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The total energy of binding of a heavy atom. By Mr E. A. MILNE,
Trinity College.

[Received 4 May, read 25 July, 1927.]

1. In a recent important paper*, L. H. Thomas has originated
a method for calculating approximately the field in the interior of
a heavy atom. His main assumption is that the electrons are dis-
tributed uniformly in the six-dimensional phase space for the
motion of an electron at the rate of twa for each h3 of 6-volume.
On this assumption, Poisson's equation

is found to lead to an equation of the form
1 d

where <f> is proportional to the potential V and £ is proportional
to the radial distance r.

To an astrophysicist, the form of (1) immediately suggests that
of Emden's *f differential equation

which describes the gravitational equilibrium of a spherical mass
of perfect gas of polytropic index n. Here <f> may be considered to
be either the gravitational potential or the temperature. Emden's
solution of (2) with n = 3 is the basis of Eddington's famous theory
of the internal constitution of the stars. The methods used by
Thomas for discussing (1) are similar to those used by Emden for
discussing (2).

Amongst Emden's results, perhaps the most notable is that
which shows that once (2) has been solved, the total gravitational
potential energy (or the mean temperature)! can be calculated
without further quadrature. The object of the present note is to
apply Emden's method to determine the total electrostatic poten-
tial energy of an atom built on Thomas's model, and so the total
binding energy of the electrons.

2. Evaluation of an integral. We consider first a generalised
form of Thomas's equation,

* "The calculation of atomic fields," Proc. Camb. Phil. Soc, 23, 1927, 542.
+ Emden, Gaskugeln, Leipzig, 1907.
; This adaptation ia due to Eddington.
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From the mode of derivation of the equation, the charge density p
is proportional to <f>n, whilst Foe <f>, and the total electrostatic energy
^JpVdr thus involves the evaluation of a definite integral

J a

Substituting for |̂ <£n from (3) and integrating by parts, this gives

where the new integrand has been re-arranged as a product of two
factors. Integrating again by parts and then substituting for-

from (3), we find

On integrating the last integral by parts (treating <ft"d<f>/dl; as the
perfect differential), we obtain an integrated part together with a
multiple of the original integral I£. Re-arranging, we find

a

This is, essentially, the analogue for equation (3) of Emden's result
for (2).

Applying to Thomas's case and extending the integration from
0 to so we find

For an atomic field, <j> has a singularity at the origin, its
behaviour being of the form

<p ~ -r- + <Jjf
for £ small. We find then

<f> E at = — j^a0o-i ( 4 )
0 '

3. The electrostatic potential energy, Thomas's equation for the
atomic field V at distance r is

1 d (^dV\
—. ~r [r3 - j - 1 = — *7TA (o)

with p = — e J5 ~q- (2we) V (G)
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and the solution V for r small behaves like

„ Ne

where N is the atomic number and v0 is the self-potential at the
origin of the distribution p. Now the system of charges consists
of + Ne at r = 0 together with the distribution p. Let the latter
give rise to a field of potential v (r). Then

,,. J « . .
r w .

The electrostatic energy is then W = ;

or W=\ IpVdr + \Nev0.. (7)

Thomas makes the substitutions
^ h?

so that for f small, the behaviour of <£ is

A 1 2 8 -N\

say. With these substitutions, (5) reduces to (1), the integral in (7)
reduces to a multiple of (4), and (7) itself reduces to

-S2-^»-[?+1] --w
where in the [] we have shown separately the contributions corre-
sponding to the two terms in (7).

We shall put

the ionisation potential of the normal hydrogen atom.
By the theorem of the virial, since the atomic cluster of electrons

is in a steady state, the average kinetic energy is equal to one-half
the average potential energy taken with negative sign. Conse-
quently the total energy E of the system of moving charged masses
—itself a negative quantity—is one-half expression (9), or

It remains to evaluate to0.
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4. Value of a>0. Suppose that by any means whatever we
have found a solution of (1) which near f = 0 is of the form

Make the substitution f = «fi, <£ = #</>!. Then

1 d

and, near f = 0,

It follows that if we choose a and /8 so that

then ^ is precisely the <f> of equation (8), and accordingly

6.

Solving for a and ft we find
—I-

(128 N\* .

Now Thomas has tabulated* a function -\jra given by

(where <£ satisfies (1)) and having the behaviour near £ = 0,
55
T

Thus we know a solution in which
. . 128 ' . , 128

„ 128/JVHence wo= 5—J^
97r2 \55

and thus by (10)
i

* We have replaced Thomas's p throughout by (, to avoid confusion with our use
p for charge-density.
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5. Numerical valves. The last five entries in Thomas's table
yield values of ^0 — 55/£ as follows:

1

•003811
•003027
•002404
•001910
•001517

to

14140
17870
22580
28500*
35960

V-o-55/s'

-290
-300
-300
-300
-300

We have a well-defined value c, = lim
Inserting this in (13) we get

— 55/£) = — 300.

(14)

= l&54>, and omitting the minus sign,

volts (15)

or in volts, putting

This should be equal to the sum 2 ^r of the successive ionisation

potentials of the atom. Estimates of the successive ionisation
potentials of oxygen (N=8), iron (N = 26) and silver (JV = 47)
have been tabulated by Hartreef. The totals, and the values of
E given by (15) are shown in the following table, to which hydrogen
(i\r= 1) and helium (iV= 2) have also been added:

N •

1
2
8.
26 "
47

A

r-l

-

135
80

2000
33600
138000

17
86

2200
34000
136000

13-5
15-9
15-6
16-8
17-3

The agreement is quite satisfactory. Since Thomas's theory
holds only for atoms with a comparatively large number of electrons,
we should expect S^r/i^^ to tend to a limit with increasing N.
This appears to be confirmed by the last column in the table.

This constant cx, which we have determined as the difference
between two large numbers, could be found more accurately by

* Corrected value, kindly supplied by Mr Thomas,
t Proc. Camb. Phil. Soe., 22, 473, 1924.
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integration if necessary. For the constant 6, of (11) is proportional
to Vc,, i.e. to the self-potential of the distribution p at the origin,
and so must be proportional to

I™ £
Jo r

We readily find in fact that

6. Summary. Thomas's differential equation for the average
field inside a heavy atom is analogous to Emden's equation for the
polytropic equilibrium of a star. Emden's result that the total
gravitational potential energy of a star is calculable once the
differential equation has been solved is adapted to give the total
electrostatic energy, and hence the total energy of binding, of an
atom built on Thomas's model. This should be equal to the sum
of the successive ionisation potentials. The total energy is found
to be proportional to iV", where N is the atomic number. The
values found agree with Hartree's calculations of the successive
ionisation potentials of certain atoms.
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