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phase-separation kinetics to active emulsions
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Binary fluid mixtures are examples of complex fluids whose microstructure and
flow are strongly coupled. For pairs of simple fluids, the microstructure consists
of droplets or bicontinuous demixed domains and the physics is controlled by
the interfaces between these domains. At continuum level, the structure is defined
by a composition field whose gradients – which are steep near interfaces – drive
its diffusive current. These gradients also cause thermodynamic stresses which
can drive fluid flow. Fluid flow in turn advects the composition field, while
thermal noise creates additional random fluxes that allow the system to explore
its configuration space and move towards the Boltzmann distribution. This article
introduces continuum models of binary fluids, first covering some well-studied
areas such as the thermodynamics and kinetics of phase separation, and emulsion
stability. We then address cases where one of the fluid components has anisotropic
structure at mesoscopic scales creating nematic (or polar) liquid-crystalline order;
this can be described through an additional tensor (or vector) order parameter
field. We conclude by outlining a thriving area of current research, namely active
emulsions, in which one of the binary components consists of living or synthetic
material that is continuously converting chemical energy into mechanical work.
Such activity can be modelled with judicious additional terms in the equations of
motion for simple or liquid-crystalline binary fluids. Throughout, the emphasis of
the article is on presenting the theoretical tools needed to address a wide range
of physical phenomena. Examples include the kinetics of fluid–fluid demixing
from an initially uniform state; the result of imposing a steady macroscopic shear
flow on this demixing process; and the diffusive coarsening, Brownian motion
and coalescence of emulsion droplets. We discuss strategies to create long-lived
emulsions by adding trapped species, solid particles, or surfactants; to address the

† Email address for correspondence: m.e.cates@damtp.cam.ac.uk

c© Cambridge University Press 2017 836 P1-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

83
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://www.cambridge.org/jfmperspectives
http://orcid.org/0000-0002-5922-7731
mailto:m.e.cates@damtp.cam.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.832&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.832&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.832&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.832&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.832&domain=pdf
https://doi.org/10.1017/jfm.2017.832


M. E. Cates and E. Tjhung

latter, we outline the theory of bending energy for interfacial films. In emulsions
where one of the components is liquid-crystalline, ‘anchoring’ terms can create
preferential orientation tangential or normal to the fluid–fluid interface. These
allow droplets of an isotropic fluid in a liquid crystal (or vice versa) to support
a variety of topological defects, which we describe, altering their interactions and
stability. Addition of active terms to the equations of motion for binary simple fluids
creates a model of ‘motility-induced’ phase separation, where demixing stems from
self-propulsion of particles rather than their interaction forces, altering the relation
between interfacial structure and fluid stress. Coupling activity to binary liquid
crystal dynamics creates models of active liquid-crystalline emulsion droplets. Such
droplets show various modes of locomotion, some of which strikingly resemble the
swimming or crawling motions of biological cells.

Key words: biological fluid dynamics, complex fluids, multiphase and particle-laden flows

1. Introduction

A binary fluid mixture contains two types of molecule, A and B (oil and water,
for instance). In many cases these molecules have an energetic preference to be
surrounded by others of the same type. At high temperatures, this is overcome by
entropy and the fluid remains well mixed at a molecular scale. At low temperatures,
it undergoes phase separation into A-rich and B-rich domains. (In a few systems,
particularly those with hydrogen bonding, this temperature dependence is inverted
so the system demixes upon raising temperature instead.) A sudden change in
temperature, known as a ‘quench’, initiates phase separation (Chaikin & Lubensky
1995).

Usually the resulting fluid domains grow indefinitely in time so that phase
separation goes to completion (Bray 1994; Onuki 2002). But in many cases
one wants to avoid or arrest this process. One strategy is to steadily stir the
fluid, in the hope of remixing the domains so that they can never become large.
Another is to introduce additional (molecular or colloidal) species that inhibit the
growth of domains. The resulting finely divided mixtures, called emulsions, are
generally not thermodynamically stable, but can be long-lived. They have many
applications, ranging from foods via agrochemicals and pharmaceuticals, to display
device materials (Bibette et al. 2002). Partly because of these applications, there is
increasing interest in emulsions where at least one of the components is not a simple
fluid but has its own microstructure: for instance, a liquid crystal in which rod-like
molecules align along a common axis. In the confined geometry of an emulsion
droplet, liquid crystals can show complex behaviour caused by an interplay between
boundary conditions and bulk energy minimization (Poulin 1999).
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Binary fluid mixtures

Another growth area for binary fluids research concerns cases where one (or both)
of the two fluids escapes the laws of conventional thermodynamics by continually
consuming fuel. This allows continuous fluxes of energy, momentum and particles
through the system, whereas in thermal equilibrium steady-state fluxes are prohibited
by the time-reversal symmetry of the microscopic laws of motion (Marchetti et al.
2013). In these so-called ‘active fluids’ thermal equilibrium is only reached when the
fuel has run out; prior to that, the system can show steady-state behaviour without
microscopic time-reversal symmetry, leading to new effects. Many models of active
fluids also address liquid crystallinity of the active component; such models were
first developed to describe a system of active fibres such as those present in the
cytoskeleton of eukaryotic cells. The cytoskeleton, which is responsible for shape
changes and locomotion of these cells, contains locally aligned rod-like structures
that are tugged lengthwise towards one another by active molecular motors; the rods
can also actively move along their own length by adding protein subunits at one end
and dropping them from the other (Marchetti et al. 2013). (Both of these processes
are fuelled by adenosine triphosphate, ATP.) An interesting question is then whether
the emergent dynamics of such cells can be understood in terms of simple physical
models: Can a cell be viewed as an active liquid crystal emulsion droplet?

This Perspectives article explains some of the theoretical tools and approaches
that can be used to investigate quantitatively all the above issues. The focus is
on theoretical concepts rather than quantitative prediction, particularly in the later
sections. Although in many cases the ideas presented have been amply confirmed
by experiments, the corroborating evidence will not be much discussed. In addition,
we will often consider simplified or asymptotic regimes for which the main testing
ground of theoretical ideas is provided by computer simulations, in which an
appropriate numerical methodology – such as the lattice Boltzmann method (Kendon
et al. 2001; Cates et al. 2009) – is used to solve the equations of simplified models
of the type presented below. Such simulations are vital in checking our theoretical
beliefs about how such a model should behave. They can also tell us whether the
resulting behaviour is close to that seen experimentally. If it is, we have evidence
that the simplified model captures the dominant mechanisms in the experimental
system, allowing us to better identify what those mechanisms are.

2. Order parameters for complex fluids

We first consider an isothermal, incompressible, simple fluid with Newtonian
viscosity η and density ρ. This obeys the Navier–Stokes equation (NSE)

ρ(v̇ + v · ∇v)= η∇2v −∇P, (2.1)

where the pressure field P must be chosen to enforce the incompressibility condition

∇ · v = 0. (2.2)
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One generic approach to complex fluids is to consider a simple fluid obeying the
NSE, coupled to a set of coarse-grained internal variables ψ(r, t), each a function
of position and time. These variables are generally called order parameter fields or
simply ‘order parameters’. Obviously they are not parameters of the model but its
dynamical variables, and indeed v(r, t) is itself an order parameter since it describes
a local average of random molecular velocities. Other order parameters encountered
below include the following:

(i) A scalar field φ that describes the local molecular composition of a binary fluid
mixture. We define it at each instant as

φ(r)=
〈nA − nB〉meso

〈nA + nB〉meso
. (2.3)

Here nA,B denotes the number of A, B molecules per unit volume locally; the
mesoscopic average 〈·〉meso is taken over a large enough (but still small) local
volume so that φ(r) is smooth. For notational simplicity we have assumed that
A and B molecules have the same (constant) molecular volume. Given the
incompressibility condition (2.2), the denominator in (2.3) is a constant, and
our composition variable obeys −1 6 φ 6 1 with φ = 1 in a fluid of pure A.

(ii) A vector field p, describing the mean orientation of rod-like molecules,

p(r)= 〈ν̂〉meso, (2.4)

with ν̂ a unit vector along the axis of a single molecule. A material of non-
zero p is called a polar liquid crystal. This order parameter makes sense only
for molecules that have one end different from the other. Even in that case p
vanishes when molecules are oriented but not aligned, in the sense that they
point preferentially along some axis but are equally likely to point up that axis
as down it.

(iii) To describe cases with orientation but not alignment (in the sense just defined),
we need a second-rank tensor,

Q(r)= 〈ν̂ν̂〉meso − I/d, (2.5)

where ν̂ν̂ is a dyadic product (and independent of which way the unit vector
points along the molecule), I is the unit tensor and d is the dimension of space.
The resulting tensor is traceless by construction and therefore vanishes if the
rods are isotropically distributed. A fluid in which Q is finite but p is zero is
called a nematic liquid crystal.

In general, the density and viscosity in (2.1) should depend directly on our
chosen set of order parameters ψ(r, t). For example, in a binary fluid, A and B
molecules may have the same volume but different masses, and pure A and pure B
fluids might have different viscosities. However, a big simplification, which does not
affect much the conceptual physics discussed below, is to assume these dependences
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are negligible. The remaining effect of the structural order parameters ψ(r, t) is
then to create an additional thermodynamic stress σ that enters the NSE as

ρ(v̇ + v · ∇v)= η∇2v −∇P+∇ · σ [ψ]. (2.6)

(This is more properly now called a Cauchy equation; but we call it the NSE in
this article.) The stress term, which is a functional of the order parameters, can
alternatively be viewed as a force density s=∇ · σ exerted by the order parameter
fields on the fluid continuum. Note that any isotropic contribution to σ can be
absorbed into P.

To fully specify the dynamics of our system, we need two further things. The first
is a set of equations of motion for the order parameters themselves. In general, these
must allow for their advection by the fluid flow v; this enters alongside whatever
physics would describe the system at rest. More precisely, for a composition
variable φ, with v = 0, one has φ̇ =∇ · J, where J is a diffusive current; this form
reflects the fact that φ is a conserved quantity that cannot be created or destroyed
locally. In contrast, p and Q are not conserved and can relax directly towards their
thermodynamic equilibrium state. In all three cases, the equations of motion involve
derivatives of a functional F[ψ], which gives the (Helmholtz) free energy in terms
of the order parameter fields. The second thing we need is a recipe for calculating
the stress σ [ψ] from the (instantaneous) order parameter configuration ψ(r). This
calculation is non-trivial, particularly for liquid crystals (Beris & Edwards 1994),
but is unambiguous so long as the system is not too far from thermodynamic
equilibrium locally. In active systems, this does not apply, and additional terms
arise in both the equations of motion and the stress, whose form is less rigorously
known but can be selected empirically. In what follows we consider both the order
parameter evolution equations and the stress expression on a case-by-case basis.

3. The symmetric binary fluid

In the simplest model of a binary fluid, the AA and BB interactions are the same
but there is an additional repulsive energy, say EAB, between adjacent molecules of
A and B. Combined with our previous assumptions, the system is now completely
symmetric at a molecular level. At high temperatures, T > TC ' EAB/kB (with kB

being Boltzmann’s constant), the repulsive interactions are overcome by mixing
entropy and the two fluids remain completely miscible. At lower T , however, the
A–B repulsion causes demixing into two coexisting phases, one rich in A, one rich
in B. Entropy ensures that there is always a small amount of the other type of
molecule present in each phase; close to the critical temperature TC, the two phases
differ only slightly in φ, merging at φ = φC = 0.

A schematic phase diagram for the symmetric binary fluid is shown in figure 1(b).
The locus of coexisting compositions φ = ±φb(T) is called the binodal curve; for
global compositions φ̄=

∫
φ(r) dr within the binodal, the equilibrium state comprises
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Binodal

Spinodal

–1 +1

(a) (b)

FIGURE 1. Mean-field free energy density (a) and phase diagram (b) of a symmetric
binary fluid mixture. In (b), the dot at the top of the binodal curve is the critical point,
where two coexisting phases become identical. The parameter a = a(T) is an increasing
function of temperature T .

two phases of composition ±φb. The volumes occupied by the A-rich and B-rich
phases, VA,B, obey VA+VB=V , where V is the overall volume of the system and

(VA − VB)φb = φ̄. (3.1)

Thus the ‘phase volume’ of the A-rich phase, ΦA≡VA/V , evolves from zero to one
as the overall composition φ̄ is swept across the miscibility gap from −φb to φb.
The dotted line on the phase diagram is the spinodal, φ̄ = ±φs(T), within which
the globally uniform state φ(r) = φ̄ is locally unstable. Between the spinodal and
the binodal (φs 6 |φ̄| 6 φb) the uniform state is metastable; to get started, phase
separation requires nucleation of a large enough droplet. This is a random rare event,
driven by thermal noise.

3.1. Free energy functional and mean-field theory

The simplest next step is to postulate the following free energy functional,

F[φ] =
∫ (

a
2
φ2
+

b
4
φ4
+
κ

2
(∇φ)2

)
dr, (3.2)

where a = a(T) while b and κ are positive and (for simplicity) independent of
temperature. The bulk free energy density of a uniform state, f (φ) = (a/2)φ2

+

(b/4)φ4, is an approximation, inspired by a Taylor expansion in small φ for
weakly demixed states; for a symmetric fluid this contains only even powers. (Note
that at given φ̄ any linear term merely adds a constant to F. Were asymmetric
interactions present, any cubic term could also be eliminated by an additive
shift, φ → φ − φC.) This expansion breaks down at large negative a, where it
overshoots the saturating asymptote φb − 1 ∼ exp[−u/kBT], with u a solubilization
energy, set by ideal (dilute) solution thermodynamics. A more accurate form is
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f (φ)=−uφ2/2− kBT[φ ln φ + (1− φ) ln(1− φ)], but the quartic approximation is
sufficient for our purposes, and much easier to use in calculations of both the phase
diagram and the interfacial tension between phases.

These calculations can be tackled without further approximation by addressing
(3.2) using field theoretic methods, including the renormalization group theory,
which is essential to understanding the behaviour very close to the critical point at
TC (Chaikin & Lubensky 1995). Such methods take averages over the Boltzmann
weight exp[−F/kBT] of our fluctuating order parameter(s); we do not pursue them
here. A simpler alternative is mean-field theory which considers only the most
probable states found by minimizing F at fixed global composition φ̄.

We first consider states of uniform φ(r)= φ̄. For such states

F
V
=

a
2
φ̄2
+

b
4
φ̄4
= f (φ̄). (3.3)

For a> 0 this has a single minimum at φ̄ = 0, with positive curvature everywhere.
The latter means that, whatever φ̄ is chosen, one cannot lower the free energy by
introducing a phase separation. On the other hand, for a<0, f has negative curvature
between the spinodals ±φs where φs = (−a/3b)1/2 (see figure 1). Also it has two
symmetric minima at φ̄ = ±φb with φb = (−a/b)1/2. For |φ̄| < φb, F is minimized
by demixing the uniform state at φ̄ into two coexisting states at φ =±φb. A price
must be paid to create an interface between these, but the interfacial area scales as
V1−1/d

� V , so that, for a large enough system, this price is always worth paying.
Although so far restricted to symmetric fluid pairs, this calculation is more

general than it first appears. For an asymmetric fluid, one expects (to quartic order)
additional linear and cubic terms in f (φ). However, any linear term in F is of
the form

∫
φ dr = φ̄V , which is simply a constant set by the global composition.

Such an additive constant to F has no physical effects. In contrast, a cubic term∫
(cφ3/3) dr creates an asymmetric phase diagram, which is useful in fitting the

model to real fluid pairs, for which some asymmetry is always present. However,
it is a simple exercise then to show this cubic contribution can be absorbed by
shifts a→ a − aC and φ → φ − φC with aC = c2/3b and φC = −c/3b. In other
words, at our chosen level of treating f (φ) as a quartic polynomial, the cubic term
merely shifts the mean-field critical point to a new position on the phase diagram;
measuring φ and a relative to this new position, nothing has changed.

3.2. Interfacial profile and tension

In equilibrium, our two bulk phases will minimize their mutual surface area; in
most geometries, this requires the interface to be flat. To calculate its interfacial
tension, we take the surface normal along the x direction so that φ(r)= φ(x). The
boundary conditions are that φ(x) approaches ±φb at x=±∞. To find the profile,
we minimize F[φ] − λ

∫
φ dr with these boundary conditions. (Here λ is a Lagrange
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multiplier that holds the global composition fixed during the minimization.) The
resulting condition,

δ

δφ

[
F− λ

∫
φ dr

]
= 0, (3.4)

involves the functional derivative of F, which we denote by

µ(x)≡
δF
δφ
= aφ + bφ3

− κ∇2φ. (3.5)

This is called the chemical potential (or more properly the exchange chemical
potential) because, up to a factor of molecular volume, it gives the free energy
change on replacing an A molecule with a B molecule locally such that, if φ is
incremented by δφ(r), then the free energy change is δF=

∫
µδφ dr.

Equation (3.4) requires that µ= λ, which is constant in space. For our symmetric
choice of F[φ] we have µ = df /dφ = 0 in the two bulk phases at density ±φb,
so it follows that λ= 0. It is then a good exercise (Chaikin & Lubensky 1995) to
show that, with the boundary conditions already given, the solution for φ(x) of the
ordinary differential equation µ(x)= 0 is

φ(x)=±φ0(x)≡±φb tanh
(

x− x0

ξ0

)
. (3.6)

Here ξ0 = (−κ/2a)1/2 is an interfacial width parameter, x0 marks the midpoint of
the interface, and the overall sign choice depends on whether the A-rich or B-rich
phase occupies the region at large positive x. The interfacial profile is fixed by a
trade-off between the penalty for sharp gradients (set by κ) and the purely local
free energy terms, which, on their own, would be minimized by a profile φ(x) that
jumps discontinuously from one binodal value to the other. A further exercise is to
show that the equilibrium interfacial tension γ0, defined as the excess free energy
per unit area of a flat interface, obeys (Chaikin & Lubensky 1995)

γ0 =

∫
κ(∂xφ0(x))2 dx=

(
−8κa3

9b2

)1/2

. (3.7)

3.3. Stress tensor

If the interfacial profile departs from the equilibrium one, a thermodynamic stress
σ will act on the fluid. An important example is when the interface is not flat but
curved; under these conditions µ cannot be zero everywhere. For use in the NSE, we
require not the stress tensor directly but the thermodynamic force density s≡∇ · σ .
Consider now a small incompressible displacement field u: that is, r→ r+u(r) with
∇ · u= 0. Advection of the φ field by this displacement induces the change φ(r)→
φ(r − u). To linear order this gives the increment δφ = −u · ∇φ, from which we
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find the free energy increment as

δF=
∫
δF
δφ
δφ dr=−

∫
µu · ∇φ dr=

∫
(φ∇µ) · u dr, (3.8)

where the final form follows by partial integration and incompressibility. (We
consider periodic boundary conditions without loss of generality; this eliminates the
boundary term.) This result can be compared with the free energy increment caused
by a strain tensor ε =∇u,

δF=
∫
σ : (∇u) dr=−

∫
s · u dr, (3.9)

where the second form again follows by partial integration. Comparison of (3.8) and
(3.9) shows that ∇ · σ ≡ s=−φ∇µ. This form, which is all we need to know about
the stress tensor for the purposes of solving the NSE, could also have been derived
from the following expression for the stress tensor itself:

σij =−Πδij − κ(∂iφ)(∂jφ). (3.10)

Here Π = φµ− F is the order parameter contribution to the (local) pressure, better
known as the osmotic pressure; we have defined F = f (φ) + κ(∇φ)2/2, which is
the local free energy density, i.e.

∫
F dr = F. The non-gradient part of Π is in

turn Πbulk = φµbulk − f with µbulk ≡ df /dφ; this is the usual thermodynamic relation
between pressure and free energy density (Chaikin & Lubensky 1995). In some cases
it is possible to think of the flow resulting from the force density s as loosely arising
from ‘a gradient of osmotic pressure’. This can be useful for estimating the size
of terms in the NSE, but cannot be interpreted too literally, since a term −∇P
already appears there to enforce incompressibility. The irrotational term in the order
parameter force density s = −∇Π can be absorbed into this and so has, strictly
speaking, no role in the dynamics.

4. Model H and model B

Above, we have determined the force density s=−φ∇µ that appears in the NSE
for a binary fluid mixture, as a result of spatial variations in composition φ(r). Next
we need an equation of motion for φ itself. This takes the form

φ̇ + v · ∇φ =−∇ · J, (4.1)

where the left-hand side is the co-moving derivative of φ. This derivative must be
the divergence of a current, because A and B particles are not created or destroyed
and thus φ is a conserved field. The form for the compositional current is

J=−M∇µ, (4.2)

where M could in principle depend locally (or indeed non-locally) on composition,
but is here chosen constant for simplicity. The collective mobility M describes,
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under conditions of fixed total particle density, how fast A and B molecules can
move down their (equal and opposite) chemical potential gradients to relax the
composition field. The linear relation between flux and chemical potential gradient
assumes that the gradient is small enough for the system to remain locally close to
thermal equilibrium everywhere.

Combining (4.1) and (4.2) with our earlier results for the chemical potential and
the NSE, we arrive at a closed set of equations for an isothermal, binary fluid
mixture:

ρ(v̇ + v · ∇v)= η∇2v −∇P− φ∇µ+∇ · σ n, (4.3)
∇ · v = 0, (4.4)

φ̇ + v · ∇φ =−∇ · (−M∇µ+ Jn), (4.5)
µ(r)= aφ + bφ3

− κ∇2φ. (4.6)

Here the quantities σ n and Jn represent noise terms, discussed below. As derived
so far, however, these equations are at the level of a deterministic hydrodynamic
description, for which both such terms are zero.

The noise terms are important in several situations. One is near the critical point
(not addressed in this article), where thermal fluctuations play a dominant role in
the statistics of φ: the mean-field theory implicit in the noise-free treatment then
breaks down. Another case where noise matters is when there are well-separated
fluid droplets suspended in a continuous fluid phase. These objects will move by
Brownian motion, but, without noise terms (specifically σ n), droplets of one fluid in
another cannot diffuse and, in a quiescent system, would never meet and coalesce.
The lifetime of such a droplet emulsion is thus noise-controlled. Also, if a uniform
system is prepared with φs < φ̄ < φb (between the spinodal and the binodal on
the phase diagram), a noise-free treatment would predict this to remain uniform
indefinitely, whereas in practice the system phase-separates after an accumulation of
noise (entering via Jn) has driven it across a nucleation barrier involving formation
of a droplet of the phase on the opposite binodal.

The noise terms can be determined using the fluctuation–dissipation theorem,
which stems from the requirement for Boltzmann equilibrium in steady state
(Chaikin & Lubensky 1995). The order parameter current Jn

i (Cartesian component i;
superscript n for noise) is a zero-mean Gaussian variable of the following statistics:

〈Jn
i (r, t)Jn

j (r
′, t′)〉 = 2kBTMδijδ(r− r′)δ(t− t′), (4.7)

where 〈·〉 denotes an average over the unresolved microscopic dynamics responsible
for the noise. Meanwhile the random stress in the NSE is likewise a zero-mean
Gaussian thermal stress whose statistics obey (Landau & Lifshitz 1959)

〈σ n
ij (r, t)σ n

kl(r
′, t′)〉 = 2kBTη[δikδjl + δilδjk]δ(r− r′)δ(t− t′). (4.8)

Note that, due to incompressibility, the isotropic (pressure-like) part of this noise
stress is optional, and often explicitly removed in the literature. The resulting
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noisy NSE is fundamental to the fluid mechanics of thermal systems, although in
some cases – notably suspensions of Brownian spheres – it can be impersonated by
adding a set of correlated noise forces direct to the equations of motion of individual
suspended objects (Brady & Bossis 1988). That approach does not generalize to
fluid domains of variable shape and is therefore not helpful in the binary fluid
context.

With these noise terms duly added, equations (4.3)–(4.6) are lifted from a
mean-field dynamics of the simplest binary fluid, whose free energy functional
is the chosen F[φ] and whose mobility and viscosity are φ-independent, to a
complete dynamical description of the same simplified model. Accordingly, in a
quiescent system with no external forcing, the model ultimately achieves in steady
state the Boltzmann distribution P[φ, v] ∝ exp(−β(F[φ] +K[v])), with β ≡ (kBT)−1

and where K =
∫
(v2/2ρ) dr is the kinetic energy of the fluid, which is subject to

the incompressibility constraint ∇ · v = 0.
The above dynamical equations are generally known as ‘model H’ (Chaikin &

Lubensky 1995). An important limiting case is when there is no fluid flow; this can
be viewed as the limit of infinite viscosity η. In this limit one has simply

φ̇ =−∇ · J=−∇ · (−M∇µ+ Jn) , (4.9)

µ= aφ + bφ3
− κ∇2φ, (4.10)

which is called ‘model B’. This model can be used to describe systems where
molecular diffusion is much more efficient than viscous flow at relaxing structure
(true for some binary mixtures of polymeric fluids) and also applies to systems
where there is no appreciable flow because of a momentum sink, such as a solid
wall in contact with a two-dimensional film of the binary mixture. Model B is
also the proper coarse-grained description for interacting Brownian particles in the
absence of hydrodynamic interactions, which is a widely used simulation model, as
well as for interacting A and B particles hopping randomly on a lattice representing
a metallic alloy. Its simplicity means that often insight can be gained by first
understanding how model B behaves, before turning to the more complicated
scenario of model H.

The unhelpful names of these models have been embedded in the physics
literature since the much-cited review of Hohenberg & Halperin (1977), which also
features models A, C, D, E, F, G and J (each describing a different combination
of broken symmetries and conservation laws). Consider, however, a system in
which φ represents a coarse-grained density of colloidal particles in solution. In
such a system, one can treat the particles either as undergoing Brownian motion
with independent thermal noises (so that the only coupling between them comes
from the enthalpic interaction forces encoded in F), in which case momentum
is not conserved, or as interacting additionally via hydrodynamic interactions,
so that momentum is conserved (and the noise forces on different particles are
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not independent). A mnemonic thereby emerges: the corresponding coarse-grained
models are then B for Brownian, and H for hydrodynamic, respectively.

5. Phase-separation kinetics

Having assembled the necessary conceptual and mathematical tools, we now
examine some of the dynamics of phase separation in binary simple fluids (Bray
1994).

5.1. Spinodal decomposition

We start by considering the spinodal instability. Ignoring advection and noise
initially, we write (4.5) as

φ̇ = ∇ · (M∇µ) (5.1)

= ∇ · (M∇[ f ′(φ)− κ∇2φ]) (5.2)

= ∇ · (M[ f ′′(φ)∇φ − κ∇2φ]). (5.3)

Here f (φ) is the local free energy density of a uniform state as defined in (3.3), and
primes denote differentiation of this function with respect to φ. Next we linearize
this equation about a uniform initial composition φ̄, and Fourier transform, to give

φ̇q =−Mq2
[ f ′′(φ̄)+ κq2

]φq ≡−r(q)φq, (5.4)

where we have defined a wavevector-dependent decay rate r(q). For f ′′(φ̄)>0, this is
positive for all q: all Fourier modes decay and the initial state is stable. In contrast,
for f ′′(φ̄) < 0, the system is unstable, with r(q) negative at small and intermediate
wavevectors. (Stability is restored at high enough q by the κ term.) Solving dr/dq=
0 for q identifies the fastest-growing instability to be at q∗ = −f ′′(φ̄)/2κ . Because
coupling to fluid flow was neglected, this is technically a model B result, but in fact
such coupling (model H) does not change the result of this linear stability analysis.

Even neglecting the thermal noise in the dynamics (4.7) and (4.8), the initial
condition can be assumed to have some fluctuations. Those whose wavenumbers
lie near q∗ grow exponentially faster than the rest, so that the time-dependent
composition correlator Sq(t) ≡ 〈φq(t)φ−q(t)〉 soon develops a peak of height
growing as exp[−r(q∗)t] around q∗. Hence, during this ‘early stage’ of spinodal
decomposition, a local domain morphology is created by compositional interdiffusion
with a well-defined length scale set by π/q∗. The amplitude of these compositional
fluctuations grows until local values approach the binodals ±φb. From this emerges
a domain pattern, still initially with the same length scale, consisting of phases in
local coexistence, separated by relatively sharp interfaces of width ξ0 and interfacial
tension γ0 as found from the equilibrium interfacial profile (3.6).

The next stage of the phase separation depends crucially on the topology of the
newly formed fluid domains. This is controlled mainly by the phase volumes ΦA,B
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of the A-rich and B-rich phases. Roughly speaking, if 0.3 6ΦA 6 0.7 the domains
remain bicontinuous: one can trace a path through the A-rich phase from one side
of the sample to the other, and likewise for the B-rich phase. Outside this window,
the structure instead has droplets of A in B (ΦA < 0.3) or B in A (ΦA > 0.7).
The values 0.3 and 0.7 are rule-of-thumb figures only, with details depending on
many other factors (including any asymmetry in viscosity or mobility) that we do
not consider here. Note also that the window of bicontinuity shrinks to zero width
in two dimensions, where the slightest asymmetry in phase volume and/or material
properties will generally result in a droplet geometry in which only one phase is
continuous. We next assemble the tools needed to understand the late stages of phase
separation before discussing their dynamics.

5.2. Laplace pressure of curved interfaces

Once the interfaces are sharp, their geometry becomes a dominant factor in the time
evolution. Unless they are perfectly flat, interfaces exert forces on the fluid via the
s = −φ∇µ term in (4.3), in response to which the fluid may or may not be set
in motion. (No motion is implied if s remains irrotational, as discussed previously.)
The physics of this term, for interfaces that are locally equilibrated but not flat, is
that of Laplace pressure. Consider, for example, a spherical droplet of one fluid in
another with radius R and interfacial tension γ . Suppose that the pressure inside the
droplet is greater than that outside by an amount 1P. The total force on the upper
half of the droplet exerted by the bottom half is then (in three dimensions)

πR21P− 2πγR= 0, (5.5)

which must vanish if the droplet is not moving. The first term comes from the
vertical component of the extra pressure acting across the equatorial disc, and the
second is the tension acting across its perimeter. The resulting pressure excess,
known as ‘Laplace pressure’, is 1P = 2γ /R. More generally, in three dimensions
one has 1P = γH = γ (R1

−1
+ R2

−1), where H is the mean curvature and R1 and
R2 are the principal radii of curvature. Note also that for a (hyper-)sphere in d
dimensions, 1P = (d − 1)γ /R. In all these expressions we can set γ = γ0 as
calculated in § 3.2, so long as curvature is weak (Hξ0 � 1) and there is local
thermodynamic equilibrium across the interface.

A closely related result concerns the chemical potential µ at a representative point
on a weakly curved interface. Local equilibrium fixes the interfacial profile as φ(r)'
φ0(w)≡φb tanh(w/ξ0), where w is a Cartesian coordinate normal to the interface that
vanishes at the midpoint of the profile. Then ∇φ= ∂wφ(w)ŵ with ŵ the unit normal
(pointing from low to high φ). It follows that ∇2φ = ∂2

wφ + ∂wφ∇ · ŵ. From the
definition of µ as δF/δφ = f ′(φ)− κ∇2φ we have

µ= f ′(φ)− κ∂2
wφ − κ∂wφ∇ · ŵ. (5.6)
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For the local equilibrium profile φ(r) = φ0(w) = φb tanh(w/ξ0), the first two terms
on the right cancel. Moreover, local equilibrium requires that µ is almost constant
on the scale of the interfacial thickness ξ0. Denoting this locally constant interfacial
value by µI , multiplying by ∂wφ and integrating through the interface gives 2φbµI =

Hκ
∫
(∂wφ)

2 dw, where H = −∇ · ŵ is the mean curvature, defined as above to be
positive when the interface curves towards the high-φ phase. Using the previously
quoted result γ0 =

∫
κ(∂xφ0(x))2 dx, we find that µI = γ0H/2φB (Bray 1994).

Thus for a large spherical droplet of the high-φ phase in the low-φ phase (so
that H = 2/R), the chemical potential µI at the interface has a small positive value
proportional to the Laplace pressure. If the chemical potential in the surrounding
phase takes its equilibrium value far away (µ = 0 at coexistence), we require a
gradient of µ and thus a constant outward flux of φ from the droplet surface. Stable
equilibrium of a finite droplet surrounded by the opposite phase is possible, but only
in a finite system that has µ(r)=µI everywhere so that J=−M∇µ= 0. This arises
when the phase volumes ΦA,B are sufficiently asymmetric that the interfacial area of
a droplet configuration is less than that of a slab geometry, which depends on the
shape of the container and its boundary conditions; even if so, R→∞ and µI→ 0
in the large system limit. In all other situations (non-spherical domains, spherical
droplets of unequal sizes, or a droplet in an infinite bath), there is a flux onto or
off the interface proportional to the local curvature.

To quantify this, consider the state of stable equilibrium for a droplet of A-rich
phase (φ'+φb) in a finite domain of the B-rich phase (φ'−φb). After expanding
f (φ)= aφ2/2+ bφ4/4 for small deviations about ±φb, equating the Laplace pressure
1P to the difference in osmotic pressure φµ(φ) − f (φ) of the A-rich and B-rich
bulk phases gives the result that φA,B = ±φb + δ, with both phases equally shifted
upwards in composition φ relative to the equivalent state of bulk coexistence with
a flat interface. The upward shift obeys δ = γ0/(αφbR), where α ≡ f ′′(±φb) = −2a
and R is the droplet radius. (This δ would reverse in sign for a B-rich droplet in
an A-rich phase.) The result can alternatively be derived by setting µI = αδ in the
equation µI = γ0H/2φB quoted above.

We next assume that these local equilibrium conditions apply across the curved
droplet interface in an infinite B-rich reservoir whose composition far away is
−φb + ε, where ε < δ. Here the far-field parameter ε is known as the ambient
supersaturation. We then seek a spherically symmetric quasi-static (φ̇ =−∇ · J= 0)
exterior solution φ(r) = −φb + φ̃(r), where φ̃(R) = δ and φ̃(∞) = ε. With
J = −M∇µ, this solution obeys µ = αφ̃, where ∇2φ̃ = 0; note that the square
gradient contribution to µ vanishes in this geometry. With the given boundary
conditions, the result is φ̃ = ε + (δ − ε)R/r. If we now calculate the radial current
J=|J| exterior to the droplet, we have J=−αM∂φ̃/∂r=αM(δ− ε)R/r2; just outside
the droplet itself this becomes −αM(δ − ε)R. By mass conservation (given the
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compositional jump 1φ= 2φb across the interface), we then find Ṙ=−J(R)/2φb or

Ṙ=
1

2φb

[
αM
R
(ε − δ(R))

]
=

1
2φb

[
αM
R

(
ε −

γ0

αφbR

)]
. (5.7)

This result will be used in § 5.4 below to discuss the process of competitive growth
and shrinkage of droplets known as Ostwald ripening.

5.3. Coalescence of droplet states

If the post-spinodal structure is that of droplets, each relaxes rapidly to minimize
its area at fixed volume, resulting in a spherical shape. For well-separated droplets,
the thermodynamic force s in the neighbourhood of each droplet has radial
symmetry and hence is the gradient of a scalar (pressure) contribution. This has
no consequences for fluid flow since all such terms are subsumed into an overall
pressure set by the incompressibility constraint. Accordingly, there is no net fluid
motion in the absence of noise. Thermal noise allows droplets to move around by
Brownian motion, resulting in collisions that cause the mean droplet radius R to
increase by coalescence. To estimate the time dependence of R, we observe that,
for A droplets in B, the mean inter-droplet distance L is of order RΦ−1/3

A at small
ΦA; more generally, L/R is a function of ΦA only. Each droplet will collide with
another in a time 1t of order L2/D, where D ' kBT/ηR is the droplet diffusivity.
Upon collision, two droplets of radius R make a new one of radius approximately
21/3R, causing an increment 1 ln R' (ln 2)/3. This gives

1 ln R
1t
∝

kBT
ηR3

, (5.8)

where the precise factor of 21/3 has ceased to matter, and the left-hand side can be
approximated as d ln R/dt= Ṙ/R. By integration we then obtain the scaling law

R(t)∼
(

kBTt
η

)1/3

. (5.9)

This argument assumes that coalescence is diffusion-limited, and shows that in
this case Brownian motion will cause indefinite growth of the mean droplet size,
culminating in total phase separation.

The assumption of independently diffusing spherical droplets should be reliable
at low enough phase volumes ΦA of the dispersed phase, where it is the dominant
coarsening mechanism so long as the Ostwald process (described next) is suppressed.
But at larger ΦA, more complicated routes to coalescence, some involving
droplet-scale or macroscopic fluid flow, are possible. One of these is so-called
‘coalescence-induced coalescence’ where the shape relaxation post-collision of a pair
of droplets creates enough flow to cause another coalescence nearby (Wagner &
Cates 2001). This gives a new scaling (R∼ γ0t/η), which coincides with one of the
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(a) (b)

FIGURE 2. Growth rate of a droplet as a function of size during the Ostwald process
(a) without and (b) with trapped species.

regimes described later for the coarsening of bicontinuous structures ((5.16) below).
Indeed, it stems from the same balance of forces as will be discussed for that case.
Quite recently a new picture has emerged of hydrodynamic coarsening in moderately
concentrated droplet suspensions (ΦA > 0.2), which supersedes a longstanding view
that (5.9) still holds in this regime. This picture involves mechanical (Marangoni)
forces resulting from departures of the interfacial tension from its equilibrium value
(γ 6=γ0). These departures arise because the presence of neighbours breaks rotational
symmetry around any given droplet so that the thermodynamic force density is no
longer a pure pressure gradient (Shimuzu & Tanaka 2015).

In many droplet emulsions it is possible to inhibit the coalescence step, so
that this entire route to phase separation is effectively blocked. For instance, adding
charged surfactants can stabilize oil droplets in water against coalescence by creating
a Coulombic barrier opposing the close approach of droplet surfaces. (Surfactants
are amphiphilic molecules that have a polar or charged head-group and an oily tail;
they are widely used to stabilize oil-in-water droplet emulsions.) Steric interactions
between surfactant tails can likewise stabilize water-in-oil emulsions. If the rupture
of a thin film of the continuous phase between droplets has a high enough free
energy barrier, coalescence rates can be reduced to a manageable, if not negligible,
level in both cases (Bibette et al. 2002).

5.4. Ostwald ripening

Sadly, however, switching off coalescence is not enough to prevent macroscopic
phase separation of droplet emulsions. This is because of a process called Ostwald
ripening, in which material is transported from small droplets to large ones by
molecular diffusion across the intervening continuous phase. The physics of this
process follows directly from (5.7). Assuming that the system has not already
reached its end-point of full phase separation, the ambient supersaturation ε in that
equation remains finite. The function Ṙ(R) is shown in figure 2(a). This exhibits an
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unstable fixed point at

R= Rε(t)≡
γ0

αφbε
. (5.10)

Droplets bigger than this grow, those smaller, shrink. This is because the Laplace
pressure in each droplet raises the chemical potential at its outer surface by an
amount inversely proportional to its radius. This creates chemical potential gradients
from small to large droplets, which shrink and grow in response to the fluxes set up
by those gradients.

We can now find the scaling of the typical droplet size R̄ by assuming this
to be comparable (but not exactly equal) to Rε and conversely that the ambient
supersaturation ε is comparable (but not exactly equal) to the local supersaturation
near a typical drop: ε ' δ(R̄)= γ0/(αR̄φb). Substituting in (5.7) gives

˙̄R'
Mγ0

φ2
b R̄2

, (5.11)

which results in the scaling law

R̄(t)'
(

Mγ0t
φ2

b

)1/3

∼ t1/3. (5.12)

A more complete theory of Ostwald ripening, known as the Lifshitz–Slyozov–
Wagner theory, is reviewed by Onuki (2002). This not only confirms these scalings
but gives detailed information on the droplet size distribution. Note that (5.12) has
similar time dependence to (5.9) for coalescence; this stems from the fact that both
mechanisms are ultimately diffusive. However, the nature of the diffusing species
(droplet in one case, molecule in the other) is quite different, resulting in prefactors
that involve unrelated material properties for the two mechanisms.

5.5. Preventing Ostwald ripening

It follows from (5.12) that the Ostwald process can be slowed by reducing the
interfacial tension γ0, but so long as this remains positive it cannot be stopped
entirely. A more effective approach is to include within the A phase a modest
concentration of some species that is effectively insoluble in B. This might be a
polymer or, if A is water and B oil, a simple salt. The idea is that the trapped
species in the A droplets creates an osmotic pressure, which rises as R falls, hence
opposing the Laplace pressure. Treating the trapped species as an ideal solution in
A, equation (5.7) is replaced by (Webster & Cates 1998)

Ṙ=
1

2φb

[
αM
R

(
ε −

γ0

αφbR
+
η̂ν

R3

)]
, (5.13)

where η̂ (unrelated to the fluid viscosity η) is a combination of molecular parameters
and physical constants, and ν is the number of trapped molecules in the droplet. The
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final term reflects the extra osmotic pressure of the trapped material. There is now
a stable fixed point (see figure 2b), even for zero ambient supersaturation, at finite
droplet size

Rν =
(
η̂ναφb

γ0

)1/2

. (5.14)

If we start from a uniform set of droplets of size R0, then ν = c4πR3
0/3, with c

the initial concentration of the added species in the A-rich phase. Droplets that
have shrunk to a size Rν can coexist with a bulk A-rich phase without shrinking
further: the Laplace pressure is balance by the trapped species’ osmotic pressure.
Moreover, if the initial size obeys R0 < Rν , the Ostwald process is reversed: if
an emulsion of such droplets is placed in contact with a bulk A-rich phase, they
will expand up to size Rν . By adding trapped species one can thus make robust
‘mini-emulsions’ (Landfester 2003) or ‘nanoemulsions’ (Fryd & Mason 2012) which
permanently resist coarsening by the Ostwald process. However, these are still
metastable: so long as the tension γ0 is positive, the free energy can always be
reduced by coalescing droplets to reduce the interfacial area.

5.6. Coarsening of bicontinuous states

For roughly equal volumes of the two coexisting phases, say 0.3 6 ΦA 6 0.7, the
domains of A-rich and B-rich coexisting fluids remain bicontinuous. (This applies
in the three-dimensional (3D) case; the two-dimensional (2D) case is special and
considered later.) This allows coarsening by a process in which the interfacial
stresses – or, loosely speaking, Laplace pressure gradients – pump fluid from one
place to another. In all but the most viscous fluids, this process is ultimately faster
than either coalescence or Ostwald ripening: we will see below that it allows L(t) to
grow with a larger power of the time. Here L(t) is now defined as the characteristic
length scale of the bicontinuous structure; for example, the inverse of its interfacial
area per unit volume. The flow-mediated coarsening is captured by model H, but
absent in model B. In the latter, domain growth is controlled by a version of the
Ostwald process in which diffusive fluxes in both phases act to flatten out interfaces
(reducing their curvature) and move material from thinner to fatter regions of the
bicontinuous structure. This leads again to (5.12) for the characteristic domain size,
which is now unaffected by adding insoluble species that can move diffusively
throughout the relevant phase. In both cases the driving force is interfacial tension.

To describe flow-mediated coarsening, we assume that L(t) is much larger than the
interfacial width, and is the only relevant length in the problem, so that in estimating
terms in the NSE (4.3) we may write ∇ ∼ 1/L. The forcing term φ∇µ is then of
order γ0/L2, where we have used the result found above, µI = γ0H/2φB, for the
chemical potential on an interface of curvature H ∼ 1/L. The fluid velocity is of
order L̇, so the viscous term scales as ηL̇/L2. The inertial terms are ρv̇ ∼ ρL̈ and
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ρv · ∇v ∼ ρ(L̇)2/L. The ∇P term, enforcing incompressibility, is slave to the other
terms.

Importantly, once sharp interfaces are present so that φ∇µ∼ γ0/L2, the NSE (4.3)
involves only three parameters, ρ, γ0 and η. From these three quantities one can
make only one length, L0= η

2/ργ0, and one time, t0= η
3/ργ 2

0 . This means that the
domain scale L(t) must obey (Siggia 1979; Furukawa 1985)

L(t)
L0
= f

(
t
t0

)
, (5.15)

where, for given phase volumes, f (x) is a function common to all fully symmetric
binary fluid pairs. This scaling applies only to bicontinuous states; as previously
described, in states comprising spherical droplets, the forcing term in the NSE is
instead subsumed by the pressure term at leading order.

In systems showing fluid-mediated coarsening via (5.15), we expect different
behaviour according to whether L/L0 is large or small. For L/L0 small, it is simple
to confirm that the inertial terms in (4.3) are negligible. (Note also that, in any
regime where f (x) is a power law, the two inertial terms have the same scaling.)
The primary balance in the NSE is then ηL̇/L2

∼ γ0/L2, resulting in the scaling law
L(t)∼ γ0t/η so that

f (x)∝ x, x� x∗. (5.16)

This is called the viscous hydrodynamic (VH) regime and holds below some
crossover value x = x∗. In contrast, for x� x∗ the primary balance in the NSE is
between the interfacial and inertial terms. It is a simple exercise then to show that
L(t)∼ (γ0/ρ)

1/3t2/3 so that

f (x)∝ x2/3, x� x∗. (5.17)

This is called the inertial hydrodynamic (IH) regime. In practice, this crossover from
VH to IH is several decades wide, and the crossover value rather high: x∗ ' 104

(Kendon et al. 2001). The high crossover point is less surprising if one calculates a
domain-scale Reynolds number,

Re=
ρLL̇
η
= f (x)

df
dx
. (5.18)

The crossover value of Re then turns out to be of order 10 (Kendon et al. 2001),
and the largeness of x∗ is found to stem from a modest constant of proportionality
in (5.16). It means that in practice a clean observation of the inertial hydrodynamic
regime has only been achieved in computer simulation: in terrestrial laboratory
experiments, the domains are by then so large (millimetres to centimetres for
typical fluid pairs) that the slightest density difference between A and B causes
gravitational terms to dominate. These terms give a body force pulling the two
fluids apart along the gravitational axis, greatly speeding phase separation.
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Note finally that, in two dimensions, bicontinuity is exceptional. For fully
symmetric fluid pairs, it arises only when the phase volumes ΦA,B are also
symmetric, allowing percolating paths through both fluids to cross the container
(but only just). More generally, it arises at only one special phase volume whose
value is set by the asymmetry of the two fluids; even if one could create this state, it
would typically not be sustained during coarsening (since the meticulous dynamical
balance required varies with the scale parameter x). Alongside Ostwald and
coalescence regimes, one can find, at least in simulations, various complex structures
involving cascades of nested droplets whose details may be noise-dependent
(Gonnella et al. 1999).

6. Emulsification by shearing

Suppose we wish to stop the coarsening of a bicontinuous fluid mixture by the
flow-mediated mechanism just described. In a processing context, it is often enough
to temporarily maintain a well-mixed, emulsified state merely by stirring the system.
Industrial stirring is complicated, with non-uniform flows that often combine very
different local flow geometries (extension or shear) within a single device. Here we
restrict attention to the effects of a simple shear flow, focusing on scaling issues and
the question of whether or not such a flow can actually stop the coarsening process.

We consider uniform shearing with macroscopic fluid velocity along x, and its
gradient along y; z is then the neutral (or vorticity) direction. In simulations, one can
use boundary conditions with one static wall at y= 0, another sliding one at y=Λ
and periodic boundary conditions in x and z. In practice, there are ways to introduce
periodic boundary conditions also in y; nonetheless, the system size in that direction,
Λ, is important in what follows. The top plate moves with speed Λ/ts, where 1/ts

is the shear rate: vmacro = yx̂/ts.
For the coarsening to be fully arrested by shear, the system must reach a non-

equilibrium steady state in which the fluid domains have finite length scales Lx,y,z in
all three directions. (These can be defined as the inverse of the length of interface
per unit area on a plane perpendicular to each axis.) The simplest hypothesis is
that these steady-state lengths, if they exist, all have similar scaling: Lx,y,z ∼ L (Doi
& Ohta 1991). Moreover, given the preceding discussion of terms in the NSE, we
expect in steady state that L/L0 is now a function, not of t/t0, but of ts/t0. That
is, in steady state the previous dependence on time is replaced by a dependence on
the inverse shear rate. The functional form of this dependence could in principle be
anything at all, but the simplest scaling ansatz is that the system coarsens as usual
until t∼ ts, whereupon the shearing takes over and L stops increasing. If so,

L
L0
' f

(
ts

t0

)
, (6.1)

where f (x) is approximately the same function as introduced previously, for which
(5.16) and (5.17) hold. If so, for ts/t0� x∗ we have L/L0 ∼ ts/t0, and for ts/t0� x∗
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we have L/L0 ∼ (ts/t0)
2/3. In the first of these regimes, the force balance in NSE

between viscous and interfacial stresses corresponds to setting a suitably defined
capillary number (on the scale of L) to an order-unity value. (This is a criterion
for the maximum size of droplets in dilute emulsions also.) Note, however, that the
Reynolds number obeys Re ∼ f (x) df /dx as in (5.18). In contrast to what happens
for any problem involving shear flow around objects of fixed geometry, Re is now
small when the shear rate is large and vice versa. This is because, at small shear
rates, very large domains are formed.

There are several possible complications to this picture. First, in principle, Lx,y,z

could all have different scalings. The resulting anisotropies could spoil any clear
separation of the viscous hydrodynamic and inertial hydrodynamic regimes; with
three-way force balance in the NSE, there is no reason to expect clean power laws
for any of these quantities. Secondly, at high shear rates, the system-size Reynolds
number ReΛ ∼ ρΛ2/ηts becomes large. The presence of a complex microstructure
could promote or suppress the transition to conventional fluid turbulence expected
in this regime. In practice, experimental studies on sheared symmetric binary
fluids are sparse (Onuki 2002). Gravity complicates matters, as does viscosity
asymmetry (unavoidable in practice) between phases. However, relatively clean tests
are possible via computer simulation (Stansell et al. 2006; Stratford et al. 2007).
In two dimensions one finds data fitted by Lx/L0 ∼ (ts/t0)

2/3 and Ly/L0 ∼ (ts/t0)
3/4

over a fairly wide range of length and time scales, most of which are, however, in
the crossover region around x∗ (Stansell et al. 2006). The fitted exponents change
slightly if, instead of the flow and gradient direction, one uses the principal axes
of the distorted density patterns, but they remain unequal. There is no theory for
these exponents as yet, but it is credible that the length scales along and across the
stretched domains have different scalings with shear rate. (Indeed, if the dynamics
resembled stretching of droplets of fixed volume, the two exponents would add
to zero in two dimensions.) In three dimensions, where the simulations require
very large computations, the inertial hydrodynamic (2/3 power) scaling has been
observed within numerical error for all three length scales within the range of
accessible domain-scale Reynolds numbers, defined as ReL ∼ ρL2/ηts, which lies
between 200 and 2000 (Stratford et al. 2007). These measurements are, however,
limited by the onset of a macroscopic instability to turbulent mixing at ReΛ' 20 000.
Snapshots of the highly distorted domain structures seen in computer simulations
of sheared binary fluids are shown in figure 3.

The above simple arguments suggest that, in both two and three dimensions, a
non-equilibrium steady state can be achieved in which the force balance in (4.3) is
entirely between viscous and interfacial stresses, with the inertial terms negligible,
as holds in the viscous hydrodynamic regime for the coarsening process. If so, this
should be the situation at low enough ReL, that is, large enough shear rate. Evidence
that things are yet more complicated has been presented by Fielding (2008), who
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(a)

(b)

FIGURE 3. (a) Simulation snapshot for model H of binary fluid domains under shear for a
symmetric binary fluid in three dimensions. The image shows only the interface between
phases, with the two sides coloured blue and yellow; the macroscopic flow is roughly
laminar. (This is a 3D view into the sample from an arbitrary (x, y) plane cut through
it.) In this particular case the flow eventually transitions to a turbulent mixing regime (b).
At lower ReΛ states resembling panel (a) persist indefinitely. The imposed flow axis x̂ is
horizontal, with the velocity gradient vertical; the upper part of the system is moving to
the right. (Images courtesy of Kevin Stratford.)

showed that, if inertial terms are omitted altogether from (4.3), coarsening in two
dimensions appears to proceed indefinitely. This suggests that a three-way balance
of viscous, inertial and interfacial terms ultimately controls the formation of the non-
equilibrium steady state.

7. Thermodynamic emulsification

Surfactant molecules, comprising small amphiphilic models with a polar or
charged head-group and an apolar tail, are well known to reduce the interfacial
tension between coexisting phases of oil and water (as well as other pairs of
apolar and polar fluids). They generally have fast exchange kinetics between the
interface and at least one bulk phase in which they are soluble; this means that the
interface remains locally in equilibrium. Use of surfactants can thus be viewed as a
thermodynamic route to the partial or complete stabilization of interfacial structures.
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This is a separate effect from their role in creating a kinetic barrier to coalescence
discussed previously.

7.1. Interfacial tension in the presence of surfactant

Consider first a solution of surfactant molecules each carrying a unit vector ν̂i

denoting its head/tail orientation; local coarse graining creates a smooth field
p(r)= 〈ν̂〉meso. In the absence of interfaces, this fluctuating mesoscopic field is zero
on average, and its small (hence Gaussian) fluctuations are governed by a free
energy contribution

Fs =

∫ (
|p(r)|2

2χ

)
dr. (7.1)

This is defined such that the variance of p is set by the ‘osmotic compressibility’
χ(µs), which is an increasing function of the surfactant chemical potential µs(cs),
which is itself a function of surfactant concentration cs. We can add this to the
binary fluid free energy (3.2), alongside a coupling term to represent the reduction
in free energy caused when a surfactant molecule resides at the A–B interface with
its orientation suitably aligned along the composition gradient ∇φ:

F[φ, p] =
∫ (

a
2
φ2
+

b
4
φ4
+
κ

2
(∇φ)2 +

1
2χ
|p|2 +ωp · ∇φ

)
dr. (7.2)

It is a simple exercise to minimize this over p(r) at fixed φ(r), and a slightly more
complicated one to explicitly integrate over the fluctuating p field by Gaussian
integration to obtain e−βF[φ]

=
∫

e−βF[φ,p]Dp. The result of either calculation is to
recover the original model H free energy F[φ] as in (3.2), but with a renormalized
square gradient coefficient κr = κ − ω

2χ . From this it follows that the interfacial
tension is reduced by adding surfactant, according to

γ0(cs)=

(
−8a3(κ −ω2χ)

9b2

)1/2

. (7.3)

This calculation is based on a Gaussian approximation (7.1) that assumes p(r) to
deviate only mildly from zero everywhere. It is not very realistic – for instance, the
interfacial width diverges as γ0 becomes small (whereas in practice this width is set
by the size of a surfactant molecule). However, it captures the main physical effects
of interest here; for a fuller discussion, see Gompper & Schick (1994). Note that the
sign of ω, which determines whether p points up or down the interfacial φ gradient,
is irrelevant.

The simplest possible assumption is that the surfactant molecules form an ideal
solution, with no interactions between them. In this case χ = χ̃cs, with χ̃ a constant.
(Linearity in cs of the variance parameter χ then follows from the Poisson statistics
of randomly located and oriented molecules.) In this case the interfacial tension
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vanishes, with infinite slope, at cs = c̃ = κ/ω2χ̃ . But, in fact, surfactant solutions
are far from ideal, due to a phenomenon called ‘micellization’ in which individual
molecules self-assemble into micelles, which contain several tens of molecules.
(Micelles are typically spherical; in water they have the polar heads at the exterior
surface and the apolar tails in the interior of the sphere. In oil, this structure is
reversed.)

The effect of micellization is to cause the surfactant chemical potential µs, and
therefore χ , to rapidly saturate above a so-called ‘critical micelle concentration’
cs = c∗. Any surfactant added beyond this level becomes sequestered into micellar
aggregates. The concentration c1 of ‘free’ molecules remains very close to c∗ at
all higher concentrations and, to a good approximation, χ saturates at χ̃c∗, so that
γ0(cs) does not fall further. For a more detailed discussion of micellization, see
Safran (2003) or Cates (2012).

The outcome is to have two general classes of behaviour, depending on whether
c∗ lies below or above c̃. In case 1, c∗ < c̃, so that γ0(cs) follows (7.3) so long
as cs < c∗ but then abruptly stops decreasing as micellization intervenes. In case 2,
c∗ > c̃, so that γ0(cs) hits zero before micelles are formed. At this point, if water
and oil are both present in bulk quantities, the system can minimize its free energy
by creating a macroscopic amount of interface on which the surfactant can reside.
When this happens, µs again saturates: adding further surfactant simply creates
more surface at fixed µs. Hence γ0 does not become finitely negative but remains
stuck at an effectively zero value. This analysis is grossly simplified, ignoring
(among other things) free energy contributions from interfacial curvature, which
can allow interfaces to proliferate even for small positive tension. Nonetheless, the
broad distinction between case 1 and case 2 is a useful one.

7.2. Finite tension: metastable emulsions and biliquid foams

Case 1 is the more common: the typical effect of surfactant is to reduce interfacial
tension to one-half or one-third of its previous value. The global free energy
minimum then comprises complete phase separation, just as it does without
surfactant; if emulsions are formed (for instance by stirring), they are at most
metastable. Since fluid-mediated coarsening is always present in bicontinuous states,
metastability generally requires a droplet geometry; as already mentioned, surfactants
can help prevent their coalescence by inhibiting film rupture.

Typically, such emulsions have spherical droplets (of A in B, say) but, by
evaporation or drainage under gravity, for instance in a centrifuge, much of the
continuous B phase can often be expelled to create a so-called biliquid foam
(Bibette et al. 2002), in which polyhedral droplets of A (say) are separated by
thin films of B. In many cases, biliquid foams can persist for hours or days, and
sometimes longer. To achieve this, one must suppress not only the rupture of thin
films but also the Ostwald process, which, despite the more complicated geometry,
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still drives diffusion of A from small (few-sided) to large (many-sided) polyhedral
droplets (Weaire & Hutzler 1999). To achieve this with a trapped species requires
an especially low level of solubility in the B phase so as to ensure negligible
diffusion even across the thin B films present in the foam structure. So long as they
remain metastable against rupture and coarsening, biliquid foams, like soap froths,
are solid materials (generally amorphous, though ordered examples can be made).
As such, they have an elastic modulus, and also a yield stress, both of which scale
as G∼ γ0/R, with R the mean droplet size. This is an interesting example of a solid
behaviour emerging solely from the spatial organization of locally fluid components
– for even the surfactant on the interface is (normally) a 2D fluid film.

7.3. Near-zero tension: stable microemulsions

In case 2, added surfactant can reduce γ0 to negligible levels for cs > c̃. This can
lead to thermodynamically stable emulsions, generally called ‘microemulsions’, in
which enough A–B interface is created to accommodate all surplus surfactant, of
which the concentration is cs − c̃. There are two broad approaches to describing
the resulting structures. One avenue is to base a description on the φ, p order
parameters already introduced, addressing (7.2) in the case where κr = κ − ω

2χ , so
that the thermodynamic interfacial tension is negative. Unsurprisingly, this model is
unstable unless further terms are added to prevent interfacial proliferation; the most
natural addition to F is a term in

∫
(∇φ)4 dr. The competition of this term with

the effectively negative square gradient coefficient κr sets a characteristic length
scale for stable domains of A-rich and B-rich fluids. This approach leads to many
insights (Gompper & Schick 1994) but is mainly appropriate for systems in which
‘weak’ surfactants (whose adsorption energy at an interface is not much larger than
the thermal energy kBT) are present at high concentration so that the domain size
L and interfacial width ξ are comparable. The structure of the microemulsion can
then be viewed as a smooth spatial modulation of composition φ(r) rather than as
a system of well-separated, surfactant-coated interfaces.

For strong surfactants, which have small c̃, one can instead treat almost all the
surfactant as interfacial. The interfacial area S of the fluid film then obeys

S
V
= (cs − c̃)Σ ' csΣ =

φs

vs
Σ. (7.4)

Here Σ is a preferred area per molecule, φs is the volume fraction of surfactant and
vs its molecular volume. For the soluble surfactants normally used for emulsification,
the area per molecule is maintained very close to Σ by rapid adsorption and
desorption at the interface; the specific interfacial area S/V is then fixed directly
by φs via (7.4).

With interfacial tension negligible, the energetics of a given structure in case 2
is determined by the cost of bending the interfacial surfactant film at fixed area.
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We treat this by a leading-order harmonic expansion about a state of preferred
curvature set by molecular geometry. By a theorem of differential geometry (David
2004), at each point on the A–B interface one can uniquely define two principal
radii of curvature, R1 and R2, which we take positive for curvature towards A.
(For a spherical droplet of A of radius R, we have R1 = R2 = R, whereas for a
cylinder of radius R, we have R1 = R and R2 =∞. A saddle shape has R1 and R2

of opposite signs.) The harmonic bending energy for a fluid film then reads

Fbend =

∫ [
K
2

(
1
R1
+

1
R2
−

2
R0

)2

+
K̄

R1R2

]
dS. (7.5)

There are three material parameters: the elastic constants K and K̄ (both with
dimensions of energy) and R0, a length defining the preferred radius of mean
curvature, whose relation to the molecular geometry of surfactants is discussed by
Safran (2003). The integral in (7.5) is over an interface S between phases that can
have disconnected parts (droplets) but must be orientable so that A is enclosed by
S and B excluded. Therefore, its enclosed volume Vin must obey

Vin

V
=ΦA +

φs

2
≡Φ, (7.6)

where we have partitioned the surfactant equally between A and B to allow us to
define the volume Vin as enclosed by a mathematical surface of no thickness. The
phase volume of Vin is then Φ (with Vout = 1 − Φ), and a completely symmetric
state has Φ = 1/2.

7.4. The physics of bending energy

The statistics of the A–B interface in case 2 is, by the above arguments, determined
by the Boltzmann distribution P[S] ∝ exp[−βFbend]. Performing averages over this
distribution is intractable, in general. However, some key concepts can be identified
that allow the problem to be understood qualitatively.

7.4.1. Gauss–Bonnet theorem and emulsification failure
The Gauss–Bonnet theorem states that∫

1
R1R2

dS = 4π[Nc −Nh]. (7.7)

Here Nc is the number of components of our surface (where a component means a
disconnected piece such as a sphere) and Nh is the number of handles. A handle is
a doughnut-like connection between one part of the surface and another. Thus for a
sphere Nc = 1 and Nh = 0, whereas for a torus Nc = 1 and Nh = 1. Accordingly the
bending energy term governed by K̄ in (7.5) vanishes for a torus but not a sphere.
More generally, this term does not care about the local deformations of the surface,
only its topology.
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FIGURE 4. A sphere, a torus and a sketch of the unit cell of a periodic surface of constant
(approximately zero) mean curvature. The hole through the torus is a handle. The grey
discs on the periodic surface are cuts across it at the junction points between unit cells.
Gluing a pair of these discs together at the faces of the unit cell creates one handle. Thus
the final periodic structure has three handles per unit cell, but only one component in total.

As well as spheres and tori, one can devise extended surfaces of constant mean
curvature, comprising a periodic surface element (figure 4) that connects with
identical copies of itself in neighbouring unit cells to create a structure with only
one global component but several handles per unit cell. Choosing the mean curvature
to be 1/R0, the K term in the bending free energy (7.5) vanishes everywhere. If K̄ is
positive, favouring handles, Fbend is unbounded below for a periodic state with an
infinitesimal unit cell. In practice, the unit cell is small and finite, due to anharmonic
terms omitted from (7.5); the result is a bicontinuous cubic liquid crystal (Safran
2003). This phase has large φs (typically tens of per cent) and so, unless the global
mean of φs is similarly large, can occupy only a small part of the total system
volume, meaning that emulsification has failed, giving coexistence of bulk A and
B phases. Likewise, if 2K + K̄ < 0, the bending energy of a sphere with R� R0 is
negative and (modulo anharmonic corrections) almost independent of R. For similar
reasons one then expects a proliferation of tiny spheres containing only a negligible
amount of A: again, emulsification has failed.

Successful emulsification thus requires both K̄ < 0 and 2K + K̄ > 0. This is not
sufficient, however. For values of R0 that are less than a thermal persistence length
ξK introduced below in (7.14), we can neglect the entropic shape fluctuations of the
interface and need only minimize Fbend at fixed total area S and fixed Vin/V =Φ to
find the thermodynamic equilibrium state of the system. The computation of Fbend

for spheres, cylinders and lamellae (infinite flat sheets) is straightforward, and for
simplicity we limit attention only to these geometries. We have

Fbend = 4π

(
2K
[

1−
R
R0

]2

+ K̄

)
(7.8)

for a sphere of radius R,

Fbend =
πKL
R0

[
1−

2R
R0

]2

(7.9)
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for a cylinder of radius R and length L, and Fbend = 2KA/R2
0 for a flat sheet of area

A. It is also a simple exercise to show, by equating the enclosed volume to VΦ and
the interfacial area to S, that the droplet size R for spheres is

Rs =
3Φvs

φsΣ
. (7.10)

If Rs < R0, then (modulo a transition to cylinders at small negative K̄) the droplet
phase is stable. However, if surfactant is removed, or the internal phase volume
fraction Φ is increased, to the point where Rs exceeds R0, the system is not obliged
to pay the additional bending cost of having droplets larger than their preferred
curvature radius. Instead, the droplets remain of size R0, and coexist with a bulk
phase of leftover A-rich fluid: emulsification has once again failed (Safran &
Turkevich 1983; Safran 2003). Given the various routes to emulsification failure
described above, formulators generally aim to avoid any intrinsic tendency to strong
curvature of the surfactant film.

7.4.2. Persistence length and thermal softening of K
Reflecting that strategy, we now set R0 =∞ so a flat interface is preferred. The

bending energy can then be evaluated for small fluctuations in shape described by
a height field h(x, y) above a flat reference plane. One finds

Fbend =

∫ (
K
2
(∇2h)2

)
dx dy'

K
2

∑
q

q4
|hq|

2, (7.11)

where in the first expression ∇2 is defined with respect to the x and y coordinates
and in the second we have taken a Fourier transform of the height field. From this
it is a simple exercise in statistical mechanics (Safran 2003) to show that (with r2

=

x2
+ y2)

〈|∇h(r)−∇h(0)|2〉 ∝
kBT
2πK

ln
( r
`

)
, (7.12)

where ` is a microscopic cutoff length of order the film thickness and 〈·〉 denotes a
thermal average. When this logarithmic deviation in orientation becomes large, the
expansion underlying (7.11) breaks down.

Generally we only want to know the interface’s coarse-grained properties on some
scale λ set by, for instance, the size of emulsion droplets. Under coarse graining,
we replace an entropically wiggly interface by a smooth one on the scale λ. By
carefully integrating out the thermal undulations, one can show (David 2004) that
their perturbative effect is to soften the elastic constant:

Keff (λ)=K −
3kBT
4π

ln
(
λ

`

)
. (7.13)
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Thus there is very little resistance to bending at scales beyond a ‘persistence length’

ξK ' ` exp
[

4πK
3kBT

]
. (7.14)

Note that ξK is exponentially dependent on K: for `= 1 nm, ξK ' 1 µm when K =
1.65kBT . For K = 3kBT , we already have ξk > 300 µm; and ξK is irrelevantly large,
for our purposes, once K is much larger than this.

7.5. Bicontinuous microemulsions

In so-called ‘balanced’ microemulsions, the spontaneous curvature is tuned to be
small, so that R0� ξK . For simplicity, we set R0→∞ as above. We also assume
`� ξK� 100 µm, so that the entropy of the interface (including the renormalization
of K) cannot be ignored. Assuming Φ of order 0.5 (roughly symmetric amounts of
A- and B-rich fluid), we can introduce a structural length scale λ, which is then
set by φs. Specifically, for a lamellar phase, comprising a one-dimensional stack of
alternating layers of A and B with relatively flat interfaces between these, one has a
layer spacing λ between adjacent surfactant films set by φs' (`/λ+ `). When λ' `
the system has no option but to fill space with flat parallel layers. As φs is reduced
(λ raised), the layer spacing λ becomes comparable to ξK . For λ/ξK 6 1/3 (or so),
the lamellar phase fluctuates but remains stable.

On the other hand, if φs is then decreased further so that λ ' ξK , these layers
melt into an isotropic phase comprising (for Φ ' 0.5) bicontinuous domains of A
and B fluids separated by a fluctuating surfactant film. This is the bicontinuous
microemulsion and effectively represents a thermodynamic route to prevent
coarsening of the transient bicontinuous structures encountered in § 5 above. If Φ
now deviates strongly from 0.5, then (just as found there) the structure depercolates,
forming a droplet phase. This differs from the one discussed above for R0 � ξK ,
since this one is stabilized by entropy and fluctuations, not by a preferred curvature
of the droplets. Theories of the bicontinuous microemulsion were initiated by de
Gennes & Taupin (1982). Some of these theories use coarse-grained lattice models
in which fluid domains are placed at random on a lattice of some scale ξ ; the
bending energy and area of the resulting interface can be estimated and used to
calculate a phase diagram (Andelman et al. 1987). One specific feature is the
appearance of three-phase coexistence in which a ‘middle-phase’ microemulsion
coexists with excess phases of both oil and water: this roughly corresponds to a
‘double-sided’ emulsification failure in which both oil and water are expelled.

7.6. The sponge phase and vesicles

Closely related to the bicontinuous microemulsion is the ‘sponge phase’. This arises
when there is a huge phase volume asymmetry between A-rich and B-rich fluids,
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but only in case 2 systems where the surfactant has a molecular preference to form
a flat film rather than highly curved structures such as micelles. The interfacial
structure that forms spontaneously at cs = c̃ is, in the almost complete absence of
B, necessarily now a bilayer with A (usually water) on both sides and a thin B
layer in the middle. The lamellar state now consists of flattish bilayers alternating
with A domains; for small volume fractions of bilayer, such that their separation
exceeds their persistence length, this structure melts, just as described above for the
microemulsion. The result is subtly different though: we now have a bilayer film
that separates two randomly interpenetrating domains containing the same solvent
A. This is called the ‘sponge phase’. It is not directly useful for A/B emulsification,
since the minority B phase has negligible phase volume. However, the sponge
phase does have remarkable phase transitions associated with the ‘in–out’ symmetry
between the two A domains, which can be broken spontaneously (Huse & Leibler
1988; Roux et al. 1992). When the symmetry is strongly broken, one has discrete
droplets of A separated from a continuous A phase by a bilayer. This can be viewed
as a thermodynamically stabilized A-in-A emulsion (typically water-in-water), which
can be useful for encapsulation. Such structures, called vesicles, can also exist in
the complete absence of B, so that the bilayer contains only surfactant.

Similar vesicles can also be formed from lipids, which are biological molecules
closely related to surfactants. The main difference is that for lipids c̃ is extremely
small compared to typical values for surfactants. This renders them effectively
insoluble in water, since any attempt to increase cs above this small value leads
instead to the creation of more interface on which the lipid resides (typically
organized as a lamellar phase). This insolubility means that, although in local
equilibrium γ0 is effectively zero, there is no rapid equilibration of the surface area
per molecule Σ by molecular exchange between interface and bulk. As a result, if
a lipid vesicle is mechanically stretched, a tension soon develops. Such tension can
also arise by swelling the vesicle to an inflated spherical shape rather than a relaxed
floppy shape of lesser volume. Only in the absence of such stretching can a lipid
bilayer be described by the bending free energy (7.5) in which typically R0 = ∞

because there is no preferred curvature by symmetry; in this case there are large
shape fluctuations so long as K/kBT is not large. The spontaneous curvature radius
R0 can, however, be finite if the composition of the lipid bilayer is different on its
two faces. This is common in biology, where a bilayer of mixed lipids separates
the interior and exterior of a cell. Note that, because of their insoluble character,
the global distribution of lipids to form vesicles is almost never in equilibrium: the
size of each vesicle is set by the amount of lipid present at its surface, not by
thermodynamics.

8. Particle-stabilized emulsions

A typical soluble surfactant has an energy of attachment to the A–B (oil–water)
interface of between 5kBT and 15kBT . This is high enough to alter interfacial
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properties but low enough to maintain local equilibrium by exchange of molecules
with one or both bulk phases. Larger amphiphilic species range from lipids as just
discussed, via diblock copolymers (in which two polymer chains of different
chemistry are covalently bonded together) and globular proteins, to colloidal
‘Janus beads’. The latter are colloidal spheres, up to a micrometre in size, with
surface chemistry that favours water on one hemisphere and oil on the other. For
typical solid–fluid interfacial tensions (' 0.01 N m−2), Janus beads have attachment
energies of order 107kBT or larger. Such species are adsorbed irreversibly at the
A–B interface, in the sense that Brownian motion alone will almost never lead to
detachment.

8.1. Colloidal particles at fluid–fluid interfaces

Although Janus beads are often studied (Lattuada & Hatton 2011), they are rarely
used for emulsion stabilization, because it is much cheaper to use ordinary colloidal
spheres of homogeneous surface chemistry. Perhaps surprisingly, so long as the
colloid has roughly equal affinity to the two fluids A and B, interfacial attachment
energies remain vastly larger than kBT . The simplest case is when the two solid–fluid
interfacial tensions, γSA and γSB, are the same. The energy of such a particle (of
radius a) is then independent of where it resides, but the energy of the A–B interface
is reduced by πa2γ0 if the particle is placed there, because a disc of interface is
now covered up by the colloid. Typically, γ0 = 0.01 N m−2, giving an attachment
energy of order 107kBT for a = 1 µm and 10kBT for a = 1 nm. Similar remarks
apply for unequal solid–fluid tensions so long as the contact angle θ , defined via
γ0 cos θ = γSB − γSA for the case of partial wetting (figure 5), is not too close to 0
or π, whereupon the particle becomes fully wetted by one or other phase.

Consider now placing a number of spherical colloidal particles on the surface
of a spherical droplet of fluid A in fluid B, or vice versa. Each colloid can be
accommodated with the required contact angle θ by cutting a small spherical cap
out of the interface and slotting the particle into place there. The contact line is
a perfect circle, as required for tangency at fixed angle to a sphere. To conserve
the enclosed volume, the droplet radius changes slightly, but it remains perfectly
spherical. There is minimal change in Laplace pressure, and the interfacial energy
is independent of where the colloids are placed. Accordingly, there is no capillary
force between them. These statements can only change if particles become jammed
so they interact directly via particle–particle forces.

The physics is very different for spherical colloids residing on a hypothetical
cylinder of fluid A in B (or vice versa). It is not possible now to insert a spherical
particle onto the surface of this cylinder at fixed contact angle θ unless the fluid
interface becomes deformed. This deformation costs extra interfacial energy, and
can be minimized by placing two particles close together. Accordingly, there is
a capillary attraction between the colloids, which will have a strong tendency to
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(a) (b)

FIGURE 5. (a) Geometry of a partially wet colloidal particle at the fluid–fluid interface; θ
is the contact angle. This is usually measured through the polar phase, so the upper fluid
is water and the lower is oil, as drawn here. (b) The initial locus of a fluid interface (light
grey) into which particles (black circles) are inserted. These are jammed in a 2D layer
but have interstitial fluid regions between them, as shown. If the volume of fluid in the
droplet is now reduced, to maintain a fixed contact angle with particles that cannot move,
the curvature of the interface is reversed to give the final fluid locus (dark grey arcs). This
creates a negative Laplace pressure, which can switch off the Ostwald process.

aggregate. Similar arguments apply to non-spherical particles such as ellipsoids,
even on flat surfaces (Cavallaro et al. 2011).

In all these cases, particle adsorption to the interface is thermally irreversible
for particles bigger than a few tens of nanometres. This non-equilibrium interfacial
physics allows stabilization not only of spherical droplets (classically known as
‘Pickering’ or ‘Ramsey’ emulsions) but also of more complex structures with frozen
shapes maintained by a layer of interfacial particles clamped together by interfacial
tension (Binks & Horozov 2006; Cates & Clegg 2008). Closely related structures can
also be made with air as one of the two fluids (Subramanian et al. 2005). Unless
Janus particles are used (Aveyard 2012), these emulsions are always metastable:
their minimum free energy state comprises bulk A and B phases, separated by
a flat interface, with as much of this interface as possible covered by particles,
and the remainder distributed randomly in one or both solvents. However, the vast
detachment energies allow the metastable state to survive almost indefinitely in
many cases.

8.2. Resistance to coalescence and Ostwald ripening

One route to Pickering emulsions is to create numerous small droplets by applying
a strong flow that mixes fluids A and B. The flow sweeps particles onto the
interface whose initial surface area is much larger than they can cover. Coalescence
initially proceeds as normal (perhaps assisted by maintaining a lower flow rate).
Coalescence decreases the surface-to-volume ratio of droplets at fixed numbers of
attached colloids. This proceeds until the surface particle density is high enough to
prevent further coalescence. This requires a coverage comparable to, but somewhat
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below, that of a densely packed 2D amorphous film. Hence the resulting particle
layer is usually not jammed, and droplets can relax to a spherical shape. In some
cases, though, for instance if droplets remained stretched by flow as they coalesce,
the final droplet is arrested in an aspherical jammed state, with particles clamped
in position by interfacial tension (Cates & Clegg 2008).

For both spherical and aspherical structures, these clamped layers offer very strong
stability against coalescence. They also resist Ostwald ripening, for the following
reason. Recall that a close-packed monolayer of particles (whether ordered or
amorphous) can be placed on the surface of a spherical fluid droplet of radius
R (say) without altering its interfacial geometry. Imagine such a droplet with the
particles just in contact with one another. There is still a fluid–fluid interface at the
interstices between particles, and this has the same curvature, and hence Laplace
pressure γ0/R, as the original drop.

Suppose now that this droplet is in diffusive equilibrium with one or more larger
ones. According to the Ostwald mechanism, it will start to shrink. However, if the
particles are already in contact, they cannot follow the droplet surface inwards as
this happens. Moreover, each particle demands an unchanged contact angle with the
interface, which is effectively now pinned to the particle layer. It is easy to see
(figure 5) that even a small loss of volume of the droplet under these conditions will
reduce the Laplace pressure to zero and then negative values. Once zero is reached,
the droplet is fully resistant to Ostwald ripening. The mechanism is similar to that
described in § 5.5 using a trapped species; indeed, due to their high detachment
energies, interfacial particles are effectively such a species.

8.3. Morphologies of particle-stabilized emulsions

Alongside conventional spherical emulsion droplets, with particle stabilization a
number of alternative morphologies are available (figure 6). First, drainage or
centrifugation of a Pickering emulsion leads to a compressed foam structure that
is like the biliquid foams discussed previously. These can be very stable thanks
to the combined resistance to coalescence and Ostwald ripening provided by the
particles. Second, simple manual agitation of binary immiscible solvents containing
partially wettable particles often results in droplet-within-droplet structures known
as multiple emulsions. Such structures require stability against both coalescence
and Ostwald ripening for A droplets in B and for B droplets in A simultaneously.
This is relatively difficult for surfactant formulations but seemingly quite easy with
particle-stabilized ones (Clegg et al. 2016).

A third interesting morphology is that of ‘bijels’, or bicontinuous interfacially
jammed emulsion gels, which are metastable analogues of the bicontinuous
microemulsion: a particle layer resides at the interface between interpenetrating
domains of A and B. This structure was predicted first computationally by model
H simulations with added colloids (Stratford et al. 2005); it was confirmed in the
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(a) (b) (c)

FIGURE 6. Various particle-stabilized interfacial structures between fluids A and B, as
imaged by confocal microscopy (which effectively views a thin slice through the material).
(a) A biliquid foam with thin B films separating polyhedral A droplets; the bright regions
are layers of fluorescently labelled particles and appear as lines or regions according to
whether these lie oblique to the confocal plane or within it. (b) A multiple emulsion. The
brightest regions (light green) are again particle-rich. Fluid A is dark grey and fluid B
is dull red. (c) A bijel (see text for meaning); the fluorescent labelling is similar to the
multiple emulsion. (Images courtesy of Paul Clegg.)

laboratory by Herzig et al. (2007). In a bijel, the interfacial film of non-detachable
particles is clamped by tension into a 2D jammed layer, which imparts solidity
to the whole 3D structure. This robustness can be improved further by having an
interaction potential between particles with a steep barrier and then an attractive
minimum at short distances. The interfacial tension pushes particles over the barrier,
creating a strongly bonded interfacial film (Sanz et al. 2009).

One recipe for making a bijel is to choose a fluid pair A + B that are miscible at
high temperature (Cates & Clegg 2008). The colloidal particles are then dispersed
within the single-phase mixture. On dropping the temperature, the fluids separate and
particles are swept onto the interface. The coarsening process arrests when a jammed
monolayer is formed, creating the bijel. The final structural domain size obeys L'
a/φp, with a and φp the particle size and volume fraction, and the elastic modulus
of the solid bijel scales as G∼ γ0/L. Bijels are currently being explored for various
applications in materials design (Lee et al. 2013).

9. Liquid-crystalline emulsions

Nematic and polar liquid crystals are classes of materials with long-range
orientational order but without positional order. Normally they are composed of
rod-shaped particles which develop such order at high enough density. (A third
class of liquid crystal are smectic phases, comprising a stack of fluid sheets with
periodic order in one dimension; we do not address these here, but note that the
lamellar phase referred to in § 7.5 above is an example.) Nematic and polar liquid
crystals can flow like liquids but at the same time retain an elastic, solid-like
response to deformations in their orientational order (de Gennes & Prost 2002).
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Splay Bend Twist

(a)

(b) (c)

FIGURE 7. (a) Elastic modes in polar liquid crystals: splay, bend and twist. Red arrows
indicate the average direction of the particles, p(r). In the case of nematic liquid crystals,
the vector field p is replaced by a headless unit vector n̂. (b) The effect of an anchoring
term β1 in the free energy; p tends to align perpendicularly outwards (β1 > 0) or inwards
(β1<0) at the interface. (c) The effect of another anchoring term β2>0 in the free energy;
p tends to align parallel to the interface. The black line indicates the interface between
the isotropic phase (φ =−1) and the liquid-crystalline phase (φ =+1).

The three independent elastic modes are splay, bend and twist deformation (see
figure 7a).

Recently, there has been considerable interest in multiphase mixtures of liquid
crystals and isotropic fluids, collectively termed liquid-crystalline emulsions. This
includes liquid-crystalline droplets in a bulk isotropic fluid or isotropic droplets
in bulk liquid crystals. Theoretically, such system can be described by two order
parameters. The first is a scalar composition field φ(r, t), which distinguishes the
liquid-crystalline fluid (say φ = +1) from the isotropic fluid (say φ = −1). The
second order parameter describes the orientational order of the liquid-crystalline
phase. As mentioned in § 2, there are two basic types of orientational order for
rod-like particles: polar order, described by a vector field p(r, t); and nematic order,
described by a second-rank traceless symmetric tensor field Q(r, t).

Polarity stems from a head–tail asymmetry of the particles, described by a unit
vector ν̂, which is embedded in each particle and points from the tail to the head.
The order parameter p(r, t) is defined in (2.4) to be the average of these unit vectors
inside some mesoscopic volume. In the isotropic phase, particles point in random
directions such that |p| = 0; whereas in a polar phase, particles point in a preferred
direction (on average) such that 0 6 |p| 6 1. Molecular liquid crystals rarely form
a macroscopic polar phase because such molecules typically have a finite electric
and/or magnetic dipole moment. In a polar phase, even if small, this dipole moment
gives rise to macroscopic ferroelectric or ferromagnetic order whose long-range
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field energies tend to destabilize the phase at large scales (de Gennes & Prost
2002). On the other hand, many examples of polar liquid crystals are not molecular
but biological in nature; for example, dense swarms of rod-like bacteria such as
Escherichia coli. Here the bacteria also swim in the direction of ν̂ and force the
system to be out of equilibrium. We return to such ‘active’ liquid crystals in § 11.
Polar emulsions (especially active ones) have been the subject of several theoretical
and numerical studies in recent years. For instance, as we shall see in § 12, a
droplet of polar active fluid on a solid substrate can capture some of the physics of
cell crawling (Ziebert & Aranson 2013; Tjhung et al. 2015).

In nematic liquid crystals, the particles are again oriented along a preferred axis,
but lie parallel or antiparallel to that axis with equal probability such that 〈ν̂〉 is zero
but 〈ν̂ν̂〉 is not zero. The nematic order parameter Q(r, t) is then defined as in (2.5)
as a second-rank tensor that is traceless and vanishes in the isotropic phase. Note
that Q and p are linearly independent: while typically Q does not vanish in a polar
phase, it can do so. (A concrete example is given in § 12.1 below.) We define the
director field n̂(r, t) as a unit eigenvector of Q corresponding to its eigenvalue of
largest magnitude. Here n̂ and −n̂ contain the same information about the average
orientation of the particles, and pictorially n̂ is often represented as a ‘headless’
vector field. For uniaxial nematics (in which rotational symmetry about this preferred
axis is unbroken), we can then write Q(r, t) = S(r, t)(n̂n̂ − I/d), where the local
eigenvalue S tells us the strength of nematic order. For rod-like particles with a
preference for parallel alignment, this is positive (0 6 S 6 1), but S can become
negative in some situations (e.g. close to walls), where it describes a ‘pancake-like’
rather than ‘sausage-like’ orientational distribution function. Importantly, in three
dimensions, there is no symmetry relating states of opposite S. This causes the phase
transition from isotropic to nematic to be generically discontinuous (de Gennes &
Prost 2002). Emulsions of a nematic phase in an isotropic fluid, or vice versa, can
give rise to interesting and exotic new states of organization. For instance, isotropic
droplets can form long chains, which are stabilized by the surrounding nematic
(Loudet et al. 2000); they can also form a hexagonal crystalline lattice (Nazarenko
et al. 2001). These self-assembling properties can be attributed to the formation
of topological defects (described below) around each droplet, which mediate new
interactions between them (Poulin et al. 1997).

9.1. Free energy of liquid-crystalline emulsions

In a polar liquid-crystalline emulsion, the hydrodynamic variables are the composi-
tion variable φ(r, t), the polarization p(r, t) and the fluid velocity v(r, t). These can
be defined such that φ ' 1 in the bulk liquid crystal where |p| > 0, and φ ' −1
in the bulk isotropic fluid where |p| = 0. The free energy of such a system can be
written as a sum of two contributions: F[φ, p] = Fφ[φ] + Fp[φ, p]. The first is the
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contribution from a simple binary fluid, similar to (3.2),

Fφ[φ] =
∫

Fφ dr=
∫ (
−

a
2
φ2
+

a
4
φ4
+
κ

2
|∇φ|2

)
dr. (9.1)

Here a> 0 and κ > 0 are chosen such that F is minimized by bulk phase separation
into states with φ '±1. The second contribution to the free energy stems from the
liquid crystallinity, which can be written as (de Gennes & Prost 2002; Tjhung et al.
2012)

Fp[φ, p] =
∫

Fp dr =
∫ (

γ (φ)

2
|p|2 +

α

4
|p|4 +

K1

2
(∇ · p)2 +

K2

2
(p · ∇× p)2

+
K3

2
|p×∇× p|2 + β1(∇φ) · p+ β2((∇φ) · p)2

)
dr. (9.2)

Here γ (φ) is a thermodynamic parameter that controls the isotropic to polar
transition: γ (φ) < 0 in the polar phase and γ (φ) > 0 in the isotropic phase. (This
notation is conventional and should be distinguishable by context from our previous
use of γ to denote interfacial tension.) For simplicity we can assume γ (φ)=−αφ
to obtain a bulk polar phase whenever φ > 0 and an isotropic phase (|p| = 0)
when φ < 0. With this choice, |p| = 1 when φ = 1, in effect setting the units for
p. We require the quartic coefficient α to be positive for thermodynamic stability.
The gradient terms involve K1, K2 and K3, which are the splay, twist and bend
elastic constants (all positive); see figure 7(a). In the literature, one often finds the
approximation K1 = K2 = K3 ≡ K, such that all three elastic terms combine into
the simpler form (K/2)(∂ipj)

2. The remaining terms in (9.2) describe anchoring
effects. The β1 term favours perpendicular anchoring of p at the droplet interface
(see figure 7b): if β1 > 0, p tends to point outwards (from the polar to the isotropic
phase), whereas if β1 < 0, p tends to point inwards. Finally, the β2 term promotes
parallel anchoring of p at the interface (see figure 7c).

For the case of nematic (rather than polar) emulsions, the second-rank tensor
Q(r, t) takes the place of p(r, t) as a hydrodynamic variable, alongside the
composition φ(r, t) and the fluid velocity v(r, t). The free energy can be written
as F[φ, Q] = Fφ[φ] + FQ[φ, Q], where Fφ is of the same form as (9.1). Here FQ

comprises the so-called Landau–de Gennes free energy functional for bulk nematics
(de Gennes & Prost 2002), augmented with appropriate couplings to φ. In three
dimensions this reads (Sulaiman et al. 2006)

FQ[φ,Q] =
∫ {

A0

2

(
1−

γ ′(φ)

3

)
QijQij −

A0

3
γ ′(φ)QijQjkQkl

+
A0

4
γ ′(φ)(QijQij)

2
+

K
2
(∂iQjk)

2
+ β0(∂iφ)Qij(∂jφ)

}
dr, (9.3)

where for simplicity we have taken a single elastic constant K > 0. The thermo-
dynamic parameter A0 > 0 is a scale factor for bulk free energies, while γ ′(φ)
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controls the isotropic to nematic transition; the nematic phase is stable for γ ′ > 2.7
and the isotropic phase is stable for γ ′< 2.7. This transition is discontinuous (thanks
to the term in (9.3) cubic in Q) with a finite hysteresis window within which the
phase of higher FQ remains metastable. (These statements can be checked by
parametrizing Q = λ(ẑẑ − I/3) and then minimizing FQ(λ) with respect to λ.)
Choosing γ ′(φ)= 2.7+ γ1φ with some positive constant γ1 ensures a nematic phase
at compositions φ > 0 and an isotropic phase at φ < 0. For nematics, the physics of
orientational anchoring at the surface of a droplet can be captured by a single term,
proportional to β0. For β0 < 0, the director field n̂ will tend to align perpendicular
to the interface, whereas for β0 > 0, n̂ will tend to align parallel to the interface.
This is similar to figures 7(b) and 7(c), respectively, except that one must replace
the vector with a headless vector in each case.

9.2. Topological defects

If we ignore the anchoring term β1 in the polar free energy Fp, we notice that the
free energy is invariant under a global inversion p→−p. On the other hand, for
nematics, the free energy is invariant under a local inversion n̂→−n̂. As long as
we are in a region without topological defects – which are places where p or n̂ are
undefined – there should be no distinction between a global or local symmetry since
any attempt to make different sign choices in different neighbourhoods will lead to
p or n̂ being undefined wherever these neighbourhoods meet. In practice, therefore,
in defect-free regions the static and dynamic properties for both p and n̂ are found
to be very similar, so long as we ignore terms that break the p↔−p symmetry in
Fp, such as the β1 term in (9.2).

However, differences arise when we do have topological defects. Such a defect is
present when, if the state of order in some region is mapped onto a state of uniform
orientation, this map cannot be made smooth everywhere in real space (Chaikin
& Lubensky 1995). In two dimensions, the lowest-order topological defects for
nematics (n̂) are point-like and have ‘topological charge’ +1/2 or −1/2, as shown
in figure 8(a). This charge denotes the number of full turns of the director along a
path that makes one full turn around the defect. Because the vector n̂ is headless, a
rotation comprising a whole number of half-turns in either direction brings it back
to the same state. (Defects of charge ±n/2 with n > 1 are also possible, but in
practice these rapidly dissociate for energetic reasons into n half-integer defects of
the appropriate sign.) On the other hand, the lowest-order defects for polar fluids
have charge ±1 since a full rotation of p is needed to recover the same state, as
shown in figure 8(b). (Again, defects of charge ±n with n> 1 dissociate to reduce
the elastic energy.) In both the polar and nematic cases, defects of the same sign
repel one another whereas those of opposite charge attract and then annihilate.
Conversely, during the isotropic to liquid crystal transition, triggered typically by a
quench which alters γ or γ ′, pairs of defects with opposite signs are created.
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(a)

(c)

(b)

z z

y

FIGURE 8. (a) Topological defects in 2D nematic liquid crystals. (b) In polar liquid
crystals half-integer defects are forbidden. (c) In three dimensions, +1/2 and −1/2 point
defects of the nematics become line defects. Furthermore, +1/2 and −1/2 line defects
are then topologically equivalent (one can see this by flipping each molecule 180◦ about
the y axis) (Chaikin & Lubensky 1995).

In three dimensions, the ±1/2 point defects of the nematics become line defects,
as shown in figure 8(c). Furthermore, in three dimensions, +1/2 and −1/2 line
defects are topologically equivalent. To see this, consider the +1/2 line defect shown
in figure 8(c), left. We can then continuously rotate the director field everywhere
through 180◦ about an axis perpendicular to ẑ (in this example, the y axis) to
get the −1/2 line defect shown in figure 8(c), right. Similar reasoning establishes
that any two defects whose charge differs by an integer are equivalent, so that all
integer defect lines are equivalent to no defect at all, and all half-integer defects are
equivalent to each other. Thus in 3D nematics there is only one type of line defect;
these are called ‘disclinations’. Any two disclination lines can annihilate. Note that
disclinations can also form closed loops (Chaikin & Lubensky 1995).

For polar liquid crystals there are no line defects in three dimensions. This is
because cylindrical versions of the structures shown in figure 8(b) can be converted
into a defect-free state by smoothly rotating all the arrows to point out of (or into)
the page. The basic defects are instead the obvious 3D equivalents of the ±1 point
defects shown in figure 8(b), left and right. These are called the radial hedgehog and
hyperbolic hedgehog defects, respectively (Lubensky et al. 1998). These two types
of point defects are also possible in nematics, but are then topologically equivalent
to one another, and also equivalent, at distances much larger than its radius, to a
closed disclination loop. Note that their topological equivalence does not mean that
two structures are freely interconvertible; energetic considerations often favour one
over the other.
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(a)

(b) (c) (d) (e)

p

+1

+1

+1
a

a

FIGURE 9. (a) Long chains of isotropic droplets in a bulk nematic fluid; the chains have
roughly equal separation. (b) A hyperbolic hedgehog (point defect) formed by the nematic
liquid crystal just outside an isotropic droplet. (c) A half-integer ring defect can also form
around an isotropic droplet (saturn ring). (d) Boojum defects at the poles of a nematic
droplet. (e) Radial hedgehog in the middle of a nematic droplet. (Panel (a) is adapted
from Loudet et al. (2000) and (b,c) are adapted from Lubensky et al. (1998).)

We also note in passing that, at the centre of a line defect in a polar liquid crystal,
p passes through zero such that its direction is undefined. For a 2D nematic, Q
likewise becomes zero at the defect core, meaning that the medium is isotropic there
and n̂ is undefined. However, at the core of a disclination line in three dimensions,
n̂ is undefined not because Q is zero, but because its two largest eigenvalues
are positive and degenerate, so that the orientational distribution of molecules is
isotropic in the plane normal to the defect line.

9.3. Defects in and around emulsion droplets

Emulsions comprising droplets of isotropic fluid in a bulk nematic (sometimes called
‘inverted’ nematic emulsions) can display interesting states of organization such as
the one shown in figure 9 (Loudet et al. 2000). Here, isotropic droplets can form
parallel and very long chains, separated by roughly equal distance. This phase is
obtained by quenching the mixture from an initial high-temperature phase that is
uniform and isotropic, so that it phase-separates into isotropic and nematic phases
along the lines discussed in § 5 for binary mixtures of simple fluids.

These long chains of isotropic droplets are stabilized in three dimensions by
topological defects. In this system, surface anchoring requires n̂ to be radial at the
droplet edge, creating in effect a radial hedgehog that cannot be annihilated because
its core is effectively inside the droplet. To restore uniform ordering at large scales,
there needs to be either another point defect just outside the droplet, for which the
lowest-energy choice is a hyperbolic hedgehog (see figure 9b), or a disclination
loop (which is equivalent at large distances as discussed above) (Lubensky et al.
1998). This loop can be off-centred or equatorial, as shown in figure 9(c). For the
asymmetric arrangements, such as that with the hyperbolic hedgehog, long-ranged
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elastic distortion in the director field creates an effective dipolar attraction (Poulin
et al. 1997) and this causes the droplets to come together to form chains (figure 9a,
inset). The interaction is quadrupolar for a symmetric (equatorial) disclination loop,
with attraction only when the separation between particles is in a range of oblique
angles to the far-field director. If perpendicular anchoring is replaced by parallel
anchoring, the exterior nematic instead develops a pair of +1 defects at opposite
poles of the included droplet. Note that half of each defect, which would lie interior
to the droplet, is effectively absent. Such surface defects are called ‘boojums’. The
leading-order interaction is again quadrupolar (Poulin et al. 1997).

Interesting structures also arise in ‘direct’ nematic emulsions comprising nematic
droplets immersed in an isotropic fluid. Again, the director field can be aligned
either parallel to the droplet interface (β0 > 0 in the free energy equation (9.3))
or perpendicular to it (β0 < 0). In the case of parallel anchoring, the director field
typically forms a pair of boojum defects at each pole of the droplet (now with the
missing part of the defect outside rather than inside the droplet; see figure 9d). These
point defects create a cusp at each pole of the droplet (Prinsen & van der Schoot
2003). On the other hand, in the case of perpendicular anchoring, the director field
will typically form a single radial hedgehog in the centre of the droplet (Lopez-Leon
& Fernandez-Nieves 2011), at least within the single elastic constant approximation
(figure 9e). Importantly, because nematic order exists only in the droplet interior,
these effects do not lead to any long-range interaction between droplets through
the isotropic continuous phase. For this reason, the self-assembly properties of
direct nematic emulsions are broadly the same as for conventional emulsions of two
isotropic liquids. They can be functionally useful, however, because the discrete
nematic compartments can have faster switching times in response to external fields
than a continuous phase in which defects can move slowly across large distances.
Materials where the continuous phase is a polymer solution, from which the solvent
is then evaporated to give nematic droplets in a solid matrix, are referred to as
polymer-dispersed liquid crystals and are widely used in technology (Bouteiller &
LeBarney 1996). A related structure is obtained when a binary fluid is quenched into
isotropic+nematic coexistence in the presence of colloidal particles. To minimize
anchoring constraints, these tend to segregate into the isotropic phase. When the
final phase volume of that phase is small, a biliquid foam resembling that in figure 6
is formed, with particles compressed into films that now lie between nematic cells
with different directors (Anderson et al. 2001).

10. Dynamics of liquid-crystalline emulsions

So far, we have only studied the static properties of liquid-crystalline emulsions,
which amounts to finding configurations that minimize the free energy. Although
many such static properties of nematic emulsions have been studied, the literature
on their dynamics is sparse. Fernandez-Nieves et al. (2007) studied experimentally
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a nematic droplet under pipe flow. At rest, with a parallel anchoring condition,
the director field inside the droplet forms a +1 boojum defect at each pole of the
droplet (figure 9d). Under pipe flow, fluid circulation inside the droplet can bring
these two point defects together to form, momentarily, a +2 defect. Tiribocchi
et al. (2016) studied numerically the effect of a shear flow in an inverted nematic
emulsion, finding that the flow not only distorts the droplet into an ellipsoidal shape
but also causes its equatorial disclination loop to be displaced.

Despite the relative lack of dynamical studies so far, we present below the
theoretical machinery for addressing the dynamics of polar and nematic emulsions,
restricting attention for simplicity to the hydrodynamic level where noise terms
are neglected. In part we do so because this framework is needed to address the
behaviour of active liquid-crystalline droplets, to which we shall turn in § 12. In
what follows, we outline the derivation of dynamical equations for p, φ and v in the
polar case (§ 10.1), and then quote without derivation the corresponding equations
for Q, φ and v in nematics (§ 10.2).

10.1. Equations of motion: polar liquid crystals

Consider a patch of polar liquid-crystalline material as shown in figure 10(a). Let us
initially assume that this patch rotates as a rigid body with some angular velocity ω.
In other words, the fluid velocity v(r, t) at position r at time t is given by v=ω× r.
At time δt later, the p field can then be written as

p(r, t+ δt)= p(r− vδt, t)︸ ︷︷ ︸
advection

+ωδt× p(r− vδt, t)︸ ︷︷ ︸
rotation

. (10.1)

The first term in this equation is simple advection; we displaced the material by
vδt in the time interval δt. However, as we can see from figure 10(a), the advective
term alone is not enough; we also have to rotate p. This is given by the second term.
Expanding to first order in δt we obtain for the rigid rotation of p:

∂p
∂t
+ v · ∇p=ω× p=−Ω · p. (10.2)

The second equality above follows from the fact that the angular velocity can be
expressed as ωi=

1
2εijkΩjk, where Ωij≡

1
2(∂ivj− ∂jvi) is the antisymmetric part of the

velocity gradient tensor.
In general flows, such as shear flows, liquid-crystalline materials do not rotate

like a rigid body; typically p tends to align with the streamlines of the flow. This
results in an additional contribution in the full equation of motion for p; since it is
advective, this term is bilinear in ∇v and p. The resulting full equation reads

∂p
∂t
+ v · ∇p=−Ω · p+ ξD · p−

1
Γ

h. (10.3)
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(a) (b)

FIGURE 10. (a) Rigid-body rotation in a patch of liquid-crystalline material; (red) arrows
indicate p. (b) However, most liquid crystals do not rotate like a rigid body; they tend to
align with shear flow at steady state. Here γ̇ is the strain rate and θL is the Leslie angle,
which is related to the phenomenological parameter ξ . Horizontal (blue) arrows (left)
represents fluid velocity v(r) and inclined (red) arrows (right) represent the orientational
field p(r) at steady state.

Here we have introduced ξ as the flow alignment parameter in the second term
on the right. In this term, Dij ≡

1
2(∂ivj + ∂jvi) is the symmetric part of the velocity

gradient tensor. The parameter ξ is set by the molecular geometry and is independent
of the terms in the free energy F. If |ξ |>1, the orientation of the liquid crystal tends
to align in shear with the flow direction, with a steady-state orientation set by the
so-called Leslie angle, θL = tan−1

[(ξ − 1)/(ξ + 1)]1/2 (see figure 10b). On the other
hand, if |ξ |< 1, the orientation p is not stationary in a shear flow but instead shows
tumbling behaviour (Larson 1999). Importantly, there is no corresponding molecular
influence on the coefficient of the Ω term: this is always unity, otherwise p would
fail to evolve properly when the only motion is the slow rigid rotation of the entire
sample (Beris & Edwards 1994).

The final ingredient in the dynamics for p is the relaxation term proportional to
1/Γ in (10.3). Here h(r, t)= δF/δp is called the molecular field, and is analogous
to the chemical potential µ= δF/δφ for φ. This term, which relaxes p towards the
minimum of the free energy, differs in form from the corresponding term in the
equation of motion for the composition φ since p is not a locally conserved quantity.
The equation for φ itself is the same as in model H for a simple binary fluid (see
(4.5) above), as is the NSE (see (4.3)) for v except that a different expression,
detailed below, is now needed for the thermodynamic stress σ .

To summarize, for polar liquid crystals, at hydrodynamic (deterministic) level, the
dynamics is governed by the following set of equations (Kung et al. 2006):

ρ(v̇ + v · ∇v)= η∇2v −∇P+∇ · σ [φ, p], (10.4)

∇ · v = 0, (10.5)

φ̇ +∇ · (φv)=∇ · (M∇µ), (10.6)

ṗ+ v · ∇p=−Ω · p+ ξD · p− h/Γ. (10.7)
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Here M is the mobility and µ[φ, p] = δF/δφ is the chemical potential. By
construction, these reduce to the noise-free version of model H in the limit where
p= 0 everywhere.

It only remains to derive the total elastic stress σ [φ, p] which enters the NSE
(10.4). We know already from § 3.3 that, even in the absence of p, there is an
interfacial stress contribution. This takes the form (compare (3.10))

σ
φ
ij = (Fφ − φµ)δij −

∂F
∂(∂jφ)

∂iφ, (10.8)

where Fφ = f (φ) + κ(∇φ)2/2 is the local free energy density as defined in (9.1).
In the final term we have generalized (3.10) to allow for the addition of anchoring
terms, which also can contribute to the chemical potential and the interfacial stress;
hence the full free energy density F= Fφ + Fp appears here. This can be confirmed
by a straightforward analogue of the following argument, in which for simplicity we
calculate the elastic stress contribution from p only (Beris & Edwards 1994).

To find this stress contribution, we consider the rate of change in Fp:

dFp

dt
=

∫
δFp

δpi

∂pi

∂t
dr=

∫
hiṗi dr. (10.9)

Substituting (10.7) for ṗi, we obtain

dFp

dt
=

∫ (
(pj∂ihj)vi −Ωijhipj + ξDijhipj −

|h|2

Γ

)
dr, (10.10)

where the underlined term has been integrated by parts. The resulting surface
contribution vanishes for periodic boundary conditions, which we choose here
without loss of generality (just as we did in § 3.3 when discussing model H). The
underlined term in (10.10) is reminiscent of (3.8) for δF(φ) in the case where only
a composition variable is present. Thus −pj∂ihj is effectively a force density, playing
a similar role to −φ∇iµ there. Allowing for the fact that the small displacement u
is now vdt, this term gives a contribution δF′p =

∫
(pj∂ihj)ui dr (where the prime on

F′p reminds us that this is not the only contribution). Following the same procedure
using (3.9) as in § 3.3, this translates into an elastic stress contribution that is the
direct analogue of (10.8):

σ ′ij = (Fp − p · h)δij −
∂F

∂(∂jpk)
∂ipk. (10.11)

It is simple to check from this that ∂jσ
′

ij =−pj∂ihj.
The remaining contribution σ ′′ij to the elastic stress has no counterpart in model H;

it stems from the rotation and alignment terms (10.10), which may be written

dF′′p
dt
=

∫
(−Ωijhipj + ξDijhipj) dr=

∫ (
Ωij

1
2
(pihj − pjhi)+ ξDij

1
2
(pihj + pjhi)

)
dr.

(10.12)
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In the second equality, we have decomposed hipj into symmetric and antisymmetric
parts, and used the fact that X ijY ij= 0 for any symmetric tensor X ij and antisymme-
tric tensor Y ij. Once again using (3.9) with u= v dt we obtain

dF′′p
dt
=

∫
σ ′′ij ∂jvi dr=

∫ (
σ ′′ij

SDij − σ
′′

ij
A
Ωij

)
dr, (10.13)

where the second form decomposes the rate-of-strain tensor ∂jvi into its symmetric
and antisymmetric parts. Comparing (10.12) and (10.13), we identify σ ′′ij

S
=

1
2ξ(pihj + pjhi) and σ ′′ij

A
= −

1
2(pihj − pjhi). The presence of an antisymmetric

contribution is generic in liquid crystals in which rotational symmetry is spontane-
ously broken.

Note finally that the last term, proportional to 1/Γ , in (10.10) causes a purely
dissipative loss of free energy and hence does not contribute to the elastic stress,
which instead describes how the stored free energy changes with sample shape. This
term is negative definite, ensuring that, in the absence of a driving force, the free
energy steadily decreases towards its minimum value.

Adding the contributions σ φ and σ p
= σ ′ + σ ′′S + σ ′′A found above, we can

assemble the total elastic stress tensor σ [φ, p] in the NSE (10.4). This reads

σij = (F− φµ− p · h)δij −
∂F

∂(∂jφ)
∂iφ −

∂F
∂(∂jpk)

∂ipk

+
ξ

2
(pihj + pjhi)−

1
2
(pihj − pjhi). (10.14)

It is important to note that, alongside the rigid-rotation term (the final term on the
right), the flow alignment parameter ξ , as defined via the equation of motion (10.7)
for p, also enters the elastic stress in a non-negotiable fashion (Beris & Edwards
1994). This is because it controls the response of p to an incremental strain and
hence affects the resulting free energy increment which determines the stress.

10.2. Equations of motion: nematic liquid crystals

In principle, one can repeat the same calculation as above for nematic liquid crystals.
Here we shall just quote the results (Beris & Edwards 1994), which are included for
completeness. The dynamical equation for the order parameter Q is

∂Q

∂t
+ (v · ∇)Q=+S(∇v,Q)−

1
Γ

H, (10.15)

where the first term on the right describes the combined effect of rigid-body rotation
and shear aligning. This takes the form

S(∇v,Q)= (ξD +Ω)(Q+ I/d)+ (Q+ I/d)(ξD −Ω)− 2ξ(Q+ I/d)Tr(Q : ∇v),

(10.16)
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where ξ is a flow aligning parameter analogous to that introduced previously
for p. This equation describes similar physics to the corresponding terms for p.
The quantity Q + I/d enters (rather than just the traceless Q) because the entire
orientational distribution function, including its isotropic part, is stretched and
rotated by the flow. The final term in (10.15) is a local relaxation term similar to
that used in (10.7) for p, with Γ an analogous relaxation constant. The molecular
field for nematics is defined as

H =
δF
δQ
−

1
d

Tr
(
δF
δQ

)
. (10.17)

This is traceless by construction, so as to maintain Tr Q = 0 under time evolution.
The equations of motion for φ and v are the same as before, i.e. (10.4), (10.5) and
(10.6), with the total elastic stress σ (Q, φ) now given by

σij = (F− φµ)δij −
∂F

∂(∂jφ)
(∂iφ)−

∂F
∂(∂jQkl)

(∂iQkl)+QikHkj − H ikQkj

− ξH ik(Qkj + δkj/d)− ξ(Qik + δik/d)Hkj + 2ξ(Qij − δij/d)QklHkl. (10.18)

This equation set was, for example, solved numerically by Sulaiman et al. (2006),
who addressed droplet shapes and defect textures in equilibrium, and also switching
behaviour in an applied external field E(t) (which adds a term in E ·Q ·E to the free
energy density F, not needed here). Note, however, that for both the nematic case
and the polar one of the preceding section, only recently have the relevant numerical
tools (primarily involving the lattice Boltzmann method) been developed to solve the
equations of motion presented above (Sulaiman et al. 2006; Cates et al. 2009). With
these methods in hand, it should be possible to understand more fully the unusual
dynamical phenomena seen in direct and inverse liquid crystal emulsions, such as
the kinetics of chain formation among isotropic emulsion droplets in a nematic fluid
(Poulin et al. 1997). Conversely, the recent numerical studies of rheology in such
systems (Tiribocchi et al. 2016) may hopefully promote new experimental studies
of their response to imposed flow.

11. Active binary fluids

Most of the systems we have addressed so far above will, if left alone long
enough, reach a state of thermal equilibrium at fixed volume, governed by the
Boltzmann distribution or, if fluctuations are neglected, by minimizing the free
energy F. For example, a finite sample of phase-separating binary fluid will
ultimately achieve a state with two large domains of the immiscible phases separated
by an interface of minimal area consistent with the geometry of the container,
modulo small thermal fluctuations of the interface itself. The main exceptions we
have encountered are systems with particle-stabilized interfaces, where thermal
energies are insufficient to detach particles and hence cannot achieve equilibration,
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and systems that are being continuously sheared in what is (experimentally at least)
a boundary-driven flow. These exemplify two important ways in which a system
can remain out of equilibrium: through kinetic arrest, and by being subject to
continuous boundary driving. Recently, however, a major focus of research has been
systems that depart from thermal equilibrium because of continuous microscopic
driving at the scale of the constituent particles (Marchetti et al. 2013). For example,
in a suspension of micro-organisms such as swimming bacteria, each ‘particle’
moves through the surrounding solvent by self-propulsion, converting chemical
energy (ultimately derived from a food source) into mechanical motion and thence
viscous dissipation in the fluid. Such particles are called ‘motile’. Synthetic colloidal
swimmers can be designed that also achieve motility, fuelled either by a chemical
agent (such as dissolved hydrogen peroxide) or in some cases by the energy of light.
In these cases, the colloids have surface chemistry that breaks rotational invariance,
typically being Janus colloids on which each hemisphere is coated with a different
material. If one of the coatings catalyses the breakdown of fuel, this creates local
concentration gradients in reagents and/or products, which in turn cause the Janus
particle to move up or down those gradients in an autophoretic manner. The same
gradients can also induce motion of other, neighbouring particles (cross-phoresis).
There are also many systems, mostly biological in origin, where the activity is
at a molecular rather than colloidal scale. Important examples include so-called
actomyosin gels, in which molecular motors (myosin) crawl along polymeric
filaments (actin). Such gels are a subcellular component of most multicellular
(eukaryotic) organisms, forming part of the cytoskeleton which allows cells to
change shape and move from place to place.

For active systems, equations of motion at continuum level (in which the
active species are represented by a smooth density field rather than individually
resolved particles) can be developed bottom-up by explicit coarse-graining of more
detailed models in which motile particles enter as discrete, possibly point-like,
objects (Marchetti et al. 2013; Cates & Tailleur 2015). Below, we follow a more
phenomenological route, in keeping with the approaches developed above for
passive systems. In this route, we adopt a suitable passive continuum model with
appropriate symmetries, and add to it minimal extra terms to represent activity. The
key properties of these additional terms are: (i) they are local – reflecting the fact
that activity is a local rather than global forcing of the system; and (ii) they break
time-reversal symmetry (TRS).

Note, crucially, that although deterministic equations such as (4.9) are first-order
in time and therefore appear already to break time-reversal symmetry, in passive
systems this symmetry is restored in thermal equilibrium by the noise terms; this
is the content of the fluctuation–dissipation theorem, which fixes their form, as in
(4.7). This remark applies to both models B and H discussed previously, and indeed
(at least in the absence of magnetism), it is a general feature of thermal equilibrium
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that any movie of the fluctuating steady state is statistically indistinguishable
running forwards from running backwards. The role of the new time-reversal
symmetry-breaking terms for active systems is to destroy this symmetry even in
steady state. One way to do this is to introduce a mismatch between the noise
and dissipative terms so that the fluctuation–dissipation theorem no longer holds.
However, bottom-up coarse-graining instead suggests a slightly different structure in
which TRS is broken through terms in the deterministic sector that are incompatible
with the existence of a free energy, meaning that no Boltzmann distribution is
possible (Marchetti et al. 2013; Cates & Tailleur 2015). Recent work suggests
these two different modes of TRS breaking can be quite closely linked, in the
sense that choosing one or the other microscopically can lead to essentially the
same continuum equations (Fodor et al. 2016). The generality or otherwise of this
‘duality’ remains under current investigation.

The simplest microscopic models of active matter address motile particles with
isotropic interparticle forces. This means that the angular degrees of freedom,
responsible for liquid crystallinity among passive rod-like particles, do not need to
enter the continuum description: the continuum variables are the fluid velocity v

and the composition φ, the latter now linearly related to the local number density
of active particles. (There is still a unit vector attached to each particle which is
body-fixed and determines the propulsive direction.)

Possibly the most striking prediction of these microscopic models is motility-
induced phase separation (MIPS). This differs from passive fluid–fluid phase
separation in that it stems directly from activity; indeed, MIPS arises in systems of
active particles whose interactions with each other are purely repulsive, including
active hard spheres. One way to understand this for synthetic Janus colloids is to
note that two particles are more likely to collide if they are pointing in roughly
opposite directions. Upon contact, in the absence of interparticle torques, the radial
component of their relative velocity is then cancelled by the repulsive force, leaving
a tangential component that is small or indeed zero for a head-to-head collision.
The particles then remain in contact until a slow, typically diffusive, tangential
motion allows them to separate. This contrasts with passive dynamics for which
repulsive particles rapidly separate; instead, it resembles passive attractive particles
which linger in each other’s vicinity. Thus the combination of repulsion and activity
can give an effective attraction (Cates & Tailleur 2015). Another view of MIPS is
to note that the effectiveness of the particles’ propulsive effort in producing forward
motion is likely to be reduced at high density (for instance, because of collisions
as just described). In addition, active particles tend to accumulate in regions where
they move more slowly, essentially because these regions are easy to enter but
hard to get out of (Schnitzer 1993). This effect is similar to the accumulation of
pedestrians in front of a distracting shop window, where they slow down; but it is
absent for the specific case of isothermal passive diffusers whose particle density
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is fixed by the free energy F alone, independent of any choice of kinetics. The
combination of density-induced slowdown and slowness-induced densification leads
to the unstable growth of fluctuations by essentially the same spinodal instability as
a phase-separating system of attractive particles (Cates & Tailleur 2015).

11.1. Active models B and H

Continuum models for the description of motility-induced phase separation remain
under development. Here we outline some of the interesting cases looked at so far.
We start by suppressing the fluid velocity so that the relevant passive model is model
B, described by (4.9) and (4.10). The simplest way to break time-reversal symmetry
in this model is to retain (4.9) but add to the chemical potential in (4.10) a term
that is not of the form δF/δφ. To lowest order in gradients, this term is |∇φ|2. We
therefore introduce a non-equilibrium chemical potential

µ= aφ + bφ3
− κ(∇2φ)+ λ|∇φ|2. (11.1)

Slightly more generally, one can consider the case where κ(φ) and λ(φ) are
functions of composition; time-reversal symmetry is then broken (µ 6= δF/δφ for
any F) whenever λ 6= dκ/dφ. Microscopic models (Stenhammar et al. 2013) give
exactly this structure, albeit with non-polynomial F and non-trivial φ dependence in
κ and λ; suppressing the latter dependence and restoring the simplest form for the
local part of µ gives (11.1) as the prototypical model for motility-induced phase
separation without fluid flow.

Active model B has some interesting properties (Wittkowski et al. 2014). First, the
non-TRS term (which also breaks φ→−φ symmetry) alters the phase boundaries
at coexistence, even at mean-field (zero-noise) level. This was unexpected since in
equilibrium problems the phase diagram is found by a common-tangent construction
on f (φ) (see (3.3)) in which no gradient terms arise. However, it turns out that this
construction is valid only if the gradient terms stem from a free energy functional.
If one continues to define F[φ] as the functional arising when the active term
is switched off (λ = 0), the effect of activity is to create an inequality between
phases in the pressure-like quantity PTh ≡µφ − f (φ), causing a shift of the binodal
compositions away from their values at λ= 0. (This pressure, which is defined by
the usual equilibrium relation between P, µ and φ, should not be confused with
the mechanical one defined as the force density acting on a wall; only in passive
systems are these two definitions equivalent (Solon et al. 2015).) The resulting
‘pressure jump’ across the interface, which when small is linear in λ, effectively
provides an anomalous active contribution to the Laplace pressure, which is finite
even for a flat interface.

Because it interferes with Laplace pressure and hence with the driving force for
coarsening dynamics, one might expect activity to have some important influence
on the diffusive growth law (5.12) that gave a domain size L ∼ t1/3. However, in
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active model B there is no conclusive numerical evidence for a change in exponent
(Wittkowski et al. 2014). Since coarsening is driven by Laplace pressure differences,
this outcome can be rationalized by noting that the activity-induced pressure jump
across interfaces is curvature-independent at leading order. For the same reason,
diffusive coarsening continues indefinitely. The latter is also found to be true
for the particular microscopic models (of so-called active Brownian particles, or
ABPs) that inspired the form of (11.1). In several experimental systems, however,
coarsening appears to saturate while clusters are at a finite size of perhaps 60–100
particles; the reasons for this are not clear, and various explanations have been
suggested, for instance involving cross-phoresis mechanisms (Buttinoni et al. 2013).

This suggests that active model B, though appealingly simple, may not capture
all we need to address the phase behaviour of scalar active matter. That view
is confirmed by the observation that the mathematical structure of (11.1), in
combination with (4.9), enforces ∇ × J = 0. This rules out steady-state circulating
particle currents in real space. These currents are a low-dimensional projection of
a circulating probability flux in the space of configurations φ(r). (The latter, more
abstract, currents do remain present, however: one finds that in the phase-separated
state there is continuous birth, in one phase, of droplets of the other, which then
migrate to the interface and disappear; see Stenhammar et al. (2013).) However, we
know of situations where steadily circulating real-space currents do arise, at least in
computer simulations – for example, when active Brownian particles are placed in
a ratchet-like environment (Stenhammar et al. 2016). Alongside the fact that active
model B cannot explain cluster phases, this observation has motivated the recent
introduction of an extended model, known as active model B+, in which additional
time-reversal symmetry-breaking gradient terms are included in the expression for
J (Nardini et al. 2017). This model remains under investigation.

For systems in which the fluid velocity field v plays an important role, the natural
starting point is model H, to which we can again add minimal TRS-breaking terms.
One such term, in the chemical potential, is the same as just described for active
model B. (The additional terms arising in active model B+ are yet to be addressed
in this context.) Another new term enters the NSE (4.3) whose passive version
contains a thermodynamic stress obeying ∇ · σ = −φ∇µ. This form assumes a
thermodynamic relation between stress and chemical potential which only holds
for equilibrium systems (in which mechanical forces and thermodynamic ones stem
from the same microscopic Hamiltonian and are not independent). But in a system
undergoing motility-induced phase separation, for instance, even the fact that the
local ‘free energy density’ f (φ) has two minima can arise purely from activity and
not from attractive interactions. This means that, while the active contributions to
f (φ) do not break time-reversal symmetry in themselves, they have no reason to
feed through via thermodynamics into the stress term in the NSE.

What matters in an incompressible fluid is the deviatoric stress, which is traceless
and differs from the full stress by a pure pressure. From (3.10), this is (in d
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dimensions)

σD
ij =−ζ

(
(∂iφ)(∂jφ)−

1
d
|∇φ|2δij

)
, (11.2)

in which ζ = κ . In the absence of an external field that breaks rotational invariance,
this form is in fact the only one possible to leading order in gradients, so that, in
passing from the passive to the active case, all that is lost is the connection between
ζ and κ . Active model H thus reads (Tiribocchi et al. 2015)

ρ(v̇ + v · ∇v)= η∇2v −∇P−∇ · σD
+∇ · σ n, (11.3)

∇ · v = 0, (11.4)

φ̇ + v · ∇φ =−∇ · (−M∇µ+ Jn), (11.5)

µ(r)= aφ + bφ3
− κ∇2φ + λ|∇φ|2, (11.6)

where σD obeys (11.2), in which ζ is a parameter that depends on both interaction
forces and activity. Because this is no longer linked to κ (which is always postive), ζ
can have either sign. It includes an active contribution that is positive for ‘extensile’
swimmers, which draw fluid in along the axis of motion and expel it equatorially,
and negative for ‘contractile’ ones, which do the opposite. (For a further discussion
of this distinction, see § 12 and figure 12 below.)

Whenever ζ 6= κ , there are effectively two interfacial tensions in active model H,
one controlling the diffusive flux (set by κ) and one controlling the fluid flow driven
by interfaces (now set by ζ ). This mismatch breaks time-reversal symmetry, but if
both tensions are positive, the consequences are relatively mild. (This statement is
based on numerical studies in the simplest case which has ζ 6= κ but λ = 0.) In
particular, the physics of coarsening in the viscous hydrodynamic regime remains
broadly consistent with linear scaling, L ∼ t. In the case when κ is finite but ζ
is zero, the order parameter field does not drive fluid motion and one recovers
L ∼ t1/3 as for model B. On the other hand, decreasing ζ below zero, as would
be required to describe strongly contractile swimmers, one has in effect a negative
interfacial tension in the mechanical sector (while that in the diffusive dynamics
remains positive). Microscopically this arises because swimming particles tend to
orient perpendicular to the interface between phases (there is a net polarization there
proportional to ∇φ), where their contractile swimming action pulls fluid inwards
normal to the interface and pushes out sideways in the interfacial (equatorial) plane,
causing the interface to stretch (figure 11a). The spontaneous stretching motion of
the interface is mechanically equivalent to a negative tension. Clearly, in this case
one expects new and interesting effects to arise. One such effect is that the phase
separation can arrest at a finite length scale where the diffusive shrinkage of the
interfacial area is in balance with its contractile stretching (figure 11b). This offers
a hydrodynamic, rather than microscopic, mechanism for the existence of cluster
phases, but only in cases where the swimming is contractile (Tiribocchi et al. 2015);
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(a) (b) +1.0

+0.5

0

–0.5

–1.0

FIGURE 11. Active model H describes a fluid of active particles with conserved fluid
momentum, but no orientational interactions, so that a scalar order parameter φ is
appropriate. (a) Schematic of stretching flow at an interface between low- and high-density
regions (φ < 0 and φ > 0, respectively) of contractile swimmers. (b) Snapshot of a steady
state in which this interfacial stretching balances the intrinsic coarsening dynamics of
model H. (Image courtesy of A. Tiribocchi.)

its relation to earlier work in which the swimming particles are individually resolved
(Ishikawa et al. 2008) is not yet established. The true character of cluster phases
and their origins remains an active topic of current research (Saha et al. 2014).

12. Active liquid-crystalline emulsions

Above, we have introduced the concept of active binary fluids that are driven
out of equilibrium by the irreversible dynamics of their constituent particles. We
addressed the simplest case in which the active particles do not develop bulk
orientational order. Such systems, which include spherical synthetic colloidal
swimmers, can be described macroscopically by a scalar compositional order
parameter alone. More general active fluids include dilute and dense suspensions of
rod-like bacteria, rod-like self-propelled colloids, and the active networks of fibres
that arise in the cytoskeleton of living cells (Marchetti et al. 2013). Such systems
can show mesoscopic or macroscopic orientational order, requiring additional
liquid-crystalline order parameter fields.

To describe them, we need a theory of active liquid-crystalline emulsions. This
can be constructed by selectively adding non-equilibrium terms to the dynamical
equations for their passive counterparts; the latter were derived in § 10. This
procedure follows a similar philosophy to the development of active models B
and H outlined above, but in fact preceded that work, albeit initially in the context
of uniform bulk systems in which the compositional field φ is not also required.
(For a comprehensive review of active liquid crystals in bulk, see Marchetti et al.
(2013).)
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Contractile
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Flagella Body Myosin
motor
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– + F

(a) (b) (c)

FIGURE 12. Active stresses generated by active particles. (a) In bacteria, the flagella rotate
anticlockwise and the body rotates clockwise. This rotation expels the fluid fore–aft away
from the bacteria and generates an extensile fluid flow. (b) In actomyosin contraction, the
motor pulls the fluids inwards. This generates a contractile fluid flow. Actin filaments also
tend to polymerize at the plus (barbed) end and depolymerize at the minus (pointed) end.
(c) Active particles can be modelled as force dipoles.

For liquid crystals, there are two main types of non-equilibrium term that need
to be added to represent activity. Consider, for example, the case of bacterial
suspensions. Here the flagella of the bacteria (which have helical shape) rotate
anticlockwise whereas the bacterial bodies (which have rod-like shape) rotate
clockwise, resulting in self-propulsion forwards along a head–tail axis that can be
described by a unit vector ν̂. This propulsion leads to a ‘self-advection’ in the
dynamical equations whereby the bacterial concentration field φ(r, t) is transported
along 〈ν̂〉meso at a rate set by the mean propulsion speed, relative to a surrounding
fluid that is stationary far away. Self-advection is important whenever 〈ν̂〉meso 6= 0,
that is, in polar phases. Secondly, the propulsive motion creates a circulating flow
pattern around each swimmer. The specific swimming mechanism of bacteria causes
fluid to be expelled both forwards and backwards along the fore–aft axis, and
drawn inwards radially towards this axis, creating an extensile flow pattern; see
figure 12(a). This action gives rise to an active stress contribution in the NSE in
addition to the standard elastic stresses derived for liquid crystals in § 10. The form
of the active stress, in both polar and nematic phases, is considered further below.

The cell cytoskeleton, on the other hand, is a network of various protein filaments,
cross-linked by motor and/or linking proteins. Such structures are found in the
interior of all eukaryotic cells and play an important role in cellular shape changes,
motility and division. One family of protein filaments, called actins, are relatively
thin and flexible. The actin filaments are cross-linked by motor proteins called
myosins (see figure 12b, which shows a pair of actin filaments linked by a single
myosin motor). The resulting ‘actomyosin network’ is an active system because the
motor proteins can pull the filaments together, causing them to contract lengthwise.
This creates a contractile fluid flow, which is opposite to the extensile fluid flow
found in the previous example of bacteria (compare figures 12a and 12b). Note
that, if the myosin motor instead pushes the filaments outwards, as it would do
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eventually if the motion in figure 12(b) were to continue, these will tend to buckle
so that the time-averaged effect is a net contractile stress. Actomyosin contraction
has been shown to play an important role in the swimming motility of some tumour
cells (Hawkins et al. 2011; Poincloux et al. 2011).

Each actin filament is also polar (in our usual, geometrical sense), schematically
comprising repeat units that are shaped like an arrowhead. It therefore has a ‘plus’
end and a ‘minus’ end (corresponding to the barbed end and the pointed end,
respectively). We can then define a unit vector ν̂ that is embedded in each filament
and points from minus to plus. On average, actin monomers tend to polymerize at
the plus end and depolymerize at the minus end, creating an illusion of swimming
in the direction of ν̂. More precisely, this process of actin polymerization and
depolymerization (called ‘treadmilling’) creates mass transport of the composition
field φ(r, t) by self-advection, just as swimming would do, so long as φ now refers
to polymerized material as opposed to free monomeric actin. Treadmilling plays an
important role in the crawling motility of eukaryotic cell types such as keratocyte
cells (Mogilner 2009). These cells have been observed to crawl on a glass slide in
the direction of polarization p= 〈ν̂〉meso (Yam et al. 2007). Another class of protein
filaments found in the cell cytoskeleton are microtubules. They are much stiffer
and longer filaments than those made of actin. Microtubules are cross-linked by
another class of motor proteins, called kinesins, which can create extensile as well
as contractile mean stresses, depending on physiological conditions. Models of the
microtubular network as an active liquid-crystalline medium have recently shed light
on the process of cell division (Brugues & Needleman 2014; Leoni et al. 2017).

In what follows we shall assemble the tools needed to describe the phenomenology
of active polar emulsion droplets. Physically, these represent a minimal model for
cellular motility (via the cytoskeleton) and also for emulsified bacterial swarms
(Marchetti et al. 2013; Aranson 2016). The hydrodynamic variables are (as usual)
the scalar composition field φ(r, t), the average orientation p(r, t) and the fluid
velocity v(r, t). As just discussed, the equations of motion will be similar to those
of passive liquid-crystalline emulsions (10.4)–(10.7), but supplemented by some
extra terms, chosen to break time-reversal symmetry.

12.1. Active stress in liquid crystals

As already described, the extensile swimming action of bacteria, or the contractile
action of actomyosin, gives rise to an extra mechanical stress term in the NSE. To
find its form, consider a rod-shaped particle to represent a single bacterium or a
pair of actin filaments cross-linked by a myosin motor, as shown in figure 12(c). A
coordinate ri defines the centre of mass of the particle, which has extent ` along the
fore–aft unit vector ν̂i. The activity creates a flow pattern that can be complicated
in the near field, but whose far field is generically described by the lowest-order
spherical harmonic compatible with global momentum conservation. The fact that
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there is no external force on the swimmer rules out a stokeslet contribution as would
arise from a point force acting upon it. The lowest-order term is therefore a stresslet,
which is equivalent to the action of a force dipole and can be represented as such.
We therefore embed equal and opposite point forces at each end of the particle.
The direction of the forces will determine whether the stress is contractile (forces
pointing inwards, as shown in figure 12c) or extensile (forces pointing outwards).
Following Hatwalne et al. (2004) (see also Saintillan & Shelley 2007), we write the
force density acting on the fluid from N such particles as

f (r) =
N∑

i=1

{
−Fν̂iδ

(
r− ri −

`

2
ν̂i

)
+ Fν̂iδ

(
r− ri +

`

2
ν̂i

)}

=

N∑
i=1

{
∇ · (F`ν̂iν̂iδ(r− ri))+O(`3

∇
3)
}
. (12.1)

Here the summand is the force density from one active particle. Note that ` is a
microscopic length scale whereas ∇ is the inverse of a mesoscopic or macroscopic
length scale. Thus we Taylor-expanded the Dirac delta functions in the first line
above in powers of `∇, assumed to be small. Even in a polar fluid the nematic
order parameter Q can be defined as usual: Q= 〈ν̂iν̂i〉meso− I/d. More precisely, this
can be expressed as

Q(r)=
1
c

〈
N∑

i=1

(ν̂iν̂i − I/d)δ(r− ri)

〉
meso

, (12.2)

where c(r)= 〈
∑

i δ(r− ri)〉meso is the number density of the particles and the angle
brackets indicate ensemble averaging. Subsituting (12.2) into (12.1), we obtain
(ignoring terms O(`3

∇
3))

f (r)=∇ · [F`c(φ)(Q+ I/d)]. (12.3)

Since the force density is related to the stress by f =∇ · σ , we identify the active
stress due to the force dipoles:

σ active
= ζ̄c(φ)(Q+ I/d), (12.4)

where we have introduced an activity parameter ζ̄ = F`, which is positive for
contractile, negative for extensile and zero in equilibrium. (Choosing ζ = −ζ̄

matches the notation to that of § 11.1 above.) Here c(φ) is the concentration of the
active particles and can be taken to obey c= c0(φ + 1)/2 so that c' c0 in the active
polar phase (φ = 1) and c ' 0 in the passive isotropic phase (φ = −1) for some
positive constant c0. Also, for incompressible fluids, the isotropic part of σ active can
be absorbed into the isotropic pressure P. Thus an equally good choice is

σ active
= ζ̄c(φ)Q. (12.5)
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The form (12.5) can be used directly in the equations for an active nematic, in
which the particles (or more generally their orientational statistics) are symmetric
with respect to inversion ν̂i→−ν̂i. Self-propulsion breaks this symmetry at single-
particle level, but nematic phases of self-propelled particles (known as movers) are
possible in principle so long as there are equal numbers swimming up and down
any chosen spatial axis. Alternatively, there are active particles (known as shakers)
that set up a local circulation of fluid but do not self-advect. These can have the full
nematic symmetry even at single-particle level. On the other hand, polar active liquid
crystals with non-zero p(r, t)= 〈ν̂〉meso break this head–tail symmetry by definition.
In this case, one either has to carry two separate order parameter fields, Q and p,
or re-express Q locally as a function of p so that only p(r, t) need be retained as a
dynamical field variable.

There is no general relation of this kind, as exemplified by the case where
molecular orientations are distributed uniformly over the unit sphere and normal
to it, but with arrows pointing outwards in the upper hemisphere and inwards in
the lower. This state has non-zero p but zero Q, because, if the arrow heads are
removed, the distribution of headless vectors is isotropic. Usually, though, both p
and Q are non-zero and one can assume p to point along the major axis of Q,
which is the director n̂. Thus p = ±pn̂ while Q = S(n̂n̂ − I/d) so that the active
stress can be written

σ active
= ζ̄ (p)c(φ)pp, (12.6)

where ζ̄ has been redefined to absorb a factor of S/p2. This expression only differs
from (12.4) or (12.5) by an isotropic term of the kind by which they already differ.
Note that this form of stress cannot be derived from any free energy functional for
our polar liquid crystal. In a quiescent system of non-zero uniform p, the existence
of such a free energy structure, from which p 6= 0 arises by spontaneous breaking of
rotational symmetry, demands that the deviatoric stress involves gradients of p, not
p itself, as in (10.14).

Absence of a free energy structure breaks time-reversal symmetry, just as it did
via the chemical potential contribution λ|∇φ|2 6= δF/δφ for active model B above.
Nonetheless, just as the remaining chemical potential there was of the passive form,
here we retain a free energy functional that generates (effectively passive) elastic
stresses as in (10.14), which we now denote as σ passive. The chosen form is

F[φ, p] =
∫ (
−

a
2
φ2
+

a
4
φ4
+
κ

2
|∇φ|2 +

1
2
γ (φ)|p|2

+
α

2
|p|4 +

K
2
|∇p|2 + β1∇φ · p

)
dr. (12.7)

Here γ (φ)=−αφ, giving the same as (9.2) for passive liquid-crystalline emulsions,
except that we have taken the single elastic constant approximation, and set β2 = 0,
which restricts us to cases of perpendicular anchoring. As in the passive case, this
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free energy will stabilize a droplet of active polar phase (φ' 1 and |p| ' 1) within a
background fluid of the passive isotropic phase (φ'−1 and |p|→ 0), or vice versa.

12.2. Self-advection and equations of motion

Following the above arguments, we arrive at the dynamical equations for an active
polar liquid-crystalline emulsion as follows (Kruse et al. 2005):

ρ [v̇ + (v · ∇)v]= η∇2v −∇P+∇ · σ passive
+∇ · σ active, (12.8)

∇ · v = 0, (12.9)

φ̇ +∇ · (φv + φwp)=M∇2µ, (12.10)

ṗ+ (v · ∇)p+ (wp · ∇)p=−Ω · p+ ξD · p− h/Γ. (12.11)

This equation set differs from that of polar liquid-crystalline emulsions in (10.4)–
(10.7), first via the active stress term in (12.8) as already discussed, and second by
the self-advection terms proportional to w in (12.10) and (12.11). These describe the
fact that the active material is propelled through space with average local velocity
〈wν̂〉meso = wp, where w is the swim speed of a particle (or, for actin, a suitably
defined treadmilling rate). This motion is additional to the mesoscopically defined
fluid velocity v. Accordingly we replace v→ v+wp in the advective terms of (10.4)
and (10.7) to get (12.10) and (12.11) above. Equations such as (12.8)–(12.11) are
often referred to as ‘active gel theory’. Here the word ‘gel’ is a slight misnomer,
since liquid crystals are not strictly gels. Introducing additional polymeric degrees
of freedom allows models of true active gels to be considered, but this area of study
remains in its infancy (e.g. Hemingway et al. 2015).

Turning to the case of active nematics, the dynamics for these is described
by order parameter fields (Q, φ, v) instead of (p, φ, v). Since p is zero, the
self-advective terms proportional to w are absent, but we still have an active stress
in the form (12.4). This is added to σ passive obeying (10.18) in the Navier–Stokes
equation for v with the equations of motion for φ and Q unchanged from the
passive case.

12.3. Spontaneous motion of active liquid-crystalline droplets

For simplicity, we first set both the self-advection w and the anchoring term β1 to
zero. In this case the equation of motion becomes symmetric with respect to a global
inversion p→−p. Figure 13 shows what happens when we increase the contractile
stress (ζ̄ > 0) from some small values less than the critical activity ζ̄c to a large
value greater than ζ̄c (Tjhung et al. 2012). For ζ̄ < ζ̄c, the active gel forms a uniform
alignment inside the droplet. The droplet also slightly contracts along p and pumps
the surrounding fluid, creating a left–right symmetric fluid flow of stresslet form (see
figure 13, left). Since the fluid flow is left–right symmetric, there is no reason for
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v

FIGURE 13. For small activity 0< ζ̄ < ζ̄c, an active polar droplet pumps the surrounding
fluid to create a quadrupolar (force-dipolar, or stresslet) fluid flow which is left–right
symmetric. At higher activities ζ̄ > ζ̄c, the polarization field p becomes unstable with
respect to splay and this breaks the left–right symmetry, resulting in translational motion
in the direction of splay (here, to the right). (See figure 7 for the definition of splay.)

this droplet to move. In other words, the droplet as a whole behaves like a large
‘shaker’ particle.

However, when we increase the contractile activity ζ̄ above some threshold ζ̄c,
the liquid-crystalline material inside the droplet becomes unstable with respect
to splay deformation. This breaks the left–right symmetry in the fluid flow and
causes the droplet to spontaneously swim either to the left or to the right (see
figure 13, right). These phenomena are unchanged by replacing p→−p globally:
in particular, the direction of motion corresponds to p∇ · p, which is invariant under
that replacement. For this reason, the sense of p is not shown in figure 13, and
indeed the same figure equally depicts the corresponding phenomena that arise
in contractile nematics; the direction of motion is then set by n̂∇ · n̂. Again, the
director field n̂ inside the droplet becomes unstable with respect to splay and the
droplet spontaneously swims for ζ̄ > ζ̄c. This mechanism for self-propulsion has been
proposed for swimming motility in some eukaryotic cells (Hawkins et al. 2011).
Here the source of the contractile stresses comes from the actomyosin contraction
in the cytoskeletal bulk of the cell. Note that extensile liquid crystals show instead
an instability towards bending at large activities, resulting in banana-shaped droplets
that also swim spontaneously (Tjhung et al. 2012).

In striking (and somewhat related) experimental studies, Sanchez et al. (2012)
looked at the dynamics of suspensions of microtubules and kinesin motors in a
droplet; under the conditions used, these form an extensile nematic phase. They
observed spontaneous motion of the droplet driven by the activity of the kinesin
motors, albeit with complex dynamics resulting in non-Brownian diffusion at
the droplet scale. A further complication in this system is that the active gel
phase-separates into a thin layer near the droplet surface; indeed, these experiments
have fuelled theoretical and numerical studies of active nematics in quasi-2D
geometries. Both experiments and simulations show complex flow patterns within
the 2D film, driven primarily by defect motion. Intriguingly, defects of topological
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charge −1/2 are advected by the flow field v in a quasi-passive manner, whereas
those of charge +1/2 have additionally an active ballistic motion, somewhat
resembling the self-propulsion of contractile emulsion droplets described in the
previous paragraph (Giomi et al. 2013). This stems from the fact that the +1/2
defect structure breaks spatial symmetry because it looks like an arrow, unlike the
−1/2 case which is three-fold symmetrical (see figure 8a). The ballistic separation
of defect pairs, which are created by active flow, counters the normal passive
evolution in which ±1/2 defects are attracted to one another and gradually annihilate
to give an increasingly ordered state; this competition allows the active system to
attain a stationary chaotic flow.

Active polar and nematic emulsion models have also been used to address the
biological process of cell division, known as mitosis. During mitosis, the filaments
of the cytoskeleton self-organize themselves to create a structure called the ‘mitotic
spindle’, which in liquid-crystalline language can be viewed as a pair of +1 aster
defects. Experimental measurements of the fluctuations in the mitotic spindle show
very good agreement with those predicted from the active gel theory outlined above
(Brugues & Needleman 2014). Once the two asters are created, subsequent division
of the droplet can be explained mainly by equilibrium free energy minimization.
Specifically, if the anchoring term β1 is much larger than the elastic constant K,
division into two equally sized droplets is energetically favourable. However, if
the elastic constant K is much larger than β1, the droplet only elongates, without
dividing (Leoni et al. 2017). This is one of several examples where a complex
and highly regulated biophysical process can be impersonated by models involving
minimal physical ingredients, prompting speculation that the biochemical machinery
of the cell is sometimes used to control and exploit the autonomous function of
generic active-matter building blocks, rather than to create cellular functionality
from scratch. We next address another example of this type.

12.4. Active emulsion droplets and the physics of cell crawling

Some eukaryotic cell types, such as keratocytes, are able to crawl on a solid
substrate such as a glass slide (Verkhovsky et al. 1999). The crawling motility is
driven mainly by the actin treadmilling process. The actin filaments are found mostly
at the leading edge of the crawling cell, where they have polarization p = 〈ν̂〉meso.
The filaments polymerize at their front (plus) ends and therefore self-advect in the
direction of p, creating forward motion of the entire cell. An important feature is
that the actin filaments communicate chemo-mechanically with the supporting wall
through structures called ‘focal adhesions’. These provide anchor points for the
filaments so that their treadmilling is converted into a tank-treading motion of the
cellular perimeter, driving the cell forwards. This communication takes place across
the plasma membrane, a lipid bilayer that encloses the cell.
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FIGURE 14. (a) Simple model of cell crawling: a 2D active polar droplet on a substrate.
When the actin treadmilling rate w is larger than some critical wc, a thin protrusion layer
is formed at the leading edge of the droplet. Black arrows indicate the orientation of actin
filaments p. In this 2D model, the polarization field is confined to a thin layer near the
wall and near the front of the droplet. (b) A similar model in three dimensions can also
capture the shape of the crawling cell, showing a fan-shaped lamellipodium, compared to
experimental observation (c). In this case there is polarization p throughout the droplet,
but treadmilling occurs only in a thin layer near the wall. (See Tjhung et al. (2015); (c)
is from Barnhart et al. (2011).)

To model this situation within active gel theory, we consider an active polar
droplet on a solid substrate, as shown in figure 14(a). For simplicity, the confining
plasma membrane is not modelled directly; instead, there is, as usual, an interfacial
tension between the interior of the droplet (or now cell) and the exterior. Focal
adhesions are accounted for via a no-slip or partial-slip boundary condition on
the fluid flow at the wall. We introduce a free energy functional similar to (12.7),
but assume either (i) that the polarization field p is confined to a thin layer of
thickness λ close to the wall (and away from the rear of the droplet), with fixed
treadmilling rate w, or (ii) that the polarization p extends throughout the droplet
but w is non-zero only within a thin layer of thickness λ near the wall. Such
assumptions may be implemented by having explicit spatial dependence of the
model parameters, for example w=w(0) exp[−z/λ], where z is a coordinate normal
to the wall. Assumption (i) is probably closer to the real behaviour, but assumption
(ii) is found to give very similar results in a 2D version of the model (Tjhung et al.
2015), and is much simpler to implement in three dimensions. The confinement of
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actin and/or self-advection to a thin layer arises in part because the actin network
not only adheres to the wall via focal adhesions, but also receives biochemical
signals from these that alter its concentration and treadmilling rate.

The equations of motion of the various fields are unchanged from (12.8)–(12.11),
although some models of cell crawling also neglect hydrodynamics by putting v= 0,
in the manner of model B (Ziebert & Aranson 2013). Since we retain the NSE,
we need to specify the boundary condition for v at the solid substrate. We choose
a partial-slip boundary condition whereby vz(z = 0) = 0 and (1 − s)v‖(z = 0) =
3ηs(∂v‖/∂z)|z=0. Here v‖ is the tangential velocity and s is the slip parameter (Wolff
et al. 2012); s→ 0 recovers the familiar no-slip boundary condition, whereas s→ 1
allows full slip. We assume a boundary condition on p at the substrate such that it
lies parallel to the wall: pz(z = 0) = 0 and (∂p

‖
∂z)|z=0 = 0, whereas the anchoring

term β1 favours perpendicular alignment at the fluid–fluid interface.
Typical results for both 2D and 3D models are shown in figure 14. In two

dimensions, for w less than some critical value wc, the droplet crawls forwards
in the direction of p. Interestingly, for larger values of w > wc, a thin layer of
protrusion is formed at the leading edge of the droplet, which is suggestive of the
lamellipodium, a fan-like protrusion that is frequently seen in real crawling cells
such as keratocytes (Verkhovsky et al. 1999); see figure 14(c). The onset of this
protrusion involves a dynamic transition, which becomes increasingly discontinuous
when we increase the slip parameter (Tjhung et al. 2015). This prediction might
be tested experimentally by measuring the distribution of the projected areas of
crawling cells (A∞ in figure 14a). In the case of a discontinuous transition, this
should show a bimodal distribution.

Physically, the slip parameter s in the model represents the inverse adhesion
strength between the filaments and the substrate: if focal adhesions are few, or weak,
the actin filaments are more likely to slip backwards instead of being propelled
forwards. For the same treadmilling rate w, the protrusion size (or projected area
A∞) and the crawling speed are both found to decrease with increasing s, that is,
with decreasing adhesion. This agrees qualitatively with experimental observations
of Barnhart et al. (2011).

In 3D simulations, it is found that the active gel model supports a wide range
of cell shapes. These include a ‘fried egg’ structure, with a radially symmetric
protrusion and no motion; a fully 3D representation of a crawling lamellipodium as
shown in figure 14(b); and a crawling finger-like protrusion, resembling a structure
known to biologists as a filopodium. Transitions between these shapes are controlled
in part by an interplay between the contractile activity, which promotes spontaneous
splay, and the anchoring term β1, which favours states with p normal to the
perimeter of the cell. From the active liquid crystal viewpoint, the lamellipodium
is the result of a contractility-induced spontaneous splay in the interior, which then
demands a fan-shaped morphology to maintain normal anchoring at the leading edge.
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This viewpoint is complementary to a more conventional biological one, pointing as
it does to mechanistic elements that may stem from the generic properties of active
fluids, rather than specific biochemical mechanisms within the cell.

Cellular motility and morphology remain active areas of research where active gel
theory and its extensions can provide a physical modelling framework that captures
many phenomenologies. In two recent examples, Camley et al. (2014) modelled a
pair of interacting cells that can spontaneously rotate inside a confined geometry,
while Lober et al. (2015) studied the collective dynamics of multiple motile cells
and predicted that collective motion is inhibited with increasing cell–cell adhesion.

13. Conclusion and outlook

In this paper we have presented a modelling framework for several types of
binary fluid system. This framework starts from mesoscopic order parameter fields
describing composition (a scalar order parameter), fluid velocity (a vector) and,
where also present, polar (vector) or nematic (tensor) orientational order. All order
parameters are controlled by evolution equations for their conservative (currents) and
non-conservative (relaxation) dynamics. Among these is the familiar Navier–Stokes
equation for the fluid velocity, augmented by additional stress terms arising from
the coupling between fluid momentum and the remaining order parameters. These
stresses can be purely interfacial (for simple fluids) or also elastic (for liquid
crystals) and can be derived from an underlying free energy expressed as a
functional of the relevant order parameters. In some situations, particularly involving
defects in liquid crystals, free energy considerations allow aspects of the dynamics to
be predicted without explicit consideration of the equations of motion. To capture
processes such as nucleation of droplets from a metastable phase, and also the
diffusion of disconnected fluid droplets through a quiescent fluid, one must add
noise terms to the evolution equations for the order parameters, including the fluid
velocity. In addition to interfacial and elastic stresses, we considered active stresses
that can also drive a fluid flow but (by definition) do not derive from a free energy.
These arise in systems whose fundamental constituents are maintained far from
equilibrium by a continuous conversion of fuel into work, such as suspensions of
self-propelled particles.

Our use of mesoscopic order parameters allows relatively sharp structural features,
such as the interface between fluids or the cores of topological defects in liquid
crystals, to be handled within the framework of continuous fields. This offers
advantages, both numerically and conceptually, over alternative descriptions in which
interfaces (say) are discontinuities in composition with singular interfacial stresses.
Our choices of free energy functional, typically involving polynomial local terms
plus square gradient interfacial contributions, were deliberately kept simple: each
of these was intended, not as an accurate description of a particular material, but
as a prototype of some general class of system. (For the same reason, we ignored
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the dependence of viscosity on concentration and similar kinetic complications.)
Those general classes include binary mixtures of two simple fluids (describing
conventional emulsions); binary mixtures of one simple fluid and a polar or nematic
liquid crystal (liquid-crystalline emulsions); and for both cases, recently studied
extensions to analogues in which one or more component is active.

To give examples of its use, we have tried to connect the general modelling
framework presented here to specific scientific questions. One classical area concerns
the issue of how to maintain stability of emulsions over long periods. In that context,
we used a generic model for simple binary fluids to explore the kinetics of phase
separation and to discuss the origins of the diffusive coarsening (the Ostwald
process) that, alongside coalescence, is typically responsible for instability. We
discussed remedies including the use of surfactants, trapped species and interfacial
particles. Readers may have noticed that large parts of the latter discussion departed
from our announced framework of continuous order parameter fields – particularly
when addressing interfacial colloids, surfactant micellization, bending elasticity
and lipid bilayers. This is an acknowledgement that in many real situations the
multi-scale character of these interfacial problems requires additional tools to be
brought to bear before the full physics can be identified.

This multi-scale limitation applies equally to liquid-crystalline emulsions, our
second main class of materials. In this field, the required detailed studies of
interfacial phenomena in the presence of surfactants, interfacial particles, etc.,
are mostly yet to be initiated. In contrast, the role of topological defects in these
systems is relatively well explored, at least for static situations. However, much
of the interfacial physics is controlled by anchoring, in which the interface sets a
preferred direction for orientational order parameters; this is already captured in
the chosen free energy functionals for this case. Surfactants will then influence the
strengths, but not the form, of the anchoring terms. Nonetheless, there are many
open questions involving interfacial microstructure, for example in ternary systems
comprising colloidal particles in a mixture of liquid-crystalline and simple fluids.
Here the structural analogues of Pickering emulsions and bijels could lead to a range
of functionalities that remain largely unexplored. In addition, the unusual interactions
present in liquid-crystalline emulsions have many dynamical consequences, such as
the kinetics of chain formation among isotropic droplets in a nematic matrix. The
exploration of these dynamics, enabled by the kind of description presented here
combined with recently introduced numerical methods, remains a promising area
for future work.

The active analogues of simple binary fluids include suspensions of spherical,
self-propelled colloids whose mesoscopic description – now at a scale larger than
the colloids themselves – requires a scalar concentration field only. Here activity
can lead to new types of ‘motility-induced’ phase separation. These can be partly
described at continuum level by equations of motion that differ from those studied
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historically (models B and H) by active contributions to the compositional current
and the stress. One experimental mystery is the observation that such active phase
separation is often incomplete, culminating in a state of dynamical clusters whose
average size no longer increases with time. Various system-specific microscopic
interpretations of this behaviour have been offered; continuing work on active
continuum models aims to clarify whether fully generic mechanisms also exist.

For rod-like swimmers and filamentary cytoskeletal materials, the corresponding
theory is that of active liquid crystals, which are commonly, but not always, polar
rather than nematic. (The opposite is true for the passive case.) Within our general
modelling framework, theories for binary systems involving these materials are again
obtained by selectively adding active terms, which break time-reversal symmetry
and do not therefore stem from any free energy, to the equations of motion of
an otherwise passive system. For active polar media, the main terms are an active
stress and self-advection of the polarization and concentration fields. The latter
encodes the mean effect of either self-propulsion along the polarization vector of
individual molecules, or, in the case of actin filaments, polymerization at one end
and depolymerization at the other. These self-advection contributions are absent in
active nematics, whose mean polarization is zero by definition.

When such active terms are included in theories of polar liquid-crystal emulsions,
some surprising phenomena emerge, which appear similar to observations of
contractility-induced swimming and cell division in biological cells. Allowing
also for spatial variations of the active terms within an emulsion droplet next to
a solid wall, these similarities extend to cell crawling, where the occurrence of a
fan-shaped protrusion at the front of the crawling cell emerges from an interplay
of a splay instability caused by activity and the anchoring of polarity at the droplet
surface. These are among the first findings of a new and developing field in which
continuum theories of active fluids form a platform for physics-inspired models
of biological function. The aim of these models is not to replace the biologists’
understanding of cellular motility and related functionality, which is largely based
on a relatively detailed analysis of underlying biochemical process. Rather, the
aim is to determine the extent to which these processes are necessary to sustain
even basic modes of functionality, and the extent to which they instead exert close
control over a set of pre-existing autonomous behaviours that are generically present
in active fluids, whether closely controlled or not.
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