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Turbulence generation and decay in the
Taylor–Couette system due to an abrupt stoppage
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This study presents an innovative approach towards the generation and decay of turbulence
in the Taylor–Couette system. The outer cylinder was brought to an abrupt stoppage
that generated turbulence in the system, which was initially in the laminar flow regime.
Two complementary experimental approaches, namely visualizations and stereo-particle
image velocimetry (PIV) measurements, were used to better understand the presented
phenomenon for only external cylinder rotation. A moving time average technique was
developed due to the continuous change in the length scales throughout the generation
and decay process. The different stages of the generation and decay of turbulence were
described and characterized through dynamic quantities such as the kinetic energy. This
new approach towards the generation and decay of turbulence in the Taylor–Couette flow
should help significantly in future endeavours.
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1. Introduction

Turbulence, a naturally occurring phenomenon, remains a mystery for the scientific
community due to its highly nonlinear, and spatially and temporally fluctuating nature
together with a wide range of scales. It occurs when energy is provided to the system,
for example through rotation, temperature gradient and flow velocity. The higher this
input of energy is, the stronger the turbulence will be. At the same time, the turbulence
dissipates kinetic energy (Verschoof et al. 2016). A major part of this decay of turbulence
has been researched through the lens of homogeneous isotropic turbulence (HIT)
(Taylor 1935; de Kármán & Howarth 1938; Kolmogorov 1941; Batchelor, Townsend &
Taylor 1948a, ; Saffman 1967; Sreenivasan 1984; George 1992; Lohse 1994; Eyink &
Thomson 2000; Skrbek & Stalp 2000; Hurst & Vassilicos 2007; Davidson 2011; Meldi,
Sagaut & Lucor 2011; McComb et al. 2014; Thormann & Maneveau 2014; Sinhuber,
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Bodenschatz & Bewley 2015; Valente & Vassilicos 2015; Vassilicos 2015; Antonia et al.
2017; McComb & Fairhurst 2018). How this decay happens is still a subject of vast research
due to non-consensus on its major aspects: (i) Do initial conditions influence the decay
(George 1992; Biferale et al. 2003; Thormann & Maneveau 2014; Sinhuber et al. 2015)?
(ii) Is the decay self-similar (Batchelor et al. 1948a; George 1992; Eyink & Thomson
2000; Biferale et al. 2003; Sinhuber et al. 2015; Verschoof et al. 2016; Antonia et al.
2017; Ostilla-Mónico et al. 2017)? (iii) Is the decay dependent on the Reynolds number
(de Kármán & Howarth 1938; Saffman 1967; George 1992; Lohse 1994; McComb et al.
2014; Sinhuber et al. 2015)? And (iv) what is the rate of decay (Saffman 1967; George
1992; Thormann & Maneveau 2014; Sinhuber et al. 2015)?

The importance of clearly understanding how turbulence develops and decays is not
just fundamental but also of significant practical interest. The famous two equation k − ε

turbulence model, dε/dt = −Cε2ε
2/k, used in simulations is based on the homogenous

isotropic turbulence assumption. The energy dissipation rate, ε, and the turbulent kinetic
energy, k, are calculated from the transport equations, and the constant, Cε2, is estimated
from the rate of decay (Thormann & Maneveau 2014). At the same time, this k − ε

turbulence model is known for excessively damping turbulence scales and under-predicts
dissipation (Singh, Fletcher & Nijdam 2011). A better understanding of fundamental
aspects of turbulence will definitely help in the improvement of the existing turbulence
models or in creating a new model altogether.

It is important to remember that in the early nineteenth century a lot of assumptions
were considered to simplify the theoretical calculations, one of which is HIT. However,
turbulence is chaotic in nature and therefore, generally, neither homogeneous nor isotropic.
Consequently, in recent years, a new approach is being developed towards wall-bounded
turbulence decay to observe this chaotic behaviour either numerically (Touil, Bertoglio &
Shao 2002; Schneider & Farge 2008; Ostilla-Mónico et al. 2017; Schikarski & Avila 2017)
or experimentally (Peixinho & Mullin 2006; Verschoof et al. 2016). All of these studies
have been conducted in different types of geometries: pipe flow (Peixinho & Mullin 2006),
two plates (Touil et al. 2002), two-dimensional structures (Schneider & Farge 2008),
T-mixer (Schikarski & Avila 2017) and the Taylor–Couette (TC) system (Verschoof et al.
2016; Ostilla-Mónico et al. 2017). Each geometrical system has its own advantages, but the
TC system, in which flow is contained between two concentric cylinders, presents itself
as an ideal system because it is a confined and closed system with non-homogeneous
and anisotropic turbulence (Huisman et al. 2014). For example, its biggest advantage
over the pipe flow is its modest size, which makes it more practical to study decay in a
wall-bounded environment both experimentally and numerically. Verschoof et al. (2016)
studied experimentally, using PIV and laser Doppler velocimetry (LDV), the decay in
turbulence by stopping the inner cylinder, while the outer one was at rest, and allowing
the turbulence to decay freely from the ultimate turbulent regime at a Reynolds number of
106. However, they faced a practical problem of stopping the cylinder instantaneously. In
their case, it took 12 s to reach a complete stop and during this time they did not measure
the decay. Consequently, the group provided a follow-up numerical study (Ostilla-Mónico
et al. 2017) in which the inner cylinder was brought to a halt abruptly, but at the much
smaller Reynolds number of 3.5 × 104. Also described by Batchelor et al. (1948a,b), they
(Ostilla-Mónico et al. 2017) observed three distinctly different stages of decay: initial,
intermediate and final. Both concluded that, during the initial stage, the energy decayed
through large eddies (Batchelor et al. 1948a) or rolls (Ostilla-Mónico et al. 2017) and the
final decay stage remained purely viscous. The intermediate stage represented continual
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change in turbulent motion with inertial terms strong enough to maintain the transfer of
energy from the large eddies (Batchelor et al. 1948a).

In this manuscript, a slightly different phenomenon is presented. Instead of starting
from a turbulent flow and studying its decay, we started from a laminar flow. The rotation
of the outer cylinder was fixed in order to obtain a laminar flow and after five minutes
the cylinder was stopped abruptly (with details provided in the methodology). Generation
of turbulence was observed shortly after the stoppage, which decayed freely afterwards
due to the absence of any further driving force given to the system. As a result, this
experimental work differs significantly from the experimental work of Verschoof et al.
(2016) according to the following points: (i) the flow was in a laminar state before the
instantaneous stoppage in comparison with a turbulent state; (ii) the outer cylinder was in
motion before being stopped in comparison with the inner cylinder; (iii) it was stopped
abruptly in comparison with a gradual stoppage; and (iv) both the turbulence generation
and free decay are observed in comparison with free turbulence decay.

The present study shares some similarities with the works on impulsive spin-down in
a cylinder (Euteneuer & Karlsruhe 1972; Neitzel & Davis 1981; Neitzel 1982; Mathis &
Neitzel 1985; Savas 1992; Kim & Choi 2004, 2006; Kim, Song & Choi 2008; Kaiser et al.
2020) or Couette flow decay in the TC system (Tillmann 1967; Neitzel 1982; Kohuth &
Neitzel 1988). While the geometry of the first case differs, it can be seen as a particular case
of the TC system (with the radius ratio, η = 0) and Kohuth & Neitzel (1988) have shown
that the inner cylinder of the TC system has no influence on the onset of the instability
at large Reynolds number. Thus, what happens at the very beginning when the cylinder
is stopped can be compared to what happens in the TC system when the outer cylinder is
stopped. The whole process of the generation and decay of turbulence has been described
in the direct numerical simulations by Kaiser et al. (2020). They considered an infinitely
long cylinder in solid-body rotation (SBR) and impulsively stopped for a wide range of
Reynolds numbers. They have identified five stages according to their flow structure and
their underlying mechanisms of kinetic energy dissipation. Initially, the laminar boundary
layer undergoes a primary centrifugal instability, which causes the formation of coherent
Taylor rolls. The flow then becomes turbulent, once the Taylor rolls are destabilized by
secondary instabilities. Within the turbulent stage, they distinguished two phases. In the
first one, the SBR core is still intact and turbulence is sustained. They described the mean
velocity profile by the superposition of a near-wall region, a retracting SBR core and an
intermediate region of constant angular momentum. In the second turbulent phase, the
SBR core breaks down, turbulence starts to decay exponentially and the kinetic energy
of the mean flow decays logarithmically. Finally, the flow becomes laminar again and the
velocity profile of the analytical solution for purely laminar decay is recovered.

In the TC flow, this problem has been addressed as a way to study instabilities of an
unsteady circular Couette flow. As far as we know, very few authors (Tillmann 1967;
Neitzel 1982; Kohuth & Neitzel 1988) have worked on this subject and all considered
the case where the cylinders were initially in SBR and then the outer one was stopped
while the inner one remained in motion. In this configuration, no final decay was observed
as energy was still injected to the flow through the rotation of the inner cylinder. The
final state was either the Taylor vortex flow, turbulence or the circular Couette flow but it
was not reached after decay from turbulence. Experimental works did not provide velocity
measurements. Here, the generation and decay of turbulence are studied experimentally
using two complementary approaches: visualizations with Kalliroscope and stereo-PIV
measurements to capture all the three velocity components.
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The paper is organized as follows. In § 2, the methodology is presented and contains
the description of the experimental set-up and the averaging technique used to obtain the
results described and discussed in § 3. Finally, the conclusion gives a summary and outlook
in § 4.

2. Methodology

2.1. Apparatus
The TC system consists of two cylinders with inner and outer radii of ri = 0.04 and
ro = 0.05 m, respectively, with a radius ratio, η = ri/ro, of 0.8 and gap width, d = ri − ro,
of 0.01 m. The maximum height of the working fluid, L, is 0.45 m with aspect ratio Γ =
L/b = 45. Degassed water was used as the working fluid at a constant temperature of 20 ◦C
maintained by the water circulations in the inner cylinder and in the envelope surrounding
the outer cylinder. This allows for a constant viscosity ν = 1.10−6 m2 s−1. The inner
cylinder (IC) is made of aluminium having a black anodized wall to avoid reflection when
working with the laser. The outer cylinder is made of Plexiglas to provide optical access
over the entire gap width axially. The system also contains a bottom and top ring, attached
to the outer cylinder at a distance of 0.5 mm from the IC. Only outer cylinder rotation, with
angular velocity ωo, was considered in these experiments. In each run, the flow conditions
were laminar before stopping the cylinder abruptly using the emergency stop button. For
the emergency stop, the deceleration of the system was measured to be constant and
≈2.8 m s−2. With this deceleration, it always took less than a half of a rotation of the
outer cylinder to come to a complete halt, irrespective of the initial rotational velocity.
For the largest Reynolds number, the outer cylinder rotational velocity drops from 34.9 to
0 rad s−1 in 0.0017 viscous time units (tν/d2) or ≈29.7 inertial time units (troωo/d). It
corresponds to 0.43 revolutions. The time needed for the stoppage of the outer cylinder
represents ≈0.4 % of the total duration of the experiments. In this article both viscous
and inertial time units have been used. As suggested by Neitzel & Davis (1981), various
times scales can be used to present the results. Among them, the inertial time units can be
used for comparison within the same geometry; while, viscous time units are preferred to
compare different geometries.

In order to visualize flow structures, the degassed water was mixed with 1 %
Kalliroscope ST-1000. A r–z plane was illuminated with a class 4 Ray Power 2000
continuous laser with a maximum output of 4 W at 532 nm wavelength. This r–z plane
was captured with a Phantom M series lab140 CMOS camera of 4 MP resolution having
a maximum of 800 f.p.s. speed using an objective of 105 mm. The Dantec Dynamics
studio version 6.0 was used to capture and export the images which were then treated with
Matlab R2018a software to obtain the presented results. A maximum of 2000 to 10 000
single frame images were captured depending upon the acquisition frequency of 50 or 200
Hz (at higher Reynolds number), respectively.

The stereo-PIV measurements were also done in the r–z plane through the transparent
outer cylinder using two cameras and objectives identical to the one used for visualizations.
The cameras were synchronized with a Nd:YAG medium Class 4 Litron laser LPY 50–200
having maximum output of 200 mJ, wavelength of 532 nm and a maximum frequency of
acquisition of 200 Hz. However, in order to capture at least 35 s of the process, 50 and
100 Hz (at higher Reynolds numbers) acquisition frequencies were used to capture around
2500 and 3800 double image pairs, respectively. The fluid was seeded with fluorescent
Rhodamine particles of average size between 5 and 20 µm. The calibration of both
cameras was done with the pinhole method of the image modelling fit methodology using
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a three-dimensional calibration target manufactured by Dantec Dynamics for stereo-PIV
measurements for this specific TC system. The captured images were analysed initially
with the Dantec Dynamics studio version 6.4 to compute the vector fields using the
adaptive PIV method having the maximum interrogation area (IA) size of 32 × 32 grid,
minimum IA size of 8 × 8 grid and grid step size of 4 × 4. In this method, the IA size
decreases automatically from the maximum towards the minimum IA specified provided
the particle density is high enough, and the grid step size controls the vector spacing.
Afterwards, the calibrations of both cameras were selected along with the vector fields of
both cameras to create the stereo-PIV vector fields which were imported as *.txt files and
treated with Matlab R2018a software to present the results.

2.2. Temporal and spatial averaging
The averaged data were calculated using both space and time averaging. The spatial
averaging was performed along the axial direction. As all scales change with time during
the decay process, the traditional time averaging process, when a certain amount of data
are averaged over time to obtain statistically converged data, was not feasible. Instead, a
moving time average is considered here, in which the time averaging takes place during
the whole decay process at each individual time step by considering a certain amount of
data before and after that point; 5fd/uθ is chosen as the criterion to estimate the number
of data points before and after each time step, such that t′ = (i − 5fd/uθ ) : (i + 5fd/uθ ),
where uθ and f represent the azimuthal velocity component and frequency of acquisition,
respectively; d/uθ was chosen as the time scale because the evolution of length scales is
directly related to the azimuthal velocity component; whereas the factor 5 was chosen to
ascertain that there will be a minimum of 10 images to do the averaging process at the
start of decay when d/uθ is the smallest. The factor influences the number of data points
to conduct the mobile average. With an increase in the number of data points for averaging,
the temporal dynamics becomes subdued but without impacting the global behaviour or
its convergence, as can be observed in figure 4 where the factor 5 is compared with a
factor 15. This combination of averaging processes appeared to be sufficient to obtain
converged data. The convergence was mainly achieved by the spatial averaging, as also
observed by Kaiser et al. (2020) in their numerical work. We did not perform an ensemble
average of multiple repetitions for the same Reo = ωorod/ν, the outer Reynolds number
based on the outer cylinder velocity, but we checked that two independent repetitions had
the same behaviour, as shown in figure 4(a).

3. Results and discussion

3.1. Visualizations
When the outer cylinder is stopped abruptly from a velocity greater than a given value,
small vortices appear near the outer wall. Then, these vortices grow towards the IC and
are rapidly destabilized. Finally, as no further energy is delivered to the flow, the vortex
pattern decays. The whole process is presented for Reo = 1700 in a supplementary movie
available at https://doi.org/10.1017/jfm.2021.346.

Figure 1 displays different time steps using binarized instantaneous images over the
whole axial height (z) of the TC system at Reo = 1700. The instantaneous images were
binarized, after being normalized by a mean image, using a Matlab function imbinarize
with default value of 0.5 for the sensitivity parameter. The growth of the vortical structures
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Figure 1. Binarized instantaneous images presenting the growth of vortical structures at different times steps
for Reo = 1700 over the whole axial height (z) of the TC system. The x and y labels are the same for all panels
as in (e): (a) t = 0tv/d2; (b) t = 0.005tv/d2; (c) t = 0.01tv/d2; (d) t = 0.017tv/d2; and (e) t = 0.017tv/d2

with zoom.

can be observed from the moment they appear until they fill the whole gap width, which
takes ≈0.017 viscous time units.

Taking the light intensity along a vertical line at mid-gap in each acquired image
normalized with a mean image, we have constructed space–time diagrams. Figure 2
presents such space–time diagrams giving the variation in light intensity reflected by
the Kalliroscope particles for three different outer Reynolds numbers Reo = 870, 1700
and 17 000. They show the temporal evolution of the generation and decay of vortices
and eventually turbulence. On the space–time diagrams, bright areas correspond to areas
where Kalliroscope flakes move in the azimuthal direction whereas dark areas correspond
to inwards or outwards motion in the radial direction.

The minimum Reo at which vortex formation and decay are observed in the whole axial
length is 870. Vortices appear after the stoppage, merge and fade. However, for this Reo
value, even if the merging of the vortices induces some defects and the flow is not turbulent
(see figure 2a). On increasing Reo, vortices still appear but rapidly undergo reorganization
as they grow. We consider the formation of this disordered flow as the setting in of
turbulence (see figure 2b–d). The higher the initial outer Reynolds number, the faster the
stoppage generates turbulence throughout the axial length and the longer it lasts. It can
also be seen in this figure that the size of the structures increases with time. They persist
for a very long time and their persistence time increases with Reo. At Reo = 1.7 × 104,
they are still visible at tν/d2 = 0.4.

We have estimated the size and growth of the vortices after they appear near the outer
cylinder. This estimation was performed from the image obtained after binarization of
the axially averaged images. We used the same binarization process as mentioned earlier.
The initial vortex size 〈δi〉z corresponds to the size the vortical structure when it first
appears. This is presented in figure 3(a) as a function of the outer Reynolds number Reo. It
decreases with Reo and follows a power law which is well fitted by a × Re−2/3

o as proposed
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Figure 2. Space–time diagram of the light intensity taken along z near the outer cylinder for increasing outer
Reynolds number with a stationary IC: (a) Reo = 8.7 × 102; (b) Reo = 1.7 × 103; (c) Reo = 1.7 × 103 with
zoom; and (d) Reo = 1.7 × 104.

by Kim & Choi (2004) for the critical wavelength of Taylor–Görtler vortices generated
in an impulsively stopped rotating cylinder. Moreover, the best power law fit gives n =
−0.65, which is very close to the expected −2/3 exponent.

Figure 3(b) presents 〈δt〉z, the size of the vortical structures as a function of
√

tν/d2

for different Reo. This estimation was also obtained after binarization of the axially
averaged images, but using an adaptive method with a sensitivity of 0.6. In viscous time
units, the time required by the vortices to fill up the gap width decreases with each
increment in the Reo. In a consistent way with respect to figure 3(a), the starting point
for 〈δt〉z decreases with increasing Reo. Different growth phases can be distinguished for
each Reo. The initial growth phase is similar for all Reo > 870 with a mean growth rate of
approximately 4.7. The following growth phases also followed a power law, as such, it was
pertinent to use a logarithmic scale to present it in figure 3(c). In this case, the Reo = 870
case was not plotted because it was not turbulent, as mentioned earlier. The curves intersect
each other as 〈δt〉z grows with tν/d2 but differently for each Reo. We found that they can
all be well approximated by a power law fit with a same exponent of 1/2 but each with a
different proportionality constant aturb, as can be observed in figure 3(c). Other exponents
than 1/2 do not give better results for the fit.

Our results are in very good agreement with the results of Kaiser et al. (2020) and
Euteneuer & Karlsruhe (1972) whose unstable zone grows as the square root of time.
Following the idea that the vortices appear in the unstable zone as interpenetrating
spirals do in the unstable zone between the inner cylinder and the nodal surface (the
cylindrical surface where uθ = 0) in counter-rotating TC flow, we can consider that 〈δt〉z
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Figure 3. Initial size of the vortices (a), their growth in linear (b) and in logarithmic scale (c) and the
proportionality constant as a function of Reo (d). The legend in (a) is similar to that in (d), and the one in
(b) represents (c) as well. In (c) the symbols represent experimental data and the black coloured lines represent
fitted curves for the respective Reo. The goodness of the fit varied between 0.97 and 0.99 for all power laws. In
(d), all coefficients have 95 % confidence bounds, where the error bar represents the upper and lower bounds
for each value of aturb.

approximately corresponds to the size of the unstable zone of the flow. Kaiser et al. (2020)
also observed multiple stages of

√
νt growth, with each one separated by fast growth

transition. In another similarity with the results of Kaiser et al. (2020) and Euteneuer &
Karlsruhe (1972), we have found that the coefficient aturb increases with Reo, as presented
in figure 3(d). We obtained a power law with an exponent of 1/2 and a proportionality
constant of 0.18. Our power law exponent differs from the power law exponent of
Kaiser et al. (2020), who obtained a value of 1/3. However, Kaiser et al. (2020) presented
the coefficient aturb as a ratio of aturb/alam, where alam is the proportionality factor for the
growth of the laminar boundary layer thickness for their phase one and aturb corresponds
to phase three.

3.2. Mean azimuthal velocity decay
Figure 4(a,b) presents the evolution of the mean azimuthal velocity with respect to time.
The azimuthal velocity was averaged axially over 100 mm in the mid-height region,
radially over 1.7 mm in the centre of gap region and at each instant of time with t′ =
(i − 5fd/uθ ) : (i + 5fd/uθ ). To reduce the number of data points, every fifth data point
is plotted in figure 4(a). The instantaneous visualization snapshots presented alongside
the velocity decay demonstrate the evolution of the generation and decay processes. The
visualization and PIV velocity estimations were conducted separately. Therefore, the insets
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Figure 4. Decay of azimuthal velocity with time at Reo = 17300. It is averaged axially, radially around the
centre of gap-width over 2.7 mm and at each instant of time with t′ = (i − 5fd/uθ ) : (i + 5fd/uθ ). In (a)
snapshots of instantaneous visualizations are also presented to show the evolution of the decay of the velocity
for two different sets of data: repetitions 1 and 2. In (b) data set 1 was used to average with the different factors
of 5 and 15. The time t0 represents the time at which the stop occurs.

in the figure 4(a) correspond to typical snapshots of the pattern as one may observe at that
time steps. In figure 4(b), the time origin t0 is fixed at time tν/d2 = 0.034 of figure 4(a)

In figure 4(a) it seems that the mean azimuthal velocity’s rate of decay follows a power
law of the type y = axn. However, when only the decay region is observed in figure 4(b),
it can be seen that this decay does not follow a single power law, as also observed by
Ostilla-Mónico et al. (2017). Multiple decay regions can be observed in figure 4(b). We
have identified three phases for the whole turbulence generation and decay process. These
three phases can be better understood with the observation of the variation of the turbulent
kinetic energy in the following sub-section.

An important aspect to be observed is the free decay of the azimuthal velocity profile as
a function of time (figure 5). Figure 5(a) gives the azimuthal velocity profile at different
time steps of the decay period, as shown in figure 4(b). The azimuthal velocity is averaged
axially and at each instant of time using the moving average method mentioned earlier.
A selected few time steps were chosen to present the decay of the turbulence. As for the
visualizations, Reo = 1700 is chosen to present the decay process of the mean azimuthal
radial profile over the first 0.05 viscous time units. At Reo = 17 300, this decay process
was much faster and took just 0.01 viscous time units for the radial profile to reach below
40 % of the maximum azimuthal velocity component. The two first profiles, for t = 0 and
0.0001(t − t0)ν/d2, are very close to the analytical Couette profile, which is represented
by the analytical profile presented as the dotted line. Then, as the outer cylinder is stopped,
the following profiles remain close to the Couette flow in the first half of the gap, reach
a maximum value, termed uθmax, and decrease towards zero. Our measurements did not
allow us to observe the decrease toward zero near the outer cylinder. These profiles are
similar to the ones observed in spin-down experiments (Kim et al. 2008; Kaiser et al.
2020). The shape and structure of the azimuthal velocity profiles demonstrate that the
unstable region lies near the outer cylinder for the current configuration, which can also
be confirmed in figure 1.

Figure 5 was constructed after estimating the actual point of stoppage, which could
be observed clearly for the visualization experiments, but is not known as well for the
stereo-PIV measurements. Based on figure 4, we can deduce the actual time frame at
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with time
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Figure 5. Radial decay process observed experimentally at Reo = 1700 (a) and its theoretical explanation
(b). In (a) mean azimuthal velocity is averaged axially and at each instant of time with t′ = (i − 5fd/uθ ) :
(i + 5fd/uθ ). The dotted line represents the analytic laminar profile. The time t0 represents the time at which
the stop occurs.

which the decay starts; however, the question remains as to whether the point at which
decay starts is the same as that at which the stop occurs. However, this decay process
allows us to ascertain that, at the instance of stoppage, the azimuthal velocity component
at the outer cylinder wall will fall towards zero and cause the decay observed in figure 5.
As a result, it is fair to assume that the point of decay is the point of stoppage as well.

As demonstrated in figure 5(b), as soon as the cylinder is stopped, the velocity of the
outer cylinder wall becomes zero. The wall velocity at the IC is already zero (because
the inner cylinder is stationary), but the velocity in the gap width remains non-zero.
This creates a centrifugally unstable region viz-a-viz Rayleigh’s criterion (Rayleigh 1917),
which states that if the Rayleigh discriminant is positive an instability may develop. Hence,
as soon as the outer cylinder wall velocity becomes zero, Rayleigh’s discriminant becomes
positive in the region between the position of uθmax and the outer cylinder, creating the
possibility of a centrifugal instability. At the first stage of the instability, the unstable region
and the resulting vortices are located in the immediate vicinity of the outer cylinder. As
stated by Neitzel (1982) for experiments of Couette flow decay, the IC has probably no
influence on the instability at this stage. These vortical structures grow along with the
thickness of the unstable region. Therefore, the pattern requires continuous reorganization
that leads to its irregularity and the development of turbulence in the system, depending
upon the Reynolds number (figure 2). These structures propagate towards the inner
cylinder (figure 1), with the growth rate depending on the Reynolds number, as explained
earlier. Similar observations were reported by Euteneuer & Karlsruhe (1972) and Neitzel &
Davis (1981).

Figure 6 presents the azimuthal velocity profile corresponding to the instance at which
decay starts at different Reo. It was averaged in a similar way as the case for figure 5. It
demonstrates the size of the unstable zone which could be governing the appearance of the
vortices. It is known that the size of the zone between the nodal surface and IC walls plays
a critical role in the localization and size of the vortices induced by the destabilization of
the counter-rotating Couette flow (Esser & Grossmann 1996). Similarly, the zone between
the inflection point, observable in figure 6, and the outer cylinder wall must determine the
appearance and the size of the vortical structures.
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Analytic

Figure 6. Azimuthal velocity at the instance at which decay starts for different Reo. It is averaged axially and
at each instant of time with t′ = (i − 5fd/uθ ) : (i + 5fd/uθ ). The vertical red line points towards the inflection
point observable at the presented Reynolds number.

3.3. Kinetic energy decay
Figures 7 and 8 demonstrate the decay of the three forms of the kinetic energy (KE):
mean, turbulent and wind. The presented data are averaged axially, radially near the
centre of the gap for figure 7 and near the inner and outer cylinders for figure 8, and
at each instant of time with t′ = (i − 5fd/uθ ) : (i + 5fd/uθ ). Figure 7(a–c) presents a
comparison for the three types of KE at different Reo, while figures 7(d) and 8 depict
these three types of KE only for Reo = 1.7 × 104. All the temporal scales in figures 7 and
8 are made dimensionless using the dynamic time scale roω/d to facilitate comparison
between different Reo. Additionally, all the temporal profiles for these kinetic energies
start from the moment stop occurs, as discussed for figure 4. The mean KE was estimated
from the mean velocity flow components: kmean = 1/2(〈ur〉2

t′,z + 〈uθ 〉2
t′,z + 〈uz〉2

t′,z), where
r and z represent the radial and axial coordinates. The turbulent KE is estimated
from the fluctuating radial, azimuthal and axial components of the velocity as: kturb =
1/2((〈u′2

r 〉t′,z + (〈u′2
θ 〉t′,z + (〈u′2

z 〉t′,z), where u′
r,θ,z = ur,θ,z − 〈ur,θ,z〉t′,z. And finally, the

wind KE was composed of only the radial and axial fluctuating components of the velocity:
kwind = 1/2(〈u′2

r 〉t′,z + 〈u′2
z 〉t′,z). It can be noticed that the general behaviour of the three

kinetic energies is the same for all Reo. As the Reynolds number fixed the initial conditions
of the decay process, this means that this initial condition has no impact on the general
behaviour of the decay. Temporal re-scaling with the roω/d term makes the decay profile
longer for increasing Reo. Considering the similar behaviour for all Reo, we compare
directly the three kinetic energies in figure 7(d) for the largest Reo.

The mean KE follows the mean azimuthal velocity profile and decays continuously
with time. The turbulent and wind KE profiles show different phases for this turbulence
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Figure 7. Temporal evolution of the dimensionless mean (a), turbulent (b) and wind KE (c) at different
Reynolds numbers, and these three together for Reo = 1.7 × 104 (d). These are averaged axially, radially around
the centre of the gap over 1.7 mm and at each instant of time with t′ = (i − 5fd/uθ ) : (i + 5fd/uθ ). The x and y
labels for (a,b) are same as those in (c,d). Also, the legend in (b,c) is same as that in (a). The time t0 represents
the time at which the stop occurs.

generation and decay process. When the outer cylinder is rotating, its vibration generates
experimental noise which gives the initial value for the turbulence and wind kinetic
energies. As the outer cylinder is stopped, the turbulence sets in and these kinetic energies
start to grow until they reach their maximum value. This generation of turbulence is
considered as phase I of this generation and decay process. As also observed in figure 2,
this initial phase is marked by the generation of small vortical structures, resulting in the
centrifugal instability. These small scale structures induce radial and axial components
of the velocity, resulting in an increase in the wind KE, as observed in figure 7(d). At
the centre of the gap, the time at which the maximum is reached is 49troω/d; whereas
it is 100 near the IC, as can be seen in figure 8. Near the outer cylinder, there is a small
initial decrease followed by a small plateau at troω/d between 31 and 45. At this location,
the mean, turbulent, and wind KE are close to their maximal value. When the cylinder
is stopped, the fluctuations slightly decrease with the velocity but the emergence of the
structures maintain its high level. Then, as the velocity further decreases, the decay process
starts and the wind and turbulence kinetic energies decrease from their maximum values
at the centre and near the IC and from the plateau near the outer cylinder. This occurs at
different times for each position along the gap. This time difference between the different
starting points of the decay comes from the propagation of the structures from the outer
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Figure 8. Temporal evolution of the dimensionless mean, turbulent and wind KE at Reo = 17 300 when
radially averaged near the inner (black markers) and outer (red markers) cylinders. These are averaged axially,
radially around the IC (black markers) and outer cylinder (red markers) over 1.7 mm and at each instant of
time with t′ = (i − 5fd/uθ ) : (i + 5fd/uθ ). The time t0 represents the time at which the stop occurs.

cylinder towards the IC as they grow (figure 1). Kaiser et al. (2020) observed a similar
phenomenon in their Phase-II, which they termed as the ‘emergence of Taylor rolls and
laminar-to-turbulent transition’. Evidently, this initial phase is not present if the flow is
already turbulent before the stop occurs, as in the results of Verschoof et al. (2016) and
Ostilla-Mónico et al. (2017). There is no generation of turbulence occurring in this case,
which could have led to an increase in the turbulent KE.

Once the maximum is reached, the decay of the turbulent and wind KE starts. This decay
phase is named phase II in figure 7(d). We found that the wind KE appears to follow a
power law with the power exponent of −1.36. This falls between the HIT based theoretical
predictions of −6/5, and −10/7 for the Saffman (1967) and Kolmogorov (1941) theories,
respectively. Phase II is defined by the merger of smaller scale structures towards larger
scales together with their fading. This process is repeated until the final phase (phase III in
figure 7d), which is dominated by viscous diffusion (figure 2). The merging of structures
leads to the reorganization of the energy and the length scales continuously. During this
process of reorganization, multiple plateaus can be remarked upon, for example the biggest
one around 150 troω/d of decay in figure 7(d). These plateaus are visible around the centre
and near the IC but not near the outer cylinder (figures 7(d) and 8). The fusion of the
structures at certain instances sustains the KE causing these plateaus, this process can
also be observed in Ostilla-Mónico et al. (2017). Once this fusion stops, the decay process
enters the final phase during which the large scale structures decay under the influence of
viscous diffusion.

Towards the end of this final decay phase, the turbulent KE is higher in magnitude
compared with the mean KE; even though at this stage the flow cannot be considered
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as turbulent. This occurred whatever the measurement position was. At this stage, we
observe large vortical structures having an axial periodicity and propagating tangentially
as axisymmetric rolls which decay with time, as can be observed in figure 2. Following the
idea of Hussain & Reynolds (1970), these vortical structures with their axial periodicity
can be associated with a wave component in the velocity decomposition process. In this
process, u = 〈u〉 + u′, where u′ = uwave + uturbulence. In our case, there is a non-separation
of the wave component from the fluctuating velocity component (Hussain & Reynolds
1970) which forms the turbulent KE. As such, the turbulent KE represents both the wave
component due to the vortical structures and the fluctuating component. At the end of the
decay process, u′ is mainly composed of the wave component.

3.4. Energy dissipation rate and length scales
Figure 9(a) presents the production of KE and the mean, turbulent and total KE dissipation
rates estimated using 7 out of the 12 gradients using the cylindrical coordinates (Pope
2000). The direct estimation of the energy dissipation of the mean KE, turbulent KE
and total KE can be estimated from equations (3.1), (3.2) and (3.3), respectively. The
current PIV measurements were stereo-PIV, which provides access to the three velocity
components but only two set of coordinates. As such, out of the total 12 components for
the direct estimation of the dissipation of the mean, turbulent and total KE, only seven
were estimated here because the other five components required the azimuthal coordinate
which was not accessible, as shown in (3.4), (3.5) and (3.6). Nonetheless, Singh (2016)
have shown that the missing five components related to the azimuthal coordinate make
a negligible contribution to the estimation of the mean KE dissipation rate with more
than 90 % contribution coming from the gradients of the radial coordinate. The symmetry
of the roll structures that appear in this case is similar to that of turbulent Taylor vortex
flow. Moreover, these missing five components can be estimated using Taylor’s hypothesis,
which would give ∂θ = uθ ∂t/r. A brief analysis of these components showed a less than
0.01 % contribution towards the mean energy dissipation rate estimation. Consequently,
the prediction based on the seven components was maintained. These gradients were
estimated using the second-order central differencing approximation of the first derivative
(Singh 2016).

Based on the estimation of the dissipation rate, the Taylor microscale, 〈λ〉 =√
15ν〈u′2

θ 〉/〈εmean〉, and Kolmogorov scale, 〈ηK〉 = (ν3/〈εmean〉)(1/4) were also estimated.
These two length scales are presented in figure 9(b). On the other hand, the production
of KE was estimated as: P = −〈u′

θu′
r〉(d〈uθ 〉/dr − uθ /r). Figure 9(a,b) shows only the

data corresponding to phases I and II of the KE, except for the profile of the total energy
dissipation. Only phases I and II were chosen because the viscous decay phase III was
practically diffusive in nature and contained insignificant fluctuating content, as can be
observed with the temporal evolution of the turbulent and wind KE (figure 7)
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Figure 9. Temporal evolution of the production and dissipation of energy and two length scales at Reo =
17 300. The inset in b presents the multiple power laws observed in the Taylor microscale. These are averaged
axially, radially around the centre of the gap width over 1.7 mm and at each instant of time with t′ = (i −
5fd/uθ ) : (i + 5fd/uθ ). The time t0 represents the time at which the stop occurs.
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The turbulent KE dissipation rate and the production of KE increased in phase I
(figure 9a). This further confirms that phase I is defined by the generation of KE. The
initial (first three points) higher magnitude of the production of KE and the turbulent KE
dissipation rate is due to the vibration of the outer cylinder while it was rotating before the
stop, as mentioned earlier. Phase II starts with the decay of all energy dissipation rates.
During this decay process large oscillations of the production of KE occur together with
small oscillations of all the KE dissipation rates. During this phase the reorganization
of the vortices also occurs. This induces the oscillations of the turbulent and mean KE
dissipation rates but at different instances. The behaviour of the total KE dissipation rate,
which is the sum of the turbulent and mean KE dissipation rates, reflects its two component
oscillations. The production of KE represents the transfer of energy between the turbulent
and mean components of the flow. Its oscillations correspond to the oscillations of the total
KE dissipation rate. Towards the end of phase II, the turbulent KE dissipation rate was
higher in magnitude than the mean KE dissipation rate. As explained earlier, the turbulent
component, presented herein, consists of both the fluctuating and periodic components.
Towards the end of the decay phase, the fluctuating component is negligible, so that the
turbulent KE mainly consists of the periodic component which is due to axisymmetric
vortices. This will continue until these vortices vanish completely. This is the main reason
for a higher turbulent KE dissipation rate than the mean KE dissipation rate towards
the end of decay process. As a consequence, the profile of the total KE dissipation
rate is similar to that of the turbulent KE dissipation rate. Verschoof et al. (2016) and
Ostilla-Mónico et al. (2017) presented a total KE dissipation rate that is more similar to
the profile of the mean KE dissipation rate presented here. In the case of Verschoof et al.
(2016) and Ostilla-Mónico et al. (2017), there was no generation of turbulence, and decay
only happened from the moment the IC was brought to a stop. George (1992) stated that
the Taylor microscale should be considered as the characteristic length scale, and that it
increases as the square root of time, or λ ∼ t1/2. An increase, following a power law, could
be seen at multiple times but not constantly in phases I and II, see figure 9(b). The power
law exponent increases from 0.1 to 1 as a function of time, as can be observed from the
inset in figure 9(b). Moreover, the Taylor microscale, which is known to play a dominant
role in the energy and momentum transfer, captures well the reorganization of energy.

918 A21-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

34
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.346


Turbulence generation and decay in the Taylor–Couette system

0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

0 tv/d2

0.01 tv/d2

0.03 tv/d2

0.05 tv/d2

0.07 tv/d2

0.09 tv/d2

0.11 tv/d2

0.13 tv/d2

0.15 tv/d2

0.17 tv/d2

0.21 tv/d2

0.27 tv/d2

0.33 tv/d2

x = (r – ri)/d

〈u θ
〉 z,

t′/
〈u θ

〉 z,
r,

t′ 
(–

)

Figure 10. Radial profile of azimuthal velocity averaged axially and over time, for t′ = (i − 5fd/uθ ) : (i +
5fd/uθ ), and normalized with its spatial mean value at Reo = 17 300. The time represents the instant at which
the profile was extracted from the moment decay started.

The Kolmogorov scale is constant during the first 100 inertial time units and it then
increases monotonically with time. This scale, by definition, is inversely proportional
to the mean KE dissipation rate, which is clearly visible in its temporal profile. The
reorganization of the length scales and the energy are not as visible in the mean KE
dissipation rate, and consequently not represented by the Kolmogorov scale. As such, the
Taylor microscale better describes the decay of energy, and should be considered as the
length scale for phases I and II instead of the Kolmogorov scale, even though the increase
as the square root of time was not observed.

3.5. Self-similarity
Figure 10 presents the self-similarity picture for the radial profile azimuthal velocity at
Reo = 17 300 for the decay phases. The velocity profile was averaged axially and over
time, and normalized with its spatial average. This was formed based on the self-similarity
criterion presented by Verschoof et al. (2016). They defined the criterion for self-similarity
as that, when the azimuthal velocity profiles averaged over θ are normalized with the
spatial mean of the azimuthal velocity averaged radially and azimuthally, the profiles
overlapped each other. The only difference with their method being that, instead of using
azimuthal velocity profiles averaged over θ , the azimuthal velocity was averaged axially
and over time. A complete self-similarity covering the whole decay process was not
seen. Instead, profiles under phase II were found to be self-similar among themselves but
not much in the final phase. Verschoof et al. (2016) observed self-similarity only in the
intermediate region, whereas Ostilla-Mónico et al. (2017) observed self-similarity in the
final decay phase.
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Earlier, George (1992) stated different characteristics for a self-preserving solution:
λ and Rλ = u′λ/ν as the characteristic length scale and turbulence Reynolds number
respectively; energy decay follows a power law; the Taylor microscale can be predicted as
the square root of time; constants of proportionality and the exponent vary with respect to
the initial condition; and finally the spectrum and spectral functions collapse when plotted.
As per the characteristics of a self-preserving solution defined by George (1992), some
similarities could be seen. Most notably, the Taylor microscale, λ, could be considered
as the characteristic length scale based on its temporal evolution depiction in figure 9(b).
Energy decay was observed to be following a power law, but not a single power law that
could define the whole decay process due to the reorganization of structures and length
scales, as can be observed in figures 7 and 8.

On the other hand, it is crucial to observe how the decay will occur at a much larger
outer cylinder Reynolds number, of the order of 106. If this can be done experimentally
it would be much better. This was not feasible in the current geometry due to technical
constraints. Otherwise, a numerical approach can definitely shed some light on this
subject, as demonstrated by Ostilla-Mónico et al. (2017) and Kaiser et al. (2020). The
numerical studies can provide results in the whole domain, especially in the boundary layer
region and with respect to wall friction, and geometrical configurations can be modified
much more easily.

4. Conclusion

In this study, a visualization and stereo-PIV analysis is presented for the instantaneous
stoppage of the outer cylinder of a TC system which leads to the generation and
consequently decay of turbulence due to the absence of any further driving force. The
lowest Reo at which this phenomenon could be observed was found to be Reo ≈ 870.
The primary criterion to observe it was the presence of laminar flow prior to the abrupt
stoppage. The generation and decay of the turbulence process could be described by three
phases. The stoppage induces the formation of a centrifugally unstable flow region near
the outer cylinder which in turn leads to the formation of axisymmetric vortices. As the
velocity always decreases during the entire decay process, the growth of the vortices is
accompanied by continuous readjustments as they propagate towards the IC. This induces
the transition to turbulence, which induces the growth of the turbulent and wind KE.
This is the phase I also observed by Kaiser which is not present in free turbulence decay
experiments, as in the case of Verschoof et al. (2016) and Ostilla-Mónico et al. (2017).

Phase II starts after the maximum is reached for the wind and turbulent KE, and the
production term. At this time the whole gap is filled with turbulence. The reorganization
of the structures and the length scales continues. We found a power law decay rate for
the wind KE for phase II. The decay exponent is closer to the Kolmogorov theoretical
constant of 10/7. Moreover, this phase could be represented by the Taylor microscale,
which increased as a power function of time but not continuously due to the reorganization
of the structures. Additionally, during this phase, self-similarity was observed based on the
criterion presented by Verschoof et al. (2016), and also based on certain characteristics of
self-similarity presented by George (1992).

Phase III corresponds to the last stage of the decay process when the decay is principally
due to viscous diffusion. The final phase started when the biggest structures formed from
the reorganization process start decaying. It remains to be seen how this decay process
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will unfold at much higher Reo. An experimental analysis would be most welcome but a
numerical approach can definitely present some new ideas.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2021.346.
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