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On a new surfactant-driven fingering
phenomenon in a Hele-Shaw cell

By R. KRECHETNIKOV AND G. M. HOMSY
University of California, Santa Barbara, CA 93106, USA

(Received 9 April 2003 and in revised form 12 January 2004)

According to the Saffman–Taylor criterion there is no instability when a more
viscous fluid is displacing a less viscous one in a Hele-Shaw cell. Yet an instability
was observed experimentally (Chan et al. 1997) in the same classical set-up but with
the inner walls of the cell coated with surfactant solution. Linear stability analysis is
applied to reveal the basic mechanism of this new instability. Asymptotic theory for
low capillary numbers allows us to predict the long-wave instability, along with the
dependence of the critical parameters on the material properties of the surfactant.

1. Introduction
One of the simplest and best studied instabilities occurring at the interface between

two liquid phases is the Saffman–Taylor problem (cf. Saffman & Taylor 1958; Chuoke,
van Meurs & van der Poel 1959) in which a more viscous fluid (µ1, ρ1) is displaced
by a less viscous one (µ2, ρ2) in a Hele-Shaw cell (cf. Hele-Shaw 1898). The net
effect of the instability is the formation of a viscous fingering pattern. The small
gap, 2d , between the plates forming the Hele-Shaw cell makes the motion effectively
two-dimensional and potential. Indeed, after averaging the velocity field of the full
Navier–Stokes equations over the direction perpendicular to the fluid velocity, we
arrive at the Darcy’s law approximation (cf. Darcy 1856), which results in a Laplace
equation for the pressure field p in each fluid. The simplicity of the approximate
mathematical formulation has allowed a straightforward linear stability analysis (cf.
Saffman & Taylor 1958; Chuoke et al. 1959), the basic conclusion of which is the
instability to all wavenumbers k except for the large ones damped by surface tension,
as demonstrated by the expression for the leading (most unstable) eigenvalue λ,

3

d2
(µ1 + µ2)λ= k

{
3V

d2
(µ1 − µ2) + g(ρ1 − ρ2)

}
− k3σ ,

and for the small ones cut off by the cell width. Here, the notation is standard, with
V the displacement speed, σ the surface tension, µ the viscosity and ρ the density. If
the surface tension is zero, the cut-off of the short wavelengths disappears. In the case
of identical or negligible viscosities, the phenomenon reduces to the Rayleigh–Taylor
instability (cf. Rayleigh 1900; Taylor 1950), while in the absence of the gravitational
field, g = 0, the effect of density differences disappears. When both effects are present
(viscosity and gravity) and oppose one another, there exists a critical speed Vc of the
threshold of instability.

The essential influence of the surface tension σ on the instability raises a natural
question as to the effect of variations of the surface tension. While this effect belongs
to the general class of problems with Marangoni phenomena, which include the
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Figure 1. Fingering instability in a Hele-Shaw cell with pre-existing wetting
layer of thickness h̄∞.

variations of σ due to temperature gradients, electromagnetic field and surface active
materials (surfactants), only the last subclass is studied in this paper. There are many
examples of physical systems in which surfactants have a substantial effect on the
fluid motion. One well-known effect refers back to experiments by Bond & Newton
(1928), who found that the drag force experienced by small moving bubbles and drops
is not in agreement with the Hadamard–Riabouchinsky formula for a clean interface
drop, but is closer to that of a solid sphere. Two basic theories have been proposed
to explain the phenomenon. Levich’s theory (Levich 1948) refers to the case when
the surfactant interfacial concentration remains almost constant and asymptotically
small variations of the contaminant exert a retarding effect on the motion of the drop
(bubble). On the other hand, the retarding mechanism in Savic’s theory (Savic 1953)
is due to surface convective formation of a stagnant cap, which is considered as a
rigid film with a no-slip boundary condition, while the rest of the surface is covered
by a mobile film with the usual dynamic condition. Levich’s theory has been widely
used in other problems and is a main tool of working with surface active substances,
but is limited to trace amounts and asymptotically small gradients, as in works by
Ratulowski & Chang (1900), Park (1992) and Waters & Grotberg (2002) to name a
few. In our problem, we encounter the situation of large shear stresses, so that a Levich
type analysis is not applicable. At the same time, we avoid using a discontinuous Savic
theory, in view of the difficulty of treating surfactant concentration gradients crucial
in our situation, but rather propose a mathematically consistent way of dealing with
the physics of the phenomena while retaining the standard dynamic condition at the
interface.

In the above example, like many others, surfactant-generated Marangoni effects
just modify the existing solution to leading order, but do not introduce any new
fundamental instabilities. The experiments conducted by Chan & Liang (1997),
however, have demonstrated that surface-active substances crucially influence the
Saffman–Taylor phenomenon and even reverse its stability characteristics. Figure 1
gives a diagram of the experiment: a Hele-Shaw cell is dipped into a surfactant
solution at speed V . They observed instabilities when more viscous and more dense
fluid displaces a less viscous and lighter one, under a specific condition – a pre-
existing wetting layer of the surfactant solution inside the Hele-Shaw cell must be
present, as shown in the insert in figure 1. Otherwise, the vertical motion of the cell
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Surfactant-driven instability 105

Figure 2. Fingering pattern of reversed Saffman–Taylor instability. The plates are moving into
a surfactant solution, which is the lower phase in this photograph. A quasi-steady nonlinear
wave pattern is observed.

produces no instability. Besides this crucial effect of the wetting layer, several other
important observations and conclusions by Chan & Liang (1997) were made: (a) the
formation of a long-wave steady-state pattern (above criticality, in a nonlinear regime,
we observe fingers pointing in the direction opposite to motion with a well-defined
characteristic length independent of system size); (b) the existence of a critical speed
of dipping, when the instability is first observed, with dependence of its magnitude on
the properties of the wetting layer; (c) the instability is observable below the critical
micelle concentration (CMC). (However, Chan & Liang (1997) state that for clear and
reproducable experiments they needed the solution to be above CMC); (d) an increase
in concentration leads to a slight lowering of the critical speed. Figure 2, produced
in our laboratory by J. Fernandez in 2003, illustrates some of the features of the
instability. A Hele-Shaw cell with gap width 300 µm is driven at a speed of 3.8 cm s−1

into a 4.0mM solution of SDS (CMC is about 8.2 mM). A regular pattern of steady
standing waves of wavelength � 1 cm is observed. In this case, the critical speed
is approximately 0.51 cm s−1 and the waves are long compared to the characteristic
gap dimension. In addition, experiments in our laboratory, suggested by the theory
developed below, of dipping the Hele-Shaw cell with pre-existing surfactant wetting
layer into the bulk not containing surfactants (J. Fernandez, personal communication
2003) have demonstrated that the only necessary condition for the instability is the
presence of surfactants in the wetting layer. A priori, it is clear that addition of
surface tension variation to the Saffman–Taylor set-up allows for a new driving force
(Marangoni stresses), which competes with the stabilizing viscosity stratification and
thus leads to an instability.

Theoretical studies of this problem had been initiated even before the above
mentioned experiments were performed. Guo, Hong & Kurtze (1992, 1995) was the
first work devoted to the effects of surfactants on displacement instabilities. They
predicted a finite-amplitude instability using a non-physical state equation for the
surface tension – a linear dependence on the surface curvature. However, it is clear
that σ must at a minimum be a function of the surface surfactant concentration.
However, the fact that experimental results have always indicated complete stability
of a flat interface when the less viscous fluid is displaced by the more viscous one,
led them to the speculation that, in practice, the threshold amplitude is quite large.
As pointed out by Chan (2000), who has carried out experiments to find those
instabilities, the predictions of Guo et al. (1992, 1995) are not observable. Also, Chan
(2000) has proposed a linear stability analysis for the problem by modifying the ansatz
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106 R. Krechetnikov and G. M. Homsy

of Guo et al. (1992, 1995) by replacing the linear local dependence of σ on curvature
by a dependence on the deformation of the interface. Again, the deficiency of this
model is a non-physical state equation for σ and the inability to explain the crucial
role of the pre-existing wetting layer in producing the instability.

The primary objective of our work is to formulate and analyse a model of the
instability that couples surfactant effects to the flow equations in a realistic and
physically plausible fashion. As correctly noted by Chan (2000), the phenomenon
belongs to the class of surfactant driven instabilities; however, the breadth of this class
necessitates a more precise description. We should also distinguish the cases where
the surfactant-driven Marangoni stresses are the only mechanism to produce fluid
motion, like a fingering instability in the spreading of surface active material on a
thin liquid film studied by Troian, Wu & Safran (1989a) and Matar & Troian (1997).
Experimentally, this is achieved by depositing a droplet of a surfactant solution on
the surface of a clean water film. Their analysis hinges on the only driving mechanism
being Marangoni stresses with neglect of (i) the effects of external forces, such as
gravity, (ii) effects of curvature generating capillary pressure, and (iii) surfactant
exchange between bulk and interface. Those three features distinguish the problem
considered in this paper in a fundamental way: it belongs to a different subclass
of surfactant-driven instabilities, where in addition to the Marangoni stresses there
is another mechanism – the flow advection due to the plate motion. Further, the
pre-existing wetting layer guarantees a transition region with non-negligible curvature
and thus capillary pressure; and the solubility of the surfactant provides the exchange
with bulk, a process that competes with the accumulation of the surfactants in a
cap region. Despite the fact that our problem has a non-trivial basic state entailing
complicated transient behavior of the disturbances, and contains more physical effects
as discussed above, it admits a very clear and concise theoretical and physical
interpretation.

The outline of the paper is as follows. In § 2, the mathematical set-up is introduced,
which corresponds to the dipping of the Hele-Shaw cell with a pre-existing surfactant
wetting layer into a bulk liquid in the direction parallel to the gravitational field as in
experiments. However, it must be noted that gravity affects only certain scalings. The
experiments by Chan & Liang (1997) and additional experiments by Fernandez in
2003 in our laboratory have suggested that the phenomenon is due to the accumulation
of the surfactant in the cap region, thus potentially leading to high gradients of
surfactant concentration. Therefore, the theory must be able not only to explain the
above observations (a)–(d), but also to account for surfactant concentration gradients
of the order of unity which ultimately allow the support of large shear stresses at
the interface. The last requirement has motivated us to extend in § 3 the standard
low-capillary number theoretical approach of surfactant-driven flows to this regime,
which involves new ideas on Marangoni boundary layers at the interface. In § 4.1,
this approach is exploited in the formulation of the linear stability equations, while
in § 4.2, the appropriate dispersion relation is analysed to predict instability as related
in § 4.3 to the experimental set-up of Chan (2000).

2. Problem formulation
In view of its rectangular geometry, the problem is naturally considered in a

Cartesian system of coordinates (refer to figure 3) designated either by tensorial xi ,
i = 1, 2, 3 or by the usual assignment x1 → x, x2 → y, x3 → z. The same concerns
velocity field notations: v1 → u, v2 → v, v3 → w. The first coordinate (velocity

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

04
00

90
61

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112004009061


Surfactant-driven instability 107

d

Interface

V

2π
k

x
z

y

g

W
et

ti
ng

 la
ye

r
(Γ

 0 
, C

0)

Liquid phase

Figure 3. Theoretical set-up.

component) is directed downwards, the second is perpendicular to the cell plates
and the third defines the direction in which the instability is sought. Since a liquid–
gas interface is considered, we neglect the gas phase dynamics and formulate the
equations for the liquid phase in the one-fluid approximation. The problem contains
the following independent physical parameters: surfactant bulk and interfacial
concentrations in the wetting layer C0, Γ0, two kinetic parameters (ka, kd rates
of adsorption and desorption accordingly), surface diffusion coefficient Ds , two
geometrical parameters (d half gap length, h∞ pre-existing film thickness), the plate
speed V , external field of gravity g, and three material properties of the liquid (ρ
density, σ surface tension, µ dynamic viscosity).

All spatial coordinates are non-dimensiona-lized with respect to the half gap length
d; the velocity field is scaled by the speed of the Hele-Shaw cell V ; the characteristic
time is defined accordingly as d/V . The surface and bulk surfactant concentrations
are scaled with respect to the appropriate values in the pre-existing wetting layer, Γ0

and C0. The surface tension is non-dimensionalized by its value in the pre-existing
wetting layer as well, σ0 = σ (Γ0), and the pressure is scaled with respect to its capillary
component σ0/d . All substance properties are non-dimensionalized by the values in
the liquid phase. According to the π-theorem the solution, eight dependent variables
(u, v, w, p, γ, C, h, σ ) – depends on four independent variables (t, x, y, z), and eight
non-dimensional parameters:

Ca =
µV

σ0

, Re=
ρV d

µ
, Bo =

d2ρg

σ0

, Pes =
dV

Ds

,

St =
ka

V
, K =

kaC0

kdΓ0

, κ =
dC0

Γ0

1

K
, h∞ =

h∞

d
.
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108 R. Krechetnikov and G. M. Homsy

Surface diffusion is actually much slower than the advection characteristic time;
indeed, for the gap used in the experiments of Chan & Liang (1997), d = 300 µm,
V ∼ 1 cm s−1 and estimating the surface diffusivity coefficient of the order of bulk
diffusivity 10−10 m−2 s−1 (this assumption is within the range measured by Agrawal
& Newman (1988), (0.01 ÷ 7)10−9 m−2 s−1, cf. also Shen et al. (2002)), the Péclet
number Pes associated with this process is considerably greater than unity. However,
we do not neglect this physical process so that we can provide a more complete
physical picture. Further, since we do not consider the bulk concentration dynamics,
the Stanton number St and κ appear only as a product, but are kept separate here
to highlight the Stanton number dependence. In our case the Reynolds number
Re ∼ O(1); however, while it is clear that we need to apply the full Navier–Stokes
equations in the whole region, we will be working only in a transition region, the
characteristic thickness of which, as will be shown, is much less than that of the
gap, so that the associated Re � 1. Since, in a low-Reynolds-number regime, we can
neglect the nonlinear convection terms, the continuity and momentum equations of
the liquid phase are given by

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0,

Re Ca
∂u

∂t
− Bo +

∂p

∂x
= Ca �u,

ReCa
∂v

∂t
+

∂p

∂y
= Ca �v,

Re Ca
∂w

∂t
+

∂p

∂z
= Ca �w.

The above equations are subject to the no-slip boundary conditions at the wall:

y = −1: u =1, v = 0;

and the solution profiles at infinities:

x = −∞ : u =1, v = 0;

x = +∞ : u =1 + 3
2
(1 − h∞)(y2 − 1), v =0.

The conditions at the interface:

F (t, x, y, z) = y ± h(t, x, z) = 0, (2.1)

read as (cf. Landau & Lifshitz 1987)

kinematic: n · v = − Ft

|∇F | ,

dynamic:

[
p + σ

(
1

r1

+
1

r2

)]
ni = Ca τiknk − (∇sσ · Is)i ,

where n is the unit normal vector pointing into air phase 1, Is = I−nn is an idemfactor
(surface-unit tensor), ∇s = ∇ − ∇n = Is∇ is a surface gradient operator, and τik = ∂iuk +
∂kui is the rate of strain tensor. The dynamics of interfacial surfactant concentration
is governed by

∂γ

∂t
+ ∇s ·

(
γ v − 1

Pes

∇sγ

)
+ γ (∇s · n)(v · n) = − 1

Pe
n∇C, (2.2)
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Surfactant-driven instability 109

where v = Isv is an interfacial velocity. The solution of (2.2) is subject to the condition
of boundedness and constant concentration Γ0 in the pre-existing wetting layer. The
last term in (2.2), which is the net flux of surfactant into the surface from the bulk
phase, is modelled here by Langmuir sorption kinetics:

− 1

Pe
n∇C = κSt[KC(1 − βγ ) − γ ] with β =

Γ0

Γm

, (2.3)

which is the principal mode of the surfactant transport (justified by the large value
of the Péclet number and the separation of the corresponding diffusion and sorption
time scales), so that surfactant interchange between surface and bulk is kinetically
controlled. In (2.3), the first term governs adsorption, and the last negative term
is responsible for desorption. In the static case and without surface diffusion, (2.2)
reduces to the usual non-equilibrium Langmuir–Hinshelwood kinetics. With this
approach, the bulk concentration C is kept fixed (in non-dimensional variables
C = 1), so that the corresponding equation for C drops out of the analysis. The state
equation σ = σ (Γ ), which is in general nonlinear, completes the problem formulation.
We assume regular behavior of σ such that σmax = σ (0), σmin = σ (Γm) and σγ � 0 as
follows from thermodynamic considerations (cf. Landau & Lifshitz 1980), where Γm

is a saturation concentration.
The subsequent analysis will be considered on the branch y = −h(t, x, z) of the

interface (2.1), that is for y � 0 with h � 0, as shown in figure 3. In view of the non-
flat geometry of the interface, we need some basic representations from the geometry
on surfaces. The normal and tangent vectors to the interface are given by

n =
∇F

|∇F | =
ihx + j + khz√

1 + h2
x + h2

z

, t1 =
i − jhx√

1 + h2
x + h2

z

, t2 =
− jhz + k√
1 + h2

x + h2
z

.

The surface gradient ∇s is found to have the form:

∇s = ∇ − n(n · ∇)= i

(
1 + h2

z

) ∂

∂x
− hx

∂

∂y
− hxhz

∂

∂z(
1 + h2

x + h2
z

) + j
−hx

∂

∂x
+

(
h2

x + h2
z

) ∂

∂y
− hz

∂

∂z(
1 + h2

x + h2
z

)
+ k

−hxhz

∂

∂x
− hz

∂

∂y
+

(
1 + h2

x

) ∂

∂z(
1 + h2

x + h2
z

) ,

and interfacial velocity:

v = i

(
1 + h2

z

)
u − hxv − hxhzw(

1 + h2
x + h2

z

) + j
−hxu +

(
h2

x + h2
z

)
v − hzw(

1 + h2
x + h2

z

)
+ k

−hxhzu − hzv +
(
1 + h2

x

)
w(

1 + h2
x + h2

z

) .

Therefore, the kinematic condition becomes

∂h

∂t
+ u

∂h

∂x
+ v + w

∂h

∂z
=0,
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while the dynamic condition can be decomposed into normal and tangential
components: [

p + σ

(
1

r1

+
1

r2

)]
n2

i = Ca τiknkni,

0= Ca τiknkt
(1,2)
i − (∇sσ · Is)i t (1,2)

i ,

or explicitly

p + σ

(
1

r1

+
1

r2

)
= 2 Ca

uxh
2
x + vy + wzh

2
z + (uy + vx)hx + (uz + wx)hxhz + (vz + wy)hz

1 + h2
x + h2

z

,

∂xσ − hx∂yσ = Ca
2(ux − vy)hx + (uy + vx)

(
1 − h2

x

)
+ s(uz + wx)hz − (vz +wy)hxhz√

1 + h2
x + h2

z

,

∂zσ − hz∂yσ = Ca
−2(vy − wz)hz − (uy + vx)hxhz + (uz + wx)hx + (vz + wy)

(
1 − h2

z

)√
1 + h2

x + h2
z

.

The mean curvature for a general h(t, x, z) is:

1
2

(
1

r1

+
1

r2

)
= − 1

2
∇s · n = −

hxx

(
1 + h2

z

)
− 2hxhzhxz + hzz

(
1 + h2

x

)
2
(
1 + h2

x + h2
z

)3/2
.

3. Basic state
Since the instability occurs in the z-direction, it is natural to consider translationally

invariant two-dimensional basic states comprising steady solutions of the governing
equations. Also, the analysis is confined to the mobile interface case; however, the
generalization to the case when a rigid film appears in a cap region is straightforward.
Even though for stability analysis we need just the asymptotics of the basic state
solution for −x � 1, we give a complete discussion of the base state in order to
introduce the important elements of the regime in which linear disturbances are
evolved. To distinguish the solution for the basic state, we use capitals for dependent
variables.

First of all, we must introduce the appropriate scaling for the problem and the
reference point for that is the thickness of the pre-existing film. In general, this
thickness will depend on the method by which it is created; here, we restrict ourselves
to the case of dip coating since it was used in all experimental studies of the
phenomena (cf. Chan & Liang 1997; Fernandez). In the case of low capillary number
and negligible effect of inertia, the deposited film thickness is given by

h∞ ∼ d
Ca2/3

d

(Bo + const)1/2
≡ d Ca2/3

∗ , Cad =
µVd

σ
, (3.1)

where the quantity Ca∗ is introduced for convenience. In the absence of gravity or
when the film is deposited on a horizontal surface by a moving semi-infinite bubble
(cf. Bretherton 1961) or a plug (cf. Waters & Grotberg 2002) in a channel, the
thickness is expressed as

h∞ ∼ d Ca2/3
d .
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Wetting layer
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  Cap
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y

Figure 4. Division into regions.

On the other hand, if gravity dominates, the appropriate scale is the capillary length,
(σ/ρg)1/2, and we have

h∞ ∼
(

σ

ρg

)1/2

Ca2/3
d ,

(as originally obtained by Landau & Levich 1942) or rewritten in our non-dimensional
variables:

h∞ ∼ d
Ca2/3

d

Bo1/2
. (3.2)

Here, the subscript d refers to the parameters of dip coating, since, in general, the
speed Vd used to create the wetting film and that of dipping of the plate need not be
the same; however, Ca∗ ∼ Ca is assumed throughout our analysis. As follows from the
above scaling, the analysis here is given for a vertical case at finite Bond number (as
in Chan & Liang 1997), but clearly, gravity does not play any substantial role in the
instability mechanism and reveals itself only in the scaling. While we use the scaling
(3.2) in view of the particular experimental set-up, we can create the pre-existing layer
by other means, for example by drawing from a Plateau border, without any effect
on the analysis below.

Since the capillary number in our case is Ca ∼ 10−3 and Bo ∼ 10−2 (for d = 300 µm),
we are justified in developing a low-capillary-number theory in the thin-film
approximation. Under condition g(h

2

∞/νV ) � 1 (gravity effects play a negligible role)
the basic state in a thin-film region (far from the meniscus, cf. figure 4) corresponds
to a constant pressure, P =0, and trivial velocity profile:

u =1, v =0; C = 1, Γ = 1. (3.3)

The problem of dip coating in the presence of an insoluble surfactant of dilute
concentrations was considered by Park (1991). The solution in the constant-thickness-
film region is matched with one in a cap region (cf. figure 4) with the help of a
transition region as in Bretherton (1961) and Park & Homsy (1984). The order of the
thickness of a pre-existing thin film dictates the following scaling for the transverse
coordinate and interface shape:

y = −1 + Ca2/3
∗ ŷ, H = 1 − Ca2/3

∗ Ĥ ,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

04
00

90
61

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112004009061


112 R. Krechetnikov and G. M. Homsy

where Ca∗ is defined in (3.1), so that ŷ and Ĥ are new variables of the order of unity.
Also, the boundary conditions (3.3) dictate

P = P̂ , Ψ = Ca2/3
∗ Ψ̂ .

The unknown scaling for the x-coordinate is determined from the fact that the
pressure gradient, Px , must participate in the dynamics (otherwise matching with the
solution in a cap region is not possible) and the term Ψyyy must also be retained to
satisfy the boundary conditions. Therefore,

x = −l +
Ca4/3

∗
Ca

x̂,

which corresponds to a thin-layer approximation, and the location of the origin l is
determined in the course of matching. The use of these scalings results in the specific
form of momentum equations{

∂P̂

∂x̂
− Ψ̂ ŷ ŷ ŷ

}
=

Ca2

Ca4/3
∗

Ψ̂ x̂ x̂ ŷ + Bo
Ca4/3

∗
Ca

, (3.4)

∂P̂

∂ŷ
= − Ca2

Ca4/3
∗

{Ca2Ψ̂ x̂ x̂ x̂ + Ψ̂ x̂ ŷ ŷ}.

The kinematic condition remains unchanged

Ψ̂ x̂ + Ĥ x̂Ψ̂ ŷ = 0,

while the dynamic conditions become, to leading order,

P̂ −
(

Ca

Ca∗

)2

ΣĤ x̂ x̂ = −2
Ca2

Ca4/3
∗

{Ψ̂ x̂ ŷ + Ĥ x̂Ψ̂ ŷ ŷ}, (3.5a)

Σx̂ ≡ dΣ

dΓ
(Γ )

dΓ

dx̂
= Ca2/3

∗ Ψ̂ ŷ ŷ . (3.5b)

The tangential condition indicates a strong nonlinear coupling with the surfactant
dynamics:(

∂x̂ + Hx̂∂ŷ

)
(Γ v) =

Ca

Ca4/3
∗

1

Pes

∂2
x̂ Γ +

Ca4/3
∗

Ca
κSt [KC(1 − βΓ ) − Γ ] ,

where the variation in surfactant concentration resulting from the local changes
in interfacial area is neglected as being higher order in Ca2/3

∗ (Ca/Ca∗)
2. From the

condition (3.5b) it follows that there are three possible consistent approximations,
valid as Ca → 0.

(i) The first is a Levich-type solution

Γ =Γ ∗ + Ca2/3
∗ Γ̂ , Γ ∗ = const=⇒ Σx̂ = O

(
Ca2/3

∗
)
,

which allows equilibration of the friction (shear stress) and Marangoni stress at the
interface for small variations, O(Ca2/3

∗ ), of the surfactant concentration. In this limit,
the Marangoni effect is moderate. We will call this scaling the regular perturbation
case, which, as discussed in § 1, is widely used in the literature and corresponds to
small gradients of surfactant concentration (cf. Ratulowski & Chang 1900; Park 1992;
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Waters & Grotberg 2002). In this simple case, we immediately arrive at:

P̂ −
(

Ca

Ca∗

)2

Σ(Γ ∗)Ĥ x̂ x̂ = O

(
Ca2/3

∗

(
Ca

Ca∗

)2 )
, (3.6a)

dΣ

dΓ
(Γ ∗)

dΓ̂

dx̂
= Ψ̂ ŷ ŷ , (3.6b)

so that the dynamics of the flow field and interfacial surfactant concentration are
coupled only through the tangential stress balance.

(ii) A second possibility is Savic’s approach which allows us to accommodate
significant variation of the surfactant concentration (cf. Savic 1953) and leads to a
discontinuous solution Σx̂ since (3.5b) is substituted by a no-slip boundary condition
(see Davis & Acrivos 1966; Sadhal & Johnson 1983).

(iii) If the surfactant concentration changes in the main order over the scale of the
transition region Σx̂ ∼ O(1), then the Marangoni effect is a dominating driving force.

Indeed, Σx̂ ∼ O(1) implies Ψ̂ ŷ ŷ ∼ O(Ca−2/3
∗ ) as demonstrated by the solution of (3.4)

for the streamfunction

Ψ̂ =
P̂ x̂

6
ŷ2(ŷ − 3Ĥ ) +

ŷ2

2

Σx̂

Ca2/3
∗

+ ŷ, (3.7)

since the x-component of the surface velocity

ûs = Ψ̂ ŷ |ŷ = Ĥ =
1

Ca2/3
∗

ũ(1)
s + ũ(2)

s =
1

Ca2/3
∗

{
Σx̂Ĥ + Ca2/3

∗

(
1 − P̂ x̂

Ĥ 2

2

)}
, (3.8)

where ũ(1,2)
s ∼ O(1). The singular character of this case is apparent from the presence

of an inner scale

ŷ = Ĥ − Ca1/3
∗ ỹ,

governing the dynamics near the interface and which guarantees the equilibration of
the shear and significant Marangoni stresses through the leading-order equations,

P̂ +

(
Ca

Ca∗

)2

ΣĤ x̂ x̂ = −2

(
Ca

Ca∗

)2

Ĥ x̂Ψ̂ ỹỹ + O

(
Ca2

Ca5/3
∗

)
,

dΣ

dΓ
(Γ )

dΓ

dx̂
= Ψ̂ ỹỹ + O(Ca∗),

Ψ̂ ỹỹỹ = O(Ca).

The flow in this sublayer is driven by the Marangoni stresses only and the capillary
pressure is determined not only by curvature, but also by the normal viscous stresses.
The dilute scaling, Γ � O(Ca2/3

∗ ), apparently recovers the well-studied case (3.6). In
view of the analogy of the above problem to boundary-layer theory, we name the
above limit the singular perturbation case. The presence of an inner scale ỹ near the

interface (see figure 5) implies a very high shear rate (|Ψ̂ ŷ ŷ | � 1), but does not mean
the existence of separate boundary-layer and outer solutions. Actually, the inner
scale in a boundary condition affects the complete solution as we can see from the
tangential stress at the other boundary (at the wall):

Ψ̂ ŷ ŷ |ŷ = 0 = −Px̂Ĥ +
Σx̂

Ca2/3
∗

.
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Figure 5. Boundary-layer structure in the transition region.

The presence of strong Marangoni stresses leads to motions in opposite directions near
the interface and the wall, respectively. The pressure gradient adjusts itself through
the normal and kinematic conditions so that the mass flux is conserved. The situation
is analogous to the boundary-layer theory in aerodynamics, when the boundary layer
of thickness O(Re−1/2) is responsible for satisfying the no-slip condition at the wall
versus the impermeability condition in the inviscid case, Re = ∞. In our case, the
boundary layer of thickness O(Ca1/3

∗ ) allows us to satisfy a tangential component
of the dynamic condition at the interface versus the no-stress condition in a zero-
capillary-number case. As we can see, both limits – Re → ∞ and Ca → 0 – exhibit a
singular behavior.

While the base state may be determined numerically from system (A 2)–(A 3) given
in the Appendix, we find that since the instability is generated in the wetting layer,
we do not need the complete solution, but only its asymptotics as x̂ → −∞. It is clear
that the parallel approximation for the basic state is justified in this limit, since, in this
regime, all basic state variables change on a slow scale. Indeed, the surface surfactant
concentration should change from its maximum in the cap region Γmax � Γsat at x = 0
to its value in the wetting layer, Γ0 as x̂ → −∞, as indicated by boundary conditions
for (A 3). The steady-state solution of (A 3) for x̂ → −∞ is of the trivial form Γ = 1.

Summarizing, we stress that the study of the basic state in the transition region has
led us to the appropriate theoretical framework corresponding to significant surface
tension variation. The system (A 2)–(A 3) defines the solution for the basic state which
matches with the one in the wetting-layer region and with another in the cap region.
While, in general, its solution is complicated, the primary features can be seen from
its general structure: Marangoni effects retard the interface motion so that surfactant
is accumulated and increases in concentration. Intuitively, it is also clear that with
the increase of speed of dipping, we should observe the increase of Γ for each fixed
x̂, until saturation is achieved owing to the effect of accumulation.

4. Evolution of infinitesimal disturbances
In this section, we demonstrate that the observed instability is an inherent property

of a pre-existing wetting layer, which exhibits itself in this particular problem owing to
accumulation of the surfactant in a cap region (cf. figure 4). Therefore, the peripheral
effects, like non-parallelism, or x̂-dependence, of the basic state can change the results
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only quantitatively: the qualitative physics of the phenomenon can be understood
from the asymptotic analysis of the parallel state.

4.1. Linear disturbance equations

The evolution of the complete field (basic state + disturbances) is considered on the
same scales as the basic state:

t =
Ca4/3

∗
Ca

t̂ , x = −l +
Ca4/3

∗
Ca

x̂, z =
Ca4/3

∗
Ca

ẑ,

y = −1 + Ca2/3
∗ ŷ, h= 1 − Ca2/3

∗ ĥ,

p = p̂, ψ = Ca2/3
∗ ψ̂, ϕ =Ca2/3

∗ ϕ̂,

where the three-dimensional velocity field is represented by two streamfunctions
u = ψy , v = −ψx − ϕz, w = ϕy and the scales for z and ϕ are chosen from the principle
of minimal degeneracy.

Because the basic state is known only with some degree of accuracy (in an
asymptotic sense), the imposed disturbances are considered to have amplitudes much
larger (again in asymptotic sense) than the truncated terms in the basic state solution
expansion, but much less than unity (after appropriate rescaling). The complete flow
field is governed by

ûx̂ + v̂ŷ + ŵẑ = 0,

Re Ca
∂û

∂t̂
+

∂p̂

∂x̂
− Bo

Ca4/3
∗

Ca
=

Ca2

Ca4/3
∗

(ûx̂ x̂ + ûẑẑ) + ûŷ ŷ ,

Re
Ca3

Ca4/3
∗

∂v̂

∂t̂
+

∂p̂

∂ŷ
=

Ca4

Ca4/3
∗

(v̂x̂ x̂ + v̂ẑẑ) +
Ca2

Ca4/3
∗

v̂ŷ ŷ ,

ReCa
∂ŵ

∂t̂
+

∂p̂

∂ẑ
=

Ca2

Ca4/3
∗

(ŵx̂ x̂ + ŵẑẑ) + ŵŷ ŷ ,

and the kinematic condition can be written as

∂ĥ

∂t̂
+ û

∂ĥ

∂x̂
− v̂ + ŵ

∂ĥ

∂ẑ
= 0.

Further, we neglect the short-time-scale dynamics associated with the evolution of the
velocity field. This is justified if we are interested in the leading-order eigenvalue only,
but otherwise, for the construction of a complete spectrum, the accelerations cannot
be neglected. The dynamic condition, after taking into account the leading-order
terms, is of the form

p̂ +

(
Ca

Ca∗

)2

σ (ĥx̂ x̂ + ĥẑẑ) = 2
Ca2

Ca4/3
∗

[v̂ŷ − ûŷ ĥx̂ − ŵŷ ĥẑ],

∂x̂σ =Ca2/3
∗ ûŷ ,

∂zσ = Ca2/3
∗ ŵŷ,

 (4.1)

The dynamical system is closed by the equation for the evolution of interfacial
surfactant concentration:

∂t̂ γ̂ + ∂x̂ (γ̂ us) + ∂ẑ (γ̂ ws) =
Ca

Ca4/3
∗

1

Pes

(
∂2

x̂ + ∂2
ẑ

)
γ̂ +

Ca4/3
∗

Ca
κSt [KC(1 − βγ̂ ) − γ̂ ],
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and C = 1 is assumed in the bulk phase. The above system, after decomposition into
parallel basic state and disturbance fields,

p̂ = P̂ + p̂′, ψ̂ = Ψ̂ + ψ̂ ′, ϕ̂ = Φ̂(≡ 0) + ϕ̂′, γ̂ = Γ̂ + γ̂ ′, ĥ = Ĥ + ĥ′,

and linearization around the base state interface H , yields the leading-rder momentum
equations for the disturbance in a quasi-steady approximation:

∂p̂′

∂x̂
= ψ̂ ′

ŷŷŷ ,

∂p̂′

∂ŷ
= 0,

∂p̂′

∂ẑ
= ϕ̂′

ŷŷŷ ,

ŷ = 0 : ψ̂ ′
ŷ = ψ̂ ′ = ϕ̂′

ŷ = ϕ̂′ = 0,


(4.2)

where the other boundary conditions come from the tangential components of the
dynamic condition at the interface,

p̂′ +

(
Ca

Ca∗

)2

Σ�ĥ′ = −2

(
Ca

Ca∗

)2

Ca2/3
∗ [ψ̂ ′

x̂ŷ + ϕ̂′
ŷẑ],

ΣΓ γ̂ ′
x̂ =Ca2/3

∗ ψ̂ ′
ŷ ŷ ,

ΣΓ γ̂ ′
ẑ = Ca2/3

∗ ϕ̂′
ŷẑ,

 (4.3)

and from the linearized kinematic condition

ĥ′
t̂
+ Ψ̂ ŷ ĥ

′
x̂ + ψ̂ ′

x̂ + ϕ̂′
ẑ = 0.

The governing system is closed by the equation for the evolution of interfacial
surfactant concentration

γ̂ ′
t̂
+ Γ̂ (ψ̂ ′

x̂ŷ + ϕ̂′
ŷẑ) + Ψ̂ ŷ γ̂

′
x̂ =

Ca

Ca4/3
∗

1

Pes

�γ̂ ′ − Ca4/3
∗

Ca
κSt [Kβ + 1] γ̂ ′,

with the requirement of boundedness of γ̂ ′. After elimination of the velocity field,
this system is simplified to

p̂′ = −
(

Ca

Ca∗

)2

[Σ�ĥ′ + 2HΣΓ �γ̂ ′],

γ̂ ′
t̂
+ γ̂ ′

x̂ = Γ̂

(
H 2

2
�p̂′ − HΣΓ

Ca2/3
∗

�γ̂ ′
)

+
Ca

Ca4/3
∗

1

Pes

�γ̂ ′ − Ca4/3
∗

Ca
κSt[Kβ + 1]γ̂ ′,

ĥ′
t̂
+ ĥ′

x̂ =
H 3

3
�p̂′ − H 2

2

ΣΓ

Ca2/3
∗

�γ̂ ′,


(4.4)

which, in the clean interface case, reduces to the one equation given by Troian
et al. (1989b) in the parallel basic state limit. It is instructive to trace the physical
origin/interpretation of the terms appearing in the system (4.4) as given in table 1.
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ĥ′
t̂
+ ĥ′

x̂ Advection of the interface disturbance by the basic state flow field

γ̂ ′
t̂
+ γ̂ ′

x̂ Advection of the surfactant concentration disturbance by the basic state
flow field

H 3

3
�p̂′ Advection of momentum due to the v (y-)component of the disturbance

velocity field

−H 2

2

ΣΓ

Ca2/3
∗

�γ̂ ′ Advection of momentum due to the Marangoni stresses contribution
into the v (y-)component of the disturbance velocity field

−Γ̂
HΣΓ

Ca2/3
∗

�γ̂ ′ Advection of surfactant by the Marangoni-induced disturbance flow

Ca

Ca4/3
∗

1

Pes

�γ̂ ′ Surface diffusion of surfactant

−Ca4/3
∗

Ca
κSt [Kβ + 1] γ̂ ′ Sorption–desorption kinetics of the disturbed surfactant concentration

Γ̂
H 2

2
�p̂′ Advection of surfactant by pressure-driven perturbation flow

−
(

Ca

Ca∗

)2

Σ�ĥ′ Capillary perturbation pressure due to surface deflection

−2

(
Ca

Ca∗

)2

HΣΓ �γ̂ ′ Normal stress due to surfactant disturbances

Table 1. Physical interpretation of various terms in (4.4).

Further simplification of (4.4) amounts to elimination of the pressure field, which
produces the coupled system

γ̂ ′
t̂
+ γ̂ ′

x̂ = −
[
Γ̂

HΣΓ

Ca2/3
∗

− Ca

Ca4/3
∗

1

Pes

]
�γ̂ ′ − Ca4/3

∗
Ca

κSt[Kβ + 1]γ̂ ′

− H 2

2

(
Ca

Ca∗

)2

Γ {Σ�2ĥ′ + 2HΣΓ �2γ̂ ′},

ĥ′
t̂
+ ĥ′

x̂ = −H 3

3

(
Ca

Ca∗

)2

{Σ�2ĥ′ + 2HΣΓ �2γ̂ ′} − H 2

2

ΣΓ

Ca2/3
∗

�γ̂ ′.


(4.5)

The terms involving the hyperdiffusion operator �2 are interpreted physically as the
capillary pressure gradients contributed by the curvature and Marangoni effects,

while the regular diffusion operator � in the equation for ĥ′ comes from the
normal component of the disturbance velocity field driven by the Marangoni stresses.
The analogous terms in the equation for γ̂ ′ are generated by the advection of the
disturbance field driven by Marangoni stresses and by surface diffusion, respectively.

4.2. Dispersion relation analysis

System (4.5) is to be analysed to determine its dispersion relation for growth or decay
of spanwise perturbations. Applying the transformations

γ̂ ′ → Γ γ̃ , ĥ′ → Hh̃; (x̂, ẑ) → ξ (x, z), t̂ → τ t,

where

τ =
Ca

Ca4/3
∗

1

κSt[Kβ + 1]
, ξ 4 = τ

H 3

3

(
Ca

Ca∗

)2

Σ(Γ ),
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yields the system for linear evolution of disturbances in the canonical form:

γ̃ ′
t̃
+ aγ̃ ′

x̃ + γ̃ − (ζm + η) �γ̃ = − 3
2
[�2h̃ − m�2γ̃ ], (4.6a)

h̃′
t̃
+ ah̃′

x̃ = −[�2h̃ − m�2γ̃ ] +
ζm

2
�γ̃ . (4.6b)

Here, we introduce:

m = −2
Γ ΣΓ

Σ
, ζ =

1

2

1

Ca1/3
∗

(
3Σ

Hκ St Ca (Kβ + 1)

)1/2

, η =
τ

ξ 2

Ca

Ca4/3
∗

1

Pes

, a =
τ

ξ
.

The parameter m is taken as the primary bifurcation parameter containing the
physics of the surfactant material behavior, while ζ and η reflect the effects of
sorption–desorption kinetics and surface-diffusion, respectively.

We can see from (4.6a) that the effects of surface tension (capillary pressure), surface
diffusion and bulk-interface interchange (St > 0) are stabilizing, while the effect of the
Marangoni stresses (recall that Σγ < 0) is destabilizing as it comes from the normal
dynamical condition and the Marangoni effect originating from the advection of
surfactant by the Marangoni-induced disturbance flow is stabilizing. As we will see
from the normal mode analysis, the destabilizing Marangoni effect overcomes the
stabilizing role of the other contributors and produces the complicated instability
phenomenon. Assuming the normal mode of the disturbance to be of the form(

γ̃

h̃

)
= eλ̃t+ikz̃+εx̃

(
γ̄

h̄

)
, Re(ε) > 0,

where ε stands for the rate of the disturbance decay as x̃ → −∞ (which is, in general,
determined from matching to the solution for the disturbance in the cap region),
we find that the dispersion relation is a function of the scaled wavenumber k, the
material behavior m, sorption–desorption kinetics ζ and the surface diffusion η:

λ2 + bλ + c = 0, (4.7)

with

b = 2aε + 1 +
(
1 − 3

2
m

)
δ2 + (ζm + η)δ,

c = (aε + δ2)
(
1 + aε + δ(ζm + η) − 3

2
mδ2

)
− 3

2
mδ2

(
1
2
ζ δ − δ2

)
,

where δ = k2 − ε2. As a limiting case, eigenvalue analysis for the clean interface case,
Σγ = 0, yields, to the leading order (assuming small ε and η),

λ= −k2 � 0,

while in the presence of surfactants, the largest growth rate corresponds to zero
wavenumber (while in reality there is a cut-off due to finite cell width)

λ= −2(1 − mε2ζ ) + O(ε),

so that the critical bifurcation parameter corresponds to

m ∼ 1

ζε2
. (4.8)

This instability can be understood as the effect of thickening of the transition region
owing to Marangoni stresses (cf. figure 5) – the growth of the v component of the
disturbance velocity. In general, the eigenvalues are found from the dispersion relation
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2
3
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Stable
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 (           )ζ + ε2  
3
- 2 1/2

Figure 6. Locus of Re(λ1) = 0. The bold curves correspond to the marginal stability
conditions. The flow is unstable above and stable below these curves.

(4.7) with the appropriate eigenvectors(
h̃

γ̃

)
1,2

=

 m − λ1,2 + aε + 1 + (ζm + η)δ
3
2
δ2

1

 .

Different branches of the marginal stability curve are defined by

b =0 (c > 0): m =
2aε + 1 + δ2 + ηδ

3
2
δ2 − ζ δ

,

so that, as k2 → +∞: m → 2/3, and by

c = 0 (b > 0): m =
(aε + δ2)(1 + aε + ηδ)
3
2
aεδ2 − ζ δ

(
aε + 1

4
δ2

) ,

which gives the critical value (4.8) at zero wavenumber for small η and ε and large ζ

(since ζ ∼ Ca−1/2Ca−1/3
∗ ). It should be noticed that the following dependence for the

bifurcation parameter

m ∼ H 1/2,

has non-trivial physical consequences, as will be discussed in a forthcoming publica-
tion. Thus, the global bifurcation point is given by(

kc =0, mc =
1

ζε2

)
.

The locus of Re(λ1) = 0 for the most unstable eigenvalue λ1 in the case ζ � 1, ε � 1,
η � 1 is depicted in figure 6 as a bold curve and essentially means that for any m > mc

there exist wavenumbers k near the origin such that the instability takes place.
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V Γ0 V Γ0

C0

Γ

Figure 7. Surfactant transport in a cap region.

The functional form of the global bifurcation parameter indicates that Γc ∼ St1/2

as St → 0 (when the surfactant becomes insoluble). However, absolute insolubility
represents a singular limit – in this case the steady-state solution is a constant
concentration in the cap and transition region, and a shock propagating with the
dipping speed along the interface. In the case St =0, the surface is uniformly covered
by surfactant and no instability is expected since the inevitable monolayer collapse
cannot produce significant macroscopic gradients in surface tension.

It should be mentioned that the instability found here is essentially a three-
dimensional effect: the energy of the basic state/disturbance in the x-dimension is
transferred to the z-dimension, in which the instability is observed. This differentiates
this type of instability from the classical work by Sternling & Scriven (1959), where
only two-dimensional disturbances were treated.

4.3. Connection to experiments

As we can see from (4.8), there is no dependence of the stability parameter on the
speed of dipping since Ca St is independent of V : the above analysis corresponds to
the intrinsic instability of the interface, which is independent of its motion. Of course,
a true free film does not exhibit instability in view of a homogeneous distribution of
surfactant in a state of equilibrium. Thus, the instability appears only under conditions
favourable to the creation of significant gradients in surfactant concentration. The
problem considered here is one of those cases: the effect of the accumulation of
surfactant in a cap region owing to the motion of the plates is the mechanism by
which the required concentration gradients are produced at the interface.

In order to connect the intrinsic instability of a thin film with the effect of
accumulation, we must use the appropriate expression for the surfactant concentration
Γ . From a simple balance of surfactant transport in a cap region (cf. figure 7),
we have

−2Γ0V = l[kaC0(1 − βΓ ) − kdΓ0Γ ],

with l being the length of the meniscus, l � πd , the effect of accumulation results in

Γ =
1 + 2

d

l

1

Stκ ′

β

(
1 +

1

βK

) with κ ′ =
dC0

Γ0

.
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Vc

C  /C max0C  /C

σ

max0

(– σ )' Γ /Γmax0

(a) (b)

Figure 8. General features of RST instability. (a) Generic material behaviour of surfactants.
(b) Qualitative dependence of critical speed on surface concentration, as inferred from (a) and
equation (4.9).

This linear approximation does not account for either nonlinear or saturation
phenomena, but nevertheless is valid for a wide range of speeds since V � d kd

in most cases. Using this fact, (4.8) can be simplified to

vc ≡ Vc

lkd

=
1 + Kmχ

2

(
A

σ 1/2

(−σ ′)

Ĥ 1/2

χ (1 + Kmχ)1/2
− 1

)
, A=

(
Ca Stκ

3

)1/2
Ca1/3

∗
ε2

,

(4.9)

where Km = kaCm/kdΓm, σ is considered as a function of C0/Cm ≡ χ and σ ′ is a
derivative with respect to the argument. Further, using typical material behavior of
pure surfactants σ (χ), as shown in figure 8(a), the critical speed ratio vc as a function
of the bulk concentration χ in a pre-existing wetting layer has the generic behavior
shown in figure 8(b). The first asymptote corresponds to the limit χ → 0, while the
second is associated with the saturation phenomena close to CMC. Notably, we
predict no instability for C > CCMC, in contrast to the claims in Chan & Liang (1997).

5. Conclusions
In this work, we have developed the elementary mathematical and physical interpre-

tations for the experimentally observed instability. In particular, the crucial role of a
pre-existing wetting layer of surfactant is revealed. In summary, the instability is due
to the effect of the thickening of the wetting layer caused by significant Marangoni
stresses, which, in turn, originate in the accumulation of surfactants in the cap and
transition regions. As a necessary tool for developing the theory, we generalized
the currently accepted one to the case of substantial surfactant concentration
gradients.

While our analysis provides a robust explanation of the basic physical mechanism
of the instability, a number of simplifications have been made. First of all, a simple
mechanism for transport phenomena – kinetics-controlled bulk-surface exchange with
fixed the kinetic constants – has been assumed. However, in reality, these constants
may exhibit a strong dependence on concentration and thus on velocity as well.
Accounting for these and other effects, e.g. the non-parallelism of the basic state
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in the transition region, will lead to refinement of the theory and thus allow a
quantitative comparison with experimental observations.

The authors would like to thank Dr Juan Fernandez for conducting experiments
which allowed us to gain insight into this phenomenon and to verify the theoretical
findings. This work was supported by the Office of Basic Energy Sciences, US
Department of Energy.

Appendix. Basic state equations
The equations governing the dynamics of the basic state are the solution for the

stream function (3.7) and the normal component of the interface condition:

P̂ = −
(

Ca

Ca∗

)2

{ΣĤ x̂ x̂ + 2(ĤΣx̂)x̂}, (A 1)

The condition Ψ (Ĥ ) = Ĥ −∞ defines the equation for the interface shape with the
following boundary conditions

x̂ → −∞: Γ = C = ûs =1, Ĥ = Ĥ −∞;

x̂ → +∞: problem-dependent,

where the last condition is determined by matching with the solution in a cap region.

From the condition Ψ̂ (ŷ = Ĥ ) = Ĥ −∞ using (3.7) and (A 1), we arrive at the following
equation for the interface shape:

−
(

Ca

Ca∗

)2

{ΣĤ x̂ x̂ + 2(ĤΣx̂)x̂}Ĥ 3

3
=

Ĥ 2

2

Σx̂

Ca2/3
∗

+ (Ĥ − Ĥ −∞),

x̂ → −∞: Ĥ → Ĥ −∞, Ĥ x̂ → 0,

x̂ → +∞: Ĥ x̂ x̂ →
√

2

Σ

1

Bo
.


(A 2)

This system in the case Σ =constant reduces to that derived in a seminal work
by Landau & Levich (1942). The last boundary condition represents matching the
curvature of the transition region interface to that of the meniscus region. For
example, under the assumption of a uniform surfactant concentration in the cap
region (Γ = Γ ∗ = const):

lim
x̂ → +∞

{1 − Ca2/3
∗ Ĥ} = lim

x → −l
H (x) = H (−l) + Hx(−l)(x + l) + Hxx(−l)

(x + l)2

2
+ · · ·.

Since a constant surface tension defines the simple shape of the cap

H (x) =

√
Σ

Bo

{
sech−1

(
−x

2

√
Bo

Σ

)
−

√
4 − Bo

Σ
x2

}
+ const,

we find l =
√

2Σ/Bo and the appropriate matching of curvature.
Equation (A 2) is not closed until the surface tension variation is determined. This

in turn is defined by the surfactant distribution which is governed by (surface diffusion
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is neglected here being of the order of Ca1/3/Pes)

∂x̂(Γ ûs) =
Ca

Ca4/3
∗

1

Pes

∂2
x̂ Γ +

Ca4/3
∗

Ca
κSt [KC(1 − βΓ ) − Γ ] ,

x̂ → −∞: Γ = 1,

x̂ → +∞: Γ = Γmax.

 (A 3)

Here, ûs is given by (3.8) and all terms must be retained to satisfy

x̂ → −∞: ûs = 1.

The equation for the surface concentration indicates that advection is the primary
mechanism controlling the surfactant distribution (the terms on the left-hand side of
(A 3)), while the magnitude of Γ is determined by the kinetic exchange with the bulk
(the second term on the right-hand side of (A 3)). The higher-order terms on the left-
hand side of (A 3) are responsible for the advection of the surfactant due to the motion
of plates and the capillary pressure gradient.
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