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Crystal structure determination on the basis of powder diffraction data frequently involves the ques-
tion how the given diffraction data with some appreciably hkl-dependent line broadening should be
interpreted. In many cases, such line broadening may either: (i) reasonably well be reconciled with
a certain high-symmetry structure model or (ii) with a variant of the former with lower symmetry crys-
tal family, which frequently will give a somewhat better fit in Rietveld refinement. In this work, it is
shown mathematically that symmetry reduction induced reflection spitting masked by other line
broadening contributions, thus leading to some reflection splitting-induced line broadening, shows
a similar hkl dependence as typically adopted for anisotropic microstrain broadening with respect
to the high-symmetry structure. This implies that Rietveld refinement on the basis of the low-symme-
try model (including typically isotropic line broadening) and on the basis of the high-symmetry model
with anisotropic microstrain broadening can both lead to similar qualities of the fit. Hence, the refine-
ment results for both possibilities should be carefully considered in combination with possibly avail-
able additional information (e.g. results of first-principles calculations) to arrive at adequate
conclusions concerning the true symmetry of the material under investigation. © 2017
International Centre for Diffraction Data. [doi:10.1017/S0885715617000665]
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I. INTRODUCTION

Many phase transitions from a high-symmetry to a low-
symmetry phase show up in powder diffraction patterns by a
splitting of reflections, which are equivalent and occur at the
same diffraction angle for the high-symmetry phase. Such a
splitting can occur if the symmetry reduction involves reduc-
tion of the symmetry of the crystal family. Thereby, the phase
transition is connected with a strain, which itself breaks the
symmetry of the high-symmetry phase.

In the course of such phase transition, a crystal of the
high-symmetry phase may split up into many low-symmetry
phase domains. Generally, these domains can be classified
as belonging to a finite number of domain states (Janovec
and Privratska, 2003). This number corresponds to the ratio
of the orders of the space groups of high- and low-symmetry
phase. If the phase transformation involves occurrence of
symmetry-breaking strain, all or groups of the domain states
are characterized by different orientations of the strain tensor.
In what is sometimes called pure ferroelastics, all domain
states feature differently oriented strain. If the phase transi-
tions also involve formation of chiral, ferroelastic, and/or anti-
phase domains, there will be groups of domain states of the
same orientation of the strain. These groups will, however,
deal with here as a whole, as only the strains are of interest.

In particular, the presence of domain (twin) boundaries
separating domains of different strains can lead to peculiar dif-
fraction phenomena, which may more or less strongly influ-
ence the regions of splitting fundamental reflections in
powder diffraction patterns (Cowley and Au, 1978;

Hayward and Salje, 2005; Boysen, 2007; Leineweber,
2012a; Leineweber and Krumeich, 2013), whereby occur-
rence of interference between X-rays/neutron scattered in dif-
ferently oriented domains is particularly complex
phenomenon. These peculiar interference phenomena will,
however, not be considered in the present paper. Instead, in
the present paper, the case is investigated more closely,
where the spontaneous symmetry-breaking strain leads for
the low-symmetry phase to an only very small reflection split-
ting in powder diffraction patterns, the shape of which then
gets masked by other, e.g. instrumental line broadening contri-
butions. Therefore, the reflection splitting shows mainly up as
some line broadening, which can easily be mixed up with
ordinary line broadening of the high-symmetry phase. This
apparent line broadening has very similar properties as the
hkl-dependent microstrain broadening commonly applied in
Rietveld refinement.

II. CONCEPTS USED

A. Symmetry-breaking spontaneous strain

In order to be able to analyze the line broadening effects
because of reflection splitting in the following sections, a treat-
ment of symmetry-breaking strain according to Aizu (1970)
introduced in the context of analysis of ferroelastic phase tran-
sitions will be adapted for the present purposes. Aizu, in par-
ticular, dealt with the problem that, in the existence regime of
a low-symmetry (often low-temperature) phase, frequently the
high-symmetry phase is not stable and cannot be studied. This
obstructs precise determination of the strain describing the dis-
tortion of the low-symmetry phase with respect to the high-
symmetry phase at a specific temperature and pressure,
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which is needed for detailed analysis of strains, e.g. by means
of Landau theory (Carpenter et al., 1998). Aizu proposed to
refer the strain associated with the low-symmetry state relative
to some specific hypothetical high-symmetry state, which has
a lattice metric purely derived from the metric of the low-
temperature state. For that Aizu required the sum over the
strain tensors mεS pertaining to the n different domain states
amounts 0:

∑n
m=1

m1s = 0 (1)

whereby the tensors had originally been denoted as xs by Aizu
(1970). Equation (1) implies that the metric of the high-
symmetry phase is some averaged metric of the low-symmetry
phase. Note, moreover, that because of their definition, the
tensors mε have a trace of 0. Note, moreover, that the n tensors
mεs are inter-related with each other by tensor transformations
using the symmetry operators R, which get lost upon reducing
the symmetry from the high- to the low-symmetry phase:

Rm1sR
T = m′

1s (2)

In order to quantify the symmetry-breaking strain exerted
by mεs, Aizu (1970) suggested use of a scalar magnitude εs
called the spontaneous strain εs (originally called xs) defined as

12s =
∑3
i,j=1

m12sij = m12s11 + m12s22 + m12s33

+ 2m12s12 + 2m12s13 + 2m12s23

(3)

εs does not change upon transformation of mεs, which means
that its value is independent of m.

Aizu indicated that the (then ferroelastic) symmetry dis-
tortion increases upon increase of εs. A more explicit meaning
of the value of εs can be derived by analyzing how εs is related
with the variation of the strain mεs(x) measured along a unit
vector x in the crystal frame of reference:

m1s(x) =m1sijxixj (4)

applying here and henceforth the Einstein summation conven-
tion. The direction average of this and other scalar quantities
can be obtained by expressing the components of x in polar
coordinates (x1 = coswsinϑ, x2 = sinwsinϑ, x3 = cosϑ) and inte-
grating over sinϑ/(4π)dϑdw from 0 to π for ϑ and 0 to 2π for w.
Equation (4) yields after integration

�1 = 1
4p

∫2p
0

∫p
0

m1sijxixj sinqdqdw

= 1
3
m1s11 + m1s22 + m1s33( )

(5)

Equation (5) is, like Eq. (3), invariant with respect to tensor
transformation of mεs and is, therefore, m-independent and
amounts 0 in line with the definition of this strain tensor
(see above). Note that, here and henceforth, the overbar will
be used to indicate an average over all directions of x (see
Leineweber, 2016). The anisotropy of the direction-dependent
strain can be quantified by its variance, (1− �1)2 = 12, which

then is obtained in view of Eq. (5) as

(1− �1)2 = 12 = 1
4p

∫2p
0

∫p
0

m1sijxixj
( )2

sinqdqdw,

= 1
15

3m12s11 + 3m12s22 + 3m12s33 + 2m1s11
m1s22

(
+2m1s11

m1s33 + 2m1s22
m1s33

+ 4m12s12 + 4m12s13 + 4m12s23
)

(6a)

whereby the upper left index of m is omitted for the variances
because the result is, again, m-independent.

Subtraction of 0 = 1/15(mεs11 +
mεs22 +

mεs33)
2 from

Eq. (6a) gives

12 = 2
15

m12s11 + m12s22 + m12s33 + 2m12s12 + 2m12s13 + 2m12s23
( )

(6b)

which is again independent of m. Comparison of Eq. (6b) with
Eq. (3) shows, that the spontaneous strain εS introduced by
Aizu (1970) is proportional to the variance of the direction-
dependent strain caused by mεs.

B. General description of microstrain broadening

Microstrain in an untextured crystalline material
implies, in the crystal frame of direction, a distribution of
strain around its average, defined as strain 〈ε〉 = 0 in the pre-
sent work. At this zero strain, the material exhibits its aver-
age lattice parameters. The microstrain can then be
understood as a correlated distribution of the components
of the strain tensor ε around zero strain. That distribution
is usually regarded as unimodal, and if it is symmetric, it
has its maximum at 〈ε〉 = 0. Typical origin of such micro-
strain is sufficiently long-range distortions of the crystal lat-
tice (i.e. strains) randomly occurring over the diffracting
material because of some microstructural inhomogeneities,
like composition variations, temperature variations, and,
most prominently, locally varying stresses (microstress)
caused by dislocations but also by pure elastically accom-
modated misfit between grains within a polycrystal.

By means of powder diffraction, this microstrain can be
characterized by analyzing the microstrain measured in the
direction of reciprocal lattice vectors (i.e. the broadening for
different hkl) and making conclusions about the overall micro-
strain distribution).

The correlated distribution of the components of the
strain tensor around their average values is conveniently
done by means of the tensors quantifying the joint central
moments (or cumulants) of second and higher order
(Leineweber, 2009, 2011). In most cases, only the second
moments are considered, i.e. the variances and covariances
of the strain tensor’s components, which are (for
averages = 0) given as the at maximum 81 components
Eijpq = 〈εijεpq〉 of a fourth rank tensor E. At maximum 21
of these components are independent; that number can be
further reduced by crystal symmetry. The variance of the
microstrain broadening measurable in a direction x is
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then given by the polynomial

k12hkll = k12 x( )l = k1ij1 pqlxixjxpxq (7)

Thereby, the hkl dependence of k12hkll = k12(x)l is contained
in the components of x1, x2, and x3, which are linearly
related with h, k, and l. Note that now the 〈〉 indicates aver-
aging over the different strain values over the ensemble of
crystallites/domains, now not involving direction averaging
indicated by the overbar (see above). In the course of
Rietveld refinement, k12hkll is typically associated with a
certain shape for the line broadening, most frequently
with a Gaussian. (In the case that the line broadening is/
appears to be of Lorentzian or pseudo-Voigt shape
(Stephens, 1999), alternative width parameters have to be
used, since the variance does not exist for these shapes,
as long as the pseudo-Voigt does not correspond to a
pure Gaussian. See also Leineweber (2011).) Thereby, fit-
ting on the basis of experimental data is done with only
15 independent fitting parameters, the number of which
can be further reduced by the crystal symmetry, which
are given by

Zijpq = 1
3 k1ij1 pql+ k1ip1 jql+ k1iq1 jpl
( )

(8)

These Zijpq parameters can be used to analyze the above
mentioned microstructural characteristics provided that a
model exists relating strain and inhomogeneously distribu-
ted quantities causing the microstrain (composition, tem-
perature, stress).

III. REFLECTION SPLITTING-INDUCED MICROSTRAIN

BROADENING

Upon reducing the symmetry of the crystal family of a
high-symmetry structure, the accompanying symmetry-
breaking strain will, in a powder-diffraction pattern, lead to
some reflection splitting for some or all hkl pertaining to the
high-symmetry phase. This is because of a probability density
function of strain along the diffraction vector, which is a
superposition of n delta functions located at the values
mεs(x) according to Eq. (4) with m = 1. . .n, where x is the
unit vector parallel to the diffraction vector of any of the hkl
reflections of the high-symmetry structure. Averaging over
these strain values yields with use of Eq. (1):

k1l x( ) = 1
n

∑n
m=1

m1sijxixj
( ) = 1

n

∑n
m=1

m1sij

( )
xixj = 0 (9)

Equation (9) indicates that the average of the reflection posi-
tions corresponds to the reflection position of the hypothetical
high-symmetry state according to Aizu (1970). The compo-
nent reflections then can be indexed in accordance with the
low-symmetry structure.

If the magnitude of reflection splitting is so small that it is
largely masked by instrumental and other broadening contri-
butions, the splitting might also get interpreted as line broad-
ening of a single, unimodally broadened peak located at a
position of ε(x) = 0. It is reasonable to assume that in the
course of a full-profile-based refinement based on such broad-
ened diffraction data, the actual bi- or multimodal shape of the

reflection splitting can reasonably be approximated by such a
single unimodal peak with a variance determined by the mag-
nitude of the reflection splitting. A bimodal delta-shaped dis-
crete strain distribution which can be because of reflection
splitting and a (unimodal) Gaussian having the same variance
are illustrated in Figure 1.

It will turn out that the x-dependent reflection splitting-
induced line broadening because of the symmetry breaking
strains mεs is of microstrain-like character compatible with Eq.
(7). The required values of 〈εijεpq〉 can be calculated by averag-
ing the over the strains mεsij of the different domain states:

k1ij1 pql = 1
n

∑n
m=1

m1sij
m1spq (10)

Note that requirement for use of the 〈εijεpq〉 values fromEq. (10)
is validity of Eq. (1) ensuring that 〈εijεpq〉 are truly variances and
covariances (which would not be the case if Eq. (1) would not
hold, i.e. Σεsij≠ 0). The averaging resulting from Eq. (10) can
easily be performed on the basis of the strainmatrices for the dif-
ferent ferroelastic species listed by Aizu (1970). Since mεs is
invariant with respect to the symmetry operations of the low-
symmetry phase’s crystal class, and since the symmetry ele-
ments, which are lost in the course of symmetry reduction, act
on each mεs to form a complete set of strain tensors pertaining
to all domain states, the tensor 〈εijεpq〉 is symmetry invariant
with respect to the point group (Laue class) of the high-
symmetry phase. Hence, also the polynomial (7) is symmetry
invariant with respect to the high-symmetry phase, as it is typi-
cally assumed to be the case (Popa, 1998; Stephens, 1999;
Leineweber, 2006, 2011).

It may be interesting to analyze the direction-averaged
extent of the reflection splitting-induced microstrain broaden-
ing using a measure introduced by Leineweber (2011) and a

Figure 1. Probability density functions (pdfs) of a scaled strain around an
average of zero and the same variances with (i) a Gaussian shape and a
bimodal-delta shape represented by the two vertical lines assumed to have
together the same area as the Gaussian. In a powder diffraction pattern,
these pdfs may correspond to the strain distributions along the diffraction
vector of a reflection hkl and have to be convoluted with other line
broadening contributions (instrumental, size. . .) to yield the total
measurable line profile. If these other contributions are sufficiently broad,
the actual structure of the two pdfs gets masked by these, so that both pdfs
will lead to a similar measurable peak profiles both located at a position
corresponding to ε = 0.
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modified notation from Leineweber (2016). This measure
amounts the direction average of k12hkll:

k12hkll = 1
5 Z1111 + Z2222 + Z3333 + 2Z1122 + 2Z1133 + 2Z2233( )

(11)

which becomes upon use of Eqs (8) and (10):

k12hkll= 1
15n

∑n
m=1

3m12s11+ 3m12s11+ 3m12s11
+2m1s11m1s22+ 2m1s11m1s33+ 2m1s22m1s33
+4m12s12+ 4m12s13+ 4m12s23

⎧⎨
⎩

⎫⎬
⎭

(12)

Addition of 0 =−(mεs11 +
mεs22 +

mεs33)
2 in the bracket yields

k12hkll= 2
15n

∑n
m=1

m12s11+ m12s22+ m12s33
+2m12s12+ 2m12s13+ 2m12s23

{ }
(13)

Comparison of Eq. (13) with Eq. (6b) reveals each addend in
Eq. (13) is equal, i.e. independent of m. Moreover, this com-
parison indicates that the

k12hkll= 12 (14)

holds. Hence, if microstrain broadening is induced by a slight
distortion with respect to the unit cell of the high-symmetry
state, the direction average of the variance of the microstrain
broadening equals the direction average of the variance of
the strain and is thus proportional to the squared Aizu’s spon-
taneous strain.

IV. EXAMPLE: APPLICATION TO THE CASE

TETRAGONALLY DISTORTED CUBIC MATERIALS

The case of a cubic-to-tetragonal phase transition is
treated here because the line broadening associated with
the corresponding reflection splitting has been considered
very recently (Fabrykiewicz and Przenioslo, 2016) by
describing the broadening within Stephens’ (1999) descrip-
tion for anisotropic microstrain broadening. That description
is based on the coefficients of a fourth-order polynomial in
h, k, and l instead of the coefficients of the fourth-order
polynomial in x1, x2, and x3 as used in Eq. (7) in connection
with Eq. (8), as employed here. Unfortunately, in that work,
the analysis of the experimentally determined independent
coefficients S400 and S220 of these polynomials remains on
a qualitative basis and does not translate magnitudes of
tetragonal distortion into values of S400 and S220. This is
done here within the formalism of Eqs (7) and (8), which
appears to be simpler than doing so in the Shkl formalism
(an advantage which is even more relevant for even lower
symmetries).

Assuming that the symmetry reduces from m�3m to
4/mmm point group (corresponding to the “ferroelastic spe-
cies” m�3mF4/mmm; Aizu, 1970), having group orders of 48
and 16, the number of domain states amounts n = 3 = 48/16.

The strains mεs pertaining to these domain states are:

11s =
A 0 0

0 A 0

0 0 −2A

⎛
⎜⎝

⎞
⎟⎠, 21s =

A 0 0

0 −2A 0

0 0 A

⎛
⎜⎝

⎞
⎟⎠,

and 31s =
−2A 0 0

0 A 0

0 0 A

⎛
⎜⎝

⎞
⎟⎠

(15)

Considering the distortions because of these tensors, one can
calculate the distributions of strain because of the different
strain states measurable in the directions x = (1, 0, 0), x =
(1, 1, 0)/21/2, and x = (1, 1, 1)/31/2, where the occurring strains
have been calculated by means of Eq. (4). The corresponding
strains relative to a cubic average are shown in Figure 2 and
correspond to the typical tetragonal reflection splitting in a
powder diffraction pattern if this splitting is not masked by
other line broadening contributions.

If that masking occurs, the coefficients of Eq. (7) describ-
ing the microstrain broadening can be calculated by use of
Eqs (10) and (15) giving

k1211l = k1222l = k1233l = 2A2

k111122l = k111133l = k122133l = −A2

and all other k1ij1 pql = 0 (16)

These results indicate that the microstrain distribution is sym-
metry invariant with respect to the high-symmetry m�3m point
group.

Upon use of Eq. (16) in Eq. (7) one obtains the formula
for the direction-dependent microstrain:

k12hkll = 2A2 x41 + x42 + x43 − x21x
2
2 − x21x

2
3 − x22x

2
3

( )
(17)

Addition and subtraction of +2x21x
2
2 + 2x21x

2
3 + 2x22x

2
3

on the right side of Eq. (17) and using
x41 + x42 + x43 + 2x21x

2
2 + 2x21x

2
3 + 2x22x

2
3 = 1 yields:

k12hkll = 2A2 1− 3G( ) (18)

Figure 2. Distribution of strains for three different crystallographic
directions for a tetragonally distorting cubic structure if all three domain
states with the strains given in Eq. (15) occur with equal probability. The
variances k12hkll = k12(x)l of the strains according to Eq. (14) are (a) 2A2,
(b) A2, (c) 0 and will show up as microstrain broadening instead of
reflection splitting, if the reflection splitting is sufficiently masked by other
line broadening contributions.
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with G = x21x
2
2 + x21x

2
3 + x22x

2
3 = (h

2k2 + h2l2 + k2l2)/(h2 + k2 + l2)2.
Thereby, the maximum value of 〈12hkl〉 is present for Γ = 0, i.e.
x = (±1,0,0), (0, ±1,0), and (0,0, ±1) [Figure 2(a)] with
k12hkll = 2A2. This corresponds to the splitting pattern for
{h00} reflections. The minimum (zero) microstrain occurs
for Γ = 1/3, i.e. x = (±1, ±1, ±1) with k12hkll = 0, which is the
minimum possible value for a variance. This corresponds to
the absent splitting of {hhh} reflections for a symmetry reduc-
tion from cubic to tetragonal.

Note that the cubic-to-tetragonal case considered here is
associated with an asymmetric distribution of the strains for
all directions where the variance k12hkll . 0, whereas many
other cases are associated with a symmetric 1:1 splitting.
This direction/hkl dependence of this asymmetry can be con-
sidered by calculation of the third (central) moments of the
microstrain distribution, on the basis of which the skewness
can be calculated (Leineweber, 2009).

V. DISCUSSION

X-ray powder diffraction analysis frequently pursues to
reveal the true symmetry of an investigated material. Thereby,
broadening of reflections is frequently taken as a sign of a
masked reflection splitting, indicative for a reduction of the
crystal family with respect to that suggested by the average
reflection positions. In Section III, it was shown that reflection
splitting-induced line broadening, at least as it concerns the hkl
dependence of the variance of the line broadening (here its x
dependence), follows the samemathematics as “ordinary” aniso-
tropic microstrain broadening typically employed in Rietveld
refinement. This implies that identification of the correct source
of line broadening can be a difficult issue, and that both options
should be considered as a possibility. Hints can be obtained from
the shape of the broadening, if it is sufficiently visible against the
further line-broadening contributions: a mesokurtic microstrain
broadening (i.e. with a shape with a top flatter than that of a
Gaussian) may indicate that this broadening is indeed because
of a splitting. Discernible reflection asymmetry (skewness)
occurring with correct sign may also help to obtain information
about a possible symmetry distortion.

The author of the present work has recently analyzed
powder-diffraction data of Fe3C (Leineweber, 2012b, 2016)
and Fe5C2 (Leineweber et al., 2012). These data, could, in
principle be interpreted in terms of monoclinic and triclinic
symmetry, respectively, instead of in terms of the long-
accepted orthorhombic and monoclinic symmetry. More
detailed analysis of the diffraction data and consideration of
the results from first-principles calculations implied that
crystal-structure description is more adequately done in both
these cases in the respective higher symmetry together with
some anisotropic microstrain broadening. In these mentioned
cases, the microstrain was caused by thermal microstresses
because of anisotropy of the thermal expansion.

Note that reflection splitting-induced microstrain broaden-
ing can also accompany more complex symmetry reductions
due superstructure formation. Detection of superstructure reflec-
tions can of course help to identify a reduction of the symmetry
of the crystal family. In such case, there are always groups of
domain states with the same strain (e.g. antiphase, chiral, or

inversion domains). Note that the treatment here to predict
reflection splitting-induced microstrain broadening considered
only (ferroelastic) domain states with all different strains leading
to the different ferroelastic species compiled by Aizu (1970).
Cases with domain states with identical strain tensors can be
treated by grouping domain states of identical strains and apply-
ing then the present formalism.

VI. CONCLUSION

The present analysis has demonstrated that the reflection
splitting induced by reduction of the crystal family, which is
largely masked by other line-broadening contributions, will
lead to line broadening with a variancewhich shows a hkl depen-
dence similar to that of conventional anisotropic microstrain
broadening. This asks for careful consideration of both possibil-
ities— true symmetry reduction involving reflection splitting or
anisotropic microstrain broadening— to arrive at correct conclu-
sions on the symmetry of the material under consideration.
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