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A comparison of model and non-model based time–frequency
 transforms for sperm whale click classification

We tried to find discriminating features for sperm whale clicks in order to distinguish between clicks from 
different whales, or to enable unique identification. We examined two different methods to obtain suitable 
characteristics. First, a model based on the Gabor function was used to describe the dominant frequencies 
in a click, and then the model parameters were used as classification features. The Gabor function model 
was selected because it has been used to model dolphin sonar pulses with great precision. Additionally, it has 
the interesting property that it has an optimal time–frequency resolution. As such, it can indicate optimal 
usage of the sonar by sperm whales. Second, the clicks were expressed in a wavelet packet table, from which 
subsequently a local discriminant basis was created. A wavelet packet basis has the advantage that it offers a 
highly redundant number of coefficients, which allow signals to be represented in many different ways. From 
the redundant signal description a representation can be selected that emphasizes the differences between 
classes. This local discriminant basis is more f lexible than the Gabor function, which can make it more suitable 
for classification, but it is also more complex. Class vectors were created with both models and classification 
was based on the distance of a click to these vectors. We show that the Gabor function could not model the 
sperm whale clicks very well, due to the variability of the changing click characteristics. Best performance was 
reached when three subsequent clicks were averaged to smoothen the variability. Around 70% of the clicks 
classified correctly in both the training and validation sets. The wavelet packet table adapted better to the 
changing characteristics, and gave better classification. Here, also using a 3-click moving average, around 95% 
of the training sets classified correctly and 78% of the validation sets. These numbers lowered by only a few 
per cent when single clicks, instead of a moving average, were classified. This indicates that, while the features 
may show too much variability to enable unique identification of individual whales on a click by click basis, the 
wavelet approach may be capable of distinguishing between a small group of whales.

INTRODUCTION

Recordings of sperm whales (Physeter macrocephalus) often 
contain a mixture of clicks from different whales, which 
are difficult to separate into individual sequences. This 
separation is usually done manually, a time-consuming and 
difficult process. While a true model for the production 
of a click still does not exist, we can expect this function to 
depend, at least partly, on the animal’s morphology, since the 
signal results from a complex, and not yet fully understood, 
reverberation pattern within the spermaceti–junk complex. 
Although different animals may have a similar directivity 
pattern regardless of their body size, the resulting temporal 
and spectral content of the click will inevitably be size- and 
hence individual-dependent. There may also be a more 
deterministic or behavioural influence, but the extent to 
which an animal can control its click production remains 

unknown. We tried to find characteristics that would enable 
discrimination between clicks from different whales, at least 
during a group dive, and reconstruction of their individual 
click trains. We also explored the possibility of using these 
features as a biometric in order to uniquely identify a 
sperm whale. Recent papers suggest that the latter may 
be difficult due to the directionality of the click (Møhl et 
al., 2003) and the influence of hydrostatic pressure (i.e. the 
diving depth) on the whale (Thode et al., 2002), which both 
affect the frequency content. However, for the purposes of 
discriminating between clicks from different animals this 
variability is not necessarily as important, especially when the 
changes are gradual. Detection algorithms could potentially 
adjust the classification parameters in real-time, although 
real-time classification is not developed in this paper. We 
used two different approaches to find discriminating features 
in sperm whale clicks.
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The first approach was motivated by the results of Goold & 
Jones (1995), who showed that clicks from a single click train 
can have fairly constant dominant frequencies in at least two 
different frequency bands. For a male sperm whale, these 
frequencies can be found around 500 Hz and 2000 Hz. For 
female sperm whales, these frequencies are 1200 Hz and 3000 
Hz respectively. We tried to find a parametric estimation 
for the signal in these frequency bands using the so-called 
elementary signal of Gabor (1947). The Gabor function is 
suitable for describing harmonic frequency signals without 
reverberations or echoes and has been used successfully in the 
past to model clicks from porpoises and dolphins (Kamminga 
& Cohen Stuart, 1995, 1996). The dominant frequencies will 
then appear as parameters in the model. With an accurate 
model it might be possible to get a combination of parameters 
which uniquely identify a sperm whale.

For the second method, we tried to find characteristic 
features in a click using a local discriminant basis, 
constructed with a wavelet packet approach as described 
in Saito & Coifman (1994). Similar methods have been 
applied successfully in the classification of signals from other 
underwater mammals (Delory & Potter, 1998; Huynh et al., 
1998; Delory et al., 1999), and a discrete wavelet transform 
has been used with some success in an attempt to classify 
sperm whales (Dougherty, 1999). The advantage of using 
the wavelet-packet approach is that the entire method can 
be implemented in hardware as a recursive filter, which 
allows the method to be employed in the field for real-time 
analysis.

MATERIALS AND METHODS
Data collection and preparation

Sperm whale click recordings were collected from an 
inflatable boat during four field seasons spanning four to ten 
weeks each (from 1997 to 1999) at Kaikoura, New Zealand 

(Jaquet et al., 2001). Recordings were made of solitary diving 
male sperm whales using an omnidirectional hydrophone 
(Sonatech 8178; frequency response 100 Hz to 30 kHz ±5 
dB) lowered to 20 m. The hydrophone was first connected 
to a fixed gain amplifier (f lat response from 0 to 45 kHz), 
and then to one channel of a Sony TCD-D10PROII digital 
audio tape recorder (frequency response 20 Hz to 22 kHz 
±1 dB with an anti-alias filter at 22 kHz). The digital audio 
tape recorder samples at 48 kHz with 16-bit data resolution. 
The data recordings were subsequently filtered with a band-
pass linear phase filter between 100 Hz and 12 kHz. The 
use of data from solitary sperm whales gave the advantage 
that we knew with certainty which click belonged to which 
animal, and this allowed us to train the classifiers with sets 
that contained no errors. It should also be noted that the 
recordings were made during different seasons, which may 
have had an influence on the data.

In the following we give a textual overview of the 
classification process shown in Figure 1; a more detailed 
description of the methods and analytical expressions is 
given in the Appendix.

In order to compare the Gabor and wavelet methods, five 
click trains were chosen. The clicks in these sequences were 
automatically detected, and then visually filtered to remove 
surface echoes and clicks that appeared to be badly affected 
by noise. Before the clicks were used they were de-noised 
using a standard soft-thresholding algorithm, available in 
WaveLab (Donoho et al., 1999). Only the first 10 ms of the 
clicks and frequencies below 5000 Hz were used in order to 
minimize the effect of reverberations within the whale head 
and the effects of click directivity. The remainder of a click 
was found to be unsuitable for useful feature extraction.

For the Gabor model parameterization we separated the 
data into two frequency bands with two band pass filters 

Figure 2. Cumulative plot of the low frequency component of 50 
clicks from Set 4. The plot shows a second pulse coming into the 
signal at different time delays, complicating the synchronisation of 
the clicks.

Figure 1. Signal processing steps taken for both the methods in 
order to create the class vectors and to perform classification. The 
steps are detailed in the Appendix.

Figure 3. Typical example of a sperm whale click, low pass 
filtered at 5 kHz.

Figure 4. Low frequency component of the click in Figure 3 with 
its envelope. In this case the envelope allows reliable isolation of 
the main pulse in the click.
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on the original signal. One frequency band was selected 
between 100 and 1000 Hz and the second band between 
1000 and 5000 Hz. The bands were intended to focus on the 
dominant frequencies of male sperm whale clicks. The data 
used for the wavelet method were band filtered between 100 
and 5000 Hz. All clicks were time-aligned using a cross-
correlation technique. This was important especially for the 
wavelet approach, as the position of the wavelet coefficients 
are a function of time. A shift in the wavelet coefficients may 
result in using the wrong coefficient as classifier. As can be 
seen in Figure 1, which illustrates the phase error for the low 
frequency components of the clicks in set four, there was still 
some drift in the phase, and it was necessary to allow a phase 
error of about 30 sample points. After phase alignment the 
clicks were normalized in energy. The training sets consisted 
of the first 50 clicks in the ‘cleaned’ sequences; the remaining 
clicks in each train were used as validation sets.

Description of the Gabor algorithm

The Gabor function, given by equation (1), can only be 
used for signals that contain a single central frequency and 
pulse. Therefore, we are limited to only using those frequency 
bands of the signal that contain the dominant frequency of 
the sperm whale click, and we can only apply it to the first 
part of a click, before the first reverberations or echoes enter 
the signal. For low dominant frequencies, occurring around 
500 Hz, part of the first reverberation will always overlap the 
end of the first pulse which makes it more difficult to fit the 
model. The higher frequencies suffer less from this problem, 
but are more easily affected by the direction and distance of 
the animal, and may not give constant parameters.

G t He f t tt t( ) cos ( )= - =( )- -( )a p j
2

0
2

2 0 0        (1)

where H=amplitude, a=sharpness, f0=frequency, j=phase 
and t0=mid epoch.

We will describe the extraction of the main pulse with the 
example click shown in Figure 3. First, the click is filtered in 
the two frequency bands around the dominant frequencies. 
Then, its envelope, shown for the low frequency band in 
Figure 4, is used to isolate the pulse by taking the area of 
the click between two local minima of the envelope. In this 
case the area between the two dashed vertical lines includes 
roughly 3.5 ms and two cycles of the pulse. This should give 
enough points to reliably fit the Gabor model on the pulse. 
However, when the click is followed by a reverberation, or 
an echo within a very short time interval (less than 4 ms), this 
method may not give enough points for an accurate estimate 
of the Gabor parameters. This is illustrated in Figure 5, 
where a click is almost immediately followed by an echo or 
reverberation. Comparing with Figure 3, it can be seen that 
the click contains many more high frequency pulses around 
4 ms, which makes it less likely that a sufficient number of 
uncorrupted points of the first pulse can be found. Its low 
frequency component and envelope are shown in Figure 
6. In comparison with Figure 4, the echo made the second 
half of the pulse unusable, not even allowing a single period 
of the main pulse for modelling. From the figure itself, it 
can be seen that the frequency estimate will be too high, 
as the first pulse is shortened and corrupted on the right 
side by the reverberation. Even though the model might 
fit perfectly on the reverberating pulse, it will not ref lect 
the real frequency of the emitted signal. The effect of the 
changing echo time-delay of arrival on a click can also be 
seen in Figure 2, where the clicks could not be synchronised 
correctly.

After the first pulse was localized, standard line fitting 
algorithms were used to fit the model on the click. The results 
of fitting the model on the click of Figure 3 are shown in 
Figures 7 and 8, for both the low and high frequency bands. 
Despite a slight error at the signal boundaries, the centre of 
the signal seems to be closely described by its model.

Figure 8. The Gabor model fitted on a high frequency part of a 
click, the original signal is dotted, the model is solid.

Figure 5. Example of a click, low pass filtered at 5 kHz, with a 
‘fast’ reverberation.

Figure 6. Low frequency component of the click in Figure 5 with 
its envelope. Comparing to Figure 4, there is almost one millisec-
ond less information available.

Figure 7. The Gabor model fitted on a low frequency fit part of 
a click, the original signal is dotted, the model is solid.
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A summary table of the results of fitting the Gabor 
model is shown in Table 1. The first two rows give the 
(mean) percentage of energy not explained by the model, 
i.e. E(signal-model)/E(signal). The last two rows give the 
(mean) correlation between the model and signal. The high 
frequencies seem to be modelled more accurately. This can 
partly be explained by the reduced influence of noise, and by 
the fact that the number of points that have to be described by 
the model is smaller than at lower frequencies. However, this 
can motivate the use of a higher weight when the parameters 
are used for identification. Only the sharpness and frequency 
parameters of both the low and high frequency bands were 
used for identification, as the amplitude and phase were 
found to be too variable. The class vector was constructed 
by taking the mean of the four features in the training set, 
and classification was based on the distance of a click’s 
characteristics to these vectors.

Description of the wavelet algorithm

A complete description of the relationship between wavelets 
and filters can be found in Strang & Nguyen (1997). From 
a signal processing point of view, a wavelet transform will 
split a signal in two frequency bands using a high- and low 
pass filter, keeping the high frequency wavelet coefficients 
and re-splitting the low frequency scaling coefficients. A 
schematic of the discrete wavelet transform (DWT) is shown 
in Figure 10. The signal a0,k enters the filters, which produce 
the new coefficients at a lower scale a1,k (low pass) and wavelet 
coefficients b1,k (high pass). The subscript k is the index of the 
coefficient, which in our case ran from 0 to 511. The outputs 
of these filters contain some redundancy as there are now 
2×512 samples. To remove this redundancy, the filter outputs 
are down sampled by two resulting in 2×256 samples.

The DWT continues with filtering the scale coefficients, 
until a lowest scale is reached. The signal is then represented 
by the wavelet coefficients bi k i

N
,{ }

=1
 and the lowest scale 

coefficients aN,k. A wavelet packet algorithm will continue 
entering both outputs aj,k and bj,k back into the filters, storing 
all (down sampled) coefficients at every level. Figure 11 
shows how frequency bands are dyadically decomposed 
every time the coefficients are run through the filter. A 
standard discrete wavelet transform would only contain the 
0–3 (a3,k), 3–6 (b3,k), 6–12 (b2,k) and 12–24 kHz (b1,k) intervals 
(bins). The entire wavelet packet table gives a redundant 
representation of the signal, and many different bases can 
be selected from it to rebuild the original. For example, from 
Figure 11, a possibility would be the 0–6, 6–9, 9–12 and 12–
24 kHz intervals, another choice could be 0–3, 3–6, 6–12, 
12–18 and 18–24 kHz.

For identification we were interested in finding a basis that 
will emphasize the differences between classes. The details 
of finding a discriminating basis from a wavelet packet table 
can be found in Saito & Coifman (1994), a description of the 
algorithms and methods we used is given in the Appendix. 
Although creating complete wavelet packet tables might 
be time consuming, once the basis is chosen, then only a 
small part of the tree has to be rebuilt for the classification 
process. We used WaveLab (Donoho et al., 1999) to perform 
the wavelet operations.

Finally, in order to classify clicks, class vectors were created 
from the most discriminatory coefficients in the local basis. 
The classification was then based on the distance of a click’s 
characteristics to these vectors.

RESULTS
The results of classifying both the training set and the 

remainder of the data for all five click trains using the Gabor 

Figure 9. Sharpness parameter from the parameterization of the 
high frequency component of the clicks in Set 1.

Figure 10. Discrete wavelet transform through a low pass and high 
pass filter. The signal a0,k, where k is the coefficient index, enters at 
the left. The filter creates the down sampled scale (a1,k) and wavelet 
(b1,k) coefficients. The scale coefficients are then run through the 
filter again until the lowest scale has been reached. The decomposi-
tion in dyadic frequency bands is shown in Figure 11.

Click Train

1 2 3 4 5

Energy residue % low 4.9 6.5 3.8 9.0 6.4
Energy residue % high 5.4 1.2 3.7 4.3 3.2
Correlation low 0.976 0.969 0.984 0.957 0.963
Correlation high 0.973 0.995 0.978 0.979 0.988

Table 1. Average Gabor fit statistics. The energy residues are the aver-
ages of the percentages of energy not explained by the model. Correlation 
low and high give the averages of the correlation between the clicks and 
their Gabor models.

Figure 11. Wavelet packet table, showing the decomposition 
of the frequency bands every time the signal is sent through the 
filter. For example, bin (3,1,∙), containing the 3–6 kHz band, cor-
responds to the wavelet coefficients b3,k in Figure 10. However, bin 
(3,2,∙), covering the 6–9 kHz band, corresponds to the scale coef-
ficients obtained after re-filtering the wavelet coefficients b2,k and 
are not normally available in the discrete wavelet transform.
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function are shown in Table 2. To create these results a 
moving average of three clicks was used to strengthen the 
characteristics. Also, the classifiers from the high frequency 
band were given a weight four times higher than those from 
the lower band. The training data already classified quite 
poor, with correct classification percentages between 60% 
for class five and 79% for class two. The validation set did 
not do much better with percentages between 43% for class 
one and 78% for class five. It is notable that the validation set 
mixed up different classes than the training set. For example, 
validation set three shows 27 clicks in class two and only 
four clicks in class one, while training set three attributed 11 
clicks to class one and none to class two. This can indicate 
a significant variability of the characteristics throughout the 
click trains. Taking a closer look at the parameter variation, 
Figure 9 shows the sharpness parameter for clicks from the 
first data set in the high frequency band. Both local trends 
and large jumps can be seen. This kind of variation can 
be caused by the variation of echo time delay of arrivals. 

At small variations of the parameter the algorithm could 
still separate the first pulse and the echo, while at a jump 
the algorithm may no longer have been able to make this 
distinction and included a part of the echo resulting in 
significant parameter variation. This kind of behaviour is 
difficult to correct and is a weakness of the Gabor model.

Table 3 shows the results when the same dataset of five 
click trains was classified with a local discriminant basis, also 
using a three click moving average. It is clear that wavelets 
are doing a much better job. In the training sets between 90% 
and 100% of the clicks were now classified correctly, while 
the validation set had percentages between 64% for class 
three and 100% for class four. Comparing with the Gabor 
classification, validation set one shows similar errors in both 
tables, indicating a close similarity between sets one, two and 
four. It also seems that the wavelet coefficient discriminators 
were focused more on separating sets one and four, and there 
were no strong differentiators found for sets two and three. 
Plotting the most discriminating coefficient for the first 
dataset (Figure 12) shows a strong trend. Other coefficients 
showed trends as well and this may indicate that the method 
cannot be used for larger groups of whales. In Table 4 the 
results are shown when a moving average was not used; these 
results are similar to the ones with a moving average, with 
slightly lower percentages. The clicks in the training sets 
classified correctly for around 94%, and the validation sets 
classified correctly between 60% for set two and 100% for set 
four. Apparently the values of the coefficients change slowly 
enough so that they do not significantly change over three 
clicks. This can be important when the method is used for 
something other than unique identification.

DISCUSSION
We have shown that identification of individual sperm 

whales from a large group of whales based on single clicks 
using a linear classifier may not be feasible. In order to 
be successful, the number of animals that the system 
can recognize has to be kept small in order to cope with 
the variance in the features. Also, at this moment, there 
are no complete studies concerning click variability of a 
single animal over different seasons and under different 
environments, and we do not know how these might alter 
a classifier’s performance. One problem is that, in the field, 
it is generally not possible to keep track of the position and 

Training set Validation set

Classified as 1 2 3 4 5 1 2 3 4 5

Set 1 73 21 23 19 17 43 6 3 15 0
Set 2 0 79 0 8 6 30 86 18 15 0
Set 3 8 0 71 0 17 1 4 79 0 22
Set 4 0 0 0 73 0 15 4 0 58 0
Set 5 19 0 6 0 60 11 0 0 12 78

Table 2. Click classification with Gabor parameterization (moving 
average), values are correctly classified percentages.

Figure 12. Values of the strongest discriminatory wavelet coefficient 
for all clicks in Set 1.

Training set Validation set

Classified as 1 2 3 4 5 1 2 3 4 5

Set 1 100 0 4 0 0 70 0 0 0 0
Set 2 0 100 0 0 0 14 71 34 0 17
Set 3 0 0 90 0 2 0 0 64 0 0
Set 4 0 0 0 100 0 16 0 0 100 0
Set 5 0 0 6 0 98 0 29 1 0 83

Table 3. Click classification with a local discriminant basis (moving 
average), values are correctly classified percentages. Both the training 
and validation sets classify significantly better than when the Gabor 
model is used.

Training set Validation set

Classified as 1 2 3 4 5 1 2 3 4 5

Set 1 98 0 2 0 0 69 0 0 0 0
Set 2 2 94 2 0 0 14 60 25 0 22
Set 3 0 0 82 0 4 1 3 66 0 2
Set 4 0 0 2 100 0 16 4 2 100 0
Set 5 0 6 12 0 96 0 33 7 0 76

Table 4. Click classification with a local discriminant basis, values 
are correctly classified percentages. The classification performs only 
slightly worse than when using a 3-click moving average.
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orientation of an animal at depth. Changes in orientation 
may cause alterations in click characteristics throughout a 
click train, especially with respect to a stationary listener, 
and it is difficult to find constant information that will allow 
unique classification. Identification based on an entire click 
train is more feasible, and can be done when a significant 
percentage of the clicks falls within one class. In that case, 
when classification is based on click trains or perhaps on 
entire dives, coefficients could be taken not just from the first 
50 clicks of a train, but randomly from a train or dive. This 
should improve performance, as was shown in Dougherty 
(1999). However, we did not have enough data to investigate 
this in detail. Therefore, in this paper we focused on the 
more practical case where an expert manually classifies 
the first few clicks in a recording, and then an automatic 
classifier continues with the remainder. The classification 
process could also be improved by limiting it to those clicks 
that satisfy predefined conditions, for example a certain 
time delay before the first reverberation, a specific depth at 
which it was emitted or only using on-axis clicks.

The worse performance of the Gabor function approach 
can be explained by the fact that it is based on a fixed 
model that searches for a global feature, by fitting a single 
frequency on the duration of the first pulse of the signal. The 
function contains a high bias, as it can only approximate 
a Gabor-type pulse. In the case of sperm whale clicks, 
the reverberation made this fitting procedure difficult. 
Wavelets, on the contrary, allow searching for local features; 
especially a wavelet packet table contains coefficients for 
many different time–frequency resolutions, and offers an 
extensive choice for possible identifying characteristics. The 
wavelet approach is more f lexible and does not try to fit a 
specific model.

Finally, considering that the click characteristics change 
slowly, using the wavelet method it might be possible to 
separate mixed click trains within a recording, as often 
encountered during group dives. In this case the first few 
clicks will have to be processed manually in order for the 
system to learn each whale’s characteristics.

This study was funded by the Rolex Awards for Enterprise.
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APPENDIX
This appendix will briefly describe the entire signal 

process pictured in Figure 1.

Pre-processing

The clicks were automatically detected using a threshold 
on the signal amplitude, in combination with a required 
number of zero crossings (to find a high frequency). Next 
they were ‘visually filtered’ to remove surface echoes and 
clicks that appeared to be badly affected by noise. The ‘visual 
filtering’ was done by an experienced operator inspecting 
the individual click waveforms and making a judgement on 
whether to use them or not. This was done to ensure that 
the training sets consisted of clicks that were as noise-free 
as possible. Using a Butterworth filter the data were filtered 
between 100–5000 Hz. This filter has the property that it 
has a ‘maximally f lat magnitude’ in its pass band, which 
leads to minimum phase distortion. To obtain a zero phase 
delay the data were filtered first forward and then backward 
(Oppenheim & Schafer, 1989).

The clicks were synchronized using cross-correlation 
with a typical example click and de-noised with a soft-
thresholding algorithm (Baraniuk, 1994; Donoho, 1995). 
This algorithm first calculates the wavelet coefficients of the 
signal for a specific wavelet (we used the Symmlet wavelet for 
reasons explained below), and sets those coefficients smaller 
than a threshold to 0. The magnitude of the remaining 
coefficients is linearly reduced and the coefficients are then 
used to reconstruct the de-noised signal. The thresholds 
were calculated based on a noise measurement in every 
individual recording.

For every click, only the first 10 ms (512 samples) were 
used for classification, as the remainder of a click was found 
to be unsuitable for feature extraction. The clicks were 
normalised in energy, and the first 50 clicks of every data set 
were used to find characteristic class vectors.

Gabor function classification

Splitting the frequency band
The frequency band was split in two separate bands, 

100–1000 Hz and 1000–5000 Hz. This was done in order 
to isolate two dominant frequencies (Goold & Jones, 1995). 
The separation of the data in a low- and high frequency 
band followed the same protocol as the filtering in the pre-
processing of the data.

Fitting the Gabor function

The first pulse was isolated from the click using the click’s 
envelope (see text). The Gabor function (1) was then fitted 
on this pulse minimizing the squared error function,

G t H t f yi i
i

; , , , ,a j0 0
2

( )-( )å
where yi are the points of the first pulse. The minimization 
was performed by a standard algorithm provided by Matlab, 
which is based on the interior-reflective Newton method 
(Coleman & Li, 1996). An initial estimate of the parameters 
was made in order to assure fast convergence. The amplitude 
H and frequency f0 are easily estimated by the amplitude 

and number of zero-crossings of the first pulse. The other 
parameters can be estimated using linear regression 
(Beitsma, 1989). Writing the analytical representation of the 
Gabor signal and taking the natural logarithm gives,
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Then, after taking the real and imaginary parts,
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Using the points from the first pulse and linear regression, 
the above equations allow estimates of the other parameters,  

a b= - 2 , t0 1
22= b a/( ) , and j g= 0 .

Class vector creation and classification

As described in the text, only the sharpness and frequency 
parameters were stable enough to be used for classification. 
Combining the low frequency and high frequency parameters, 
this resulted in four features. The class vectors were then 
created by taking the mean of each of the parameters over 
the training set. Subsequent classification was based on the 
Euclidean distance between these four characteristics of a 
click and the class vectors.

Wavelet classification

Wavelet packet table construction
An extensive description about wavelets and filter banks 

can be found in Strang & Nguyen (1997). The low pass and 
high pass filters shown in Figure 10 are described by the 
equations

a c l k a b d l k aj k j l
l

j k j l
l

+ += -( ) = -( )å å1 12 2, , , ,    and   

where c(n) are the low pass and d(n) the high pass filter 
coefficients; aj,l is coefficient l of the signal at filter step j. 
Note the recursive nature of these filters, as the output aj+1,k 
is the input of both filters in the next filter step. The down 
sampling-by-two operation is expressed in the 2k term. The 
connection between these filters and wavelets is given by

j j j( ) ( ) ( ) ( ) ( ).t c n t n w d n t n= - = -å å2 2 2 2  and  (t)

The equation on the left is called the dilation equation, 
and the one on the right the wavelet equation. It can be 
seen that, in the case of a quadrature mirror filter bank, 
the low pass filter coefficients c(n) directly define both 
the dilation equation and its corresponding wavelet. The 
discrete wavelet transform is calculated recursively by the 
filter equations, the scaling coefficients aj+1,k by the low pass 
filter, and the wavelet coefficients bj+1,k by the high pass filter. 
In the case of a wavelet packet table (WPT), both scaling 
and wavelet coefficients are used as inputs in the filter 
bank, leading to the redundant decomposition of a signal in 
multiple frequency bands as shown in Figure 11. The filter 
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coefficients c(n) we used for this paper correspond to the 
Symmlet wavelet, which has the property that it is almost 
symmetrical. This almost symmetry gives a minimal phase 
distortion to the filtered signal. We used a wavelet with 
eight vanishing moments, which, considering the 512-point 
signals, gave a maximum number of five frequency splits 
(number of times the signal was run through the filter).

Discriminating basis search

The discriminating basis construction is described in detail 
in Saito & Coifman (1994). After a WPT has been generated 
for every click in the training set, a representation of the 
signal is searched that maximizes the distance between the 
different classes. One way to measure the difference between 
classes is to measure the difference in energy in a specific 
time–frequency bin. In order to do this, the WPTs of the 
clicks from one class have to be combined. This is achieved 
with a time–frequency energy map, defined as

Gc i
c

i
c

i

N

i

N

j k m x j k m
cc

( , , ) ( , , ) /= ( ) åå 

2 2
x

where (j,k,m) denotes the position in the WPT, at splitting 
level j, frequency band k and coefficient m within the bin (for 
example, in Figure 11, the position (3,4,5) corresponds to 
the sixth coefficient in the 12–15 kHz frequency band); xi

c  
denotes the wavelet coefficient of click sample i and class c 
at position (j,k,m); xi

c  the original click sample i of class c; Nc 
the number of training samples in class c.

After all the tables have been collapsed into one energy 
map per class, the discriminating power of a specific bin 
(j,k,∙) can be measured by summing the differences of the 
coefficients in the bin between every pair of classes,

D Dc p
q p 1

C -1

G G G( , ,·) ( , ,·), ( , ,·) .j k j k j k
c
C

q

C

p

{ }( )= ( )=
= +=
åå1

1

In the above expression D is an additive discriminant meas-
ure, for which we used the squared l 2-norm; C is the total 
number of classes. A high value for D indicates that coeffi-
cients between at least two classes lie far apart, and that the 
bin may be able to differentiate between at least two classes.

The discriminating basis can now be constructed with the 
following rule, if the discriminant measure over a bin, (j,k,∙), is 
higher than the sum of the measures taken over the two bins 
it splits into, (j+1,2k,∙) and (j+1,2k+1,∙), then the ‘parent’ bin 
(j,k,∙) is selected, otherwise it is split up. For example, using 
Figure 11, if D(‘0–12 kHz’)>D(‘0–6 kHz’)+D(‘6–12 kHz’), 
then the frequency band 0–12 kHz is selected, otherwise the 
two half-bands are used.

Class vector creation and classification

The discriminant basis gives a representation for the 
signals that maximizes the distances between the different 
classes, under selected measures. To create a class vector, 
the strongest coefficients from this basis are chosen. In this 
report, these coefficients were selected with Fisher’s class 
separability (Saito & Coifman, 1994), which calculates the 
discriminating power of a wavelet coefficient at position 
(j,k,m) as follows:
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meani and vari take the mean and variance of the coefficient 
over all samples in the class and meanc takes the mean over 
all classes. In our case, choosing the 15 strongest coefficients 
gave optimal results. Classification of a click was done by 
calculating the Euclidean distance of the click to the class 
vectors.
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