coarse structure is generated

by entourages of the form
⊔∞

i=1 ER,i, where ER,i is the entourage of diameter R in Xi.

Proposition 6.3. Let (Xn) be a sequence of finite metric spaces and let X =
⊔

Xn be
the coarse disjoint union as above. Then the pairing

K∗(C∗(X)) × K̃∗+1(c(X)) → Z

is the zero map.
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That is, it is impossible in this example to detect elements of K∗(C∗(X)) by pairing
them with the K-theory of the stable Higson corona.

Proof. We use the ample Hilbert space

HX = �2(X) ⊗ W ∼=
⊕

l2(Xn) ⊗ W

to realize C∗(X). Let T be a finite propagation operator on X. Then T can be represented
by a block diagonal operator T = S⊕TN ⊕TN+1⊕· · · with operators Ti on Xi of uniform
finite propagation and an operator S that is supported on the bounded set

⋃N
i=1 Xi. Note

that S and the operators Ti are compact. Since the sum of K(HX) and
∏

K(HXn) is
a C∗-algebra, it contains C∗(X). Thus any element α of K0(C∗(X)) is represented by
a block diagonal projection P on HX with compact blocks. To construct the pairing
between K0(C∗(X)) and K̃1(c(X)), one forms the Hilbert space

HX ⊗ V ∼=
⊕

l2(Xn) ⊗ W ⊗ V

as before.
Let f ∈ cred(X) be a unitary element representing an element of K̃1(c(X)) and let f̄

be a lifting of f to an element of c̄red(X). Hence f̄ f̄∗ − 1 and f̄∗f̄ − 1 lie in C0(X, K).
The pairing 〈α, [f ]〉 is given by the index of the Fredholm operator PMf̄P + 1 − P . This
operator is also block diagonal, and its blocks are compact perturbations of 1. Hence
the index vanishes. The same argument works for the pairing between K1(C∗(X)) and
K̃0(c(X)). �

Remark 6.4. Let E be a coarse disjoint union of graphs En. Let λn denote the lowest
non-zero eigenvalue of the Laplacian on En. Assume that there exists a constant c > 0
such that λn � c for all n. Thus the sequence {En} is an expanding sequence of graphs.
The coarse space E provides a counterexample to the coarse Baum–Connes conjecture
(see [14]). Let P be the spectral projection for the Laplacian, which has been shown
to not be in the range of the coarse Baum–Connes assembly map. The above argument
shows that the class of [P ] in K0(C∗(E)) pairs trivially with K̃0(c(E)). More generally, if
X is a coarse space, i : E → X is a coarse embedding and θ is any class in K̃∗(c(X)), then
〈i∗[P ], θ〉 = 〈[P ], i∗(θ)〉 = 0 by functoriality of the pairings and by our discussion above.
Hence such counterexamples cannot be detected by pairing with the stable Higson corona.
In particular, this discussion applies to the groups containing an expanding sequence of
graphs constructed by Gromov in [8].

Example 6.5. Consider now the special case X =
⊔

Xn where each Xn is just a point
(the well-spaced ray). Again the pairing between K∗(C∗(X)) and K̃∗(c(X)) vanishes. In
this case, both the ordinary coarse assembly map µ and the coarse co-assembly map µ∗

are isomorphisms. The assembly map is treated in [24], the co-assembly map can be
treated easily using c̄(X, D) = �∞(N, D ⊗ K).
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7. Homotopy invariance in the coefficient algebra

In order to prove that the coarse co-assembly map µ∗
X,D is an isomorphism for scalable

spaces, we investigate the properties of K̃∗(c(X, D)) as a functor of D. A ∗-homomorphism
f : D1 → D2 induces compatible ∗-homomorphisms

f ⊗ 1: C0(X, D1 ⊗ K) → C0(X, D2 ⊗ K),

f̄X : c̄(X, D1) → c̄(X, D2),

fX : c(X, D1) → c(X, D2).

Thus the assignments D �→ c̄(X, D), c(X, D) are functors, which we denote by c̄(X, ·) and
c(X, ·), respectively. We also have functors c̄red(X, ·) and cred(X, ·).

Proposition 7.1. The functors K ◦ c̄(X, ·), K ◦ c(X, ·), K ◦ cred(X, ·) and K ◦ c̄red(X, ·)
are stable, split exact functors from the category of C∗-algebras and C∗-algebra homo-
morphisms to the category of Abelian groups and Abelian group homomorphisms; here K
denotes the K-theory functor.

Proof. If f is a completely bounded linear map D1 → D2, then it induces completely
bounded linear maps f̄X and fX as above. Hence the functors c̄ and c map extensions
of C∗-algebras with completely bounded sections again to such extensions. This yields
the split exactness of K ◦ c̄(X, ·) and K ◦ c(X, ·). The split exactness of K ◦ c̄red(X, ·) and
K ◦ cred(X, ·) now follows from Lemma 3.10. �

Now we use a deep result of Higson [10].

Theorem 7.2 (Higson). Let F be a functor from the category of C∗-algebras to the
category of Abelian groups that is split exact and stable. Then F is homotopy invariant.
Moreover, F gives rise to a functor on the Kasparov category KK, that is, if D1, D2

are separable C∗-algebras, then the functoriality of F can be extended to natural maps
KK(D1, D2) ⊗ F (D1) → F (D2).

Proposition 7.1 allows us to apply this theorem to our functors K̃ ◦ c(X, ·) = K ◦
cred(X, ·), K̃ ◦ c̄(X, ·) = K ◦ c̄red(X, ·), K ◦ c(X, ·) and K ◦ c̄(X, ·).

Theorem 7.3. The functors K̃◦c(X, ·), K̃◦c̄(X, ·), K◦c(X, ·) and K◦c̄(X, ·) are homotopy
invariant. They descend to the Kasparov category KK.

8. Maps of weakly vanishing variation and scalable spaces

In this section we apply the above ideas to prove that the map µ∗
X,D is an isomorphism for

scalable, uniformly contractible metric spaces. In fact we prove that K̃∗(c̄(X, D)) = 0 for
any scalable space X and any C∗-algebra D. We begin by discussing a type of functoriality
of the algebras c̄(X, D) in the X-variable.
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Definition 8.1. Let X be a coarse space, let Y be a coarse metric space, and let f : X →
Y be a continuous map. We say that f has weakly vanishing variation, or is WVV, if f

maps entourages to entourages and if

f−1(K) ∩ (VarE f)−1([ε, ∞))

is bounded for all ε > 0, all entourages E ⊆ X × X and all bounded subsets K ⊆ Y .

This allows us to treat coarse maps and maps of vanishing variation simultaneously
because of the following obvious lemma.

Lemma 8.2. Let X, Y and f be as in Definition 8.1. If f is coarse or if f has vanishing
variation, then f has weakly vanishing variation.

Lemma 8.3. Let X be a coarse space, Y a coarse metric space, and Z a metric space,
and let φ : X → Y and ψ : Y → Z be continuous maps. If ψ has vanishing variation and φ

has weakly vanishing variation, then ψ ◦ φ : X → Z has vanishing variation.

Proof. Let ε > 0 and let E be an entourage in X. We must show that there exists a
bounded subset K ⊆ X such that VarE(ψ ◦ φ)(x) < ε for x ∈ X \ K. Since φ(E) is an
entourage in Y , there is R > 0 with d(φ(x), φ(x′)) < R for (x, x′) ∈ E. Choose a bounded
subset L ⊆ Y such that VarR ψ(y) < ε for y ∈ Y \L. Since ψ has vanishing variation and
is continuous, it is uniformly continuous. Hence there is δ > 0 such d(ψ(y), ψ(y′)) < ε

whenever d(y, y′) < δ. Now let K := φ−1(L) ∩ (VarE φ)−1([δ, ∞)). Then K is bounded
since φ has weakly vanishing variation. Choose (x, x′) ∈ E with x ∈ X \ K. Then
φ(x) ∈ Y \L or VarE φ(x) < δ. Suppose that φ(x) ∈ Y \L. Since also d(φ(x), φ(x′)) < R,
we get d(ψφ(x), ψφ(x′)) < ε by choice of L. If VarE φ(x) < δ, then d(φ(x), φ(x′)) < δ

and thus d(ψφ(x), ψφ(x′)) < ε. That is, ψφ has vanishing variation. �

Corollary 8.4. Let X be a coarse space and let Y be a coarse metric space. Then
a continuous map φ : X → Y of weakly vanishing variation induces ∗-homomorphisms
c̄(Y, D) → c̄(X, D) and c̄red(Y, D) → c̄red(X, D) by the formula f �→ f ◦ φ.

Hence K(c̄(· , D)) and K̃(c̄(· , D)) are functorial for WVV maps. However, since WVV
maps need not be proper, they need not act on K(C0(· , D)), K(c(· , D)) or K(cred(· , D)).

Let X be a coarse space, let Y be a coarse metric space, and let φ, φ′ : X → Y be WVV
maps. Let Φ : X×[0, 1] → Y be a continuous map with Φ(x, 0) = φ(x) and Φ(x, 1) = φ′(x)
for all x ∈ X. For an entourage E in X, we define

Var1E Φ : X × [0, 1] → [0,∞), (x, t) �→ sup{d(Φ(x, t), Φ(y, t)) | (x, y) ∈ E}.

Definition 8.5. We say that Φ : X × [0, 1] → Y is a WVV homotopy between φ and φ′

and call φ and φ′ WVV homotopic if the function Var1E is bounded for any entourage E

and the set Φ−1(K) ∩ (Var1E Φ)−1([ε, ∞)) is bounded in X × [0, 1] for all ε > 0, all
entourages E ⊆ X × X and all bounded subsets K ⊆ Y . We call Y WVV contractible if
the identity on Y is WVV homotopic to a constant map.
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Proposition 8.6. Let X and Y be as above, let Φ : X × [0, 1] → Y be a WVV homotopy
and let D be a C∗-algebra. Then f �→ f ◦ Φ defines ∗-homomorphisms

c̄(Y, D) → c̄(X, D ⊗ I) and c̄
red(Y, D) → c̄

red(X, D ⊗ I).

Proof. Continuity of Φ and f imply immediately that t �→ f(Φ(x, t)) indeed lies in
D⊗I = C([0, 1], D) for every x ∈ X and that the map f◦ Φ : X → D⊗I is continuous. It is
evidently bounded. It remains to check the variation condition. Choose an entourage E

in X and ε > 0. We have to find a bounded subset K ⊆ X such that ‖f(Φ(x, t)) −
f(Φ(x′, t))‖ < ε for (x, x′) ∈ E, t ∈ [0, 1] with x /∈ K.

Since continuous vanishing variation functions are uniformly continuous, we can find
δ > 0 such that ‖f(y) − f(y′)‖ < ε if d(y, y′) < δ. Since Var1E is bounded, there is R > 0
such that d(Φ(x, t), Φ(x′, t)) � R for all (x, x′) ∈ E, t ∈ [0, 1]. Since f has vanishing
variation, we can find a bounded subset L ⊆ Y such that VarR f(y) < ε for y ∈ Y \ L.
Let K ⊆ X denote the projection to X of the bounded subset

Φ−1(L) ∩ (Var1E Φ)−1([δ, ∞)) ⊂ X × [0, 1].

If x ∈ X \ K, t ∈ [0, 1], then Φ(x, t) ∈ Y \ L or Var1E Φ(x, t) < δ. Suppose first that
Φ(x, t) ∈ Y \ L. Since (x, x′) ∈ E, we have d(Φ(x, t), Φ(x′, t)) � R. The choice of L yields
‖f(Φ(x, t)) − f(Φ(x′, t))‖ < ε as desired. If Var1E Φ(x, t) < δ, then d(Φ(x, t), Φ(x′, t)) < δ

and hence ‖f(Φ(x, t)) − f(Φ(x′, t))‖ < ε as well by the choice of δ. �

Remark 8.7. The notion of WVV homotopy is motivated by the following example.
Let X be a complete Riemannian manifold of non-positive curvature. Fix a point x0 ∈ X

and let exp: Tx0(X) → X be the exponential map at x0. It is well known that exp is a
diffeomorphism satisfying d(exp v, exp w) � d(v, w) for all tangent vectors v, w ∈ Tx0(X).
Let log denote the inverse of exp. Define

Φ : X × [0, 1] → X, Φ(x, t) := exp(t log x).

Then it is easy to check that Φ is a WVV homotopy between the identity map X → X

and the constant map x0. That is, X is WVV contractible.

More generally, we can make the following definition.

Definition 8.8. Let X be a coarse metric space. We call X scalable if there is a contin-
uous map r : X × [0, 1] → X, (x, t) �→ rt(x) such that

(1) r1(x) = x;

(2) the map X × [ε, 1] → X, (x, t) �→ rt(x) is proper for all ε > 0;

(3) the maps rt are uniformly Lipschitz and satisfy

lim
t→0

sup
x�=x′∈X

d(rt(x), rt(x′))
d(x, x′)

= 0.
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The following proposition follows immediately from the definition.

Proposition 8.9. Scalable spaces are WVV contractible.

Corollary 8.10. If X is a scalable space, then K̃∗(c̄(X, D)) = 0 for every C∗-algebra D.
If X is also uniformly contractible and has bounded geometry, then µ∗ is an isomorphism.

Proof. Since X is scalable, the identity map and a constant map on X are WVV
homotopic. Proposition 8.6 and Theorem 7.3 yield that they induce the same map on
K̃∗(c̄(X, D)). Since we divided out the contribution of the constant functions in the
reduced K-theory, we get K̃∗(c̄(X, D)) ∼= 0. By Theorem 4.8 and the K-theory long exact
sequence, this is equivalent to µ∗ being an isomorphism. �

We remark that Higson and Roe show in [13] that the coarse Baum–Connes conjecture
is an isomorphism for scalable spaces.

Corollary 8.11. Let π be the fundamental group of a compact manifold of non-positive
curvature. Then the coarse co-assembly map µ∗

π,D : K̃∗+1(c(π, D)) → KX∗(π, D) is an
isomorphism for every coefficient C∗-algebra D.

Similar results hold for groups G that admit cocompact, isometric, proper actions on
CAT(0) spaces.

9. Groups which uniformly embed in Hilbert space

We have introduced the co-assembly map in [7] because of its close relationship to the
existence of a dual Dirac morphism in the group case. In this section, we use the notation
of [7,17] concerning Dirac morphisms, dual Dirac morphisms and γ-elements. We give a
few explanations in the proof of Proposition 9.9.

Theorem 9.1 ([7]). If a discrete group G has a dual Dirac morphism, then

µ∗
G,D : K̃∗+1(c(G, D)) → KX∗(G, D)

is an isomorphism for every C∗-algebra D.

We are going to use this fact to prove that the coarse co-assembly map is an isomor-
phism for groups that embed uniformly in a Hilbert space. This method only applies to
coarse spaces that are quasi-isometric to a group. It would be nice to have a more direct
proof that µ∗ is an isomorphism that applies to all coarse spaces that uniformly embed.

Theorem 9.2. Let G be a countable discrete group that embeds uniformly in a Hilbert
space. Then G possesses a dual Dirac morphism. Hence the coarse co-assembly map for G

is an isomorphism.

Yu has shown the analogous result for the coarse assembly map for all coarse spaces
with bounded geometry [27].

Remark 9.3. It has been pointed out to us that Skandalis and Tu are aware of Theo-
rem 9.2; their work is independent of ours.

https://doi.org/10.1017/S147474800500023X Published online by Cambridge University Press

https://doi.org/10.1017/S147474800500023X


184 H. Emerson and R. Meyer

By a theorem of Higson, Guentner and Weinberger [9], every countable subgroup of
either GLn(k) for some field k or of an almost connected Lie group admits a uniform
embedding in Hilbert space. Consequently, one obtains the following extension of Kas-
parov’s results in [15].

Corollary 9.4. If G is a countable subgroup either of GLn(k) for some field k or of an
almost connected Lie group, then G possesses a dual Dirac morphism.

The proof of Theorem 9.2 is a consequence of various results of Higson, Skandalis, Tu
and Yu (see [12,20]). Higson shows in [12] that if G is a discrete group admitting a topo-
logically amenable action on a compact metrizable space, then the Novikov conjecture
holds for G. But the argument manifestly also applies to the potentially larger class of
groups admitting an a-T-menable action on a compact space.

Definition 9.5 (see [20]). Let G be a discrete group and let X be a compact G-space.
We call the action of G on X a-T-menable if there exists a proper, continuous, real-valued
function ψ on X × G satisfying

(1) ψ(x, e) = 0 for all x ∈ X;

(2) ψ(x, g) = ψ(g−1x, g−1) for all x ∈ X, g ∈ G;

(3)
∑n

i,j=1 titjψ(g−1
i x, g−1

i gj) � 0 for all x ∈ X, t1, . . . , tn ∈ R, g1, . . . , gn ∈ G for
which

∑
ti = 0.

Such a function ψ is called a negative type function.

The existence of a negative type function implies that the groupoid G � X possesses
an affine isometric action on a continuous field of Hilbert spaces over X. The above
definition is relevant because of the following results of [20,21].

Theorem 9.6 ([20]). Let G be a discrete group. If G admits a uniform embedding in
a Hilbert space, then G admits an a-T-menable action on a second countable compact
space.

Theorem 9.7 ([21]). Let G be a discrete group and let X be a locally compact G-space.
If G acts a-T-menably on X, then the transformation groupoid G � X has a dual Dirac
morphism and we have γ = 1.

We are not going to need the fact that γ = 1.
If X is any compact space, let Prob(X) denote the collection of probability measures

on X, equipped with the weak∗ topology. This is again a compact space. The space
Prob(X) is convex and hence contractible. Furthermore, it is equivariantly contractible
with respect to any action of a compact group on Prob(X).

Lemma 9.8 ([20]). Let X be a compact, second countable space on which a discrete
group G acts a-T-menably. Then G acts a-T-menably on Prob(X) as well.
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Proposition 9.9. Let G be a second countable locally compact group and let X be a
second countable compact G-space. Suppose that X is H-equivariantly contractible for
all compact subgroups H ⊆ G and that the groupoid G � X has a dual Dirac morphism.
Then G has a dual Dirac morphism as well.

Proof. Let D ∈ KKG�X(P, C(X)) be a Dirac morphism for G � X in the sense of [17].
This means two things. First, D is a weak equivalence, that is, for any compact subgroup
H ⊆ G, restriction to H maps D to an invertible morphism in KKH�X(P, C(X)). Sec-
ond, P belongs to the localizing subcategory of KKG�X that is generated by compactly
induced algebras. This subcategory contains all proper G � X–C∗-algebras. It is shown
in [17] that a Dirac morphism for G � X always exists. A dual Dirac morphism is an
element η ∈ KKG�X(C(X),P) such that η ◦ D = idP . It is shown in [17, Theorem 8.2]
that a dual Dirac morphism exists whenever the Dirac dual Dirac method in the sense
of proper actions applies. In particular, it exists in the situation of Theorem 9.7.

Since X is compact, C(X) contains the constant functions. This defines a G-equivariant
∗-homomorphism j : C → C(X). The contractibility hypothesis on X insures that j

is invertible in KKH for any compact subgroup H. That is, j is a weak equivalence.
Proposition 4.4 in [17] yields that j induces an isomorphism

KKG(P, C) ∼= KKG(P, C(X)).

Thus we obtain D ′ ∈ KKG(P, C) with j∗(D ′) = F (D), where F : KKG�X → KKG is the
functor that forgets the X-structure. It is clear that F (D) is still a weak equivalence.
Since both F (D) and j are weak equivalences and j ◦ D ′ = F (D), it follows that D ′ is
a weak equivalence. This is a general fact about localization of triangulated categories.
Thus D ′ ∈ KKG(P, C) is a Dirac morphism for G. Now let η′ := F (η) ◦ j. Then η′ ◦D ′ =
F (ηD) = idP by construction. Thus η′ is a dual Dirac morphism. �

Theorem 9.2 now follows by combining the above results. If G uniformly embeds in
a Hilbert space, then it admits an a-T-menable action on a second countable compact
space X by Theorem 9.6. Lemma 9.8 allows us to assume that X is H-equivariantly
contractible for any compact subgroup H ⊆ G. The transformation group G � X has a
dual Dirac morphism by Theorem 9.7. Hence so has G by Proposition 9.9.

Acknowledgements. This research was carried out while both authors were staying
at the Westfälische Wilhelms-Universität Münster in Germany. It was supported by the
EU-Network “Quantum Spaces and Noncommutative Geometry” (contract HPRN-CT-
2002-00280) and the “Deutsche Forschungsgemeinschaft” (SFB 478).

We thank the referee for a thorough report and useful comments.

References

1. P. Baum, A. Connes and N. Higson, Classifying space for proper actions and K-theory
of group C∗-algebras, in C∗-Algebras: 1943–1993, San Antonio, TX, 1993, Contemporary
Mathematics, vol. 167, pp. 240–291 (American Mathematical Society, Providence, RI,
1994).

https://doi.org/10.1017/S147474800500023X Published online by Cambridge University Press

https://doi.org/10.1017/S147474800500023X


186 H. Emerson and R. Meyer

2. B. Blackadar, K-theory for operator algebras, 2nd edn, Mathematical Sciences Research
Institute Publications, vol. 5 (Cambridge University Press, 1998).

3. A. Bonkat, Bivariante K-Theorie für Kategorien projektiver Systeme von C∗-Algebren,
PhD thesis, Westfälische Wilhelms-Universität Münster (2002).

4. A. Connes, M. Gromov and H. Moscovici, Conjecture de Novikov et fibrés presque
plats, C. R. Acad. Sci. Paris Sér. I 310(5) (1990), 273–277.

5. A. Connes, M. Gromov and H. Moscovici, Group cohomology with Lipschitz control
and higher signatures, Geom. Funct. Analysis 3(1) (1993), 1–78.

6. A. N. Dranishnikov, J. Keesling and V. V. Uspenskij, On the Higson corona of
uniformly contractible spaces, Topology 37(4) (1998), 791–803.

7. H. Emerson and R. Meyer, A descent principle for the Dirac–dual-Dirac method,
Topology, in press.

8. M. Gromov, Spaces and questions, preprint (1999).
9. E. Guentner, N. Higson and S. Weinberger, The Novikov conjecture for linear

groups, preprint (2003).
10. N. Higson, Algebraic K-theory of stable C∗-algebras, Adv. Math. 67(1) (1988), 1–140.
11. N. Higson, C∗-algebra extension theory and duality, J. Funct. Analysis 129(2) (1995),

349–363.
12. N. Higson, Bivariant K-theory and the Novikov conjecture, Geom. Funct. Analysis 10(3)

(2000), 563–581.
13. N. Higson and J. Roe, Analytic K-homology, Oxford Mathematical Monographs

(Oxford University Press, 2000).
14. N. Higson, V. Lafforgue and G. Skandalis, Counterexamples to the Baum–Connes

conjecture, Geom. Funct. Analysis 12(2) (2002), 330–354.
15. G. G. Kasparov, Equivariant KK-theory and the Novikov conjecture, Invent. Math.

91(1) (1988), 147–201.
16. G. G. Kasparov and G. Skandalis, Groups acting properly on ‘bolic’ spaces and the

Novikov conjecture, Ann. Math. (2) 158(1) (2003), 165–206.
17. R. Meyer and R. Nest, The Baum–Connes conjecture via localisation of categories,

Topology 45(2) (2006), 209–259.
18. N. C. Phillips, Representable K-theory for σ–C∗-algebras, K-Theory 3(5) (1989), 441–

478.
19. J. Roe, Coarse cohomology and index theory on complete Riemannian manifolds, Memoirs

of the American Mathematical Society, vol. 104, no. 497 (American Mathematical Society,
Providence, RI, 1993).

20. G. Skandalis, J. L. Tu and G. Yu, The coarse Baum–Connes conjecture and groupoids,
Topology 41(4) (2002), 807–834.

21. J.-L. Tu, The Baum–Connes conjecture for groupoids, in C∗-Algebras, Münster, 1999,
pp. 227–242 (Springer, 2000).

22. J. Weidner, KK-groups for generalized operator algebras, I, K-Theory 3(1) (1989),
57–77.

23. J. Weidner, KK-groups for generalized operator algebras, II, K-Theory 3(1) (1989),
79–98.

24. G. Yu, Coarse Baum–Connes conjecture, K-Theory 9(3) (1995), 199–221.
25. G. Yu, Baum–Connes conjecture and coarse geometry, K-Theory 9(3) (1995), 223–231.
26. G. Yu, Localization algebras and the coarse Baum–Connes conjecture, K-Theory 11(4)

(1997), 307–318.
27. G. Yu, The coarse Baum–Connes conjecture for spaces which admit a uniform embedding

into Hilbert space, Invent. Math. 139 (2000), 201–240.

https://doi.org/10.1017/S147474800500023X Published online by Cambridge University Press

https://doi.org/10.1017/S147474800500023X

