
Math. Struct. in Comp. Science (2012), vol. 22, pp. 175–201. c© Cambridge University Press 2012

doi:10.1017/S0960129511000387

Modal logic and the approximation induction

principle

MACIEJ GAZDA† and WAN FOKKINK‡

†Eindhoven University of Technology, Department of Computer Science,

P.O.Box 513, 5600 MB Eindhoven, The Netherlands

Email: m.w.gazda@tue.nl
‡VU University Amsterdam, Department of Computer Science,

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Email: wanf@cs.vu.nl

Received 29 January 2010; revised 1 June 2011

We prove a compactness theorem in the context of Hennessy–Milner logic and use it to

derive a sufficient condition on modal characterisations for the approximation induction

principle to be sound modulo the corresponding process equivalence. We show that this

condition is necessary when the equivalence in question is compositional with respect to the

projection operators. Furthermore, we derive different upper bounds for the constructive

version of the approximation induction principle with respect to simulation and decorated

trace semantics.

1. Introduction

Hennessy–Milner logic (Hennessy and Milner 1985) is a modal logic for specifying

properties of states in a labelled transition system (LTS). Rob van Glabbeek has used

this logic to characterise a wide range of process semantics in terms of observations

(van Glabbeek 2001). That is, a process semantics is captured by means of a sublogic of

Hennessy–Milner logic so that two states in an LTS are equivalent if and only if they

make true exactly the same formulas in this sublogic. In particular, Hennessy–Milner logic

itself characterises bisimulation equivalence.

For several process semantics, which are mainly in the realm of simulation, van

Glabbeek introduced three different modal characterisations (see van Glabbeek (2001,

Figure 9)), which differ in their treatment of conjunction. Apart from the richest

characterisations, which correspond to the canonical process equivalences, there are also

finitary versions (denoted with a superscript ∗), which allow only conjunctions over a

finite set. Intermediate equivalences based on formulas with arbitrary conjunctions but of

finite depth are also considered (with a superscript ω). The corresponding equivalences

all differ in general LTSs and collapse in the setting of image-finite LTSs, where an

LTS is image-finite if for each state and each action a, there are finitely many outgoing

a-transitions. Van Glabbeek sketched separate proofs that the modal characterisations

capture the same process semantics under consideration. These proofs are always almost

identical.

https://doi.org/10.1017/S0960129511000387 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000387

M. Gazda and W. Fokkink 176

Here we show that given a modal characterisation of a process semantics for general

LTSs, restricting to finite sub-conjunctions produces a modal characterisation of the same

semantics for image-finite LTSs. The only requirement is that the formulas obtained in

this way were already present in the original modal characterisation. All semantics in the

linear time/branching time spectrum (van Glabbeek 2001) have a modal characterisation

that satisfies this requirement, except for completed trace semantics (in the case of an

infinite action set).

We obtain a similar compactness result for modal characterisations in which formulas

have finite depth. In this case, only infinite conjunctions with an infinite depth need to

be restricted to their finite sub-conjunctions. Again, the original and resulting semantics

coincide on image-finite LTSs if the resulting formulas were already present in the original

modal characterisation. The modal characterisation of completed trace semantics satisfies

this property.

Van Glabbeek used a version of Hennessy–Milner logic that contains negation (so dis-

junction, falsum and [a]φ need not be present). However, in that logic the aforementioned

result is not so easy to obtain, so we first prove the result in a negation-free version of

Hennessy–Milner logic, and then show that the result carries over to Hennessy–Milner

logic with negation.

Next we study the approximation induction principle (AIP) from process algebra

(Baeten et al. 1987), which states that two processes are equal if they are equal up to

any finite depth. It is well known that this proof principle is sound modulo bisimulation

equivalence for image-finite processes (van Glabbeek 1987). Moreover, it is folklore that

this soundness result extends to the other equivalences in the linear time/branching time

spectrum (Aceto et al. 1994). We obtain a sufficient condition on the modal characterisation

of a process equivalence to guarantee that AIP is sound with respect to this equivalence.

We then link this result to the compactness theorem from the first part. The sufficient

condition says that the modal characterisation must only contain formulas of finite depth.

We also show that this is basically a necessary condition: if an equivalence is sound

modulo AIP and compositional with respect to the projection operators used in the

definition of AIP, then it can be characterised by a set of finite-depth formulas.

Finally, we consider a so-called constructive version of AIP (Mauw 1987), which states

that two processes are equal if they are equal up to some finite depth. So far, constructive

AIP has only been considered for bisimulation equivalence: given an LTS with n states,

processes are equal if they are equal at depth n − 1. Here we provide quadratic bounds

for simulation and ready simulation semantics, and, moreover, show that these bounds

are sharp. We also provide an exponential bound for decorated trace semantics.

2. Modal characterisations for image-finite processes

2.1. Hennessy–Milner logic

A labelled transition system (LTS) consists of a set S of states s, a set A of actions a and

a set of transitions s
a→ s′. An LTS is image-finite if for each s and a, the LTS contains

only finitely many transitions s
a→ s′.

https://doi.org/10.1017/S0960129511000387 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000387

Modal logic and the approximation induction principle 177

Hennessy–Milner logic (Hennessy and Milner 1985) is a modal logic for specifying

properties of states in an LTS. There are several versions of Hennessy–Milner logic. We

will write HML to denote the most general language, as presented in van Glabbeek (2001).

The syntax of HML can be defined by the following BNF grammar:

ϕ ::= T |
∧
i∈I
ϕi | 〈a〉ϕ | ¬ϕ.

The meaning of the formulas is defined inductively by

s |= T

s |= 〈a〉ϕ ⇔ ∃s′ ∈ S (s
a→ s′ ∧ s′ |= ϕ)

s |=
∧
i∈I ϕi ⇔ ∀i ∈ I (s |= ϕi)

s |= ¬ϕ ⇔ s �|= ϕ.

There is another syntax for Hennessy–Milner logic (see Larsen (1990) and Stirling (2001)),

which omits the negation symbol and which we denote by HML+. As we will see later,

its formulas have some nice properties, which make it easier to perform certain proofs.

The syntax of HML+ can be defined by the following BNF grammar:

φ ::= T | F |
∧
i∈I
φi |

∨
i∈I
φi | 〈a〉φ | [a]φ.

The meaning of the new formulas is defined by

s �|= F

s |=
∨
i∈I φi ⇔ ∃i ∈ I (s |= φi)

s |= [a]φ ⇔ ∀s′ ∈ S (s
a→ s′ ⇒ s′ |= φ).

Observe that we allow quantification over arbitrary sets of indexes I . If we restrict to

conjunction and disjunction operators over finite sets only, we obtain a language of finite

Hennessy–Milner formulas, denoted by HMLFIN or HML+
FIN , respectively.

We define the depth of a formula d : HML −→ � ∪ {∞} inductively by:

d(T) = 0

d

(∧
i∈I
ϕi

)
= sup{d(ϕi) | i ∈ I}

d(〈a〉ϕ) = 1 + d(ϕ)

d(¬ϕ) = d(ϕ)

where 1 + ∞ = ∞. HMLFDP and HML+
FDP denote classes of formulas of finite depth:

HML(+)
FDP = {ϕ ∈ HML(+) | d(ϕ) < ∞}.

A context C[] denotes a formula containing one occurrence of []. The formula C[φ] is

obtained by replacing this occurrence of [] by the formula φ. It is well known, and easy

to see, that φ ⇒ ψ yields C[φ] ⇒ C[ψ] for all contexts C[] over HML+ (here ϕ ⇒ ψ

denotes the fact that for any state s, we have s |= ϕ ⇒ s |= ψ).

https://doi.org/10.1017/S0960129511000387 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000387

M. Gazda and W. Fokkink 178

2.2. Compactness results

In this section we show that for image-finite LTSs, an infinite conjunction or disjunction

inside an HML+ formula can be captured by its finite sub-conjunctions or -disjunctions,

respectively. These results are somewhat reminiscent of the compactness theorem for

first-order logic, which states that a set of formulas has a model if and only if every finite

subset of it has a model.

Lemma 2.8 in Larsen (1990) implies the following proposition, but only for HML+
FIN

formulas. Moreover, Larsen (1990) does not provide a proof of Lemma 2.8, so we will

include a proof of Proposition 1 to make the current paper self-contained.

J ⊆FIN I denotes that J is a finite subset of I .

Proposition 1. Given an image-finite LTS, s |= C[
∧
i∈I φi] ∈ HML+ if and only if s |=

C[
∧
i∈J φi] for all J ⊆FIN I .

Proof.

(⇒)For all J ⊆FIN I , we have
∧
i∈I φi ⇒

∧
i∈J φi, so C[

∧
i∈I φi] ⇒ C[

∧
i∈J φi].

(⇐)We let s |= C[
∧
i∈J φi] for all J ⊆FIN I and apply structural induction on C[] to

prove that s |= C[
∧
i∈I φi]:

— C[] = [].

By assumption, s |= φi for all i ∈ I , so s |=
∧
i∈I φi.

— C[] = C ′[] ∧
∧
k∈K ψk .

s |= C[
∧
i∈J φi] for all J ⊆FIN I implies that s |= C ′[

∧
i∈J φi] for all J ⊆FIN I , and

s |=
∧
k∈K ψk . By induction, the first fact yields s |= C ′[

∧
i∈I φi]. So s |= C[

∧
i∈I φi].

— C[] = C ′[] ∨
∨
k∈K ψk .

If s |= ψk0
for some k0 ∈ K , then clearly s |= C[

∧
i∈I φi]. So we now suppose

s |= C ′[
∧
i∈J φi] for all J ⊆FIN I . Then, by induction, s |= C ′[

∧
i∈I φi], so s |=

C[
∧
i∈I φi].

— C[] = 〈a〉C ′[].

This is the key case.

By assumption, s |= 〈a〉C ′[
∧
i∈J φi] for all J ⊆FIN I . So for each J ⊆FIN I there

is a state sJ such that s
a→ sJ and sJ |= C ′[

∧
i∈J φi]. Since s is image-finite,

{sJ | J ⊆FIN I} is finite, say {sJ1
, . . . , sJm}. In order to show a contradiction, we

now suppose that sJk �|= C ′[
∧
i∈I φi] for all k = 1, . . . , m. Then, by the induction

hypothesis, for all k = 1, . . . , m, we have sJk �|= C ′[
∧
i∈Kk

φi] for some Kk ⊆FIN I .

This implies that, for all k = 1, . . . , m, we have sJk �|= C ′[
∧m
�=1

∧
i∈K�

φi]. This

contradicts the fact that s∪m
�=1K�

∈ {sJ1
, . . . , sJm}, and we can conclude that sJk0 |=

C ′[
∧
i∈I φi] for some k0 ∈ {1, . . . , m}. Hence s |= 〈a〉C ′[

∧
i∈I φi].

— C[] = [a]C ′[].

Let s
a→ s′. By assumption, s′ |= C ′[

∧
i∈J φi] for all J ⊆FIN I . So, by induction,

s′ |= C ′[
∧
i∈I φi]. Hence s |= [a]C ′[

∧
i∈I φi].

https://doi.org/10.1017/S0960129511000387 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000387

Modal logic and the approximation induction principle 179

It is easy to see that Proposition 1 fails for LTSs that are not image-finite. A

counterexample is given at the end of Section 2.3, where the top state at the left does not

satisfy 〈a〉(
∧
n∈�〈a〉nT), while it does satisfy 〈a〉(

∧
n∈M〈a〉nT) for any M ⊆FIN �.

There is a counterpart of Proposition 1 with disjunction instead of conjunction. To

derive this lemma immediately from Proposition 1, we introduce an operator that, given

a formula in HML+, yields a formula equivalent to its negation within HML+. Given a

φ ∈ HML+, the formula φ ∈ HML+ is defined inductively as follows:

T = F

F = T

∧
i∈I
φi =

∨
i∈I
φi

∨
i∈I
φi =

∧
i∈I
φi

〈a〉φ = [a]φ

[a]φ = 〈a〉φ.

Clearly, ¬φ ⇔ φ. Moreover, φ = φ. The definition is extended to contexts by putting

[] = []. We write C[] for C[]. It is easy to see that C[φ] = C[φ].

Proposition 2. Given an image-finite LTS, s |= C[
∨
i∈I φi] if and only if s |= C[

∨
i∈J φi]

for some J ⊆FIN I .

Proof.

s |= C

[∨
i∈I
φi

]
⇔ s �|= C

[∨
i∈I
φi

]

⇔ s �|= C

[∧
i∈I
φi

]

⇔ s �|= C

[∧
i∈J
φi

]
for some J ⊆FIN I (by Proposition 1)

⇔ s �|= C

[∨
i∈J
φi

]
for some J ⊆FIN I

⇔ s |= C

[∨
i∈J
φi

]
for some J ⊆FIN I.

We now consider Hennessy–Milner logic with negation, viz. HML. Contexts over this

syntax are denoted by D[]. Each formula ϕ over this logic can be translated to an

https://doi.org/10.1017/S0960129511000387 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000387

M. Gazda and W. Fokkink 180

equivalent formula P (ϕ) ∈ HML+ in a straightforward fashion:

P (T) = T

P (〈a〉ϕ) = 〈a〉P (ϕ)

P

(∧
i∈I
ϕi

)
=

∧
i∈I

P (ϕi)

P (¬ϕ) = P (ϕ).

Clearly, ϕ ⇔ P (ϕ). The definition is extended to contexts by putting P ([]) = []. We write

P (D)[] for P (D[]).

For Hennessy–Milner logic with negation, we define positive and negative contexts

inductively as follows:

— [] is a positive context.

— If D[] is a positive (respectively, negative) context, then D[] ∧
∧
i∈I ϕi and 〈a〉D[] are

positive (respectively, negative) contexts.

— If D[] is a positive (respectively, negative) context, then ¬D[] is a negative (respectively,

positive) context.

Lemma 1.

— If D[] is a positive context, P (D[ϕ]) = P (D)[P (ϕ)].

— If D[] is a negative context, P (D[ϕ]) = P (D)[P (ϕ)].

Proof. We prove both statements simultaneously, by structural induction on D[]. The

cases where D[] is of the form [], D′[] ∧
∧
i∈I ϕi or 〈a〉D′[] are straightforward and left as

an exercise. We focus on the key case, where D[] = ¬D′[]:

First let D[] be positive, so D′[] is negative. Then

P (¬D′[ϕ]) = P (D′[ϕ])

= P (D′)[P (ϕ)] (by induction)

= P (D′)[P (ϕ)]

= P (¬D′)[P (ϕ)].

Next let D[] be negative, so D′[] is positive. Then

P (¬D′[ϕ]) = P (D′[ϕ])

= P (D′)[P (ϕ)] (by induction)

= P (D′)[P (ϕ)]

= P (¬D′)[P (ϕ)].

We can now prove a counterpart of Propositions 1 and 2 for HML.

https://doi.org/10.1017/S0960129511000387 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000387

Modal logic and the approximation induction principle 181

Proposition 3. Given an image-finite LTS.

(1) If D[] is a positive context, then s |= D[
∧
i∈I ϕi] if and only if s |= D[

∧
i∈J ϕi] for all

J ⊆FIN I .

(2) If D[] is a negative context, then s |= D[
∧
i∈I ϕi] if and only if s |= D[

∧
i∈J ϕi] for

some J ⊆FIN I .

Proof.

(1)If D[] is a positive context,

s |= D

[∧
i∈I
ϕi

]
⇔ s |= P

(
D

[∧
i∈I
ϕi

])

⇔ s |= P (D)

[∧
i∈I

P (ϕi)

]
(by Lemma 1)

⇔ s |= P (D)

[∧
i∈J

P (ϕi)

]
for all J ⊆FIN I (by Proposition 1)

⇔ s |= P

(
D

[∧
i∈J
ϕi

])
for all J ⊆FIN I (by Lemma 1)

⇔ s |= D

[∧
i∈J
ϕi

]
for all J ⊆FIN I.

(2)If D[] is a negative context,

s |= D

[∧
i∈I
ϕi

]
⇔ s |= P

(
D

[∧
i∈I
ϕi

])

⇔ s |= P (D)

[∨
i∈I

P (ϕi)

]
(by Lemma 1)

⇔ s |= P (D)

[∨
i∈J

P (ϕi)

]
for some J ⊆FIN I (by Proposition 2)

⇔ s |= P

(
D

[∧
i∈J
ϕi

])
for some J ⊆FIN I (by Lemma 1)

⇔ s |= D

[∧
i∈J
ϕi

]
for some J ⊆FIN I.

2.3. Modal characterisations

A process semantics on LTSs can be captured by means of a sublogic of HML – see Bloom

et al. (2004) and van Glabbeek (2001) for a wide range of such modal characterisations.

Given such a sublogic O, two states in an LTS are equivalent if and only if they make

exactly the same formulas in O true. We denote this equivalence relation on states by ∼O.

https://doi.org/10.1017/S0960129511000387 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000387

M. Gazda and W. Fokkink 182

We prove that given such a modal characterisation of a process semantics for general

LTSs, restricting infinite conjunctions to their finite sub-conjunctions produces a modal

characterisation of the same semantics on image-finite LTSs. The only requirement is that

these finite sub-conjunctions are already present in the original modal characterisation

for general LTSs.

We obtain a similar compactness result for modal characterisations for which the

formulas may contain infinite conjunctions, but are all of finite depth. In this case only

infinite conjunctions that have an infinite depth need to be restricted to their finite sub-

conjunctions. Again, both the original and resulting semantics coincide if the resulting

formulas were already present in the original modal characterisation.

The modal characterisations in Bloom et al. (2004) all satisfy this requirement, except

for the one for completed trace semantics in the case of an infinite action set. Specifically,

the modal characterisation of completed trace semantics for general LTSs, as well as for

image-finite ones, is

ϕ ::= T |
∧
a∈A

¬〈a〉T | 〈a〉ϕ

where A denotes the set of all actions.

Given a modal characterisation O, we use OFIN to denote the sublogic of formulas in

O that do not contain infinite conjunctions, and OFDP for the sublogic of formulas with

finite depth. Clearly, OFIN ⊆ OFDP . Using the results from Section 2.2, we can now prove

the main theorem of this section.

Theorem 1. Given an image-finite LTS and O ⊆ HML.

(1) If for each D[
∧
i∈I ϕi] ∈ O with I infinite and d(

∧
i∈I ϕi) = ∞ we have D[

∧
i∈J ϕi] ∈ O

for all J ⊆FIN I , then ∼O and ∼OFDP
coincide.

(2) If for each D[
∧
i∈I ϕi] ∈ O with I infinite we have D[

∧
i∈J ϕi] ∈ O for all J ⊆FIN I ,

then ∼O and ∼OFIN
coincide.

Proof. We will prove the theorem for the subset of finite formulas OFIN, and provide

comments in square brackets for the version with OFDP where appropriate. Since OFIN ⊆
OFDP ⊆ O, we clearly have ∼O ⊆ ∼OFDP

⊆ ∼OFIN
. We need to show that OFIN [respectively,

OFDP] can distinguish all the states that O can.

Given states s, s′ and a formula ϕ ∈ O with s |= ϕ and s′ �|= ϕ. We construct a formula

in OFIN [respectively, OFDP] that distinguishes s and s′. We apply ordinal induction on the

height λ(ϕ) of the tree of infinite conjunctions [of infinite depth] in ϕ. That is,

λ(T) = 0

λ(〈a〉ϕ) = λ(ϕ)

λ(
∧
i∈I ϕi) =

{
sup{λ(ϕi) | i ∈ I} + 1 if I is infinite [and d(

∧
i∈I ϕi) = ∞]

sup{λ(ϕi) | i ∈ I} otherwise

λ(¬ϕ) = λ(ϕ).

The base case is trivial since if λ(ϕ) = 0, then ϕ ∈ OFIN [respectively, ϕ ∈ OFDP].

We now consider the inductive case, where λ(ϕ) > 0. Let ϕ = D[
∧
i∈I ϕi] with I [and

d(
∧
i∈I ϕi)] infinite, where this occurrence of an infinite conjunction [and depth] in ϕ is

https://doi.org/10.1017/S0960129511000387 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000387

Modal logic and the approximation induction principle 183

outermost in the sense that it does not occur within any infinite conjunction [of infinite

depth]. We distinguish two cases:

— D[] is a positive context.

By Proposition 3 (1), s′ �|= ϕ implies that s′ �|= D[
∧
i∈J0

ϕi] for some J0 ⊆FIN I , while

s |= ϕ implies that s |= D[
∧
i∈J0

ϕi].

— D[] is a negative context.

By Proposition 3 (2), s |= ϕ implies that s |= D[
∧
i∈J0

ϕi] for some J0 ⊆FIN I , while

s′ �|= ϕ implies that s′ �|= D[
∧
i∈J0

ϕi].

In both cases, D[
∧
i∈J0

ϕi] ∈ O by assumption.

It is clear that there are only finitely many outermost occurrences of infinite conjunctions

[of infinite depth] in ϕ. Using the construction above, these can all be replaced by finite

conjunctions to obtain a formula ψ ∈ O that distinguishes s and s′. Since λ(ψ) < λ(ϕ),

we can use ordinal induction to construct a formula in OFIN [respectively, OFDP] that

distinguishes s and s′.

It is easy to see that the requirement in Theorem 1 that D[
∧
i∈J ϕi] ∈ O for all J ⊆FIN I

cannot be omitted. For instance, let O consist of a single formula with an infinite

conjunction,
∧
n∈�〈a〉nT (with 〈a〉0ϕ = ϕ and 〈a〉n+1ϕ = 〈a〉(〈a〉nϕ)). Then OFIN = �,

so ∼OFIN
is the universal relation. On the other hand, O distinguishes an a-cycle from a

deadlock state.

The following example, which is taken from van Glabbeek (1987), shows that Theorem 1

fails for LTSs that are not image-finite. Consider an LTS that consists of finite a-traces

of arbitrary length, and an LTS that on top of this exhibits an infinite a-trace.

a
a

a a

a

a

a

a

a

a

a
a

a a

a

a

Let

O = {〈a〉
(∧
n∈N

〈a〉nT
)

| N ⊆ �}.

Then

OFIN = {〈a〉
(∧
n∈N

〈a〉nT
)

| N ⊆FIN �}.

Clearly, O distinguishes the top states of the two LTSs above by means of any formula

〈a〉
(∧
n∈N

〈a〉nT
)

https://doi.org/10.1017/S0960129511000387 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000387

M. Gazda and W. Fokkink 184

with N infinite. Namely, such a formula holds for the top state at the right, but not for

the top state at the left. However, OFIN does not distinguish these states since all formulas

in OFIN hold for both states.

Goldblatt (1995) and Hollenberg (1995) (see also Blackburn et al. (2001)) investigated

models that are more general than image-finite LTSs, but do have the Hennessy–Milner

property. That is, models where the modal equivalence ∼HML coincides with bisimulation

equivalence. This led to the notion of modally saturated processes – an LTS is M-saturated

if for all states s and all O ⊆ HML, whenever every finite subset of O is satisfied in some

a-successor of s, there exists an a-successor of s in which O is satisfied. It is not difficult

to prove using ordinal induction on the structure of formulas that Theorem 1 also holds

for M-saturated models.

3. The approximation induction principle

For each natural number n, we define a projection operator πn that mimics the behaviour

of its argument up to n steps and then terminates. The behaviour of an application of the

projection operator to a process (or state) is given by the following rule scheme:

x
a→ x′

πn+1(x)
a→ πn(x′)

.

The Approximation Induction Principle (AIP) states that if two processes are equal up to

any finite depth, then the processes themselves are equal.

(AIP) If πn(x) = πn(y) for all n ∈ N, then x = y.

3.1. Sufficient criterion for soundness of AIP

Aceto et al. (1994) states that AIP is sound for all eleven ‘strong’ equivalences found

in van Glabbeek (2001), but does not give any argument in support of this assertion.

The soundness of AIP has been proved several times for bisimulation equivalence (for

example, van Glabbeek (1987)) in the setting of finitely branching or image-finite LTSs.

The standard technique is to prove that a relation identifying two processes if and only

if all of their projections are bisimilar is a bisimulation (provided one of the processes

is image-finite). A different proof was presented in Baeten and Weijland (1990), where,

given two processes p and q, they consider, for all n ∈ �, the bisimulations between πn(p)

and πn(q). Bisimulations for the nth projection are linked with those bisimulations for the

(n+1)th projection in which they are included. In this way, an infinite, finitely branching

tree is constructed. The bisimulation between p and q is a sum of bisimulations lying on

an infinite path in the tree.

We present a general proof of soundness of AIP in a different way for a range of

equivalences using properties of modal languages that define an equivalence. Specifically,

AIP is sound for all process equivalences that can be defined using modal characterisations

within HMLFDP . The crucial part of the proof is the following lemma, which states that

if a finite-depth formula is satisfied by a process, then it is satisfied by almost all of its

projections.

https://doi.org/10.1017/S0960129511000387 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000387

Modal logic and the approximation induction principle 185

Lemma 2. Given any LTS, for all states s and ϕ ∈ HMLFDP , we have

s |= ϕ ⇔ ∀n � d(ϕ) (πn(s) |= ϕ).

Proof. We use ordinal induction on the complexity of a formula, defined by

|T| = 1

|〈a〉ϕ| = |ϕ| + 1

|
∧
i∈I
ϕi| = sup{|ϕi| | i ∈ I} + 1

|¬ϕ| = |ϕ| + 1.

(⇒) The base is trivial (ϕ = T).

Let s be an arbitrary state and ϕ be a formula such that s |= ϕ, and suppose that

for all s′ and all ψ with |ψ| < |ϕ|, we have s′ |= ψ implies that ψ is satisfied by all

projections πn(s
′) for n � d(ψ). There are three possible cases:

— ϕ = 〈a〉ψ
Then there exists a q with s

a→ q and q |= ψ. From the induction hypothesis, we

obtain

∀n � d(ψ) (πn(q) |= ψ).

Since

πn(s)
a→ πn−1(q)

for n � 1, we have

∀n � d(ψ) + 1 (πn(s) |= 〈a〉ψ),

so

∀n � d(〈a〉ψ) (πn(s) |= 〈a〉ψ)

— ϕ =
∧
i∈I ψi

So ∀i ∈ I (s |= ψi). By induction, this implies

∀i ∈ I ∀n � d(ψi) (πn(s) |= ψi).

Therefore,

∀n � maxi∈I{d(ψi)} ∀i ∈ I (πn(s) |= ψi).

By definition

d

(∧
i∈I
ψi

)
= maxi∈I{d(ψi)},

so

∀n � d

(∧
i∈I
ψi

) (
πn(s) |=

∧
i∈I
ψi

)
.

— ϕ = ¬ψ
We have to consider all the subcases, depending on ψ:

https://doi.org/10.1017/S0960129511000387 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000387

M. Gazda and W. Fokkink 186

– ψ = T:

This case is impossible since it would mean that s �|= T, which is never true.

– ψ = 〈a〉ψ′:

So for all s′ with s
a→ s′, we have s′ |= ¬ψ′, and by induction

∀n � d(¬ψ′) (πn(s
′) |= ¬ψ′).

Therefore

∀n � d(¬ψ′) + 1 (πn(s) |= ¬〈a〉ψ′),

and thus

∀n � d(ψ) (πn(s) |= ¬〈a〉ψ′).

– ψ =
∧
i∈I ψi:

So ∃i0 ∈ I (s |= ¬ψi0). By induction,

∀n � d(¬ψi0) (πn(s) |= ¬ψi0),

so

∀n � d(ϕ) (πn(s) |= ¬
∧
i∈I
ψi),

which is the desired result.

– ψ = ¬ψ′:

This case is immediate since ϕ is equivalent to ψ′.

(⇐) This direction follows immediately from what we have just proved. To see this, take

an arbitrary formula ϕ ∈ O and a state s such that ∀n � d(ϕ) (πn(s) |= ϕ). In order

to show a contradiction, we now suppose that s �|= ϕ. This means s |= ¬ϕ, but we

have already proved that this implies ∀n � d(¬ϕ) (πn(s) |= ¬ϕ), which contradicts

our assumptions. Therefore s must satisfy ϕ.

Theorem 2. If O ⊆ HMLFDP , we have AIP is sound for ∼O.

Proof. We need to show that

∀n ∈ N (πn(s) ∼O πn(q)) ⇒ s ∼O q.

Suppose

∀n ∈ N (πn(s) ∼O πn(q)).

We have to prove that O(s) = O(q). In fact, it suffices to prove that O(s) ⊆ O(q) since the

proof of the other inclusion is symmetric. Take any ϕ ∈ O(s). According to Lemma 2, we

have

∀n � d(ϕ) (ϕ ∈ O(πn(s)) = O(πn(q))),

and using the same lemma again, we obtain ϕ ∈ O(q).

Using the results from the previous section, we can now obtain the following sufficient

condition for the soundness of AIP in the setting of image-finite LTSs.

https://doi.org/10.1017/S0960129511000387 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000387

Modal logic and the approximation induction principle 187

Corollary 1. Let O ⊆ HML. Suppose that for each D[
∧
i∈I ϕi] ∈ O with I infinite and

d(
∧
i∈I ϕi) = ∞, we have D[

∧
i∈J ϕi] ∈ O for all J ⊆FIN I . Then AIP is sound for ∼O in the

setting of image-finite LTSs.

Proof. If O meets the above requirements, then according to Theorem 1 (2), we have

∼O=∼O′ , where O′ ∈ HMLFDP . Hence, by Theorem 2, AIP is sound for ∼O.

Corollary 2. AIP is sound with respect to all the basic process equivalences on image-finite

LTSs, namely trace, completed trace, failures, readiness, failure trace, ready trace, ready

simulation, n-nested simulation (n � 1) and bisimulation.

Proof. As pointed out in van Glabbeek (2001), all the above equivalences with

the exception of completed trace can be defined with a sublogic of Hennessy–Milner

logic consisting only of finite formulas. Moreover, all formulas in the modal language

corresponding to completed trace equivalence are finite-depth.

3.2. Necessary criterion for soundness of AIP

Soundness of AIP does not necessarily imply that the equivalence in question is definable

with a sublogic of HMLFDP . Observe first that having a fixed set of actions A, for any

formula ϕ ∈ HML, we can express an ACTL formula Eϕ (‘there exists an execution path

to a state in which ϕ holds’) using a single formula from HML. Indeed, for any ϕ ∈ HML,

the formula
∨
σ∈A∗ σϕ is equivalent to Eϕ. Now consider an equivalence relating two

processes according to whether action a can be executed in at least one execution path

(that is, if E(〈a〉T) is satisfied). It is easy to see that AIP is sound for this equivalence, but

it cannot be defined with a sublogic of HMLFDP .

In this section we consider only those equivalences that are compositional with respect

to projection operators (this includes all the equivalences mentioned in Corollary 2). We

prove that in this class, definability of an equivalence with finite-depth formulas is also a

necessary condition for the soundness of AIP.

First we define for each ϕ ∈ HML a corresponding formula cutn(ϕ) ∈ HMLFDP in

which every subformula of the form 〈a〉ψ appearing at depth n is replaced by F. The

functions cutn : HML → HMLFDP for n ∈ � are defined inductively as follows:

cutn(T) = T

cut0(〈a〉ϕ) = F

cutn(¬ϕ) = ¬cutn(ϕ)

cutn

(∧
i∈I
ϕi

)
=

∧
i∈I
cutn(ϕi)

cutn+1(〈a〉ϕ) = 〈a〉cutn(ϕ)

We now prove a key property for cut functions.

https://doi.org/10.1017/S0960129511000387 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000387

M. Gazda and W. Fokkink 188

Lemma 3. Given any LTS, for all states s, ϕ ∈ HML and n ∈ �, we have

πn(s) |= ϕ ⇔ s |= cutn(ϕ) (CT)

Proof. We prove CT by induction on the structure of ϕ:

— ϕ = T:

πn(s) |= T and s |= cutn(T) = T.

— ϕ = 〈a〉ψ:

We distinguish cases where n = 0 and n > 0.

– n = 0:

Clearly, π0(s) �|= 〈a〉ψ and s �|= cut0(〈a〉ψ) = F.

– n > 0:

We have

πn(s) |= 〈a〉ψ ⇔ ∃s′ (s
a→ s′ ∧ πn−1(s

′) |= ψ) (transition rules for πn−1)

⇔ ∃s′ (s
a→ s′ ∧ s′ |= cutn−1(ψ)) (structural induction)

⇔ s |= 〈a〉cutn−1(ψ)

⇔ s |= cutn(〈a〉ψ). (definition of cut)

— ϕ =
∧
i∈I ψi:

πn(s) |=
∧
i∈I
ψi ⇔ ∀i ∈ I (πn(s) |= ψi)

⇔ ∀i ∈ I (s |= cutn(ψi)) (structural induction)

⇔ s |= cutn

(∧
i∈I
ψi

)
. (definition of cut)

— ϕ = ¬ψ:

πn(s) |= ¬ψ ⇔ πn(s) �|= ψ

⇔ s �|= cutn(ψ) (structural induction)

⇔ s |= ¬cutn(ψ)

⇔ s |= cutn (¬ψ) . (definition of cut)

Theorem 3. Suppose ∼O is a process equivalence induced by some O ⊆ HML and

compositional with respect to all projection operators πn. AIP is sound for ∼O if and only

if ∼O can be defined with some O1 ⊆ HMLFDP .

Proof.

(⇐) The fact that definability of an equivalence with a sublogic of HMLFDP implies the

soundness of AIP was proved in Theorem 2.

(⇒) We have to prove that the soundness of AIP implies

∃O1 ⊆ HMLFDP (s ∼O q ⇔ s ∼O1
q).

https://doi.org/10.1017/S0960129511000387 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000387

Modal logic and the approximation induction principle 189

The desired O1 is constructed by applying the cutn functions to formulas from O:

O1 =
⋃
n∈�

{cutn(ϕ) | ϕ ∈ O}.

We have:

s ∼O q ⇔ ∀n ∈ � (πn(s) ∼O πn(q)) (soundness of AIP for ∼O and)

(compositionality with respect to projection)

⇔ ∀n ∈ � ∀ϕ ∈ O (πn(s) |= ϕ ⇔ πn(q) |= ϕ)

⇔ ∀n ∈ � ∀ϕ ∈ O (s |= cutn(ϕ) ⇔ q |= cutn(ϕ)) (Lemma 3)

⇔ ∀n ∈ � ∀ψ ∈ O1 (s |= ψ ⇔ q |= ψ) (definition of O1)

⇔ ∀n ∈ � (πn(s) ∼O1
πn(q))

⇔ s ∼O1
q.

4. Constructive AIP

The approximation induction principle is not very attractive in the computational sense

since it requires us to check infinitely many projections of two processes to derive

their equivalence. To overcome this drawback, a notion of constructive AIP (AIPc) was

introduced in Mauw (1987) and investigated further in Barros and Hou (2008). AIPc

makes an additional assumption that LTSs are regular (that is, have a finite number of

states and transitions). Such LTSs can be defined using n linear equations for some n ∈ �;

each equation defines a state and its outgoing transitions. AIPc specifies a value K ∈ N for

which equivalence between two states can be decided by comparing their Kth projections.

Constructive AIP has so far only been considered for bisimulation equivalence, for which

it has been proved that if πn−1(p)↔πn−1(q), then p↔q, where n is the number of linear

equations defining an LTS that contains p and q (Barros and Hou 2008).

We investigate the possibility of obtaining similar results for other process semantics.

In this section our approach is different in two ways: we focus separately on some

particular semantics, and also consider AIPc from the preorder perspective. The latter

approach provides more general statements, and as we focus especially on simulation-

based semantics, the most natural way to obtain results for process equivalences is to

tackle their preorder counterparts first.

From now on, we will only consider regular LTSs. For a preorder �, we use D(�, N)

to denote the smallest number such that for all regular LTSs with N distinct states,

πD(�,N)(p) � πD(�,N)(q) ⇒ p � q,

and we introduce a similar notation D(∼, N) for equivalences.

We assume a preorder (P ,�) and use ≺ to denote the corresponding strong order

relation, that is, x ≺ y if x � y and x �= y. We say that b is directly above a if and only if

a ≺ b and there is no c such that a ≺ c ≺ b. We further say that a is �-equivalent to b if

a � b and b � a. We use ∆ to denote an identity relation.

https://doi.org/10.1017/S0960129511000387 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000387

M. Gazda and W. Fokkink 190

4.1. Simulation-based semantics

We recall the definition of simulation and ready simulation semantics. We use I(p) to

denote {a ∈ A | ∃p′ (p
a→ p′)}. A relation R ∈ P × P is a [ready] simulation relation if:

pRq ⇒ for all p′ with p
a→ p′ there exists a q ∈ P such that q

a→ q′ and p′Rq′ [and

I(p) = I(q)].

We define the [ready] simulation preorder by:

p �S q [respectively, p �RS q] if there exists a [ready] simulation relation R such that pRq.

For X ∈ {S, RS} and K � 0, we use �X
K to denote the [ready] simulation preorder up

to K steps:

p �X
K q if and only if πK (p) �X πK (q).

Lemma 4. For X ∈ {S, RS}, if �X
K+1 = �X

K for some K ∈ �, then �X
N = �X

K for all

N > K .

Proof. We present a proof for simulation semantics with additional remarks for ready

simulation. In order to show a contradiction, we suppose that there exists an N > K + 1

such that �S
N �= �S

K . Let N be the lowest number with this property. Since it is clear that

�S
N ⊆ �S

N−1, there must exist processes p, q such that p �S
N−1 q, but p ��S

N q. So there exists

a transition p
a→ p′ that cannot be mimicked by q, that is, ¬∃q′ (q

a→ q′ ∧p′ �S
N−1 q

′) [in the

ready simulation case, we have to consider the case when I(p) �= I(q), but this is impossible

since p �RS
N−1 q and N − 1 � 1]. Since p �S

N−1 q, we know that ∃q′ (q
a→ q′ ∧ p′ �S

N−2 q
′)

and since �S
N−1 = �S

N−2, we have p′ �S
N−1 q

′, which gives a contradiction.

Since

— �S ⊆ �S
K+1 ⊆ �S

K for all K ∈ �,

— �S
0 relates all N2 possible pairs, and

— �S includes the N identity pairs,

we obtain the following corollary.

Corollary 3. D(�S , N) � N2 −N.

The above upper bound estimation is asymptotically the same as the actual value of

D(�S , N), which will be shown to be

(N + 2)(N − 1)/2.

To explain the ideas underlying AIPc for the (ready) simulation preorder, we first prove

that

D(�S , N) �
(N + 2)(N − 1)

2
.

This is an immediate consequence of a more general preorder property, namely, that for

any preorder (P ,�) with |P | = N, we can refine � in at most

(N + 2)(N − 1)/2

https://doi.org/10.1017/S0960129511000387 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000387

Modal logic and the approximation induction principle 191

b a

a

b

a b

step 1bstep 1astep 0

Fig. 1. Alternatives for Stage 1

Fig. 2. Stage 1 of refinement (equivalence steps)

steps. That is, the maximum length of a decreasing chain of preorders on P �0,�1, . . . ,�M

such that �k+1 is a strict refinement of �k is

(N + 2)(N − 1)

2
.

We will now describe a refinement procedure and compute the number of steps it has,

and then prove that a maximal refinement sequence has the same number of elements

(steps).

We should obviously start with �0= P × P (otherwise we could extend our sequence

by putting P × P at the beginning). In the next step we have to remove at least one pair

(a, b) ∈�0, and, in order to maintain transitivity, we also need to remove N − 2 other

pairs. They can be either of the form {(a, x) | x ∈ P } or {(y, b) | y ∈ P } (we can either put

a over or b under all the other elements). Both alternatives are shown in Figure 1, where

the groups of dots in rounded boxes represent equivalence classes.

Suppose, without loss of generality, that we put a over all elements and that we repeat

this procedure of taking one element from the group and putting it directly above it until

we are left with an N-element chain (Figure 2). Observe that we finish after N − 1 steps,

and in step i ∈ {1, . . . , N − 1}, we remove N − i pairs from the previous preorder. Hence,

the total number of removed pairs at this stage is

1 + · · · + (N − 1) =
N(N − 1)

2
.

After obtaining the chain of N elements �N−1, we can proceed by always removing one

pair per step. Namely, we take any element x that still has some y above it. Let us choose

this y so that it is directly above x and remove (x, y). Observe that we do not have to

remove any other pairs since y is directly above x and there are no elements equivalent

to x or y. We can do this in every step until we are left with N pairs of the form (x, x).

https://doi.org/10.1017/S0960129511000387 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000387

M. Gazda and W. Fokkink 192

Let S1, S2 be the number of steps in stages 1 and 2, respectively, and the numbers of

pairs removed at each stage be RP1 and RP2, respectively. We can derive the total number

of steps using the following relationships:

S1 = N − 1

S2 = RP2

RP1 =
N(N − 1)

2

N2 − RP1 − RP2 = N.

So

RP2 = N2 −N − N(N − 1)

2
=
N(N − 1)

2
,

and the total number of steps is

S1 + S2 = N − 1 +
N(N − 1)

2
=

(N + 2)(N − 1)

2
.

We still need to prove that we cannot obtain a longer sequence of refinement steps.

Consider an arbitrary chain of preorders �0,�1, . . . ,�M on an N-element set S such that

for all i, we have �i ⊃ �i+1, �0 = S × S and �M = ∆, which is the longest chain with

these properties.

Elements of such a chain (or refinement steps) can be divided into two categories, as in

the example above. We call step i an equivalence step if �i has more equivalence classes

than �i−1, otherwise it is a simple step. Both classes of steps generalise the two stages

from the example refinement chain above. We want to show that in our optimal chain,

the values computed above (S1, RP1) and (S2, RP2) describe the total number of steps

and removed pairs for all equivalence and simple steps, respectively.

Let SE and RPE be the total number of steps and removed pairs for equivalence steps,

and SS and RPS be these numbers for simple steps. We have:

— SE = N − 1

It is obvious that SE � N − 1 because after at most N − 1 equivalence steps, we are

left with N equivalence classes. Also, SE � N − 1, because otherwise there would be

a step that would increase the number of equivalence classes with at least 2. In this

case, we could always split this single step in two steps and in this way obtain a longer

refinement chain.

— RPE = N(N−1)
2

If we consider each element s ∈ S separately and sum all edges containing s that are

removed in equivalence steps, we get N − 1. If we sum it for all N nodes, we get a

number twice as big as the number of edges removed in all equivalence steps.

— SS = RPS
Observe that it is optimal to perform simple steps only when there are at least two

equivalence classes containing one element each such that one of these equivalence

classes is directly above the other. In this case we can perform a simple step that

removes only one edge. Otherwise we can perform any available equivalence step.

https://doi.org/10.1017/S0960129511000387 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000387

Modal logic and the approximation induction principle 193

In this strategy there is only one edge removed per simple step, and this yields the

maximum number of simple steps possible.

In this way, the total number of simple steps is the same as the steps in stage 2 in the

example above, and so is the total number of steps in the refinement chain:

(N + 2)(N − 1)/2

So we have the following lemma.

Lemma 5. Let S be an N-element set. The maximum length of a decreasing chain of

preorders on S �1,�2, . . . such that �k+1 is a strict refinement of �k is

(N + 2)(N − 1)

2
.

Corollary 4.

D(�S , N) �
(N + 2)(N − 1)

2
.

We will now show that the upper bound established in Corollary 4 is sharp, that is,

for each N, we can find a regular LTS with N states for which the simulation preorder

stabilises after only

(N + 2)(N − 1)/2

steps. The following algorithm constructs such an LTS for a given N. It requires that

there are at least

(N + 2)(N − 1)/2

different actions.

1. read N

2. P := {p1, . . . pN};
→0 := �; // →i: transition relation at step i

�0 := P × P ; // �i maintains preorder at step i

3. k := 1; // step counter

→1:= {p1
a1→ p1}

4. REMOVED1 := {(p1, p2), (p1, p3), . . . , (p1, pN)}; �1 := �0 \ REMOVED1;

5. while (�k �= ∆) // while current preorder is different from the identity

5.1 k = k + 1;

5.2 (pprev under, pprev over) := any pair from REMOVEDk−1

5.3 REMOVEDk := �; →k:=→k−1; �k := �k−1;

5.4 for all states pi ∈ P add transitions pi
ak→ pprev over to →k , with ak a fresh action

5.5 pick any state pstill under such that ∃ps∈P (pstill under �k−1 ps)

5.6 pick a state pstill over �= pstill under that is either �k−1-equivalent to pstill under
or, if there are no states equivalent to pstill under , directly above pstill under

5.7 for all states pj ∈ P such that either (pj = pstill under) or (pstill under �k−1 pj and

pj is not �k−1-equivalent to pstill over), add transitions pj
ak→ pstill under to →k;

https://doi.org/10.1017/S0960129511000387 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000387

M. Gazda and W. Fokkink 194

5.8 for all states ps′ �k−1-equivalent to pstill over
REMOVEDk := REMOVEDk ∪ {(pstill under, ps′)};

5.9 �k := �k \ REMOVEDk

The algorithm begins with an LTS consisting of N states and no transitions, on which

the simulation preorder is equal to P × P . In the first step, only one transition is added,

namely p1
a1→ p1. Notice that after the algorithm finishes, all states except for p1 have

the same set of initial actions, whereas p1 can in addition perform an action a1. Hence,

after the first step, we have an LTS in which p1 is above all other states in the simulation

preorder. The preorder itself is stored in the �i variable. We will later prove that this

variable stores the correct simulation preorder up to i steps for (P ,→n), where n � i.

In step k + 1, for k � 1, the algorithm picks the pair that has been removed from the

simulation preorder (pprev under, pprev over) in the previous step. The idea is that if we know

that only after k − 1 steps it is possible to state that pprev under is not under pprev over in

the simulation preorder, then for any pair (pstill under, pstill over) from the �S
k−1 preorder, we

can add fresh transitions that make pstill under distinguishable from pstill over after precisely

k steps. The new transitions must be consistent with the simulation preorder up to k − 1

steps, and the only inconsistency after k steps should be that pstill under can perform a

transition that pstill over (and states equivalent to pstill over) cannot mimic. This transition is

pstill under
ak→ pprev under,

which in step k − 1 could be mimicked by

pstill over
ak→ pprev over,

since

pprev over �k−2 pprev under.

We assume a regular LTS (P ,→) and use the following notion of the distinguishing

depth:

dd(p, q)
def
= min{n ∈ � | p ��S

n q}
where min(�) = ∞. We first prove two properties of dd.

Lemma 6. For p, q ∈ P with dd(p, q) = k > 1, there exist p′, q′ ∈ P with dd(p′, q′) = k − 1

and a ∈ Act such that p
a→ p′ and q

a→ q′, and, moreover, there is no r ∈ P with p′ �S
k−1 r

such that q
a→ r.

Proof. Take any p, q with dd(p, q) = k. There is a transition, say p
a→ p′, that cannot

be simulated by q up to k steps, that is, there is no q′ with q
a→ q′ and p′ �S

k−1 q
′. Since

p �S
k−1 q, we know that there is a q′ such that p′ �S

k−2 q
′ and q

a→ q′. Since p′ ��S
k−1 q

′, we

have dd(p′, q′) = k − 1.

Lemma 7.

dd(p, q) = 1 ⇔ I(p) \ I(q) �= �.

The following lemma states the crucial properties of the algorithm.

https://doi.org/10.1017/S0960129511000387 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000387

Modal logic and the approximation induction principle 195

Lemma 8. The LTS constructed by the algorithm has the following properties:

(1) ∀(p, q) ∈ REMOVEDk (dd(p, q) = k)

(2) ∀(p, q) ∈ �k (dd(p, q) > k).

Proof. We proceed by using induction on k. We have to consider two base cases. For

k = 0 the REMOVEDk set is empty, hence the first property holds trivially. Moreover,

since for any two states p, q we have dd(p, q) > 0, we also obtain the second property. For

k = 1 both properties follow directly from Lemma 7.

We now assume that properties 1 and 2 both hold for all i � k and prove that they

also hold for k + 1:

(1) We want to prove that dd(p, q) = k+1 for all (p, q) ∈ REMOVEDk+1. We already know

that dd(p, q) > k from the induction hypothesis. Observe that from the construction

of the algorithm (Steps 5.2, 5.4 ,5.7), there exist transitions p
ak+1→ p′ and q

ak+1→ q′

with (p′, q′) ∈ REMOVEDk , so dd(p′, q′) = k from the induction hypothesis. Since

there is only one outgoing transition from q labelled with ak+1, we know that q

cannot simulate the transition p
ak+1→ p′ up to more than k steps, hence p ��S

k+1 q and

dd(p, q) = k + 1.

(2) We prove that for all pairs (p, q) ∈ �k+1, we have d(p, q) > k + 1. We know from the

induction hypothesis that dd(p, q) > k, so we need to prove that dd(p, q) �= k + 1.

In order to show a contradiction, we suppose that dd(p, q) = k + 1. Then according

to Lemma 6, there would exist (p′, q′) with dd(p′, q′) = k and some i ∈ � such that

q
ai→ q′, p

ai→ p′ and q � ai→ p′. Observe that transitions labelled with ai are added only

at step i of the algorithm, and, moreover, if s and s′ are two different states with

incoming ai-transitions, then either (s, s′) ∈ REMOVED i−1 or (s′, s) ∈ REMOVED i−1.

If (q′, p′) ∈ REMOVED i−1, we would also have q
ai→ p′, because Step 5.4 adds ai-

transitions from all states in P to the second element of the pair. But we have

just proved that such a transition cannot exist, so the remaining possibility is that

(p′, q′) ∈ REMOVED i−1.

Let us focus on the value of i. If i− 1 > k, then (p′, q′) ∈�k , and, from the induction

hypothesis, we get dd(p′, q′) < k, which gives a contradiction. If i−1 � k, we can use the

induction hypothesis and deduce from (p′, q′) ∈ REMOVED i−1 that dd(p′, q′) = i − 1.

We also know that dd(p′, q′) = k, so i = k + 1. So we have transitions q
ak+1→ q′

and p
ak+1→ p′ with (p′, q′) ∈ REMOVEDk . Such transitions could only be added if

(p, q) /∈�k+1, which also gives a contradiction.

Lemma 9. Let (P ,→) be the LTS returned by the algorithm. Then for each k ∈ �, we

have �k = �S
k , where �S

k is the simulation preorder on (P ,→).

Proof. Take any k ∈ �. The fact that �k ⊆ �S
k follows directly from the second point

in Lemma 8. For the other direction, suppose (p, q) /∈�k . Then (p, q) must have been

removed at step i � k, so (p, q) ∈ REMOVED i for i � k and from Lemma 8 (1) it follows

that dd(p, q) � k, and hence (p, q) /∈�S
k .

https://doi.org/10.1017/S0960129511000387 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000387

M. Gazda and W. Fokkink 196

Lemma 10. Upon termination of the algorithm,

k =
(N + 2)(N − 1)

2
.

Proof. Note that the algorithm generates the maximal refinement sequence �0,�1

, . . . ,�N starting with �0= P ×P and ending with �N= ∆. Indeed, it has all the properties

of the previously discussed optimal refinement procedure: in equivalence steps, it creates

exactly two new equivalence classes directly above one another from an existing single

one; and in simple steps, it removes exactly one pair from the preorder.

Theorem 4.

D(�S , N) =
(N + 2)(N − 1)

2
.

Proof. We already know that that

D(�S , N) �
(N + 2)(N − 1)

2

(Corollary 4). For the lower bound, consider the LTS returned by the algorithm. By

Lemma 10 and the termination condition in the while loop,

� (N+2)(N−1)
2 −1 �= ∆,

so, by Lemma 9,

�S
(N+2)(N−1)

2 −1
�= ∆

whereas

�S
(N+2)(N−1)

2

= ∆,

so there exist states p, q for which it is possible to decide that p ��S q only after

(N + 2)(N − 1)

2

steps.

To derive a corresponding result for simulation equivalence, consider the modified version

of an algorithm that keeps two elements in one equivalence class as long as possible. After

(N + 2)(N − 1)/2 − 2

steps, we obtain N − 1 independent equivalence classes, one of which has 2 elements.

Therefore it takes a maximum of

(N + 2)(N − 1)/2 − 1

steps to remove all non-trivial equivalence classes.

Theorem 5.

D(∼S , N) =
(N + 2)(N − 1)

2
− 1.

https://doi.org/10.1017/S0960129511000387 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000387

Modal logic and the approximation induction principle 197

The ready simulation case is very similar. The only difference is that states with different

initial actions are incomparable. Therefore in any regular LTS in which not all states

are equivalent modulo ready simulation, there are always two incomparable equivalence

classes modulo �RS
1 .

Theorem 6.

D(�RS , N) =
(N + 1)(N − 2)

2
+ 1.

Proof.

(1) We first prove that

D(�RS , N) �
(N + 1)(N − 2)

2
+ 1.

We again consider the longest refinement procedure problem, but with the additional

restriction that in the first step two incomparable equivalence classes should be

created. Notice first that after the first step the existing optimal refinement sequences

are applied for each equivalence class separately, so we obtain

(n1 + 2)(n1 − 1)

2
+

(n2 + 2)(n2 − 1)

2
. (∗)

remaining steps, where n1, n2 denote the number of elements in each equivalence class.

It remains to prove that the greatest value is obtained when one class is a singleton

and the other has N−1 elements, so we will prove that choosing n1 = 1 maximises the

value of (∗). Take any partition of elements into two equivalence classes and assume

that n1 = x1 + 1 for x1 � 0 (we have to assume n1 � 1) and n2 = x2 for x2 � 1. We

need to prove

((x1 + x2) + 2)((x1 + x2) − 1)

2
�

((x1 + 1) + 2)((x1 + 1) − 1)

2
+

(x2 + 2)(x2 − 1)

2
.

After elementary algebraic transformations, we get

x2
1 + x2

2 + 2x1x2 + x1 + x2 − 2 � x2
1 + x2

2 + 3x1 + x2 − 4

or, equivalently,

x1x2 � x1 − 1.

Since x1 � 0 and x2 � 1, the last statement is obviously true. Therefore, the maximum

total number of refinement steps is no larger than

((N − 1) + 2)((N − 1) − 1)

2
+ 1 =

(N + 1)(N − 2)

2
+ 1.

(2) We now prove

D(�RS , N) �
(N + 1)(N − 2)

2
+ 1.

We use almost the same algorithm as before to generate the LTS that forces the

largest possible number of steps to distinguish a state from another modulo ready

simulation. The only difference is that Step 4 should now be replaced by Step 4′:

4′. REMOVED1 := {(p1, pj), (pj , p1) | j �= 1}; �1:=�0 \REMOVED1;

https://doi.org/10.1017/S0960129511000387 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000387

M. Gazda and W. Fokkink 198

We can proceed in exactly the same way as for simulation. Lemmas 7, 8 and 9 also

hold for the modified algorithm and ready simulation preorder. As for the number of

algorithm steps, after step 1, there is one independent state p1 and an (N− 1)-element

equivalence class, for which it takes

(N + 1)(N − 2)

2

steps to finish. Hence the ready simulation algorithm terminates with

k =
(N + 1)(N − 2)

2
+ 1.

We can obtain the optimal AIPc value for ready simulation equivalence analogously.

Theorem 7.

D(∼RS , N) =
(N + 1)(N − 2)

2
.

4.2. Decorated trace semantics

Computing preorders on regular LTSs becomes more difficult for decorated trace se-

mantics, which are based on traces of actions that may be augmented with state

properties such as allowed/refused actions. Note that deciding trace containment is

PSPACE-complete (Stockmeyer and Meyer 1973).

Below, we present a simple property that is common to all decorated trace semantics

and guarantees that checking behaviour up to an exponential depth is sufficient to decide

whether two states are related by a preorder.

Lemma 11. Assume an LTS (�,→) closed under alternative composition (that is, S ⊆
� ⇒

∑
s∈S s ∈ �). For any process equivalence ∼ satisfying

p ∼K+1 q ⇔ (p ∼1 q) ∧

⎛
⎝∀a∈A

⎛
⎝ ∑
p′:p

a→p′

p′ ∼K

∑
q′:q

a→q′

q′

⎞
⎠

⎞
⎠ . (†)

we have

∼K = ∼K+1 ⇒ ∀i ∈ � (∼K = ∼K+i).

Proof. We suppose ∼K = ∼K+1 and take any p, q ∈ � such that p ∼K+1 q. We will

prove that p ∼K+2 q. We have

p ∼K+1 q ⇔ (p ∼1 q) ∧ ∀a∈A

⎛
⎝ ∑
p′:p

a→p′

p′ ∼K

∑
q′:q

a→q′

q′

⎞
⎠ (†)

⇔ (p ∼1 q) ∧ ∀a∈A

⎛
⎝ ∑
p′:p

a→p′

p′ ∼K+1

∑
q′:q

a→q′

q′

⎞
⎠ (∼K=∼K+1)

⇔ p ∼K+2 q. (†)

https://doi.org/10.1017/S0960129511000387 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000387

Modal logic and the approximation induction principle 199

Theorem 8. If we assume a regular LTS (�,→) with |�| = N, then for any process

equivalence ∼ being sound modulo idempotency (x+ x ∼ x), compositional with respect

to projection and satisfying

p ∼K+1 q ⇔ (p ∼1 q) ∧

⎛
⎝∀a∈A

⎛
⎝ ∑
p′:p

a→p′

p′ ∼K

∑
q′:q

a→q′

q′

⎞
⎠

⎞
⎠ ,

we have

π
(2N

2)
(p) ∼ π

(2N

2)
(q) ⇒ p ∼ q,

and thus

D(∼, N) �

(
2N

2

)
.

Proof. First, we extend � to �+, which contains all alternative compositions of processes

from �. In this way we obtain an LTS with 2N states. From Lemma 11, we know that if

there are processes that can be distinguished after K steps, so in every step i up to K , the

equivalence ∼i is a strict refinement of ∼i+1. Since we can have at most
(
2N

2

)
refinement

steps, the upper bound for D(∼, N).

It is not difficult to see that this result holds for all decorated trace semantics (trace,

completed trace, failures, readiness, failure and ready traces). A sharp bound for AIPc for

these semantics remains an open question.

5. Conclusions and future work

We have presented sufficient conditions for a modal language O ⊆ HML so that the

equivalence ∼O coincides with its:

(1) finitary counterpart; and

(2) equivalence induced by finite-depth formulae (in the setting of image-finite processes).

We have established that the Approximation Induction Principle holds for all process

equivalences whose modal characterisation consists of finite-depth formulae. Combined

with the previous result, we have obtained a fairly general sufficient condition for

soundness of AIP on image-finite processes. Most ‘strong’ equivalences in the literature

meet the aforementioned conditions.

We have also studied a constructive version of AIP, and proved upper bounds for

simulation and ready simulation semantics (quadratic) and for decorated trace semantics

(exponential). Constructive AIP gives an upper bound on the number of iterations

required for algorithms that compute preorders on, for example, regular LTSs (Celikkan

and Cleaveland 1995).

Traditionally, most properties of process semantics were derived by studying each

equivalence or preorder separately. The basic idea underlying most results in this paper

is to take an orthogonal approach: consider a property and find the class of equivalences

that satisfy it. We also expose relationships between the properties. Some recent research

on characteristic formulae (Aceto et al. 2009) is somewhat similar in spirit to ours in

https://doi.org/10.1017/S0960129511000387 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000387

M. Gazda and W. Fokkink 200

the sense that a common underlying structure in characteristic formulae constructions for

various semantics is explored to create a general framework. Aceto et al. consider the

domain of behavioural relations that are defined as fixed points of certain monotonic

functions, whereas we focus on equivalences defined with modal sublanguages of HML.

We are currently investigating compositionality requirements for process operators. It

would also be interesting to consider all these problems in the setting of weak semantics.

An extensive list of equivalences involving the silent step along with corresponding modal

characterisations has been given in van Glabbeek (1993). The modal languages are more

cumbersome, and other issues such as fairness in the case of AIP need to be taken into

account.

References

Aceto, L., Bloom, B. and Vaandrager, F. (1994) Turning SOS rules into equations. Information and

Computation 111 (1) 1–52.

Aceto, L., Ingolfsdottir, A. and Sack, J. (2009) Characteristic formulae for fixed-point semantics:

A general framework. Proc. 16th Workshop on Expressiveness in Concurrency (EXPRESS’09).

Electronic Proceedings in Theoretical Computer Science 8 1–15.

Baeten, J. C.M., Bergstra, J. A. and Klop, J.W. (1987) On the consistency of Koomen’s fair

abstraction rule. Theoretical Computer Science 51 (1-2) 129–176.

Barros, A. and Hou, T. (2008) A Constructive Version of AIP Revisited. Electronic Report PRG0802,

Programming Research Group, University of Amsterdam.

Baeten, J. C.M. and Weijland, W. P. (1990) Process Algebra, Cambridge Tracts in Theoretical

Computer Science 18, Cambridge University Press.

Blackburn, P., de Rijke, M. and Venema, Y. (2001) Modal Logic, Cambridge University Press.

Bloom, B., Fokkink, W. J. and van Glabbeek, R. J. (2004) Precongruence formats for decorated trace

semantics. ACM Transactions on Computational Logic 5 (1) 26–78.

Celikkan, U. and Cleaveland, R. (1995) Generating diagnostic information for behavioral preorders.

Distributed Computing 9 (2) 61–75.

van Glabbeek, R. J. (1987) Bounded nondeterminism and the approximation induction principle in

process algebra. Proc. 4th Symposium on Theoretical Aspects of Computer Science (STACS’87).

Springer-Verlag Lecture Notes in Computer Science 247 336–347.

van Glabbeek, R. J. (1993) The linear time/branching time spectrum II. The semantics of sequential

systems with silent moves. Proc. 4th Conference on Concurrency Theory (CONCUR’93). Springer-

Verlag Lecture Notes in Computer Science 715 66–81.

van Glabbeek, R. J. (2001) The linear time/branching time spectrum I. The semantics of concrete,

sequential processes. In: Bergstra, J. A., Ponse, A. and Smolka, S. A. (eds.) Handbook of Process

Algebra 3–99.

van Glabbeek, R. J. and Ploeger, B. (2008) Correcting a space-efficient simulation algorithm. Proc.

20th Conference on Computer Aided Verification (CAV 2008). Springer-Verlag Lecture Notes in

Computer Science 5123 517–529.

Goldblatt, R. (1995) Saturation and the Hennessy–Milner property. In: Ponse, A., de Rijke, M. and

Venema, Y. (eds.) Modal Logic and Process Algebra. A Bisimulation Perspective. CSLI Lecture

Notes 53 189–216.

Hennessy, M. and Milner, R. (1985) Algebraic laws for non-determinism and concurrency. Journal

of the ACM 32 (1) 137–161.

https://doi.org/10.1017/S0960129511000387 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000387

Modal logic and the approximation induction principle 201

Hennessy, M. and Milner, R. (1980) On observing nondeterminism and concurrency. Proc. 7th

Colloquium on Automata, Languages and Programming (ICALP’80). Springer-Verlag Lecture

Notes in Computer Science 85 299–309.

Hollenberg, M. (1995) Hennessy–Milner classes and process algebra. In: Ponse, A., de Rijke, M. and

Venema, Y. (eds.) Modal Logic and Process Algebra. A Bisimulation Perspective. CSLI Lecture

Notes 53 189–216.

Larsen, K. (1990) Proof systems for satisfiability in Hennessy–Milner logic with recursion. Theoretical

Computer Science 72 (2-3) 265–288.

Mauw, S. (1987) A constructive version of the approximation induction principle. Proc. SION

Conference on Computing Science in the Netherlands (CSN’87) 235–252.

Stirling, C. (2001) Modal and Temporal Properties of Processes, Texts in Computer Science, Springer-

Verlag.

Stockmeyer, L. J. and Meyer, A.R. (1973) Word problems requiring exponential time. Proc. 5th

Annual ACM Symposium on Theory of Computing (STOC’73) 1–9.

https://doi.org/10.1017/S0960129511000387 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000387

